Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Copper (Cu) is both a vital nutrient and a potent toxicant. The objective of this study was to analyze the mechanistic nature of intestinal Cu transport in rainbow trout using radiolabeled Cu (64Cu) and an in vitro gut sac technique. Reduction of mucosal NaCl levels inhibited Cu transport while increase caused stimulation; Na2SO4 had an identical effect, implicating Na+ rather than the anion. These responses were unrelated to solvent drag, osmotic pressure or changes in transepithelial potential. The presence of elevated luminal Ag stimulated Cu and Na+ uptake. Phenamil caused a partial inhibition of both Cu and Na+ uptake while hypercapnia stimulated Na+ and Cu transport. Cu uptake was sensitive to luminal pH and inhibited by a tenfold excess of Fe and Zn. These factors had no effect on Na+ uptake. On the basis of these results we propose a novel Na+-assisted mechanism of Cu uptake wherein the Na+ gradient stimulates an increase in the H+ concentration of the brushborder creating a suitable microenvironment for the effective transport of Cu via either DMT1 or Ctr1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arredondo M, Munoz P, Mura CV, Nunez MT (2003) DMT1 a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol 284:C1525–C1530

    CAS  Google Scholar 

  • Boutilier RG, Heming TA, Iwama GK (1984) Physicochemical parameters for use in fish respiratory physiology: constants in fish physiology. In: Randall DJ, Hoar WS (eds) Fish physiology, vol 10A. Academic, NY, pp 403–431

  • Burke J, Handy RD (2005) Sodium-sensitive and -insensitive copper accumulation by isolated intestinal cells of rainbow trout Oncorhynchus mykiss. J Exp Biol 208:391–407

    Article  PubMed  CAS  Google Scholar 

  • Bury NR, Grosell M (2003) Waterborne iron acquisition by a fresh water teleost fish, zebrafish Danio rerio. J Exp Biol 206:1529–1535

    Google Scholar 

  • Bury NR, Wood CM (1999) Mechanism of branchial apical silver uptake by rainbow trout is via the proton coupled Na+ channel. Am J Physiol 277:R1385–R1391

    PubMed  CAS  Google Scholar 

  • Bury NR, Grosell M, Wood CM, Hogstrand C, Wilson RW, Rankin JC, Busk M, Lecklin T, Jensen FB (2001) Intestinal iron uptake in the European flounder (Platichthys flesus). J Exp Biol 204:3779–3787

    PubMed  CAS  Google Scholar 

  • Camakaris J, Vaskoboinik I, Mercer JF (1999) Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232

    Article  PubMed  CAS  Google Scholar 

  • Campbell HA, Handy RD, Nimmo M (1999) Copper uptake kinetics across the gills of rainbow trout (Oncorhynchus mykiss) measured using an improved isolated perfused head technique. Aquat Toxicol 46:177–190

    Article  CAS  Google Scholar 

  • Clarkson TW, Toole SR (1964) Measurement of short-circuit current and ion-transport across the ileum. Am J Physiol 206:658–668

    CAS  Google Scholar 

  • Condomina J, Zoronza ST, Granero L, Polache A (2002) Kinetics of Zn transport in vitro in rat small intestine and colon: interaction with copper. Eur J Pharm Sci 16:289–295

    Article  PubMed  CAS  Google Scholar 

  • Curran PF (1972) Effect of silver ion on permeability properties of frog skin. Biochim Biophys Acta 288:90–97

    Article  PubMed  CAS  Google Scholar 

  • Donovan A, Brownlie A, Dorschner MO, Zhou Y, Pratt SJ, Paw BH, Phillips RB, Thisse C, Thisse B, Zon LI (2002) The zebrafish mutant gene chardonnay (cdy) encodes divalent metal transporter 1 (DMT1). Blood 100:4655–4659

    Article  PubMed  CAS  Google Scholar 

  • Dorschner MO, Phillips RB (1999) Comparative analysis of two Nramp loci from rainbow trout. DNA Cell Biol 18:573–583

    Article  PubMed  CAS  Google Scholar 

  • Ehrenfeld J, Garcia-Romeu F (1977) Active hydrogen excretion and sodium absorption through isolated frog skin. Am J Physiol 233:F46–F54

    PubMed  CAS  Google Scholar 

  • Evans GW, Majors PF, Cornatzer WE (1970) Mechanism for cadmium and zinc antagonism of copper metabolism. Biochem Biophys Res Commun 40:1142–1148

    Article  PubMed  CAS  Google Scholar 

  • Garvin JL, Simon SA, Cragoe EJ, Mandel LJ (1985) Phenamil: an irreversible inhibitor of sodium channels in the toad urinary bladder. J Membr Biol 87:45–54

    Article  PubMed  CAS  Google Scholar 

  • Gerencser GA, Corvette KM, Loo SY, Hong SK (1977) Effect of silver chloride on the short-circuit current across the isolated toad skin. Life Sci 20:1883–1890

