Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Macrophage-derived HMGB1 as a Pain Mediator in the Early Stage of Acute Pancreatitis in Mice: Targeting RAGE and CXCL12/CXCR4 Axis

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Extracellular high mobility group box 1 (HMGB1) activates the receptor for advanced glycation end products (RAGE) or Toll-like receptor 4 (TLR4) and forms a heterocomplex with CXCL12 that strongly activates CXCR4, promoting inflammatory and pain signals. In the present study, we investigated the role of HMGB1 in pancreatic pain accompanying cerulein-induced acute pancreatitis in mice. Abdominal referred hyperalgesia accompanying acute pancreatitis occurred within 1 h after 6 hourly injections of cerulein. The anti-HMGB1 neutralizing antibody or recombinant human soluble thrombomodulin (rhsTM), known to inactivate HMGB1, abolished the cerulein-induced referred hyperalgesia, but not pancreatitis itself. Plasma or pancreatic HMGB1 levels did not change, but macrophage infiltration into the pancreas occurred 1 h after cerulein treatment. Minocycline, a macrophage/microglia inhibitor, ethyl pyruvate that inhibits HMGB1 release from macrophages, or liposomal clodronate that depletes macrophages prevented the referred hyperalgesia, but not pancreatitis. Antagonists of RAGE or CXCR4, but not TLR4, strongly suppressed the cerulein-induced referred hyperalgesia, but not pancreatitis. Upregulation of RAGE, CXCR4 and CXCL12, but not TLR4, were detected in the pancreas 1 h after cerulein treatment. Our data suggest that HMGB1 regionally secreted by macrophages mediates pancreatic pain by targeting RAGE and CXCL12/CXCR4 axis in the early stage of acute pancreatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agalave NM, Svensson CI (2014) Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med 20:569–578

    Google Scholar 

  • Agalave NM, Larsson M, Abdelmoaty S, Su J, Baharpoor A, Lundback P, Palmblad K, Andersson U, Harris H, Svensson CI (2014) Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain 155:1802–1813

    Article  CAS  PubMed  Google Scholar 

  • Allette YM, Due MR, Wilson SM, Feldman P, Ripsch MS, Khanna R, White FA (2014) Identification of a functional interaction of HMGB1 with Receptor for Advanced Glycation End-products in a model of neuropathic pain. Brain Behav Immun 42:169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai H, Chen X, Zhang L, Dou X (2012) The effect of sulindac, a non-steroidal anti-inflammatory drug, attenuates inflammation and fibrosis in a mouse model of chronic pancreatitis. BMC Gastroenterol 12:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Shen Y, Gao L, Chen M, Xiao M, Huang Z, Zhang D (2016) Karyopherin Alpha 2 Promotes the Inflammatory Response in Rat Pancreatic Acinar Cells Via Facilitating NF-kappaB Activation. Dig Dis Sci 61:747–757

    Article  CAS  PubMed  Google Scholar 

  • Cen Y, Liu C, Li X, Yan Z, Kuang M, Su Y, Pan X, Qin R, Liu X, Zheng J, Zhou H (2016) Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Toll-like receptor 4. Int Immunopharmacol 38:252–260

    Article  CAS  PubMed  Google Scholar 

  • Ceyhan GO, Michalski CW, Demir IE, Muller MW, Friess H (2008) Pancreatic pain. Best Pract Res Clin Gastroenterol 22:31–44

    Article  PubMed  Google Scholar 

  • Ceyhan GO, Bergmann F, Kadihasanoglu M, Altintas B, Demir IE, Hinz U, Muller MW, Giese T, Buchler MW, Giese NA, Friess H (2009) Pancreatic neuropathy and neuropathic pain--a comprehensive pathomorphological study of 546 cases. Gastroenterology 136:177–186.e171

