Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Log in

Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Titania (TiO2) nano-photocatalysts, with different phases, prepared using a modified sol–gel process were employed in the degradation of rhodamine at 10 mg L−1 concentration. The degradation efficiency of these nano-photocatalysts was compared to that of commercial Degussa P25 titania. It was found that the nanocatalysts calcined at 450 °C and the Degussa P25 titania had similar photoreactivity profiles. The commercial Degussa P25 nanocatalysts had an overall high apparent rate constant of (K app) of 0.023 min−1. The other nanocatalyst had the following rate constants: 0.017, 0.0089, 0.003 and 0.0024 min−1 for 450, 500, 550 and 600 °C calcined catalysts, respectively. This could be attributed to the phase of the titania as the anatase phase is highly photoactive than the other phases. Furthermore, characterisation by differential scanning calorimetry showed the transformation of titania from amorphous to anatase and finally to rutile phase. SEM and TEM characterisations were used to study the surface morphology and internal structure of the nanoparticles. BET results show that as the temperature of calcinations was raised, the surface area reduced marginally. X-ray diffraction was used to confirm the different phases of titania. This study has led to a conclusion that the anatase phase of the titania is the most photoactive nanocatalyst. It also had the highest apparent rate constant of 0.017 min−1, which is similar to that of the commercial titania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Shutte CF, Focke W. Evaluation of nanotechnology for application in water and waste water treatment and related aspects in South Africa. WRC Report No. KV 195/07. 2007;1–24.

  2. Chen X, Mao SS. Titanium dioxide: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:56–2891.

    Google Scholar 

  3. Ananpattarachi J, Kajitvichyanukul P, Seraphin S. Visible light absorption ability and photocatalysis oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J Hazard Mater. 2009;168:253–61.

    Article  Google Scholar 

  4. Tungudomwongsa H, Leckie J, Mill T. Photocatalytic oxidation of emerging contaminants: kinetics and pathways for photocatalytic oxidation of pharmaceutical compounds. J Adv Oxid Technol. 2006;9:59–64.

    CAS  Google Scholar 

  5. Ahn W-Y, Sheeley SA, Rajh T, Cropek DC. Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles. Appl Catal B. 2007;74:103–10.

    Article  CAS  Google Scholar 

  6. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK. The effect of calcinations temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B. 2003;107:13871–9.

    Article  CAS  Google Scholar 

  7. Zhao JC, Wu TX, Wu KQ, Oikawa K, Hidaka H, Serpone N. Photoassisted degradation of dye pollutants; degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles. Environ Sci Technol. 1988;32:2394–400.

    Article  Google Scholar 

  8. Xu YM, Langford CH. UV–or visible-light-induced degradation of X3B on TiO2 nanoparticles: the influence of adsorption. Langmuir. 2001;17:897–902.

    Article  CAS  Google Scholar 

  9. Honda K, Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–8.

    Article  Google Scholar 

  10. Tada H, Yanamoto M, Ito S. Promoting effect of MgO x submonolayer coverage of TiO2 on the photoinduced oxidation of anionic surfactants. Langmuir. 1999;15:3699–702.

    Article  CAS  Google Scholar 

  11. Fox MA, Dulay MT. Heterogeneous photocatalysis. Chem Rev. 1993;93:341–57.

    Article  CAS  Google Scholar 

  12. Han D, Li Y, Jia W. Preparation and characterization of molecularly imprinted SiO2–TiO2 and photo-catalysis for 2,4-dichlorophenol. Adv Mater Lett. 2010;1(3):188–92.

    Article  Google Scholar 

  13. Pulisova P, Bohacek J, Sburt J, Szatmary L, Bezdicka P, Vecernikova E, Balek V. Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. J Them Anal Calorim. 2010;101:607–13.

    Article  CAS  Google Scholar 

  14. Arya SK, Vats T, Sharma SN, Singh K, Narula AK. Effect of mercaptopropionic acid as linker on structural, thermal and optical properties of TiO2–CdSe nanocomposites. J Therm Anal Calorim. 2011. doi:10.1007/s1093-011-1687-2.

  15. Fu W, Yang H, Li M, Yang N, Zou G. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Mater Lett. 2005;59:3530–4.

    Article  CAS  Google Scholar 

  16. Ao Y, Xu J, Fu D, Yuan IC. A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. J Phys Chem Solids. 2008;69:2660–4.