    Article  PubMed  CAS  Google Scholar 

  • Glover CN, Hogstrand C (2003) Effects of dissolved metals and other hydrominerals on in vivo intestinal zinc uptake in fresh water rainbow trout. Aquat Toxicol 62:281–293

    Article  PubMed  CAS  Google Scholar 

  • Grosell M, Jensen FB (1999) NO 2 uptake and HCO 3 excretion in the intestine of the European flounder (Platichthys flesus). J Exp Biol 202:2103–2110

    PubMed  CAS  Google Scholar 

  • Grosell M, Wood CM (2002) Copper uptake across rainbow trout gills: mechanisms of apical entry. J Exp Biol 205:1179–1188

    PubMed  CAS  Google Scholar 

  • Grosell M, Hansen HJM, Rosenkilde P (1998a) Cu uptake, metabolism and elimination in fed and starved European eels (Anguilla anguilla) during adaptation to water-borne copper exposure. Comp Biochem Physiol 120C:295–305

    CAS  Google Scholar 

  • Grosell MH, Hogstrand C, Wood CM (1998b) Renal Cu and Na excretion and hepatic Cu metabolism in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 40:275–291

    Article  CAS  Google Scholar 

  • Grosell M, Kamunde C, Wood CM and Walsh PJ (2001) Copper transport across fish gills. Society for Experimental Biology, Annual Meeting, University of Kent, Canterbury, England, 2–6 April, p 89

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a proton-coupled mammalian metal ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  • Handy RD, Musonda MM, Philips C, Fella SJ (2000) Mechanisms of gastrointestinal copper absorption in the African walking catfish: copper dose-effects and a novel anion-dependent pathway in the intestine. J Exp Biol 203:2365–2377

    PubMed  CAS  Google Scholar 

  • Handy RD, Eddy FB, Baines H (2002) Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine. Biochim Biophys Acta 1566:104–115

    Article  PubMed  CAS  Google Scholar 

  • Harvey BJ (1992) Energization of sodium absorption by the H(+)-ATPase pump in mitochondria-rich cells of frog skin. J Exp Biol 172:289–309

    PubMed  CAS  Google Scholar 

  • Hoogerwerf WA, Tsao SC, Devuyst O, Levine SA, Yun CH, Yip JW, Cohen ME, Wilson PD, Lazenby AJ, Tse CM, Donowitz M (1996) NHE2 and NHE3 are human and rabbit intestinal brush-border proteins. Am J Physiol 270:G29–G41

    PubMed  CAS  Google Scholar 

  • Kamunde CN, Wood CM (2003) The influence of ration size on copper homeostasis during sublethal dietary copper exposure in juvenile rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 62:235–254

    Article  PubMed  CAS  Google Scholar 

  • Kamunde CN, Grosell M, Lott JNA, Wood CM (2001) Copper metabolism and gut morphology in rainbow trout (Oncorhynchus mykiss) during chronic sublethal dietary copper exposure. Can J Fish Aquat Sci 58:293–305

    Article  CAS  Google Scholar 

  • Kamunde CN, Clayton C, Wood CM (2002a) Waterborne versus dietary copper uptake in trout and the effects of waterborne copper acclimation. Am J Physiol 383:R69–R78

    Google Scholar 

  • Kamunde CN, Grosell M, Higgs D, Wood CM (2002b) Copper metabolism in actively growing rainbow trout (Oncorhynchus mykiss): interactions between dietary and waterborne copper uptake. J Exp Biol 205:279–290

    CAS  Google Scholar 

  • Kandegedara A, Rorabacher DB (1999) Noncomplexing tertiary amines as “Better” buffers covering the range of pH 3–11. Temperature dependence of their acid dissociation constants. Anal Chem 71:3140–3144

    Article  CAS  Google Scholar 

  • Kjoss VA, Kamunde CN, Niyogi S, Grosell M, Wood CM (2005) Dietary Na does not reduce dietary Cu uptake by juvenile rainbow trout. J Fish Biol 66:468–484

    Article  CAS  Google Scholar 

  • Kleyman TR, Cragoe EJ Jr (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    Article  PubMed  CAS  Google Scholar 

  • Klyce SD, Marshall WS (1982) Effects of Ag+ on ion transport by the corneal epithelium of the rabbit. J Membr Biol 66:133–144

    Article  PubMed  CAS  Google Scholar 

  • Knopfel M, Solioz M (2002) Characterization of a cytochrome b (558) ferric/cupric reductase from rabbit duodenal brush border membranes. Biochem Biophys Res Comm 291:220–225

    Article  PubMed  Google Scholar 

  • Knopfel M, Smith C, Solioz M (2005) ATP-driven copper transport across the intestinal brush border membrane. Biochem Biophys Res Comm 330:645–652

