Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Bio-based Films and Coatings: Sustainable Polysaccharide Packaging Alternatives for the Food Industry

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polymers used as raw materials for synthetic packaging, i.e., those obtained from petroleum-derived sources, are resistant to degradation. Because of this, there is a growing concern in the world for the replacement of conventional packaging by renewable and biodegradable polymers. Polysaccharides are biopolymers commonly used as energy reserve by plants, but they can also be obtained from animals, algae, and microbes; regardless of the origin, their thermoplastic characteristics, renewability, high availability, low extraction cost, biodegradability, and good film-forming properties highlight their promising role as alternatives for this demand in decreasing the production and accumulation of synthetic plastics. This literature review addresses the main characteristics of film-type packaging and polysaccharide-based coatings for the food industry, emphasizing the main techniques used to obtain and characterize them. It is reported that the barrier and mechanical properties of a packaging composed only of polysaccharides are a challenge for the food industry; however, its quality has been improved with the addition of other biomolecules and reinforcement nanostructures. Using antimicrobial and antioxidant compounds to produce bioactive packaging adds value and is particularly favorable for this industrial field; additionally, the development of techniques for the production of polysaccharide packaging on an industrial scale is promising, and increases the competitiveness with those from non-biodegradable polymers. Therefore, films/coatings based on polysaccharides have the potential to minimize the use of materials of petrochemical origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhargava N, Sharanagat VS, Mor RS, Kumar K (2020) Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: a review. Trends Food Sci Technol 105:385–401. https://doi.org/10.1016/j.tifs.2020.09.015

    Article  CAS  Google Scholar 

  2. Otoni CG, Avena-Bustillos RJ, Azeredo HMC, Lorevice MV, Moura MR, Mattoso LHC et al (2017) Recent advances on edible films based on fruits and vegetables—a review. Compr Rev Food Sci Food Saf 16:1151–1169. https://doi.org/10.1111/1541-4337.12281

    Article  PubMed  Google Scholar 

  3. Asgher M, Qamar SA, Bilal M, Iqbal HMN (2020) Bio-based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int. https://doi.org/10.1016/j.foodres.2020.109625

    Article  PubMed  Google Scholar 

  4. Abdul Khalil HPS, Banerjee A, Saurabh CK, Tye YY, Suriani AB, Mohamed A et al (2018) Biodegradable films for fruits and vegetables packaging application: preparation and properties. Food Eng Rev 10:139–53. https://doi.org/10.1007/s12393-018-9180-3

    Article  CAS  Google Scholar 

  5. Rajmohan KVS, Ramya C, Raja Viswanathan M, Varjani S (2019) Plastic pollutants: effective waste management for pollution control and abatement. Curr Opin Environ Sci Health 12:72–84. https://doi.org/10.1016/j.coesh.2019.08.006

    Article  Google Scholar 

  6. Albuquerque PBS, Malafaia CB (2018) Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. Int J Biol Macromol 107:615–25. https://doi.org/10.1016/j.ijbiomac.2017.09.026

    Article  CAS  PubMed  Google Scholar 

  7. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packag Technol Res 3(1):77–96. https://doi.org/10.1007/s41783-018-0049-y

    Article  Google Scholar 

  8. Lambert S (2016) Biopolymers and their application as biodegradable plastics. In: Kalia VC (ed) Microbial Factories: Biodiversity, Biopolymers, Bioactive Molecules. Springer, India, pp 1–9

    Google Scholar 

  9. Souza MP, Vaz AFM, Silva HD, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG (2017) Development and characterization of an active chitosan-based film containing quercetin. Food Bioprocess Technol 8(11):2183–2191. https://doi.org/10.1007/s11947-015-1580-2

    Article  CAS  Google Scholar 

  10. Jain P (2017) Effect of biodegradation and non degradable substances in environment. Int J Life Sci 2:50–55

    Article  Google Scholar 

  11. Feki A, Ben AI, Bardaa S, Hajji S, Chabchoub N, Kallel R et al (2019) Preparation and characterization of polysaccharide based films and evaluation of their healing effects on dermal laser burns in rats. Eur Polym J 115:147–156. https://doi.org/10.1016/j.eurpolymj.2019.02.043

    Article  CAS  Google Scholar 

  12. MohsinHossain MIH (2014) Biodegradable surfactant from natural starch for the reduction of environmental pollution and safety for water living organism. Int J Innov Res Adv Eng 1:424–433

    Google Scholar 

  13. Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  14. Leceta I, Guerrero P, Cabezudo S, De La Caba K (2013) Environmental assessment of chitosan-based films. J Clean Prod 41:312–318. https://doi.org/10.1016/j.jclepro.2012.09.049

    Article  CAS  Google Scholar 

  15. Ramu Ganesan A, Shanmugam M, Bhat R (2018) Producing novel edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications. Int J Biol Macromol 112:1164–1170

