Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

“Classical organic acidurias”: diagnosis and pathogenesis

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Organic acidurias are inherited metabolic diseases due to the deficiency of an enzyme or a transport protein involved in one of the several cellular metabolic pathways devoted to the catabolism of amino acids, carbohydrates or lipids. These deficiencies result in abnormal accumulation of organic acids in the body and their abnormal excretion in urine. More than 65 organic acidurias have been described; the incidence varies, individually, from 1 out of 10,000 to >1 out of 1000,000 live births. Collectively, their incidence approximates 1 out of 3000 live births. Among these disorders, methyl malonic aciduria, propionic aciduria, maple syrup urine disease and isovaleric aciduria are sometimes referred to as classical organic acidurias. In this review, we focused on the basic GC–MS-based methodologies employed in the diagnosis of classical organic acidurias and provided updated reference values for the most common involved organic acids. We also attempted to provide the most recent updates on the pathogenetic bases of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scriver R, Beaudet A, Sly ES, Valle D. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  2. Kolker S, Burgard P, Sauer SW, Okun JG. Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis. 2013;36:635–44.

    Article  PubMed  CAS  Google Scholar 

  3. Ozand PT, Gascon GG. Organic acidurias: a review. Part 1. J Child Neurol. 1991;6(3):196–219.

    Article  CAS  PubMed  Google Scholar 

  4. Ozand PT, Gascon GG. Organic acidurias: a review. Part 2. J Child Neurol. 1991;6(4):288–303.

    Article  CAS  PubMed  Google Scholar 

  5. Lehotay DC, Clarke JT. Organic acidurias and related abnormalities. Crit Rev Clin Lab Sci. 1995;32:377–429.

    Article  CAS  PubMed  Google Scholar 

  6. Chace DH. Mass spectrometry in the clinical laboratory. Chem Rev. 2001;101(2):445–77.

    Article  CAS  PubMed  Google Scholar 

  7. Bartlett K, Gompertz D. The specificity of glycine-N-acylase and acylglycine excretion in the organic acidaemias. Biochem Med. 1974;10(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  8. García A, Barbas C, Aguilar R, Castro M. Capillary electrophoresis for rapid profiling of organic acidurias. Clin Chem. 1998;44(9):1905–11.

    PubMed  Google Scholar 

  9. Iles RA, Hind AJ, Chalmers RA. Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin Chem. 1985;31(11):1795–801.

    CAS  PubMed  Google Scholar 

  10. Pitt JJ, Eggington M, Kahler SG. Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem. 2002;48(11):1970–80.

    CAS  PubMed  Google Scholar 

  11. la Marca G, Rizzo C. Analysis of organic acids and acylglycines for the diagnosis of related inborn errors of metabolism by GC- and HPLC-MS. Methods Mol Biol. 2011;708:73–98.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka K, Hine DG, West-Dull A, Lynn TB. Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin Chem. 1980;26(13):1839–46.

    CAS  PubMed  Google Scholar 

  13. Tanaka K, West-Dull A, Hine DG, Lynn TB, Lowe T. Gas-chromatographic method of analysis for urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin Chem. 1980;26(13):1847–53.

    CAS  PubMed  Google Scholar 

  14. Scolamiero E, Cozzolino C, Albano L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst. 2015;11(6):1525–35.

    Article  CAS  PubMed  Google Scholar 

  15. Scolamiero E, Villani GR, Ingenito L, et al. Maternal vitamin B12 deficiency detected in expanded newborn screening. Clin Biochem. 2014;47(18):312–7.

    Article  CAS  PubMed  Google Scholar 

  16. Catanzano F, Ombrone D, Di Stefano C, et al. The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy: the importance of an integrated diagnostic approach. J Inherit Metab Dis. 2010;33(Suppl 3):S91–4.

    Article  PubMed  Google Scholar 

  17. Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014;23(R1):R1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Manoli I, Venditti CP. Isolated methylmalonic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2005. http://www.ncbi.nlm.nih.gov/books/NBK1231/ The Isolated Methylmalonic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle; Accessed 16 Aug 2005.

  19. Watkins D, Rosenblatt DS. Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C Semin Med Genet. 2011;157(1):33–44.

    Article  CAS  Google Scholar 

  20. Dobson CM, Wai T, Leclerc D, et al. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci U S A. 2002;99(24):15554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walter JH, Michalski A, Wilson WM, Leonard JV, Barratt TM, Dillon MJ. Chronic renal failure in methylmalonic acidaemia. Eur J Pediatr. 1989;148:344–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kruszka PS, Manoli I, Sloan JL, Kopp JB, Venditti CP. Renal growth in isolated methylmalonic acidemia. Genet Med. 2013;15:990–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carrozzo R, Verrigni D, Rasmussen M, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis. 2016;39(2):243–52.