    Article  PubMed  Google Scholar 

  • Choi SB, Bae GS, Park KC, Jo IJ, Seo SH, Song K, Lee DS, Oh H, Kim YC, Kim JJ, Shin YK, Park JH, Seo MJ, Song HJ, Park SJ (2014) Opuntia humifusa ameliorated cerulein-induced acute pancreatitis. Pancreas 43:118–127

    Article  CAS  PubMed  Google Scholar 

  • Choudhury S, Ghosh S, Gupta P, Mukherjee S, Chattopadhyay S (2015) Inflammation-induced ROS generation causes pancreatic cell death through modulation of Nrf2/NF-kappaB and SAPK/JNK pathway. Free Radic Res 49:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Conway EM (2012) Thrombomodulin and its role in inflammation. Semin Immunopathol 34:107–125

    Article  CAS  PubMed  Google Scholar 

  • Eguchi T, Tsuji Y, Yamashita H, Fukuchi T, Kanamori A, Matsumoto K, Hasegawa T, Koizumi A, Kitada R, Tsujimae M, Iwatsubo T, Koyama S, Ubukata S, Fujita M, Okada A (2015) Efficacy of recombinant human soluble thrombomodulin in preventing walled-off necrosis in severe acute pancreatitis patients. Pancreatology 15:485–490

    Article  CAS  PubMed  Google Scholar 

  • Entezari M, Javdan M, Antoine DJ, Morrow DM, Sitapara RA, Patel V, Wang M, Sharma L, Gorasiya S, Zur M, Wu W, Li J, Yang H, Ashby CR, Thomas D, Wang H, Mantell LL (2014) Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury. Redox Biol 2:314–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman P, Due MR, Ripsch MS, Khanna R, White FA (2012) The persistent release of HMGB1 contributes to tactile hyperalgesia in a rodent model of neuropathic pain. J Neuroinflammation 9:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, Suffredini AF (2003) Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101:2652–2660

    Article  CAS  PubMed  Google Scholar 

  • Fukushima O, Nishimura S, Matsunami M, Aoki Y, Nishikawa H, Ishikura H, Kawabata A (2010) Phosphorylation of ERK in the spinal dorsal horn following pancreatic pronociceptive stimuli with proteinase-activated receptor-2 agonists and hydrogen sulfide in rats: evidence for involvement of distinct mechanisms. J Neurosci Res 88:3198–3205

    Article  CAS  PubMed  Google Scholar 

  • Gauley J, Pisetsky DS (2009) The translocation of HMGB1 during cell activation and cell death. Autoimmunity 42:299–301

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara S, Iwasaka H, Uchida T, Hasegawa A, Asai N, Noguchi T (2009) Danaparoid sodium prevents cerulein-induced acute pancreatitis in rats. Shock 32:94–99

    Article  CAS  PubMed  Google Scholar 

  • Hoogerwerf WA, Shenoy M, Winston JH, Xiao SY, He Z, Pasricha PJ (2004) Trypsin mediates nociception via the proteinase-activated receptor 2: a potentially novel role in pancreatic pain. Gastroenterology 127:883–891

    Article  CAS  PubMed  Google Scholar 

  • Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM, Mu X, Loike JD, Jenkins RE, Antoine DJ, Schwabe RF (2015) The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest 125:539–550

    Article  PubMed  Google Scholar 

  • Ito T, Kawahara K, Okamoto K, Yamada S, Yasuda M, Imaizumi H, Nawa Y, Meng X, Shrestha B, Hashiguchi T, Maruyama I (2008) Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler Thromb Vasc Biol 28:1825–1830

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Kakihana Y, Maruyama I (2016) Thrombomodulin as an intravascular safeguard against inflammatory and thrombotic diseases. Expert Opin Ther Targets 20:151–158

    Article  CAS  PubMed  Google Scholar 

  • Jiang CY, Wang W (2017) Resistin aggravates the expression of proinflammatory cytokines in ceruleinstimulated AR42J pancreatic acinar cells. Mol Med Rep 15:502–506

