Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Characterization of Microbulbifer Strain CMC-5, a New Biochemical Variant of Microbulbifer elongatus Type Strain DSM6810T Isolated from Decomposing Seaweeds

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, rod-shaped, non-spore forming, non-motile and moderate halophilic bacteria designated as strain CMC-5 was isolated from decomposing seaweeds by enrichment culture. The growth of strain CMC-5 was assessed in synthetic seawater-based medium containing polysaccharide. The bacterium degraded and utilized agar, alginate, carrageenan, xylan, carboxymethyl cellulose and chitin. The strain was characterized using a polyphasic approach for taxonomic identification. Cellular fatty acid analysis showed the presence of iso-C15:0 as major fatty acid and significant amounts of iso-C17:1ω9c and C18:1ω7c . Phylogenetic analysis based on 16S rDNA sequence indicated that strain CMC-5 is phylogenetically related to Microbulbifer genus and 99% similar to type strain Microbulbifer elongatus DSM6810T. However in contrast to Microbulbifer elongatus DSM6810T, strain CMC-5 is non-motile, utilizes glucose, galactose, inositol and xylan, does not utilize fructose and succinate nor does it produce H2S. Further growth of bacterial strain CMC-5 was observed when inoculated in seawater-based medium containing sterile pieces of Gracilaria corticata thalli. The bacterial growth was associated with release of reducing sugar in the broth suggesting its role in carbon recycling of polysaccharides from seaweeds in marine ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andrykovich G, Marx I (1988) Isolation of a new polysaccharide digesting bacteria from salt marsh. Appl Env Microbiol 54:1061–1062

    Google Scholar 

  2. Anzai Y, Kim H, Park JY (2000) Phylogenetic affiliation of the Pseudomonads based on 16S rDNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    CAS  PubMed  Google Scholar 

  3. Aoki Y, Kamei Y (2006) Preparation of recombinant polysaccharide degrading enzymes from the marine bacterium, Pseudomonas sp. ND137 for the production of protoplasts from Porphyra yezoensis. Eur J Phycol 41:321–328

    Article  CAS  Google Scholar 

  4. Camacho PA, Salinias JM, Delgado M, Fuertes C (2007) Use of single cell detritus (SCD) produced from Laminaria saccharina in the feeding of the clam Ruditapes decussatus (Linnaeus, 1758). Aquaculture 1–4:211–218

    Google Scholar 

  5. Chen LCM, McCracken I (1993) An antibiotic protocol for preparing axenic culture of Porphyra linearis. Botanica Marina 36:29–33

    Article  CAS  Google Scholar 

  6. Ekborg NA, Gonzalez JM, Howard MB, Taylor LE et al (2005) Saccharophagus degradans gen. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 55:1545–1549

    Article  CAS  PubMed  Google Scholar 

  7. Ensor LA, Stosz SK, Weiner RM (1999) Expression of multiple complex polysaccharide degrading enzyme systems by marine bacterium strain 2–40. J Ind Microbiol Biotechnol 23:123–126

    Article  CAS  PubMed  Google Scholar 

  8. Felsenstein J (2006) PHYLIP (Phylogenetic Inference Package) version 3.66. Department of Genetics, University of Washington, Seattle, USA

    Google Scholar 

  9. Gacesa P, Wustman FS (1990) Plate assay for simultaneous detection of alginate lyases and determination of substrate specificities. Appl Environ Microbiol 56:2265–2267

    CAS  PubMed  Google Scholar 

  10. Ghadi SC, Muraleedharan UD, Jawaid S (1997) Screening for agarolytic bacteria and development of a novel method for in situ detection of agarase enzyme. J Mar Biotechnol 5:194–200

    CAS  Google Scholar 

  11. Gonzalez JM, Mayer F, Moran MA, Hodson RE et al (1997) Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., two marine bacteria from a lignin rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376

    Article  CAS  PubMed  Google Scholar 

  12. Hodgson DA, Chater KF (1981) A chromosomal locus controlling extracellular agarase production by Streptomyces coelicolor A3(2) and inactivation by chromosomal integration of plasmid SCP1. J Gen Microbiol 124:339–348

    CAS  Google Scholar 

  13. Hosoda A, Sakai M, Kanazawa S (2003) Isolation and characterization of agar-degrading Paenibacillus spp associated with the rhizosphere of spinach. Biosci Biotechnol Biochem 67:1048–1055