    Article  CAS  PubMed  Google Scholar 

  24. Marcadier JL, Smith AM, Pohl D, et al. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria. Orphanet J Rare Dis. 2013;8:98.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Quadros EV, Nakayama Y, Sequeira JM. Targeted delivery of saporin toxin by monoclonal antibody to the transcobalamin receptor, TCblR/CD320. Mol Cancer Ther. 2010;9:3033–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coelho D, Kim JC, Miousse IR, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44(10):1152–5.

    Article  CAS  PubMed  Google Scholar 

  27. Sloan JL, Johnston JJ, Manoli I, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nature Genet. 2011;43:883–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheema-Dhadli S, Leznoff CC, Halperin ML. Effect of 2-Methylcitrate on Citrate Metabolism: implications for the Management of Patients with Propionic acidemia and Methylmalonic aciduria. Pediat Res. 1975;9:905–8.

    CAS  PubMed  Google Scholar 

  29. Brunengraber H, Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis. 2006;29:327–31.

    Article  PubMed  Google Scholar 

  30. Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis. 2008;31:44–54.

    Article  CAS  PubMed  Google Scholar 

  31. Bicakci Z. Growth retardation, general hypotonia, and loss of acquired neuromotor skills in the infants of mothers with cobalamin deficiency and the possible role of succinyl-CoA and glycine in the pathogenesis. Medicine (Baltimore). 2015;. doi:10.1097/MD.0000000000000584.

    Google Scholar 

  32. De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66(1):91–5.

    Article  PubMed  CAS  Google Scholar 

  33. Zsengellér ZK, Aljinovic N, Teot LA, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29:2139–46.

    Article  PubMed  Google Scholar 

  34. Melo DR, Kowaltowski AJ, Wajner M, Castilho RF. Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr. 2011;43:39–46.

    Article  CAS  PubMed  Google Scholar 

  35. Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr. 2011;43:31–8.

    Article  CAS  PubMed  Google Scholar 

  36. Manoli I, Sysol JR, Li, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A. 2013;110:13552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fernandes CG, Borges C, Seminotti B, et al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31:775–85.

    Article  CAS  PubMed  Google Scholar 

  38. Viegas CM, Zanatta Â, Grings M, et al. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res. 2014;48(6):659–69.

    Article  CAS  PubMed  Google Scholar 

  39. Salmi H, Leonard JV, Lapatto R. Patients with organic acidaemias have an altered thiol status. Acta Paediatr. 2012;101:e505–8.

    Article  PubMed  Google Scholar 

  40. Furian AF, Fighera MR, Oliveira MS, et al. Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int. 2007;50:164–71.

    Article  CAS  PubMed  Google Scholar 

  41. Ribeiro LR, Fighera MR, Oliveira MS, et al. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci. 2009;27:157–63.

    Article  CAS  PubMed  Google Scholar 

  42. Ribeiro LR, Della-Pace ID, de Oliveira Ferreira AP, et al. Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology. 2013;218(9):1175–83.

    Article  CAS  PubMed  Google Scholar 

  43. Colin-Gonzalez AL, Paz-loyola AL, Serratos IN, et al. The effect of win 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Neuroscience. 2015;310:578–88.

    Article  CAS  PubMed  Google Scholar 

  44. Han L, Wu S, Han F, Gu X. Insights into the molecular mechanisms of methylmalonic acidemia using microarray technology. Int J Clin Exp Med. 2015;8(6):8866–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Peng T, Li L, et al. MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci. 2014;36:19–24.

    Article  PubMed  CAS  Google Scholar 

  46. De Mattos-Dutra A, De Freitas MS, Schröder N, Zilles AC, Wajner M, Pessoa-Pureur R. Methylmalonic acid reduces the in vitro phosphorylation of cytoskeletal proteins in the cerebral cortex of rats. Brain Res. 1997;763:221–31.

    Article  PubMed  Google Scholar 

  47. Almeida LM, Funchal C, Pelaez PL, et al. Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metab Brain Dis. 2003;18(3):207–19.