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D (2014) Cell death and DAMPs in acute pancreatitis. Mol Med 20:466–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato J, Svensson CI (2015) Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog Mol Biol Transl Sci 131:251–279

    Article  PubMed  Google Scholar 

  • Kawabata A, Matsunami M, Tsutsumi M, Ishiki T, Fukushima O, Sekiguchi F, Kawao N, Minami T, Kanke T, Saito N (2006) Suppression of pancreatitis-related allodynia/hyperalgesia by proteinase-activated receptor-2 in mice. Br J Pharmacol 148:54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabata A, Matsunami M, Sekiguchi F (2008) Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol 153(Suppl 1):S230–S240

    CAS  PubMed  Google Scholar 

  • Liu K, Mori S, Takahashi HK, Tomono Y, Wake H, Kanke T, Sato Y, Hiraga N, Adachi N, Yoshino T, Nishibori M (2007) Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J 21:3904–3916

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Mori S, Wake H, Zhang J, Liu K, Izushi Y, Takahashi HK, Peng B, Nishibori M (2009) Establishment of in vitro binding assay of high mobility group box-1 and S100A12 to receptor for advanced glycation endproducts: heparin's effect on binding. Acta Med Okayama 63:203–211

    CAS  PubMed  Google Scholar 

  • Liu PY, Lu CL, Wang CC, Lee IH, Hsieh JC, Chen CC, Lee HF, Lin HC, Chang FY, Lee SD (2012) Spinal microglia initiate and maintain hyperalgesia in a rat model of chronic pancreatitis. Gastroenterology 142:165–173.e162

    Article  PubMed  Google Scholar 

  • Lu B, Antoine DJ, Kwan K, Lundback P, Wahamaa H, Schierbeck H, Robinson M, Van Zoelen MA, Yang H, Li J, Erlandsson-Harris H, Chavan SS, Wang H, Andersson U, Tracey KJ (2014) JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci U S A 111:3068–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukic IK, Humpert PM, Nawroth PP, Bierhaus A (2008) The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann N Y Acad Sci 1126:76–80

    Article  CAS  PubMed  Google Scholar 

  • Malarkey CS, Churchill ME (2012) The high mobility group box: the ultimate utility player of a cell. Trends Biochem Sci 37:553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myint KM, Yamamoto Y, Doi T, Kato I, Harashima A, Yonekura H, Watanabe T, Shinohara H, Takeuchi M, Tsuneyama K, Hashimoto N, Asano M, Takasawa S, Okamoto H, Yamamoto H (2006) RAGE control of diabetic nephropathy in a mouse model: effects of RAGE gene disruption and administration of low-molecular weight heparin. Diabetes 55:2510–2522

    Article  CAS  PubMed  Google Scholar 

  • Nechutova H, Dite P, Hermanova M, Novotny I, Martinek A, Klvana P, Kianicka B, Soucek M (2014) Pancreatic pain. Wien Med Wochenschr 164:63–72

    Article  PubMed  Google Scholar 

  • Niederau C, Ferrell LD, Grendell JH (1985) Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88:1192–1204

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S, Fukushima O, Ishikura H, Takahashi T, Matsunami M, Tsujiuchi T, Sekiguchi F, Naruse M, Kamanaka Y, Kawabata A (2009) Hydrogen sulfide as a novel mediator for pancreatic pain in rodents. Gut 58:762–770

    Article  CAS  PubMed  Google Scholar 

  • Otoshi K, Kikuchi S, Kato K, Sekiguchi M, Konno S (2011) Anti-HMGB1 neutralization antibody improves pain-related behavior induced by application of autologous nucleus pulposus onto nerve roots in rats. Spine (Phila Pa 1976) 36:E692–E698

    Article  Google Scholar 

  • Pan LF, Yu L, Wang LM, He JT, Sun JL, Wang XB, Bai ZH, Su LJ, Pei HH (2016) The toll-like receptor 4 antagonist transforming growth factor-beta-activated kinase(TAK)-242 attenuates taurocholate-induced oxidative stress through regulating mitochondrial function in mice pancreatic acinar cells. J Surg Res 206:298–306

