Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Thermal, mechanical and electrical studies of novel shape memory polyurethane/polyaniline blends

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Shape memory polymer (SMP) blends based on polyurethane (PU) and polyaniline (PANI) were prepared via chemical in situ polymerization process. The thermal, mechanical, electrical and shape memory properties were investigated. The structural characterization and morphology of the polymer blends were inspected by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM), respectively. The 1 wt% of PANI loading enhanced the thermal stability of the system up to 339 °C. According to differential scanning calorimetry (DSC), the glass transition temperature (T g) and melting temperature (T m) of PU/PANI blends increased with the polyaniline loading (0.1 wt%–1 wt%). Improved mechanical properties such as tensile strength and Young’s modulus of PU matrix were also observed with PANI. Moreover, the electrical conductivity of PU/PANI blends was also found to be a function of PANI loading. Remarkable recoverability of thermally triggered shape memory (SM) behavior to the extent of 96% was achieved for 1 wt% PANI blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Feninat, F.E., Laroche, G., Fiset, M. and Mantovani, D., Adv. Eng. Mater., 2002, 4: 91

    Article  Google Scholar 

  2. Meng, Q., Hu, J. and Zhu, Y., J. Appl. Polym. Sci., 2007, 106: 837

    Article  CAS  Google Scholar 

  3. Lendlein, A. and Kelch, S., Angew. Chem. Int. Ed., 2002, 41: 2034

    Article  CAS  Google Scholar 

  4. Paik, I.H., Goo, N.S., Jung, Y.C. and Cho, J.W., Smart Mater. Struct., 2006, 15: 1476

    Article  CAS  Google Scholar 

  5. Lendlein, A., Jiang, H.Y., Junger, O. and Langer, R., Nature, 2005, 434: 879

    Article  CAS  Google Scholar 

  6. Leng, J.S., Huang, W.M., Lan, X., Liu, Y.J. and Du, S.Y., Appl. Phys. Lett., 2008, 92: 204101

    Article  Google Scholar 

  7. Lv, H.B., Leng, J.S., Liu, Y.J. and Du, S.Y., Adv. Eng. Mater., 2008, 10: 592

    Article  Google Scholar 

  8. Raja, M., Ryu, S.H. and Shanmugharaj, A.M., Eur. Polym. J., 2013, 49: 3492

    Article  CAS  Google Scholar 

  9. Kim, B.K., Lee, J.S., Lee, Y.M., Shin, J.H. and Park, S.H., J. Macromol. Sci. Phys., 2001, B40: 1179

    Article  CAS  Google Scholar 

  10. Langer, R. and Tirrell, D.A., Nature, 2004, 428: 487

    Article  CAS  Google Scholar 

  11. Müller, W.W. and Pretsch, T., Eur. Polym. J., 2010, 46: 1745

    Article  Google Scholar 

  12. Weng, S., Xia, Z., Chen, J. and Gong, L., J. Appl. Polym. Sci., 2013, 127: 748

    Article  CAS  Google Scholar 

  13. Bothe, M., Emmerling, F. and Pretsch, T., Macromol. Chem. Phys., 2013, 214: 2683

    Article  CAS  Google Scholar 

  14. Koul, S., Chandra, R. and Dhawan, S.K., Sensor. Actuat. B-Chem., 2001, 75: 151

    Article  CAS  Google Scholar 

  15. Gerard, M., Chaubey, A. and Malhotra, B.D., Biosens. Bioelectron., 2002, 17: 345

    Article  CAS  Google Scholar 

  16. Wang, Y.Z., Hsu, Y.C., Wu, R.R. and Kao, H.M., Synth. Met., 2003, 132: 151

    Article  CAS  Google Scholar 

  17. Njuguna, J. and Pielichowski, K., J. Mater. Sci., 2004, 39: 4081.

    Article  CAS  Google Scholar 

  18. Yoshikawa, H., Hino, T. and Kuramoto, N., Synth. Met., 2006, 156: 1187

    Article  CAS  Google Scholar 

  19. Ho, K.S., Hsich, K.H., Huang, S.K. and Sieh, T.H., Synth. Met., 1999, 107: 65

    Article  CAS  Google Scholar 

  20. Vicentini, D.S., Barra, G.M.O., Bertolino, J.R. and Pires, A.T.N., Eur. Polym. J., 2007, 43: 4565

    Article  CAS  Google Scholar 

  21. Rangel-Vázquez, N.A., Salgado-Delgado, R., García-Hernández, E. and Mendoza-Martínez, A.M., J. Mex. Chem. Soc., 2009, 53: 248