    Article  CAS  Google Scholar 

  16. Wu S, Wang W, Yan K, Ding F, Shi X, Deng H et al (2018) Electrochemical writing on edible polysaccharide films for intelligent food packaging. Carbohydr Polym 186:236–242. https://doi.org/10.1016/j.carbpol.2018.01.058

    Article  CAS  PubMed  Google Scholar 

  17. Ruan C, Zhang Y, Sun Y, Gao X, Xiong G, Liang J (2019) Effect of sodium alginate and carboxymethyl cellulose edible coating with epigallocatechin gallate on quality and shelf life of fresh pork. Int J Biol Macromol 141:178–184. https://doi.org/10.1016/j.ijbiomac.2019.08.247

    Article  CAS  PubMed  Google Scholar 

  18. Umaraw P, Munekata PES, Verma AK, Barba FJ, Singh VP, Kumar P et al (2020) Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci Technol 98:10–24. https://doi.org/10.1016/j.tifs.2020.01.032

    Article  CAS  Google Scholar 

  19. Suhag R, Kumar N, Petkoska AT, Upadhyay A (2020) Film formation and deposition methods of edible coating on food products: a review. Food Res Int. https://doi.org/10.1016/j.foodres.2020.109582

    Article  PubMed  Google Scholar 

  20. Liu C, Huang J, Zheng X, Liu S, Lu K, Tang K et al (2020) Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2020.100485

    Article  Google Scholar 

  21. Chen L, McClements DJ, Zhang Z, Zhang R, Bian X, Jin Z et al (2020) Effect of pullulan on oil absorption and structural organization of native maize starch during frying. Food Chem. https://doi.org/10.1016/j.foodchem.2019.125681

    Article  PubMed  Google Scholar 

  22. Falcó I, Randazzo W, Sánchez G, López-Rubio A, Fabra MJ (2019) On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocoll 92:74–85. https://doi.org/10.1016/j.foodhyd.2019.01.039

    Article  CAS  Google Scholar 

  23. Xiong Y, Chen M, Warner RD, Fang Z (2020) Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control. https://doi.org/10.1016/j.foodcont.2019.107018

    Article  Google Scholar 

  24. Sucheta CK, Sharma N, Yadav SK (2019) Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int J Biol Macromol 133:284–293. https://doi.org/10.1016/j.ijbiomac.2019.04.132

    Article  CAS  PubMed  Google Scholar 

  25. Mozaffarzogh M, Misaghi A, Shahbazi Y, Kamkar A (2020) Evaluation of probiotic carboxymethyl cellulose-sodium caseinate films and their application in extending shelf life quality of fresh trout fillets. LWT. https://doi.org/10.1016/j.lwt.2020.109305

    Article  Google Scholar 

  26. Oliveira de Moraes J, Scheibe AS, Augusto B, Carciofi M, Laurindo JB (2015) Conductive drying of starch-fiber films prepared by tape casting: drying rates and film properties. LWT—Food Sci Technol 64(1):356–366. https://doi.org/10.1016/j.lwt.2015.05.038

    Article  CAS  Google Scholar 

  27. Ochoa-Yepes O, Di Giogio L, Goyanes S, Mauri A, Famá L (2019) Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydr Polym 208:221–231. https://doi.org/10.1016/j.carbpol.2018.12.030

    Article  CAS  PubMed  Google Scholar 

  28. Manrich A, Moreira FKV, Otoni CG, Lorevice MV, Martins MA, Mattoso LHC (2017) Hydrophobic edible films made up of tomato cutin and pectin. Carbohydr Polym 164:83–91. https://doi.org/10.1016/j.carbpol.2017.01.075

    Article  CAS  PubMed  Google Scholar 

  29. Leite LSF, Ferreira CM, Corrêa AC, Moreira FKV, Mattoso LHC (2020) Scaled-up production of gelatin-cellulose nanocrystal bionanocomposite films by continuous casting. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116198

    Article  PubMed  Google Scholar 

  30. Mendes JF, Martins JT, Manrich A, Sena Neto AR, Pinheiro ACM, Mattoso LHC et al (2019) Development and physical-chemical properties of pectin film reinforced with spent coffee grounds by continuous casting. Carbohydr Polym 210:92–99. https://doi.org/10.1016/j.carbpol.2019.01.058

    Article  CAS  PubMed  Google Scholar 

  31. Munhoz DR, Moreira FKV, Bresolin JD, Bernardo MP, De Sousa CP, Mattoso LHC (2018) Sustainable production and in vitro biodegradability of edible films from yellow passion fruit coproducts via continuous casting. ACS Sustain Chem Eng 6(8):9883–9892

    Article  CAS  Google Scholar 

  32. Estevez-Areco S, Guz L, Famá L, Candal R, Goyanes S (2019) Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocoll 96:518–528. https://doi.org/10.1016/j.foodhyd.2019.05.054