    Article  CAS  PubMed  Google Scholar 

  • Pinto AJ, Stewart D, van Rooijen N, Morahan PS (1991) Selective depletion of liver and splenic macrophages using liposomes encapsulating the drug dichloromethylene diphosphonate: effects on antimicrobial resistance. J Leukoc Biol 49:579–586

    CAS  PubMed  Google Scholar 

  • Saeki K, Kanai T, Nakano M, Nakamura Y, Miyata N, Sujino T, Yamagishi Y, Ebinuma H, Takaishi H, Ono Y, Takeda K, Hozawa S, Yoshimura A, Hibi T (2012) CCL2-induced migration and SOCS3-mediated activation of macrophages are involved in cerulein-induced pancreatitis in mice. Gastroenterology 142:1010–1020.e1019

    Article  CAS  PubMed  Google Scholar 

  • Schiraldi M, Raucci A, Munoz LM, Livoti E, Celona B, Venereau E, Apuzzo T, De Marchis F, Pedotti M, Bachi A, Thelen M, Varani L, Mellado M, Proudfoot A, Bianchi ME, Uguccioni M (2012) HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz ES, Christianson JA, Chen X, La JH, Davis BM, Albers KM, Gebhart GF (2011) Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology 140(1283-1291):e1281–e1282

    Google Scholar 

  • Shen X, Li WQ (2015) High-mobility group box 1 protein and its role in severe acute pancreatitis. World J Gastroenterol 21:1424–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibasaki M, Sasaki M, Miura M, Mizukoshi K, Ueno H, Hashimoto S, Tanaka Y, Amaya F (2010) Induction of high mobility group box-1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury. Pain 149:514–521

    Article  CAS  PubMed  Google Scholar 

  • Tanaka J, Seki Y, Ishikura H, Tsubota M, Sekiguchi F, Yamaguchi K, Murai A, Umemura T, Kawabata A (2013) Recombinant human soluble thrombomodulin prevents peripheral HMGB1-dependent hyperalgesia in rats. Br J Pharmacol 170:1233–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka J, Yamaguchi K, Ishikura H, Tsubota M, Sekiguchi F, Seki Y, Tsujiuchi T, Murai A, Umemura T, Kawabata A (2014) Bladder pain relief by HMGB1 neutralization and soluble thrombomodulin in mice with cyclophosphamide-induced cystitis. Neuropharmacology 79:112–118

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H, Xiao X (2007) Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol 81:741–747

    Article  CAS  PubMed  Google Scholar 

  • Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Nishikawa H, Kawabata A (2013) Contribution of TRPA1 as a downstream signal of proteinase-activated receptor-2 to pancreatic pain. J Pharmacol Sci 123:284–287

    Article  CAS  PubMed  Google Scholar 

  • Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Kawabata A (2015) Roles of Cav3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis. J Neurosci Res 93:361–369

  • Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R, Czura CJ, Fink MP, Tracey KJ (2002) Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci U S A 99:12351–12356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venereau E, Schiraldi M, Uguccioni M, Bianchi ME (2013) HMGB1 and leukocyte migration during trauma and sterile inflammation. Mol Immunol 55:76–82

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Li YY, Wang LH, Kang Y, Zhang J, Liu ZQ, Wang K, Kaye AD, Chen L (2015) Tanshinone IIA Attenuates Chronic Pancreatitis-Induced Pain in Rats via Downregulation of HMGB1 and TRL4 Expression in the Spinal Cord. Pain Physician 18:E615–E628