    Article  CAS  Google Scholar 

  17. Kiri P, Hyett G, Binions R. Solid state thermochromic materials. Adv Mater Lett. 2010;1(2):86–105.

    Article  CAS  Google Scholar 

  18. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95:69–96.

    Article  CAS  Google Scholar 

  19. Hagen JP. Using lab-report grading rubrics with calibrated peer review. Abstr Am Chem Soc. 2003;225:U542–1542.

    Google Scholar 

  20. Bessekhoud Y, Robert D, Weber JV. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J Photochem Photobiol A. 2003;157:47–53.

    Article  Google Scholar 

  21. Porkodi K, Arokiamary SD. Synthesis and spectroscopic characterization of nanostructured anatase titania: a photocatalyst. Mater Charact. 2007;58:495–503.

    Article  CAS  Google Scholar 

  22. Moafi HM, Shojaie AF, Zanjanchi MA. Flame-retardancy and photocatalytic properties of cellulosic fabric coated by nano-sized titanium dioxide. J Therm Anal Calorim. 2011;104:717–24.

    Article  CAS  Google Scholar 

  23. Chen L, Pang X, Yu G, Zhang J. In situ coating of MWNTs with sol–gel TiO2 nanoparticles. Adv Mater Lett. 2010;1(1):75–8.

    Article  CAS  Google Scholar 

  24. Sorescu M, Xu T. The effect of ball-milling on the thermal behaviour of anatase-doped haematite ceramic system. J Therm Anal Calorim. 2011;103:479–84.

    Article  CAS  Google Scholar 

  25. Pode R. On the problem of circuit voltage in metal phthalocyanine/C60 organic solar cells. Adv Mater Lett. 2011;2(1):3–11.

    Article  CAS  Google Scholar 

  26. Chamola A, Singh H, Naithani UC, Sharma S, Prabhat U, Devi P, Malik A, Srivastava A, Sharma RK. Structural, dielectric and electrical properties of lead zicronate titanate and CaCu3Ti4O12 ceramic composite. Adv Mater Lett. 2011;2(1):26–31.

    Article  CAS  Google Scholar 

  27. Murat A, Meltem A, Funda S, Nadir K, Ertugrul A, Hikmet S. A novel approach to the hydrothermal synthesis of anatase titania nanoparticles and the photocatalytic degradation of rhodamine B. Turk J Chem. 2006;30:333–43.

    Google Scholar 

  28. Zhu J, Zhang J, Chen F, Iino K, Anpo M. High activity TiO2 photocatalysts prepared by a modified sol–gel method: characterization and their photocatalytic activity for the degradation of XRG and X-GL. Catalysis. 2005;35:261–8.

    CAS  Google Scholar 

  29. Kawahara T, Ozawa T, Iwasaki M, Tada H, Ito H. Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution–reprecipitation method. J Colloid Interface Sci. 2003;267:377–81.

    Article  CAS  Google Scholar 

  30. Dhage SR, Choube VD, Samuel V, Ravi V. Synthesis of nanocrystalline TiO2 at 100 °C. Mater Lett. 2004;58:2310–3.

    Article  CAS  Google Scholar 

  31. Lei Y, Zhang LD, Fan JC. Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem Phys Lett. 2001;338:231–6.

    Article  CAS  Google Scholar 

  32. Battacharyya A, Kawi S, Ray MB. Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catal Today. 2004;98:431–9.

    Article  Google Scholar 

  33. Jing D, Zhang Y, Guo L. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem Phys Lett. 2005;415:74–8.

    Article  CAS  Google Scholar 

  34. Mogyorosi M, Dekany I, Fendler JH. Preparation and characterization of clay mineral intercalated titanium dioxide. Langmuir. 2003;19:2938–46.

    Article  CAS  Google Scholar 

  35. Wang T, Wang H, Xu P, Zhao X, Liu Y, Chao S. The effect of properties of semiconductor oxide thin films on photocatalytic decomposition of dyeing waste water. Thin Solid Films. 1998;334:103–8.

    Article  CAS  Google Scholar 

  36. Matos J, Laine J, Hermann JM. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl Catal B. 1998;18:281–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Johannesburg, DST/Mintek NIC for financial support and the Indian Institute of Science, Bangalore, India for providing the infrastructure to carry out most of this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahlambi, M.M., Mishra, A.K., Mishra, S.B. et al. Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst. J Therm Anal Calorim 110, 847–855 (2012). https://doi.org/10.1007/s10973-011-1852-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1852-7

Keywords