    Article  CAS  Google Scholar 

  33. Elizabeth, J., Marcelo, A., Alejandra, M. Starch-pectin films obtained by extrusion and compression molding [Internet]. J. of Multidisciplinary Eng Sci Technol (JMEST) 6 (2019). www.jmest.org

  34. González K, Iturriaga L, González A, Eceiza A, Gabilondo N (2020) Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2019.109415

    Article  Google Scholar 

  35. Lara G, Yakoubi S, Villacorta CM, Uemura K, Kobayashi I, Takahashi C et al (2020) Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Res Int. https://doi.org/10.1016/j.foodres.2020.109723

    Article  PubMed  Google Scholar 

  36. Souza MP, Vaz AFM, Costa TB, Cerqueira MA, De Castro CMMB, Vicente AA et al (2018) Construction of a biocompatible and antioxidant multilayer coating by layer-by-layer assembly of κ-carrageenan and quercetin nanoparticles. Food Bioprocess Technol 11(5):1050–1060. https://doi.org/10.1007/s11947-018-2077-6

    Article  CAS  Google Scholar 

  37. Andrade RD, Skurtys O, Osorio FA (2012) Atomizing spray systems for application of edible coatings. Compreh Rev Food Sci Food Safety 11:323–337. https://doi.org/10.1111/j.1541-4337.2012.00186.x

    Article  CAS  Google Scholar 

  38. Arnon-Rips H, Poverenov E (2018) Improving food products’ quality and storability by using Layer by Layer edible coatings. Trends Food Sci Technol 75:81–92. https://doi.org/10.1016/j.tifs.2018.03.003

    Article  CAS  Google Scholar 

  39. Liu J, Wang X, Pu H, Liu S, Kan J, Jin C (2017) Recent advances in endophytic exopolysaccharides: production, structural characterization, physiological role and biological activity. Carbohydr Polym 157:1113–1124. https://doi.org/10.1016/j.carbpol.2016.10.084

    Article  CAS  PubMed  Google Scholar 

  40. Oliveira WF, Albuquerque PBS, Silva PMSS, Coelho LCBB, Correia MTS (2021) Gums. In: Oliveira J, Radhouani H, Reis RL (eds) Polysaccharides of microbial origin. Springer, Cham, pp 1–35

    Google Scholar 

  41. Ng JY, Obuobi S, Chua ML, Zhang C, Hong S, Kumar Y et al (2020) Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine—a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116345

    Article  PubMed  Google Scholar 

  42. Braz EMA, Silva SCCC, Brito CARS, Carvalho FAA, Alves MMM, Barreto HM et al (2020) Modified chicha gum by acetylation for antimicrobial and antiparasitic applications: characterization and biological properties. Int J Biol Macromol 160:1177–1188. https://doi.org/10.1016/j.ijbiomac.2020.05.219

    Article  CAS  PubMed  Google Scholar 

  43. Dina, H., El-Ghonemy Antioxidant and antimicrobial activities of exopolysaccharides produced by a novel Aspergillus sp. DHE6 under optimized submerged fermentation conditions. Biocatal Agric Biotechnol 36 (2021).

  44. Pei F, Ma Y, Chen X, Liu H (2020) Purification and structural characterization and antioxidant activity of levan from Bacillus megaterium PFY-147. Int J Biol Macromol 161:1181–1188

    Article  CAS  Google Scholar 

  45. Xiao Q, Lim LT, Zhou Y, Zhao Z (2017) Drying process of pullulan edible films forming solutions studied by low-field NMR. Food Chem 230:611–617. https://doi.org/10.1016/j.foodchem.2017.03.097

    Article  CAS  PubMed  Google Scholar 

  46. Zhou W, He Y, Liu F, Liao L, Huang X, Li R et al (2021) Carboxymethyl chitosan-pullulan edible films enriched with galangal essential oil: characterization and application in mango preservation. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.117579

    Article  PubMed  Google Scholar 

  47. Shen Y, Ni ZJ, Thakur K, Zhang JG, Hu F, Wei ZJ (2021) Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int J Biol Macromol 181:528–539. https://doi.org/10.1016/j.ijbiomac.2021.03.133

    Article  CAS  PubMed  Google Scholar 

  48. Kowalczyk D, Kordowska-Wiater M, Karaś M, Zięba E, Mężyńska M, Wiącek AE (2020) Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2019.105539

    Article  Google Scholar 

  49. Kumar N, Neeraj OA, Singh R (2019) Preparation and characterization of chitosan—pullulan blended edible films enrich with pomegranate peel extract. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2019.104350

    Article  Google Scholar 

  50. Nur Hazirah MASP, Isa MIN, Sarbon NM (2016) Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packag Shelf Life 9:55–63. https://doi.org/10.1016/j.fpsl.2016.05.008

