Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Research on a New Micro-Volume Fluorescence Capillary Biosensor Assay for Sequentially Quantifying Pyruvate and Lactate

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

It was studied that making conditions of a micro-volume fluorescence capillary biosensor for determining pyruvate (PA) and lactate (LA). The biosensor made under the optimized conditions could be used for sequential quantifications of LA in the range 0.10–1.2 mM and PA in 4–120 μM, and its recovery for PA and LA was in a satisfactory range 97–106% for human serum samples, with detection limits of 0.023 mM for LA (RSD < 1.89%, n = 11) and 0.87 μM for PA (RSD < 1.70%, n = 11). The new assay possessed these advantages that the LDH immobilizing on capillary realized the reuse of expensive enzyme in fluorospectrophotometry, and the consumption of serum samples or chemical reagents decreased to 9 μL in per assay, and the analytes no needed to preseparation, and it also are accurate and reliable. Consequently, the fluorescence capillary biosensor should have a good prospect in assaying PA and LA or LA/PA ratios for clinical medicines or biology field. The optimization conditions and parameters obtained in this study have also a certain guiding significance for the development of biochip based on glass substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burtis CA, Ashwood ER, Bruns DE (2011) Tietz Textbook of clinical chemistry and molecular diagnostics. 5nd Edit, Saunders, Elsevier Medicine

  2. Okada H, Araga S, Takshima T, Nakashima K (1998) Plasma lactic acid and pyruvic acid levels in migraine and tension-type headache. Headache 38(1):39–42

    Article  CAS  PubMed  Google Scholar 

  3. Tsao YS, Cardoso AG, Condon RGG, Voloch M, Lio P, Lagos JC, Kearns BG, Liu Z (2005) Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism. J Biotechnol 118:316–327

    Article  CAS  PubMed  Google Scholar 

  4. Hofstede HJM, Willems HL, Koopmansa P (2004) Serum L-lactate and pyruvate in HIV-infected patients with and without presumed NRTI-related adverse events compared to healthy volunteers. J Clin Virology 29:44–50

    Article  Google Scholar 

  5. Mackay N, Robinson BH (2007) Measurement of the ratio of lactate to pyruvate in skin fibroblast cultures. Methods Cell Biol 80:173–178

    Article  CAS  PubMed  Google Scholar 

  6. Low JA, Pancham SR, Worthington D, Boston RW (1974) Acid-base, lactate, and pyruvate characteristics of the normal obstetric patient and fetus during the intrapartum period. Am J Obstet Gynecol 120:862–867

    Article  CAS  PubMed  Google Scholar 

  7. Kala G, Hertz L (2005) Ammonia effects on pyruvate/lactate production in astrocytes--interaction with glutamate. Neurochem Int 47:4–12

    Article  CAS  PubMed  Google Scholar 

  8. Hatherill M, Salie S, Waggie Z, Lawrenson J, Hewitson J, Reynolds L, Argent A (2007) The lactate: pyruvate ratio following open cardiac surgery in children. Intensive Care Med 33:822–829

    Article  CAS  PubMed  Google Scholar 

  9. Persson L, Hillered L (1992) Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg 76:72–80

    Article  CAS  PubMed  Google Scholar 

  10. Wu YS, Tsai TH, Wu TF, Cheng FC (2001) Determination of pyruvate and lactate in primary liver cell culture medium during hypoxia by on-line microdialysis–liquid chromatography. J Chromato A 913:341–347

    Article  CAS  Google Scholar 

  11. Chuang CK, Wang TJ, Yeung CY, Lin DS, Lin HY, Liu HL, Ho HT, Hsieh WS, Lin SP (2009) A method for lactate and pyruvate determination in filter-paper dried blood spots. J Chromatog A 1216:8947–8952

    Article  CAS  Google Scholar 

  12. Gu YH, Kodama H, Ogawa E, Izumi Y (2014) Lactate and pyruvate levels in blood and cerebrospinal fluid in patients with Menkes disease. J Pediatr 164:890–894

    Article  CAS  PubMed  Google Scholar 

  13. Hallstrom A, Carlsson A, Hillered L, Uncerstedt U (1989) Simultaneous determination of lactate, pyruvate, and ascorbate in microdialysis samples from rat brain, blood, fat, and muscle using high-performance liquid chromatography. J Pharmacol Methods 22(2):113–124

    Article  CAS  PubMed  Google Scholar 

  14. Cheng FC, Yang LL, Yang DY, Tsai TH, Lee CW, Chen SH (2000) Monitoring of extracellular pyruvate, lactate, and ascorbic acid during cerebral ischemia: a microdialysis study in awake gerbils. J Chromatog A 870:389–394