    Article  PubMed  Google Scholar 

  48. Okun JG, Hörster F, Farkas LM, et al. Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem. 2002;277(17):14674–80.

    Article  CAS  PubMed  Google Scholar 

  49. Kolker S, Schwab M, Hörster F, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003;278(48):47388–93.

    Article  PubMed  Google Scholar 

  50. Jafari P, Braissant O, Zavadakova P, Henry H, Bonafé L, Ballhausen D. Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures. Orphanet J Rare Dis. 2013;8:4.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hannibal L, DiBello PM, Jacobsen DW. Proteomics of vitamin B12 processing. Clin Chem Lab Med. 2013;51(3):477–88.

    Article  CAS  PubMed  Google Scholar 

  52. Caterino M, Pastore A, Strozziero MG, et al. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. Inherit Metab Dis. 2015;38:969–79.

    Article  CAS  Google Scholar 

  53. Caterino M, Chandler RJ, Sloan JL, et al. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers. Mol BioSyst. 2016;26(2):566–74.

    Article  CAS  Google Scholar 

  54. Carrillo-Carrasco N, Venditti C. Propionic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2012. http://www.ncbi.nlm.nih.gov/books/NBK92946/ Propionic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle. Accessed 17 May 2012.

  55. Lam C, Desviat LR, Perez-Cerdá C, Ugarte M, Barshop BA, Cederbaum S. 45-Year-old female with propionic acidemia, renal failure, and premature ovarian failure; late complications of propionic acidemia? Mol Genet Metab. 2011;103(4):338–40.

    Article  CAS  PubMed  Google Scholar 

  56. Lee TM, Addonizio LJ, Barshop BA, Chung WK. Unusual presentation of propionic acidemia as isolated cardiomyopathy. J Inherit Metab Dis. 2009;32(0.1):S97–101.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kumps A, Duez P, Mardens Y. Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48(5):708–17.

    CAS  PubMed  Google Scholar 

  58. Scholl-Bürgi S, Sass JO, Zschocke J, Karall D. Amino acid metabolism in patients with propionic acidaemia. J Inherit Metab Dis. 2012;35:65–70.

    Article  PubMed  CAS  Google Scholar 

  59. Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur J Biochem. 2004;271(15):3227–41.

    Article  CAS  PubMed  Google Scholar 

  60. Schwab MA, Sauer SW, Okun JG, et al. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J. 2006;398:107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979;64(6):1544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dercksen M, Ijlst L, Duran M, Mienie LJ, van Cruchten A, van der Westhuizen FH, Wanders RJA. Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842:2510–6.

    Article  CAS  PubMed  Google Scholar 

  63. Hayasaka K, Metoki K, Satoh T, et al. Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity. Tohoku J Exp Med. 1982;137:329–34.

    Article  CAS  PubMed  Google Scholar 

  64. De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Ped Res. 2009;66(1):91–5.

    Article  CAS  Google Scholar 

  65. Fragaki K, Cano A, Benoist JF, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic academia. Mitochondrion. 2011;11:533–6.

    Article  CAS  PubMed  Google Scholar 

  66. Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion. 2014;17:150–6.

    Article  CAS  PubMed  Google Scholar 

  67. Gallego-Villar L, Perez B, Ugarte M, Desviat LR, Richard E. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun. 2014;452(3):457–61.

    Article  CAS  PubMed  Google Scholar 

  68. Pettenuzzo LF, Schuck PF, Fontella F, et al. Ascorbic acid prevents cognitive defects caused by chronic administration of propionic acids to rats in the water maze. Pharmacol Biochem Behav. 2002;73(3):623–9.

    Article  CAS  PubMed  Google Scholar 

  69. Rigo FK, Pasquetti L, Maneck Malfatti CR, et al. Propionic acid induces convulsions and protein carbonylation in rats. Neurosc Lett. 2006;408:151–4.

    Article  CAS  Google Scholar 

  70. El-Ansary A, Abu-Shmais G, Al-Dbass A. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afr J Biotechnol. 2013;12(31):4925–35.

    Article  Google Scholar 

  71. de Almeida LMV, Funchal C, Gottfried C, Wajner M, Pessoa-Pureur R. Propionic acid induces cytoskeletal alterations in cultured astrocytes from rat cerebral cortex. Metab Brain Dis. 2006;21:51–62.

    Article  PubMed  CAS  Google Scholar 

  72. Nguyen NHT, Morland C, Gonzalez SV, et al. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic academia. J Neurochem. 2007;101:806–14.

    Article  CAS  PubMed  Google Scholar 

  73. Trindade VM, Brusque AM, Raasch JR, et al. Ganglioside alterations in the central nervous system of rats chronically injected with methylmalonic and propionic acids. Metab Brain Dis. 2002;17(2):93–102.