    Article  Google Scholar 

  51. Sharma S, Rao TVR (2015) Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT—Food Sci Technol 62(1):791–800. https://doi.org/10.1016/j.lwt.2014.11.050

    Article  CAS  Google Scholar 

  52. Zambrano-Zaragoza ML, Mercado-Silva E, Del Real LA, Gutiérrez-Cortez E, Cornejo-Villegas MA, Quintanar-Guerrero D (2014) The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “red Delicious” apples. Innov Food Sci Emerg Technol 22:188–196. https://doi.org/10.1016/j.ifset.2013.09.008

    Article  CAS  Google Scholar 

  53. Mohsin A, Zaman WQ, Guo M, Ahmed W, Khan IM, Niazi S et al (2020) Xanthan-Curdlan nexus for synthesizing edible food packaging films. Int J Biol Macromol 162:43–49. https://doi.org/10.1016/j.ijbiomac.2020.06.008

    Article  CAS  PubMed  Google Scholar 

  54. Kamal, S., Rehman, M., Rehman, S., Nazli, Z-i-H., Yaqoob, N, Noreen, R., et al. Blends of algae with natural polymers. In: Algae based polymers, blends, and composites: chemistry, biotechnology and materials science, pp. 371–413. Elsevier (2017). Doi:https://doi.org/10.1016/B978-0-12-812360-7.00010-0

  55. Mostafavi FS, Zaeim D (2020) Agar-based edible films for food packaging applications—a review. Int J Biol Macromol 159:1165–76. https://doi.org/10.1016/j.ijbiomac.2020.05.123

    Article  CAS  PubMed  Google Scholar 

  56. Wongphan P, Harnkarnsujarit N (2020) Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. Int J Biol Macromol 156:80–93. https://doi.org/10.1016/j.ijbiomac.2020.04.056

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Guo C, Hao W, Ullah N, Chen L, Li Z et al (2018) Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. Int J Biol Macromol 118:722–730. https://doi.org/10.1016/j.ijbiomac.2018.06.089

    Article  CAS  PubMed  Google Scholar 

  58. Sedayu BB, Cran MJ, Bigger SW (2019) A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydr Polym 216:287–302. https://doi.org/10.1016/j.carbpol.2019.04.021

    Article  CAS  PubMed  Google Scholar 

  59. Parreidt TS, Müller K, Schmid M (2018) Alginate-based edible films and coatings for food packaging applications. Foods 7(10):170

    Article  CAS  Google Scholar 

  60. Taemeh MA, Shiravandi A, Korayem MA, Daemi H (2020) Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115419

    Article  PubMed  Google Scholar 

  61. Abdel Aziz MS, Salama HE, Sabaa MW (2018) Biobased alginate/castor oil edible films for active food packaging. LWT 96:455–460. https://doi.org/10.1016/j.lwt.2018.05.049

    Article  CAS  Google Scholar 

  62. Albuquerque PBS, Coelho LCBB, Teixeira JA, Carneiro-da-Cunha MG (2016) Approaches in biotechnological applications of natural polymers. AIMS Mol Sci 3(3):386–425

    Article  CAS  Google Scholar 

  63. McClements DJ (2005) Food emulsions: principles, practices, and techniques, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  64. Mirhosseini H, Amid BT (2012) A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res Int 46:387–398. https://doi.org/10.1016/j.foodres.2011.11.017

    Article  CAS  Google Scholar 

  65. Montero B, Rico M, Rodríguez-Llamazares S, Barral L, Bouza R (2017) Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym 157:1094–104. https://doi.org/10.1016/j.carbpol.2016.10.073

    Article  CAS  PubMed  Google Scholar 

  66. Li S, Ma Y, Ji T, Sameen DE, Ahmed S, Qin W et al (2020) Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116805

    Article  PubMed  PubMed Central  Google Scholar 

  67. William O, Hengping X, Zhitian L, Haitao L, Yongcai L, Zhong Z et al (2022) Effects of modified sweet potato starch edible coating incorporated with cumin essential oil on storage quality of ‘early crisp.’ LWT 153:112475

    Article  Google Scholar 

  68. Soto-Muñoz L, Palou L, Argente-Sanchis M, Ramos-López MA, Pérez-Gago MB (2021) Optimization of antifungal edible pregelatinized potato starch-based coating formulations by response surface methodology to extend postharvest life of ‘Orri’ mandarins. Sci Hortic (Amsterdam). https://doi.org/10.1016/j.scienta.2021.110394

    Article  Google Scholar 

  69. Thakur R, Pristijono P, Scarlett CJ, Bowyer M, Singh SP, Vuong QV (2019) Starch-based edible coating formulation: optimization and its application to improve the postharvest quality of “Cripps pink” apple under different temperature regimes. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100409

    Article  Google Scholar 

  70. Lee ES, Song HG, Choi I, Lee JS, Han J (2020) Effects of mung bean starch/guar gum-based edible emulsion coatings on the staling and safety of rice cakes. Carbohydr Polym 247:116696. https://doi.org/10.1016/j.carbpol.2020.116696