    Article  CAS  PubMed  Google Scholar 

  14. Ivanova EP, Bakunina IY, Sawabe T et al (2002) Two species of culturable bacteria associated with degradation of brown algae. Fucus evanescens. Microbiol Ecol 43:242–249

    Article  CAS  Google Scholar 

  15. Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Ann Rev 26:259–315

    Google Scholar 

  16. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226

    Article  CAS  PubMed  Google Scholar 

  17. Maloy SR (1989) Experimental techniques in bacterial genetics. Jones and Bartlett, Boston, USA

    Google Scholar 

  18. Mandel M, Marmur J (1968) Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206

    Article  Google Scholar 

  19. Miller GL (1960) Measurement of carboxymethyl cellulase activity. Anal Biochem 1:127–132

    Article  CAS  Google Scholar 

  20. Nishijima M, Takadera T, Imamura N et al (2009) Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod–coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 59:1696–1707

    Article  CAS  PubMed  Google Scholar 

  21. Palleroni NJ (1984) Genus Pseudomonas. Migula 1894. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins, Baltimore, pp 141–199

    Google Scholar 

  22. Pidiyar V, Kaznowski A, Narayan NB et al (2002) Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus. Int J Syst Evol Microbiol 52:1723–1728

    Article  CAS  PubMed  Google Scholar 

  23. Quatrano RS, Cladwell BA (1978) Isolation of a unique marine bacterium capable of growth on wide of polysaccharides from macroalgae. Appl Environ Microbiol 36(6):979–981

    CAS  PubMed  Google Scholar 

  24. Ruijssenaars HJ, Hartmans S (2001) Plate screening methods for the detection of polysaccharase producing microorganisms. Appl Microbiol Biotechnol 55:143–149

    Article  CAS  PubMed  Google Scholar 

  25. Ryu S, Cho S, Park S et al (2001) Cloning of cel9A gene and characterization of its gene product from marine bacterium Pseudomonas sp. SK 38. Appl Microbiol Biotechnol 57:138–145

    Article  CAS  PubMed  Google Scholar 

  26. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt F (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington D.C., pp 607–654

    Google Scholar 

  27. Tanaka T, Yan L, Burgess JG (2003) Microbulbifer arenaceous sp. nov., a novel endolithic bacterium isolated from the inside of red sand stone. Curr Microbiol 47:412–416

    Article  CAS  PubMed  Google Scholar 

  28. Tang SK, Wang Y, Cai M et al (2008) Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol 58:2036–2040

    Article  CAS  PubMed  Google Scholar 

  29. Tang JC, Taniguchi H, Chu H et al (2009) Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. Lett Appl Microbiol 48:38–43

    Article  CAS  PubMed  Google Scholar 

  30. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  31. Weiner R, Chakravorthy D, Whiteland L (1998) The architecture of degradative complex polysaccharide enzyme arrays in a marine bacterium has implications for bioremediation. In: Gal L, Halvorson (eds) New developments in marine biotechnology. Plenum Press, New York, pp 171–176

    Google Scholar 

  32. Yoon JH, Kim H, Kang KH et al (2003) Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 53:1357–1361

    Article  CAS  PubMed  Google Scholar 

  33. Yoon JH, Kim IG, Shin DY et al (2003) Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57

    Article  CAS  PubMed  Google Scholar 

  34. Yoon JH, Kim IG, Oh TK et al (2004) Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the yellow sea, Korea. Int J Syst Evol Microbiol 54:1111–1116

    Article  CAS  PubMed  Google Scholar 

  35. Yoon JH, Jung YS, Kang SJ et al (2007) Microbulbifer celer sp. nov., isolated from a marine solar saltern of the yellow sea in Korea. Int. J Syst Evol Microbiol 57:2365–2369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Tapan Chakraborthy, Institute of Microbial Technology, Chandigarh, India, and Dr. Shanta Nair, National Institute of Oceanography, Goa, India, for DNA G + C and FAME analysis, respectively. This work was supported by Department of Science and Technology, Govt. of India, New Delhi (SERC Fast Track Scheme No SR/FTP/LS-264/2000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev C. Ghadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonnadula, R., Verma, P., Shouche, Y.S. et al. Characterization of Microbulbifer Strain CMC-5, a New Biochemical Variant of Microbulbifer elongatus Type Strain DSM6810T Isolated from Decomposing Seaweeds. Curr Microbiol 59, 600–607 (2009). https://doi.org/10.1007/s00284-009-9480-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00284-009-9480-1

Keywords