    Article  CAS  PubMed  Google Scholar 

  74. Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypicheterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tanaka K, Orr JC, Isselbacher KJ. Identification of beta-hydroxyisovaleric acid in the urine of a patient with isovaleric acidemia. Biochim Biophys Acta. 1968;152(3):638–41.

    Article  CAS  PubMed  Google Scholar 

  77. Lehnert W, Niederhoff H. 4-hydroxyisovaleric acid: a new metabolite in isovaleric acidemia. Eur J Pediatr. 1981;136(3):281–3.

    Article  CAS  PubMed  Google Scholar 

  78. Loots DT, Erasmus E, Mienie LJ. Identification of 19 new metabolites induced by abnormal amino acid conjugation in isovaleric acidemia. Clin Chem. 2005;51(8):1510–2.

    Article  CAS  PubMed  Google Scholar 

  79. Rhead WJ, Tanaka K. Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia. Proc Natl Acad Sci USA. 1980;77(1):580–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tajima G, Yofune H, BahagiaFebriani AD, Nishimura Y, Ono H, Sakura N. A simple and rapid enzymatic assay for the branched-chain alpha-ketoacid dehydrogenase complex using high-performance liquid chromatography. J Inherit Metab Dis. 2004;27(5):633–9.

    Article  CAS  PubMed  Google Scholar 

  81. Bergen BJ, Stumpf DA, Haas R, Parks JK, Eguren LA. A mechanism of toxicity of isovaleric acid in rat liver mitochondria. Biochem Med. 1982;27(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  82. Ribeiro CA, Leipnitz G, Amaral AU, de Bortoli G, Seminotti B, Wajner M. Creatine administration prevents Na+, K+-ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats. Brain Res. 2009;1262:81–8.

    Article  CAS  PubMed  Google Scholar 

  83. Loots DT. Abnormal tricarboxylic acid cycle metabolites in isovaleric acidaemia. J Inherit Metab Dis. 2009;32:403–11.

    Article  CAS  PubMed  Google Scholar 

  84. Solano AF, Leipnitz G, De Bortoli GM, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res. 2008;42(8):707–15.

    Article  CAS  PubMed  Google Scholar 

  85. Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2013. http://www.ncbi.nlm.nih.gov/books/NBK1319/ Maple Syrup disease. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle. Accessed 30 Jan 2006.

  86. Chuang JL, Wynn RM, Moss CC, et al. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: a proposed mechanism for the thiamin-responsive phenotype. J Biol Chem. 2004;279(17):17792–800.

    Article  CAS  PubMed  Google Scholar 

  87. Szabó A, Kenesei E, Körner A, Miltényi M, Szücs L, Nagy I. Changes in plasma and urinary amino acid levels during diabetic ketoacidosis in children. Diabetes Res Clin Pract. 1991;12(2):91–7.

    Article  PubMed  Google Scholar 

  88. De Simone R, Vissicchio F, Mingarelli C, et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta. 2013;1832:650–9.

    Article  PubMed  CAS  Google Scholar 

  89. Scaini G, Morais MO, Galant LS, et al. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown. Mol Neurobiol. 2014;50(2):358–67.

    Article  CAS  PubMed  Google Scholar 

  90. Rosa L, Galant LS, Dall’Igna DM et al. Cerebral oedema, blood-brain barrier breakdown and the decrease in Na+ ,K+-ATPase activity in the cerebral cortex and hippocampus are prevented by dexamethasone in an animal model of maple syrup urine disease. Mol Neurobiol 2015 [Epub ahead of print].

  91. Mesck CP, Guerreiro G, Donida B, et al. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. 2015;30:1167–74.

    Article  CAS  Google Scholar 

  92. Killian DM, Chinkale PJ. Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci Lett. 2001;306(1, 2):1–4.

    Article  CAS  PubMed  Google Scholar 

  93. Zinnanti WJ, Lazovic J, Griffin K, et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain. 2009;132:903–18.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yudkoff M, Diakin Y, Nissim I, et al. Brain amino acids requirements and toxicity: the example of leucine. J Nutr. 2005;135(6 Suppl):1531S–8S.

    CAS  PubMed  Google Scholar 

  95. Tavares RG, Santos CES, Tasca CI, Wajner M, Souza DO, Dutra-Filhoa CS. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci. 2000;181:44–9.

    Article  CAS  PubMed  Google Scholar 

  96. Funchal C, Rosa AM, Wajner M, Wofchuk S, Pureur RP. Reduction of glutamate uptake into cerebral cortex of developing rats by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Res. 2004;29(4):747–53.