    PubMed  Google Scholar 

  • Watkins LR, Hutchinson MR, Rice KC, Maier SF (2009) The "toll" of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30:581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakawa K, Ogura H, Fujimi S, Morikawa M, Ogawa Y, Mohri T, Nakamori Y, Inoue Y, Kuwagata Y, Tanaka H, Hamasaki T, Shimazu T (2013) Recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: a multicenter propensity score analysis. Intensive Care Med 39:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasoba D, Tsubota M, Domoto R, Sekiguchi F, Nishikawa H, Liu K, Nishibori M, Ishikura H, Yamamoto T, Taga A, Kawabata A (2016) Peripheral HMGB1-induced hyperalgesia in mice: Redox state-dependent distinct roles of RAGE and TLR4. J Pharmacol Sci 130:139–142

    Article  CAS  PubMed  Google Scholar 

  • Yanai H, Ban T, Taniguchi T (2012) High-mobility group box family of proteins: ligand and sensor for innate immunity. Trends Immunol 33:633–640

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, Lu B, Chavan S, Rosas-Ballina M, Al-Abed Y, Akira S, Bierhaus A, Erlandsson-Harris H, Andersson U, Tracey KJ (2010) A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 107:11942–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Lundback P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, Al-Abed Y, Andersson U, Tracey KJ, Antoine DJ (2012) Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med 18:250–259

    Article  PubMed  Google Scholar 

  • Yang F, Sun W, Yang Y, Wang Y, Li CL, Fu H, Wang XL, Yang F, He T, Chen J (2015) SDF1-CXCR4 signaling contributes to persistent pain and hypersensitivity via regulating excitability of primary nociceptive neurons: involvement of ERK-dependent Nav1.8 up-regulation. J Neuroinflammation 12:219

  • Yasuda T, Ueda T, Takeyama Y, Shinzeki M, Sawa H, Nakajima T, Ajiki T, Fujino Y, Suzuki Y, Kuroda Y (2006) Significant increase of serum high-mobility group box chromosomal protein 1 levels in patients with severe acute pancreatitis. Pancreas 33:359–363

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura J, Yamakawa K, Ogura H, Umemura Y, Takahashi H, Morikawa M, Inoue Y, Fujimi S, Tanaka H, Hamasaki T, Shimazu T (2015) Benefit profile of recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: a multicenter propensity score analysis. Crit Care 19:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu JH, Kim H (2014) Oxidative stress and inflammatory signaling in cerulein pancreatitis. World J Gastroenterol 20:17324–17329

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Tang D, Kang R (2015) Oxidative stress-mediated HMGB1 biology. Front Physiol 6:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Zechner D, Sempert K, Genz B, Timm F, Burtin F, Kroemer T, Butschkau A, Kuhla A, Vollmar B (2013) Impact of hyperglycemia and acute pancreatitis on the receptor for advanced glycation endproducts. Int J Clin Exp Pathol 6:2021–2029

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Guo L, Collage RD, Stripay JL, Tsung A, Lee JS, Rosengart MR (2011) Calcium/calmodulin-dependent protein kinase (CaMK) Ialpha mediates the macrophage inflammatory response to sepsis. J Leukoc Biol 90:249–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FF, Morioka N, Harano S, Nakamura Y, Liu K, Nishibori M, Hisaoka-Nakashima K, Nakata Y (2015) Perineural expression of high-mobility group box-1 contributes to long-lasting mechanical hypersensitivity via matrix metalloproteinase-9 upregulation in mice with painful peripheral neuropathy. J Neurochem 136:837–850

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 26460710, and also in part by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2014-2018) (S1411037) and the “Antiaging” Project for Private Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsufumi Kawabata.

Ethics declarations

Conflict of Interests

A. Kawabata has received research grants from Asahi Kasei Pharma Corporation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irie, Y., Tsubota, M., Ishikura, H. et al. Macrophage-derived HMGB1 as a Pain Mediator in the Early Stage of Acute Pancreatitis in Mice: Targeting RAGE and CXCL12/CXCR4 Axis. J Neuroimmune Pharmacol 12, 693–707 (2017). https://doi.org/10.1007/s11481-017-9757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11481-017-9757-2

Keywords