    Article  CAS  PubMed  Google Scholar 

  71. Khan B, Bilal Khan Niazi M, Samin G, Jahan Z (2017) Thermoplastic starch: a possible biodegradable food packaging material—a review. J Food Process Eng 40(3):e12447. https://doi.org/10.1111/jfpe.12447

    Article  CAS  Google Scholar 

  72. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  CAS  Google Scholar 

  73. Cano A, Contreras C, Chiralt A, González-Martínez C (2021) Using tannins as active compounds to develop antioxidant and antimicrobial chitosan and cellulose based films. Carbohydr Polym Technol Appl. https://doi.org/10.1016/j.carpta.2021.100156

    Article  Google Scholar 

  74. Zhang C, Mo J, Fu Q, Liu Y, Wang S, Nie S (2021) Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.105637

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhu F (2021) Polysaccharide based films and coatings for food packaging: effect of added polyphenols. Food Chem. https://doi.org/10.1016/j.foodchem.2021.129871

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bangar SP, Whiteside WS (2021) Nano-cellulose reinforced starch bio composite films- a review on green composites. Int J Biol Macromol 185:849–60. https://doi.org/10.1016/j.ijbiomac.2021.07.017

    Article  CAS  PubMed  Google Scholar 

  77. Yekta R, Mirmoghtadaie L, Hosseini H, Norouzbeigi S, Hosseini SM, Shojaee-Aliabadi S (2020) Development and characterization of a novel edible film based on Althaea rosea flower gum: Investigating the reinforcing effects of bacterial nanocrystalline cellulose. Int J Biol Macromol 158:327–337. https://doi.org/10.1016/j.ijbiomac.2020.04.021

    Article  CAS  PubMed  Google Scholar 

  78. Tang Y, Zhang X, Zhao R, Guo D, Zhang J (2018) Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydr Polym 197:128–136. https://doi.org/10.1016/j.carbpol.2018.05.073

    Article  CAS  PubMed  Google Scholar 

  79. Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Souza BWS, Teixeira JA et al (2011) Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci Technol 22:662–671. https://doi.org/10.1016/j.tifs.2011.07.002

    Article  CAS  Google Scholar 

  80. Etemadipoor R, Mirzaalian Dastjerdi A, Ramezanian A, Ehteshami S (2020) Ameliorative effect of gum arabic, oleic acid and/or cinnamon essential oil on chilling injury and quality loss of guava fruit. Sci Hortic (Amsterdam) 266:109255. https://doi.org/10.1016/j.scienta.2020.109255

    Article  CAS  Google Scholar 

  81. Murmu SB, Mishra HN (2017) Optimization of the arabic gum based edible coating formulations with sodium caseinate and tulsi extract for guava. LWT—Food Sci Technol 80:271–279. https://doi.org/10.1016/j.lwt.2017.02.018

    Article  CAS  Google Scholar 

  82. Ali A, Maqbool M, Alderson PG, Zahid N (2013) Effect of gum arabic as an edible coating on antioxidant capacity of tomato (Solanum lycopersicum L.) fruit during storage. Postharvest Biol Technol 76:119–124. https://doi.org/10.1016/j.postharvbio.2012.09.011

    Article  CAS  Google Scholar 

  83. Etemadipoor R, Ramezanian A, Mirzaalian Dastjerdi A, Shamili M (2019) The potential of gum arabic enriched with cinnamon essential oil for improving the qualitative characteristics and storability of guava (Psidium guajava L.) fruit. Sci Hortic (Amsterdam) 251:101–107. https://doi.org/10.1016/j.scienta.2019.03.021

    Article  CAS  Google Scholar 

  84. Beer B, Bartolome MJ, Berndorfer L, Bochmann G, Guebitz GM, Nyanhongo GS (2020) Controlled enzymatic hydrolysis and synthesis of lignin cross-linked chitosan functional hydrogels. Int J Biol Macromol 161:1440–1446. https://doi.org/10.1016/j.ijbiomac.2020.08.030

    Article  CAS  PubMed  Google Scholar 

  85. Riaz A, Lei S, Akhtar HMS, Wan P, Chen D, Jabbar S et al (2018) Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int J Biol Macromol 114:547–555. https://doi.org/10.1016/j.ijbiomac.2018.03.126

    Article  CAS  PubMed  Google Scholar 

  86. Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–68. https://doi.org/10.1016/j.ijbiomac.2017.07.087

    Article  CAS  PubMed  Google Scholar 

  87. Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T (2017) Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym 169:101–7. https://doi.org/10.1016/j.carbpol.2017.03.073