    Article  CAS  Google Scholar 

  15. Minniti G, Cerone R, De Toni E (2001) Determination of lactic acid, pyruvic acid, and ketone bodies in serum and cerebrospinal fluid by HPLC. Am Clin Lab 20:21–23

    CAS  PubMed  Google Scholar 

  16. Paik MJ, Cho EY, Kim H, Kim KR, Choi S, Ahn YH, Lee G (2008) Simultaneous clinical monitoring of lactic acid, pyruvic acid and ketone bodies in plasma as methoxime/tert-butyldimethylsilyl derivatives by gas chromatography-mass spectrometry in selected ion monitoring mode. Biomed Chromatogr 22:450–453

    Article  CAS  PubMed  Google Scholar 

  17. Yao T, Yano T (2004) On-line microdialysis assay of L-lactate and pyruvate in vitro and in vivo by a flow-injection system with a dual enzyme electrode. Talanta 63:771–775

    Article  CAS  PubMed  Google Scholar 

  18. Baena B, Garcia-Martinez D, Barbas C (2004) Evaluation of diabetes-related short-chain organic acids in rat plasma by capillary electrophoresis. J Chromatogr A 1051:199–205

    Article  CAS  PubMed  Google Scholar 

  19. Xue QF, Yeung ES (1994) Indirect fluorescence determination of lactate and pyruvate in single erythrocytes by capillary electrophoresis. J Chromatogr A 661:287–295

    Article  CAS  PubMed  Google Scholar 

  20. Olsen C (1971) An enzymic fluorometric micromethod for the determination of acetoacetate, β-hydroxybutyrate, pyruvate, and lactate. Clin Chim Acta 33:293–300

    Article  CAS  PubMed  Google Scholar 

  21. Neville JF, Gelder RL (1971) Modified enzymatic methods for the determination of L-(+)-lactic and pyruvic acids in blood. Am J Clin Pathol 55:152–158

    Article  CAS  PubMed  Google Scholar 

  22. Maughan RJ (1982) A simple, rapid method for the determination of glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate and acetoacetate on a single 20-μl blood sample. Clin Chim Acta 122:231–240

    Article  CAS  PubMed  Google Scholar 

  23. Artuch R, Vilaseca MA, Farre C, Ramon F (1995) Determination of lactate, pyruvate, beta-hydroxybutyrate and acetoacetate with a centrifugal analyzer. Eur J Clin Chem Clin Biochem 33:529–533

    CAS  PubMed  Google Scholar 

  24. Hansen JL, Freier EF (1978) Direct assays of lactate, pyruvate, β-hydroxybutyrate, and acetoacetate with a centrifugal analyzer. Clin Chem 24:475–479

    CAS  PubMed  Google Scholar 

  25. Kopperschlager G, Kirchberger J (1996) Methods for the separation of lactate dehydrogenases and clinical significance of the enzyme. J Chromatogr B 684:25–49

    Article  CAS  Google Scholar 

  26. Li YS, Gao XF (2007) A new method for chemical analysis: fluorescence capillary analysis. Spectrosc Spect Anal 27:1565–1569

    CAS  Google Scholar 

  27. Li YS, Ju X, Gao XF, Zhao YY, Wu YF (2008) Immobilization enzyme fluorescence capillary analysis for determination of lactic acid. Anal Chim Acta 610:249–256

    Article  CAS  PubMed  Google Scholar 

  28. Li QJ, Gao XF, Du YD, Chen TM, Li YS (2011) Determination of blood glucose by fluorescence capillary analysis based on glucose/ glucose oxidase/H2O2/L-tyrosine/ horse radish peroxidase reaction system. Chinese J Anal Chem 39:1181–1185

    CAS  Google Scholar 

  29. Gao XF, Li YS, Jiang YX (2006) Research on fluorescence capillary analysis of DNA marked by using Cy-5 reagent. Chinese J Anal Chem 34:S220–S222

    CAS  Google Scholar 

  30. Wang YJ, Li YS, Yang QY, Huang Y, Tang J, Gao XF (2009) Research on DNA fluorescence capillary biosensor marked by goldview. Spectrosc Spect Anal 29:165–168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Sheng Li or Xiu-Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YS., Li, QJ., Yang, W. et al. Research on a New Micro-Volume Fluorescence Capillary Biosensor Assay for Sequentially Quantifying Pyruvate and Lactate. J Fluoresc 27, 883–894 (2017). https://doi.org/10.1007/s10895-017-2024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10895-017-2024-3

Keywords