    Article  PubMed  Google Scholar 

  • Lee J, Prohaska JR Dagenais SL, Glover TW, Thiele DJ (2000) Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene 254:87–96

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Pena MMO, Nose Y, Thiele DJ (2002a) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387

    Article  CAS  Google Scholar 

  • Lee J, Petris MJ, Thiele DJ (2002b) Characterization of mouse embryonic cells deficient in the Ctr1 high affinity copper transporter. J Biol Chem 277:40253–40259

    Article  CAS  Google Scholar 

  • Li JH, DeSouza RC (1977) Effects of Ag+ on frog skin: interaction with oxytocin, amiloride and ouabain. Experientia 33(4):433–436

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie NC, Brito M, Reyes AE, Allende ML (2004) Cloning, expression pattern and essentiality of the high-affinity copper transporter1 (ctr1) gene in zebrafish. Gene 328:13–20

    Article  Google Scholar 

  • Morgan IJ, Henry RP, Wood CM (1997) The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl transport. Aquat Toxicol 38:145–163

    Article  CAS  Google Scholar 

  • Nadella SR, Bucking C, Grosell M, Wood CM (2006a) Gastrointestinal assimilation of Cu during digestion of a single meal in the freshwater rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol-C 143:394–401

    Google Scholar 

  • Nadella SR, Grosell M, Wood CM (2006b) Physical characterization of high-affinity gastrointestinal Cu transport in vitro in freshwater rainbow trout Oncorhynchus mykiss. J Comp Phys B. E-Pub. doi:10.1007/s00360-006-0101-z

  • Nelson N (1999) Metal-ion transporters and homeostasis. EMBO J 18:4361–4371

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher P, Cousins RJ (1984) Copper and zinc absorption in the rat: Mechanism of mutual antagonism. J Nutr 115:159–166

    Google Scholar 

  • Pyle GG, Kamunde CN, McDonald DG, Wood CM (2003) Dietary sodium inhibits aqueous copper uptake in rainbow trout, Oncorhynchus mykiss. J Exp Biol 206:609–618

    Article  PubMed  CAS  Google Scholar 

  • Rangachari PK, Matthews J (1985) Effect of Ag+ on isolated bullfrog gastric mucosa. Am J Physiol 248:G443–G449

    PubMed  CAS  Google Scholar 

  • Schwartz JH, Steinmetz PR (1977) Metabolic energy and \( P_{{{\text{CO}}_{{\text{2}}} }} \) as determinants of H+ secretion by turtle urinary bladder. Am J Physiol 233:F145–F149

    Google Scholar 

  • Sharp PA (2003) Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol 35:288–291

    Article  PubMed  CAS  Google Scholar 

  • Tennant J, Stansfield M, Yamaji S, Srai SK, Sharp PA (2002) Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. FEBS Lett 527:239–244

    Article  PubMed  CAS  Google Scholar 

  • Turnlund JR, Keyes WR, Anderson HL, Acord LL (1989) Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr 49:870–878

    PubMed  CAS  Google Scholar 

  • Van Campen DR (1969) Copper interference with the intestinal absorption of zinc-65 by rat. J Nutr 97:104–108

    PubMed  Google Scholar 

  • Vascoboinik I, Mar J, Strausak D, Camakaris J (2001) The regulation of catalytic activity of the menkes copper-translocating p-type ATPase. J Biol Chem 276:28620–28627

    Article  Google Scholar 

  • Walser M (1970) Calcium transport in toad bladder: permeability to calcium ions. Am J Physiol 218:582–589

    PubMed  CAS  Google Scholar 

  • Wapnir RA (1991) Copper–sodium linkage during intestinal absorption: inhibition by amiloride. Proc Soc Exp Biol Med 196:410–414

    PubMed  CAS  Google Scholar 

  • Wapnir RA, Stiel L (1987) Intestinal absorption of copper: effect of sodium. Proc Soc Exp Biol Med 185:277–282

    PubMed  CAS  Google Scholar 

  • Wolf K (1963) Physiological salines for freshwater teleosts. Prog Fish Cult 25:135–140

    CAS  Google Scholar 

  • Yun CH, Tse CM, Nath SK, Levine SA, Brant SR, Donowitz M (1995) Mammalian Na+/H+ exchanger gene family: structure and function studies. Am J Physiol 269:G1–G11

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Gordon McEwan (University of Aberdeen) and Dr Julian Mercer (Deakin University) for helpful advice and discussions during the preparation of the manuscript. This work was supported by funds from the Human Health program of the International Copper Association (ICA). CMW is supported by the Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Rao Nadella.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadella, S.R., Grosell, M. & Wood, C.M. Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine. J Comp Physiol B 177, 433–446 (2007). https://doi.org/10.1007/s00360-006-0142-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00360-006-0142-3

Keywords