Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Log in

Preparation and spectroelectrochemical characterization of composite films of poly(3,4-ethylenedioxythiophene) with 4-(pyrrole-1-yl) benzoic acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The possibility of incorporation of 4-(pyrrole-1-yl) benzoic acid, PyBA, during electrodeposition of poly(3,4-ethylenedioxythiophene), PEDOT, is demonstrated here. The resulting novel composite material has been fabricated as moderately thin (ca 200–300 nm thick) PEDOT/PyBA film on electrode surface. As evidenced from scanning tunneling microscopy (STM) and scanning electron microscopy (SEM), morphology of the composite film is dense and granular, and it is composed of larger granules in comparison to the PyBA-free PEDOT film. It is apparent from infrared reflectance absorption spectroscopy and spectroelectrochemical measurements that the PEDOT/PyBA composite film cannot be viewed as simple mixtures of PEDOT and PyBA components. Some specific (chemical) interactions between PEDOT and PyBA can be expected. The conducting polymer serves as a robust, positively charged conductive polmer matrix for anionic (carboxylate-group derivatized) partially polymerized PyBA structures. Upon incorporation of PyBA, the overall stability of PEDOT film (resistance to dissolution during prolonged voltammetric potential cycling) has been improved. The fact, that the composite PEDOT/PyBA film is capable of preconcentrating (under open circuit conditions) both cations (Cu2+) or anions \({\left( {{\text{Fe}}{\left( {{\text{CN}}} \right)}^{{3 - }}_{6} } \right)},\) implies the presence of both free (available for binding) carboxylate groups and positively charged PEDOT sites. The presence of PyBA in PEDOT seems to facilitate charge propagation in the composite film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Nalwa HS (ed) (1997) Handbook of conductive molecules and polymers, vols 1–4, Wiley, New York

    Google Scholar 

  2. Barsukov V, Chivikov S, Barsukov I, Motronyuk T (1996) In: Barsukov V, Beck F (eds) New promising electrochemical systems for rechargeable batteries. Kluwer, Dordrecht, p 419

    Google Scholar 

  3. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electrochim Acta 45:2403

    Article  CAS  Google Scholar 

  4. Rubinson JF, Mark HB (1999) In: Wieckowski A (ed) Interfacial electrochemistry, Ch 37, conducting polymer films as electrodes. Marcel Dekker, New York