    Article  CAS  PubMed  Google Scholar 

  88. Youssef AM, Assem FM, El-Sayed SM, Salama H, Abd El-Salam MH (2017) Utilization of edible films and coatings as packaging materials for preservation of cheeses. J Packag Technol Res 2:87–99. https://doi.org/10.1007/s41783-017-0012-3

    Article  Google Scholar 

  89. Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66:395–413. https://doi.org/10.1021/acs.jafc.7b04528

    Article  CAS  PubMed  Google Scholar 

  90. Otoni CG, Lodi BD, Lorevice MV, Leitão RC, Ferreira MD, Moura MR, d, et al (2018) Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Ind Crops Prod 121:66–72. https://doi.org/10.1016/j.indcrop.2018.05.003

    Article  CAS  Google Scholar 

  91. Darni Y, Utami H, Septiana R, Aidila R (2017) Comparative studies of the edible film based on low pectin methoxyl with glycerol and sorbitol plasticizers. J Bahan Alam Terbarukan 6(2):158–67. https://doi.org/10.15294/jbat.v6i2.9707

    Article  Google Scholar 

  92. Ortiz de Elguea-Culebras G, Bourbon AI, Costa MJ, Muñoz-Tebar N, Carmona M, Molina A et al (2019) Optimization of a chitosan solution as potential carrier for the incorporation of Santolina chamaecyparissus L. solid by-product in an edible vegetal coating on ‘Manchego’ cheese. Food Hydrocoll 89:272–282. https://doi.org/10.1016/j.foodhyd.2018.10.054

    Article  CAS  Google Scholar 

  93. Farhan A, Hani NM (2017) Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocoll 64:48–58. https://doi.org/10.1016/j.foodhyd.2016.10.034

    Article  CAS  Google Scholar 

  94. Liang S, Wang L (2018) A natural antibacterial-antioxidant film from soy protein isolate incorporated with cortex Phellodendron extract. Polymers (Basel) 10(1):1–71. https://doi.org/10.3390/polym10010071

    Article  CAS  Google Scholar 

  95. Zhang P, Zhao Y, Shi Q (2016) Characterization of a novel edible film based on gum ghatti: effect of plasticizer type and concentration. Carbohydr Polym 153:345–55. https://doi.org/10.1016/j.carbpol.2016.07.082

    Article  CAS  PubMed  Google Scholar 

  96. Gheribi R, Puchot L, Verge P, Jaoued-Grayaa N, Mezni M, Habibi Y et al (2018) Development of plasticized edible films from Opuntia ficus-indica mucilage: a comparative study of various polyol plasticizers. Carbohydr Polym 190:204–211. https://doi.org/10.1016/j.carbpol.2018.02.085

    Article  CAS  PubMed  Google Scholar 

  97. Kamarudin SH, Jusoh ER, Abdullah LC, Ismail MHS, Aung MM, Ratnam CT (2019) Thermal and dynamics mechanical analysis of polypropylene blown films with crude palm oil as plasticizer. Indones J Chem 19(3):545. https://doi.org/10.22146/ijc.30460

    Article  CAS  Google Scholar 

  98. Ghasemlou M, Khodaiyan F, Oromiehie A (2011) Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr Polym 84(1):477–483. https://doi.org/10.1016/j.carbpol.2010.12.010

    Article  CAS  Google Scholar 

  99. Suderman N, Isa MIN, Sarbon NM (2018) The effect of plasticizers on the functional properties of biodegradable gelatin-based film: a review. Food Bioscience 24:111–119. https://doi.org/10.1016/j.fbio.2018.06.006

    Article  CAS  Google Scholar 

  100. Xu J, Xia R, Zheng L, Yuan T, Sun R (2019) Plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nanofiber with enhanced mechanical properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115164

    Article  PubMed  Google Scholar 

  101. Zhong Y, Li Y (2011) Effects of surfactants on the functional and structural properties of kudzu (Pueraria lobata) starch/ascorbic acid films. Carbohydr Polym 85(3):622–628. https://doi.org/10.1016/j.carbpol.2011.03.031

    Article  CAS  Google Scholar 

  102. Aswathanarayan JB, Vittal RR (2019) Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2019.00095

    Article  Google Scholar 

  103. Parreidt TS, Schott M, Schmid M, Müller K (2018) Effect of presence and concentration of plasticizers, vegetable oils, and surfactants on the properties of sodium-alginate-based edible coatings. Int J Mol Sci 19(3):742. https://doi.org/10.3390/ijms19030742

    Article  CAS  Google Scholar 

  104. Baldwin EA (1999) Surface treatments and edible coatings in food preservation. In: Rahman MS (ed) Handbook of food preservation, 2nd edn. CRC Press, London, New York

    Google Scholar 

  105. Carneiro-da-Cunha MG, Cerqueira MA, Souza BWS, Souza MP, Teixeira JA, Vicente AA (2009) Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. J Food Eng 95(3):379–385. https://doi.org/10.1016/j.jfoodeng.2009.05.020

