Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Surface Modified Zinc Oxide Nanoparticles as Smart UV Sensors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present paper examines the synthesis of ZnO nanoparticles and their surface modification via the microwave assisted sonochemical method along with its successful application in designing a smart UV sensor. The structure of the prepared samples was investigated using XRD, XPS and its respective crystallinity studies. The photoluminescence spectroscopy identified an increase in the green emission intensity due to surface modification which is attributed to the density of oxygen vacancies. The variation in the dielectric constant and dielectric loss values with surface modification is clearly substantiated. As a case study, it was observed a smart UV sensor fabricated using this surface modified ZnO response and decay time that are 14 s and 16 s, respectively. Also, the possibility of surface modification in tuning the sensing responses has been investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. D. Ponnamma, A. Erturk, H. Parangusan, K. Deshmukh, M.B. Ahamed, and M.A.A. AlMaadeed, Emerg. Mater. 1, 55 (2018).

    Article  Google Scholar 

  2. O.O. Fadiran, N. Girouard, and J.C. Meredith, Emerg. Mater. 1, 95 (2018).

    Article  Google Scholar 

  3. A. Nagraj, D. Govindraj, and M. Rajan, Emerg. Mater. 1, 25 (2018).

    Article  Google Scholar 

  4. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S.K.K. Pasha, M.A.A. AlMaadeed, A.R. Polu, and K. Chidambaram, J. Electron. Mater. 46, 2406 (2017).

    Article  Google Scholar 

  5. K. Basavaiah, M.H. Kahsay, and D. Rama Devi, Emerg. Mater. 1, 121 (2018).

    Article  Google Scholar 

  6. I. Hussain, H.P. Tran, J. Jaksik, J. Moore, N. Islam, and M.J. Uddin, Emerg. Mater. 1, 133 (2018).

    Article  Google Scholar 

  7. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K. Chidambaram, K.K. Sadasivuni, D. Ponnamma, and M.A.A. AlMaadeed, Polym. Plast. Technol. Eng. 55, 1240 (2016).

    Article  Google Scholar 

  8. D. Thomas, A. Thomas, A.E. Tom, K.K. Sadasivuni, D. Ponnamma, S. Goutham, J.J. Cabibihan, and K.V. Rao, Synth. Met. 232, 123 (2017).

    Article  Google Scholar 

  9. M. Guo, P. Diao, and S. Cai, Chin. Chem. Lett. 15, 1113 (2004).

    Google Scholar 

  10. Y. Liu, J. Dong, P.J. Hesketh, and M. Liu, J. Mater. Chem. 15, 2316 (2005).

    Article  Google Scholar 

  11. Q. Zhang, C.S. Dandeneau, X. Zhou, and G. Cao, Adv. Mater. 21, 4087 (2009).

    Article  Google Scholar 

  12. R. Chandramohan, V. Dhanasekaran, and S. Ezhilvizhian, J. Mater. Sci: Mater. Electron. 23, 390 (2012).

    Google Scholar 

  13. H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist, L. Wang, and M. Muhammed, J. Phys. Chem. B 101, 2598 (1997).

    Article  Google Scholar 

  14. Z. Yang, T. Xu, Y. Ito, U. Welp, and W.K. Kwok, J. Phys. Chem. C 113, 20521 (2009).

    Article  Google Scholar 

  15. F. Grasset, N. Saito, D. Li, D. Park, I. Sakaguchi, N. Ohashi, H. Haneda, T. Roisnel, S. Mornet, and E. Duguet, J. Alloys Compound. 360, 298 (2003).

    Article  Google Scholar 

  16. D. Neena, A.H. Shah, K. Deshmukh, H. Ahmad, D.J. Fu, K.K. Kondamareddy, P. Kumar, R.K. Dwivedi, and V. Sing, Eur. Phys. J. D 70, 53 (2016).

    Article  Google Scholar 

  17. S.S. Kumar, P. Venkateswarlu, V.R. Rao, and G.N. Rao, Intern. Nano Lett. 3, 30 (2013).

    Article  Google Scholar 

  18. M.M.N. Yung, P.A. Fougeres, Y.H. Leung, F. Liu, A.B. Djurisic, J.P. Giesy, and K.M.Y. Leung, Sci. Rep. 7, 15909 (2017).

    Article  Google Scholar 

  19. R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng, and J. Ding, Pow. Technol. 189, 426 (2009).

    Article  Google Scholar 

  20. D. Thomas, K.A. Vijayalakshmi, J.J. Mathen, S. Augustine, D. Ponnamma, K.K. Sadasivuni, and J.J. Cabibihan, Polym. Bull. 74, 1 (2017).

    Article  Google Scholar 

  21. S. Lee, H.S. Lee, S.J. Hwang, Y. Shon, W. Kong, D.Y. Kim, and E.K. Kim, Mater. Sci. Eng. B 126, 300 (2006).

    Article  Google Scholar 

  22. R. Sebastian, S. Lacoul, and Y. Strzhemechny, Materials 7, 471 (2014).

    Article  Google Scholar 

  23. K. Deshmukh, S. Sankaran, M.B. Ahamed, K.K. Sadasivuni, S.K.K. Pasha, D. Ponnamma, P.S. Rama Sreekanth, and K. Chidambaram, in The book Spectroscopic Methods for Nanomaterials Characterization, ed. by S. Thomas, R. Thomas, A. Zachariah, R. Mishra (Elsevier Publications, 2017), pp. 237–299.

  24. M.K. Mohanapriya, K. Deshmukh, K. Chidambaram, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. Al-Maadeed, R.R. Deshmukh, and S.K.K. Pasha, J. Mater. Sci. Mater. Electron. 28, 6099 (2017).

    Article  Google Scholar 

  25. K.D. Sathapathy, K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, S.K.K. Pasha, M.A.A. Al-Maadeed, and J. Ahmad, Adv. Mater. Lett. 8, 288 (2017).

    Article  Google Scholar 

  26. J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, Nanotechnology 17, 2567 (2006).

    Article  Google Scholar 

  27. B. Ding, M. Wang, X. Wang, J. Yu, and G. Sun, Mater. Today 13, 16 (2010).

    Article  Google Scholar 

  28. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, and N.C. Greenham, Nano Lett. 8, 1649 (2008).

    Article  Google Scholar 

  29. V. Chivukula, D. Ciplys, M. Shur, and P. Dutta, Appl. Phys. Lett. 96, 233512 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This publication was partially made possible by UREP Grant 23-116-2-041 from Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor Kumar Sadasivuni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, D., Prakash, J., Sadasivuni, K.K. et al. Surface Modified Zinc Oxide Nanoparticles as Smart UV Sensors. J. Electron. Mater. 48, 4726–4732 (2019). https://doi.org/10.1007/s11664-019-07260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07260-0

Keywords