    Google Scholar 

  22. Arasi, A.Y., Jeyakumari, J.J. L., Sundaresan, B., Dhanalakshmi, V. and Anbarasan, R., Spectrochim. Acta A, 2009, 74: 1229

    Article  Google Scholar 

  23. Hemjyoti, K. and Niranjan, K., J. Appl. Polym. Sci., 2014, DOI: 10.1002/APP.39579

    Google Scholar 

  24. Rodrigues, P.C., Lisboa-Filho, P.N., Mangrich, A.S. and Akcelrud, L., Polymer, 2005, 46: 2285

    Article  CAS  Google Scholar 

  25. Chwang, C.P., Liu, C.D., Huang, S.W., Chao, D.Y. and Lee, S.N., Synth. Met., 2004, 142: 275

    Article  CAS  Google Scholar 

  26. Rodrigues, P.C. and Akcelrud, L., Polymer, 2003, 44: 6891

    Article  CAS  Google Scholar 

  27. Wang, T.L., Yang, C.H., Shieh, Y.T. and Yeh, A.C., Eur. Polym. J., 2009, 45: 387

    Article  CAS  Google Scholar 

  28. Amado, F.D.R., Rodrigues Jr., L.F., Rodrigues, M.A.S., Bernardes, A.M., Ferreira, J.Z. and Ferreira, C.A., Desalination, 2005, 186: 199

    Article  CAS  Google Scholar 

  29. Xiao, S.S., Chen, M.J., Dong, L.P., Deng, C., Chen, L. and Wang, Y.Z., Chinese J. Polym. Sci., 2014, 32(1): 98

    Article  CAS  Google Scholar 

  30. Lakouraj, M.M., Rahpaima, G. and Zare, E.N., Chinese J. Polym. Sci., 2014, 32(11): 1489

    Article  CAS  Google Scholar 

  31. Fan, Q., Zhang, X. and Qin, Z., J. Macromol. Sci., Part B: Phys., 2012, 51: 736

    Article  CAS  Google Scholar 

  32. Luo, J., Wang, X., Li, J., Zhao, X. and Wang, F., Polymer, 2007, 48: 4368

    Article  CAS  Google Scholar 

  33. Chiou, W.C., Yang, D.Y., Han, J.L. and Lee, S.N., Polym. Int., 2006, 55: 1222

    Article  CAS  Google Scholar 

  34. Chiou, W.C., Han, J.L. and Lee, S.N., Polym. Eng. Sci., 2008, 48: 345

    Article  CAS  Google Scholar 

  35. Kausar, A. and Hussain, S.T., Chinese J. Polym. Sci., 2013, 31(12): 1623

    Article  CAS  Google Scholar 

  36. Hu, J., Yang, Z., Yeung, L., Ji, F. and Liu, Y., Polym. Int., 2005, 54: 854

    Article  CAS  Google Scholar 

  37. Yang, Z., Hu, J., Liu, Y. and Yeung, L., Mater. Chem. Phys., 2006, 98: 368

    Article  CAS  Google Scholar 

  38. Chun, B.C., Cho, T.K., Chong, M.H. and Chung, Y.C., J. Mater. Sci., 2007, 42: 9045

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Siddiq.

Additional information

This work was financially supported by the Higher Education Commission (HEC), Islamabad, Pakistan under the indigenous PhD fellowship scheme and IRSIP program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattar, R., Kausar, A. & Siddiq, M. Thermal, mechanical and electrical studies of novel shape memory polyurethane/polyaniline blends. Chin J Polym Sci 33, 1313–1324 (2015). https://doi.org/10.1007/s10118-015-1680-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-015-1680-5

Keywords