    Article  CAS  Google Scholar 

  106. Bravin B, Peressini D, Sensidoni A (2004) Influence of emulsifier type and content on functional properties of polysaccharicle lipid-basid edible films. J Agric Food Chem 52(21):6448–6455. https://doi.org/10.1021/jf040065b

    Article  CAS  PubMed  Google Scholar 

  107. Souza MP, Cerqueira MA, Souza BWS, Teixeira JA, Porto ALF, Vicente AA et al (2010) Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes. Chem Pap 64(4):475–81. https://doi.org/10.2478/s11696-010-0017-7

    Article  CAS  Google Scholar 

  108. Azeredo HMCD (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253. https://doi.org/10.1016/j.foodres.2009.03.019

    Article  CAS  Google Scholar 

  109. Garcia CV, Shin GH, Kim JT (2018) Metal oxide-based nanocomposites in food packaging: applications, migration, and regulations. Trends Food Sci Technol 82:21–31. https://doi.org/10.1016/j.tifs.2018.09.021

    Article  CAS  Google Scholar 

  110. Martelli SM, Motta C, Caon T, Alberton J, Bellettini ICACP, do Prado et al (2017) Edible carboxymethyl cellulose films containing natural antioxidant and surfactants: α-tocopherol stability, in vitro release and film properties. LWT—Food Sci Technol 77:21–29. https://doi.org/10.1016/j.lwt.2016.11.026

    Article  CAS  Google Scholar 

  111. Comaposada J, Marcos B, Bou R, Gou P (2018) Influence of surfactants and proteins on the properties of wet edible calcium alginate meat coatings. Food Res Int 108:539–550. https://doi.org/10.1016/j.foodres.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  112. Song X, Zuo G, Chen F (2018) Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. Int J Biol Macromol 107:1302–9. https://doi.org/10.1016/j.ijbiomac.2017.09.114

    Article  CAS  PubMed  Google Scholar 

  113. Zhou X, Zong X, Wang S, Yin C, Gao X, Xiong G et al (2021) Emulsified blend film based on konjac glucomannan/carrageenan/ camellia oil: physical, structural, and water barrier properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.117100

    Article  PubMed  Google Scholar 

  114. Gutiérrez-Jara C, Bilbao-Sainz C, McHugh T, Chiou BS, Williams T, Villalobos-Carvajal R (2020) Physical, mechanical and transport properties of emulsified films based on alginate with soybean oil: effects of soybean oil concentration, number of passes and degree of surface crosslinking. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2020.106133

    Article  Google Scholar 

  115. Niknam R, Ghanbarzadeh B, Ayaseh A, Hamishehkar H (2019) Plantago major seed gum based biodegradable films: effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polym Test. https://doi.org/10.1016/j.polymertesting.2019.04.015

    Article  Google Scholar 

  116. Prakash A, Baskaran R, Vadivel V (2020) Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT. https://doi.org/10.1016/j.lwt.2019.108851

    Article  Google Scholar 

  117. Chaichi M, Hashemi M, Badii F, Mohammadi A (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 157:167–75. https://doi.org/10.1016/j.carbpol.2016.09.062

    Article  CAS  PubMed  Google Scholar 

  118. Nouri A, Yaraki MT, Ghorbanpour M, Agarwal S, Gupta VK (2018) Enhanced antibacterial effect of chitosan film using montmorillonite/CuO nanocomposite. Int J Biol Macromol 109:1219–1231. https://doi.org/10.1016/j.ijbiomac.2017.11.119

    Article  CAS  PubMed  Google Scholar 

  119. Eskandarabadi SM, Mahmoudian M, Farah KR, Abdali A, Nozad E, Enayati M (2019) Active intelligent packaging film based on ethylene vinyl acetate nanocomposite containing extracted anthocyanin, rosemary extract and ZnO/Fe-MMT nanoparticles. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100389

    Article  Google Scholar 

  120. Gutiérrez TJ (2018) Active and intelligent films made from starchy sources/blackberry pulp. J Polym Environ 26(6):2374–2391. https://doi.org/10.1007/s10924-017-1134-y

    Article  CAS  Google Scholar 

  121. Choulitoudi E, Ganiari S, Tsironi T, Ntzimani A, Tsimogiannis D, Taoukis P et al (2017) Edible coating enriched with rosemary extracts to enhance oxidative and microbial stability of smoked eel fillets. Food Packag Shelf Life 12:107–113. https://doi.org/10.1016/j.fpsl.2017.04.009

    Article  Google Scholar 

  122. Sogut E, Seydim AC (2018) The effects of chitosan and grape seed extract-based edible films on the quality of vacuum packaged chicken breast fillets. Food Packag Shelf Life 18:13–20. https://doi.org/10.1016/j.fpsl.2018.07.006