    Google Scholar 

  5. Inzelt G (1994) In: Bard AJ (ed) Electroanalytical chemistry, vol 18. Marcel Dekker, New York

    Google Scholar 

  6. Jonas F, Schrader L (1991) Synth Met 41:831

    Article  CAS  Google Scholar 

  7. Dietrich M, Heinze J, Heywang G, Jonas F (1994) J Electroanal Chem 369:87

    Article  CAS  Google Scholar 

  8. Granstrom M, Berggren M, Inganas O (1995) Science 267:1479

    Article  Google Scholar 

  9. Mastragostino M, Arbizzani C, Bongini A, Barbarella G, Zambianchi M (1992) Electrochim Acta 38:135

    Article  Google Scholar 

  10. Kvarnstrom C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) Electrochim Acta 44:2739

    Article  CAS  Google Scholar 

  11. Lacroix JC, Kanazawa KK, Diaz AD (1989) J Electrochem Soc 136:1308

    Article  CAS  Google Scholar 

  12. Heywang G, Jonas F (1992) Adv Mater 4:116

    Article  CAS  Google Scholar 

  13. Gustafsson JC, Liedberg B, Inganas O (1994) Solid State Ion 69:145

    Article  CAS  Google Scholar 

  14. Panero S, Passerini S, Scrosati B (1993) Mol Cryst Liq Cryst 229:97

    CAS  Google Scholar 

  15. Lampert CM (1984) Sol Energy Mater 11:1

    Article  CAS  Google Scholar 

  16. Jonas F, Heywang G (1994) Electrochim Acta 39:1345

    Article  CAS  Google Scholar 

  17. Gustafsson JC, Inganas O (1995) Adv Mater 7:1012

    Article  Google Scholar 

  18. Sapp SA, Sotzing GA, Reddinger JL, Reynolds JR (1996) Adv Mater 8:808

    Article  CAS  Google Scholar 

  19. Lin TH, Ho KC (2006) Sol Energy Mater 90:506

    Article  CAS  Google Scholar 

  20. Pei Q, Zuccarello G, Heinze J, Heywang G, Jonas F (1994) J Electroanal Chem 369:87

    Article  Google Scholar 

  21. Morvant MC, Reynolds JR (1998) Synth Met 92:57

    Article  CAS  Google Scholar 

  22. Sundfords F, Bobacka J, Ivaska A, Lewenstam A (2002) Electrochim Acta 47:2245

    Article  Google Scholar 

  23. Chen X, Inganas O (1996) J Phys Chem 100:15202

    Article  CAS  Google Scholar 

  24. Bobacka J, Lewenstam A, Ivaska A (2000) J Electroanal Chem 489:17

    Article  CAS  Google Scholar 

  25. Lisowska-Oleksiak A, Kazubowska K, Kupniewska A (2001) J Electroanal Chem 501:54

    Article  CAS  Google Scholar 

  26. Noel V, Randriamahazaka H, Chevrot C (2000) J Electroanal Chem 489:46

    Article  CAS  Google Scholar 

  27. Arbizzani C, Mastragostino M, Rossi M (2002) Electrochem Commun 4:545

    Article  CAS  Google Scholar 

  28. Krishnamoorthy K, Kanungo M, Ambade AV, Contractor AQ, Kumar A (2002) Synth Met 125:441

    Article  CAS  Google Scholar 

  29. Shan J, Pickup PG (2000) Electrochim Acta 46:119

    Article  CAS  Google Scholar 

  30. Sakmeche N, Aaron JJ, Aeiyach S, Lacaze PC (2000) Electrochim Acta 45:1921

    Article  CAS  Google Scholar 

  31. Sakmeche N, Aaron JJ, Fall M, Aeiyach S, Jouni M, Lacroix JC, Lacaze PC (1996) J Chem Soc Chem Comm 2727

  32. Jonas F, Kraft W, Muys B (1995) Macromol Symp 100:169

    Google Scholar 

  33. Dong S, Zhang W (1998) Synth Met 30:359

    Article  Google Scholar 

  34. Bidan G, Genies GM, Lapkowski M (1989) Synth Met 31:327

    Article  CAS  Google Scholar 

  35. Adamczyk L, Kulesza PJ, Miecznikowski K, Palys B, Chojak M, Krawczyk D (2005) J Electrochem Soc 152:E98

    Article  CAS  Google Scholar 

  36. Karnicka K, Chojak M, Miecznikowski K, Skunik M, Baranowska B, Kolary A, Piranska A, Palys B, Adamczyk L, Kulesza PJ (2005) Bioelectrochemistry 66:79

    Article  CAS  Google Scholar 

  37. Kulesza PJ, Skunik M, Baranowska B, Miecznikowski K, Chojak M, Karnicka K, Frackowiak E, Béguin F, Kuhn A, Delville MH, Starobrzynska B, Ernst A (2006) Electrochim Acta 51:2373

    Article  CAS  Google Scholar 

  38. Skunik M, Baranowska B, Fattakhova D, Miecznikowski K, Chojak M, Kuhn A, Kulesza PJ (2006) J Solid State Electrochem 10:168

    Article  CAS  Google Scholar 

  39. Lisowska-Oleksiak A, Nowak AP, Jasulaitiene V (2006) Electrochem Commun 8:107

    Article  CAS  Google Scholar 

  40. Ocypa M, Michalska A, Maksymiuk K (2006) Electrochim Acta 51:2298

    Article  CAS  Google Scholar 

  41. Koncki R, Wolfbeis OS (1998) Anal Chem 70:2544

    Article  CAS  Google Scholar 

  42. Derwinska K, Miecznikowski K, Koncki R, Kulesza PJ, Glab S, Malik MA (2003) Electroanalysis 15:1843

    Article  CAS  Google Scholar 

  43. Kulesza PJ, Miecznikowski K, Chojak M, Malik MA, Zamponi S, Marassi R (2001) Electrochim Acta 46:4371

    Article  CAS  Google Scholar 

  44. Kulesza PJ, Miecznikowski K, Malik MA, Galkowski M, Chojak M, Caban K, Wieckowski A (2001) Electrochim Acta 46:4065

    Article  CAS  Google Scholar 

  45. Kulesza PJ, Chojak M, Karnicka K, Miecznikowski K, Palys B, Lewera A, Wieckowski A (2004) Chem Mater 16:4128

    Article  CAS  Google Scholar 

  46. Kulesza PJ, Chojak M, Miecznikowski K, Lewera A, Malik M, Kuhn A (2002) Electrochem Commun 4:510

    Article  CAS  Google Scholar 

  47. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  48. Kulesza PJ, Malik MA, Wieckowski A (eds) (1999) Interfacial electrochemistry, ch 37 “Solid-state voltammetry”. Marcel Dekker, New York

    Google Scholar 

  49. Ilieva M, Tsakova V (2004) Synth Met 141:287

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Ministry of Science and Higher Education under the KBN Projects 7 T09A 05426 and 3 T09A 04427 (doctoral). A gift of EDOT monomer from Bayer is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel J. Kulesza.

Additional information

“Contribution to the International Workshop on Electrochemistry of Electroactive Materials (WEEM-2006), Repino, Russia, 24–29 June 2006”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalewska, B., Miecznikowski, K., Makowski, O. et al. Preparation and spectroelectrochemical characterization of composite films of poly(3,4-ethylenedioxythiophene) with 4-(pyrrole-1-yl) benzoic acid. J Solid State Electrochem 11, 1023–1030 (2007). https://doi.org/10.1007/s10008-007-0263-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0263-y

Keywords