    Article  CAS  PubMed  Google Scholar 

  97. Coitinho AS, de Mello CF, Lima TTF, de Bastiani J, Fighera MR, Wajner M. Pharmacological evidence that a-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain Res. 2001;894:68–73.

    Article  CAS  PubMed  Google Scholar 

  98. Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajnera M. α-Ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res. 2010;1324:75–84.

    Article  CAS  PubMed  Google Scholar 

  99. Sgaravatti AM, Rosa RB, Schuck PF, et al. Inhibition of brain energy metabolism by the a-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta. 2003;1639:232–8.

    Article  CAS  PubMed  Google Scholar 

  100. Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM. Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res. 2003;28(5):675–9.

    Article  CAS  PubMed  Google Scholar 

  101. Stranda JM, Skinnes R, Scheffler K, et al. Genome instability in maple syrup urine disease correlates with impaired mitochondrial biogenesis. Metab Clin Exp. 2014;63:1063–70.

    Article  CAS  Google Scholar 

  102. Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR. Cell mol neurological damage in MSUD: the role of oxidative stress. Neurobiology. 2014;34:157–65.

    CAS  Google Scholar 

  103. Bridi R, Araldi J, Sgarbi MB, et al. Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci. 2003;21:327–32.

    Article  CAS  PubMed  Google Scholar 

  104. Scaini G, Teodorak BP, Jeremias IC, et al. Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res. 2012;231:92–6.

    Article  CAS  PubMed  Google Scholar 

  105. Scaini G, Comim CM, Oliveira GMT, et al. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis. 2013;36:721–30.

    Article  CAS  PubMed  Google Scholar 

  106. Wisniewski MSW, Carvalho-Silva M, Gomes LM, et al. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis. 2016;31:377–83.

    Article  CAS  PubMed  Google Scholar 

  107. Rosa AP, Schirmbeck G, da Rosa TH et al. L-carnitine prevents oxidative stress in the brains of rats subjected to a chemically induced chronic model of MSUD. Mol Neurobiol 2015 [Epub ahead of print].

  108. Barschak AG, Sitta A, Deon M, et al. Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis. 2008;23:71–80.

    Article  CAS  PubMed  Google Scholar 

  109. Mesck CP, Wayhs CAY, Vanzin CS, et al. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci. 2013;31:21–4.

    Article  CAS  Google Scholar 

  110. Mesck CP, Guerreiro G, Hammerschmidt T, et al. L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res. 2015;775:43–7.

    Article  CAS  Google Scholar 

  111. Guerreiro G, Mescka CP, Sitta A, et al. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the l-carnitine role. Int J Dev Neurosci. 2015;42:10–4.

    Article  CAS  PubMed  Google Scholar 

  112. Jouvet P, Kozma M, Mehmet H. Primary human fibroblasts from a Maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci. 2000;926:116–21.

    Article  CAS  PubMed  Google Scholar 

  113. Jouvet P, Roustin P, Taylor DL, et al. Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome C release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell. 2000;11(5):1919–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Funchal C, Bello Pessutto FD, et al. α-Keto-h-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. J Neurol Sci. 2004;217:17–24.

    Article  CAS  PubMed  Google Scholar 

  115. Funchal C, Gottfried C, de Almeida LMV, Dos Santos AQ, Wajner M, Pessoa-Pureur R. Morphological alterations and cell death provoked by the branched-chain α-amino acids accumulating in Maple syrup urine disease in astrocytes from rat cerebral cortex. Cell Mol Neurobiol. 2005;25(5):851–67.

    Article  PubMed  Google Scholar 

  116. Pessoa-Pureur R, Wajner M. Cytoskeleton as a potential target in the neuropathology of maple syrup urine disease: insight from animal studies. J Inherit Metab Dis. 2007;30:664–72.

    Article  CAS  PubMed  Google Scholar 

  117. Pessoa-Pureur R, Funchal C, de Lima Pelaez P, et al. Effect of the branched-chain alpha-ketoacids accumulating in maple syrup urine disease on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Metab Brain Dis. 2002;17(2):65–75.

    Article  CAS  PubMed  Google Scholar 

  118. Funchal C, de Lima Pelaez P, Oliveira Loureiro S, et al. α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Develop Brain Res. 2002;139:267–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo RD Villani.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villani, G.R., Gallo, G., Scolamiero, E. et al. “Classical organic acidurias”: diagnosis and pathogenesis. Clin Exp Med 17, 305–323 (2017). https://doi.org/10.1007/s10238-016-0435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10238-016-0435-0

Keywords