    Article  Google Scholar 

  123. Licciardello F, Kharchoufi S, Muratore G, Restuccia C (2018) Effect of edible coating combined with pomegranate peel extract on the quality maintenance of white shrimps (Parapenaeus longirostris) during refrigerated storage. Food Packag Shelf Life 17:114–119. https://doi.org/10.1016/j.fpsl.2018.06.009

    Article  Google Scholar 

  124. Cao TL, Bin SK (2020) Development of bioactive Bombacaceae gum films containing cinnamon leaf essential oil and their application in packaging of fresh salmon fillets. LWT. https://doi.org/10.1016/j.lwt.2020.109647

    Article  Google Scholar 

  125. Shirahigue LD, Ceccato-Antonini SR (2020) Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Cienc Rural. https://doi.org/10.1590/0103-8478cr20190857

    Article  Google Scholar 

  126. Mir SA, Dar BN, Wani AA, Shah MA (2018) Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci Technol 80:141–54. https://doi.org/10.1016/j.tifs.2018.08.004

    Article  CAS  Google Scholar 

  127. Nouri A, Tavakkoli Yaraki M, Ghorbanpour M, Wang S (2018) Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. Int J Biol Macromol 115:227–235. https://doi.org/10.1016/j.ijbiomac.2018.04.051

    Article  CAS  PubMed  Google Scholar 

  128. Soares JMA, da Júnior EDS, de Veras BO, Yara R, De APBS, Souza MP (2021) Active biodegradable film based on chitosan and cenostigma nordestinum’ extracts for use in the food industry. J Polym Environ. https://doi.org/10.1007/s10924-021-02192-5

    Article  Google Scholar 

  129. Liu X, Zhang C, Liu S, Gao J, Cui SW, Xia W (2020) Coating white shrimp (Litopenaeus vannamei) with edible fully deacetylated chitosan incorporated with clove essential oil and kojic acid improves preservation during cold storage. Int J Biol Macromol 162:1276–1282. https://doi.org/10.1016/j.ijbiomac.2020.06.248

    Article  CAS  PubMed  Google Scholar 

  130. Bonilla J, Poloni T, Lourenço RV, Sobral PJA (2018) Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films. Food Biosci 23:107–114. https://doi.org/10.1016/j.fbio.2018.03.007

    Article  CAS  Google Scholar 

  131. SKoog DA, Holler FJ, Nieman TA (2002) Princípios de análise instrumental, 5th edn. Bookman, Porto Alegre

    Google Scholar 

  132. Patel, J.P., Parsania, P.H. Characterization, testing, and reinforcing materials of biodegradable composites. In: Biodegradable and biocompatible polymer composites: processing, properties and applications, pp. 55–79. Elsevier (2017). Doi:https://doi.org/10.1016/B978-0-08-100970-3.00003-1

  133. ASTM E96. Standard test methods for water vapor transmission of materials [Internet] (2016). [cited 2020 Oct 17]. https://www.astm.org/Standards/E96.htm

  134. ASTM D3985. Standard test method for oxygen gas transmission rate through plastic film and sheeting using a Coulometric sensor [Internet] (2017). [cited 2020 Oct 17]. https://www.astm.org/Standards/D3985.htm

  135. Akhtar HMS, Riaz A, Hamed YS, Abdin M, Chen G, Wan P et al (2018) Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. Int J Biol Macromol 118:469–477. https://doi.org/10.1016/j.ijbiomac.2018.06.090

    Article  CAS  PubMed  Google Scholar 

  136. Oliveira VM, Nogueira BR, Ortiz AV, Moura EAB (2008) Mechanical and thermal properties of commercial multilayer flexible plastic packaging materials irradiated with electron beam. Nukleonika 53(Suppl 2):S141–S144

    CAS  Google Scholar 

  137. Chen H (1995) Functional properties and applications of edible films made of milk proteins. J Dairy Sci 78(11):2563–2583. https://doi.org/10.3168/jds.S0022-0302(95)76885-0

    Article  CAS  PubMed  Google Scholar 

  138. ASTM D882–18. Standard test method for tensile properties of thin plastic sheeting. ASTM Int [Internet] (2018). https://www.astm.org/Standards/D882

  139. Ortiz, A.V., Nogueira, B.R., Oliveira, V.M., Moura, E.A. Mechanical and thermal properties of commercial multilayer pet/pp film irradiated with electron-beam. Int Nucl Atl Conf—Ina (2009).

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq), grant number 423993/2018–6.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BAM, MPdS and PBSdA. The first draft of the manuscript was written by Bruna Alves Martins and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marthyna Pessoa de Souza.

Ethics declarations

Conflict of Interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, B.A., de Albuquerque, P.B.S. & de Souza, M.P. Bio-based Films and Coatings: Sustainable Polysaccharide Packaging Alternatives for the Food Industry. J Polym Environ 30, 4023–4039 (2022). https://doi.org/10.1007/s10924-022-02442-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10924-022-02442-0

Keywords