Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Creep-Resistant Ferritic-Martensitic Steels for Power Plant Applications

  • Review
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Creep-resistant ferritic-martensitic steels are essential materials used in power plants for electricity generation. The efficiency and emissions of the plant are closely related to the operating temperature. Materials used in the hottest sections are one of the main limiting factor for plant operation at 650 °C. This review describes the recent development of creep-resistant ferritic-martensitic steels from a large dataset of in-house research. The findings are tied to available literature for discussion. A first steel, CPJ-7, was developed with an operating temperature approaching 650 °C, and a refined design, JMP, showed the potential to operate at 650 °C. Approximately fifty different ingots, each weighing ~ 7 kg, were vacuum induction melted and processed. Overall, wrought and cast versions of CPJ-7 present superior creep properties when compared to wrought and cast versions of COST alloys for steam turbine and P91/92 for boiler applications. The prolonged creep life was attributed to slowing down the process of the destabilization of the MX and M23C6 precipitates at 650 °C. The cast version of CPJ-7 also revealed superior mechanical performance, above commercially available cast 9% Cr martensitic steel or derivatives. Following the work on CPJ-7, the JMP steels were designed with higher Co for increased solid solution strengthening, Si for oxidation resistance and increased W for matrix strength and stability. The JMP steels showed increases in creep life compared to CPJ-7 between 118 and 150% at 650 °C for testing at various stresses between 138 and 207 MPa. On a Larson–Miller plot, the performance of the JMP steels surpasses that of state-of-the-art MARBN steel. The influence of various elements within the composition of the alloys on the microstructure and mechanical properties is discussed. This review presents approximately 420,000 h of in-house creep testing, the equivalent of almost 50 years of cumulative creep tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

References

  1. T.B. Gibbons, Recent Advances in Steels for Coal Fired Power Plant: A Review, Trans. Indian Inst. Met., 2013, 66(5–6), p 631–640. https://doi.org/10.1007/s12666-013-0301-7

    Article  Google Scholar 

  2. R. Viswanathan and W. Bakker, Materials for Ultrasupercritical Coal Power Plants—Boiler Materials: Part 1, J. Mater. Eng. Perform., 2001, 10(1), p 81–95.

    Article  CAS  Google Scholar 

  3. R. Viswanathan and W. Bakker, Materials for Ultrasupercritical Coal Power Plants—Turbine Materials: Part II, J. Mater. Eng. Perform., 2001, 10(1), p 96–101.

    Article  CAS  Google Scholar 

  4. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, U.S. Program on Materials Technology for Ultra-Supercritical Coal Power Plants, J. Mater. Eng. Perform., 2005, 14(3), p 281–292. https://doi.org/10.1361/10599490524039

    Article  CAS  Google Scholar 

  5. International Energy Agency, “World Energy Outlook 2022,” https://www.iea.org/Reports/World-Energy-Outlook-2022/Executive-Summary, 2022

  6. F. Abe, Long-Term Stabilization of Creep-Resistant Ferritic Steels for Highly Efficient Ultra-Supercritical Power Plants, Adv. Sci. Technol., 2010, 72, p 12–21. https://doi.org/10.4028/www.scientific.net/AST.72.12

    Article  CAS  Google Scholar 

  7. J. Shingledecker, R. Purgert, and P. Rawls, Current status of the U.S. DOE/OCDO A-USC materials technology research and development program, in Advances in Materials Technology for Fossil Power plants: Proceedings from the Seventh Internationational Conference, ASM International, (Materials Park, OH, USA, 2014), pp. 41–52

  8. M.C. Hardy, M. Detrois, E.T. McDevitt, C. Argyrakis, V. Saraf, P.D. Jablonski, J.A. Hawk, R.C. Buckingham, H.S. Kitaguchi, and S. Tin, Solving Recent Challenges for Wrought Ni-Base Superalloys, Metall. Mater. Trans. A, 2020, 51(6), p 2626–2650. https://doi.org/10.1007/s11661-020-05773-6

    Article  CAS  Google Scholar 

  9. N. Takahashi and T. Fujita, The Effect of Boron on the Long Period Creep Rupture Strength of the Modified 12% Chromium Heat Resisting Steel, Trans. ISIJ, 1976, 16, p 606–613. https://doi.org/10.2355/tetsutohagane1955.61.9_2263

    Article  Google Scholar 

  10. P. Ernst, Effect of Boron on the Mechanical Properties of Modified 12% Chromium Steels,in ETH Zurich, Swiss Federal Institute of Technology Zurich, (1988), https://doi.org/10.3929/ethz-a-000480876

  11. S.A. David, J.A. Siefert, and Z. Feng, Welding and Weldability of Candidate Ferritic Alloys for Future Advanced Ultrasupercritical Fossil Power Plants, Sci. Technol. Weld. Join., 2013, 18(8), p 631–651. https://doi.org/10.1179/1362171813Y.0000000152

    Article  CAS  Google Scholar 

  12. A. Fedoseeva, N. Dudova, and R. Kaibyshev, Creep Strength Breakdown and Microstructure Evolution in a 3%Co Modified P92 Steel, Mater. Sci. Eng. A, 2016, 654, p 1–12.

    Article  CAS  Google Scholar 

  13. J.P. Sanhueza, D. Rojas, O. Prat, J. García, M.F. Meléndrez, and S. Suarez, Investigation of Ta-MX/Z-Phase and Laves Phase as Precipitation Hardening Particles in a 12 Pct Cr Heat-Resistant Steel, Metall Mater Trans A Phys Metall Mater Sci, 2018, 49(7), p 2951–2962.

    Article  CAS  Google Scholar 

  14. F. Abe, Metallurgy for long-term stabilization of ferritic steels for thick section boiler components in USC power plant, in 8th Liege Conference, (2006), pp. 965–980

  15. A. Kostka, K.G. Tak, R.J. Hellmig, Y. Estrin, and G. Eggeler, On the Contribution of Carbides and Micrograin Boundaries to the Creep Strength of Tempered Martensite Ferritic Steels, Acta Mater., 2007, 55(2), p 539–550.

    Article  CAS  Google Scholar 

  16. C. Bae, R. Kim, J.H. Heo, and J. Kim, Effect of Compositional Changes of Laves Phase Precipitate on Grain Boundary Embrittlement in Long-Term Annealed 9 Pct Cr Ferritic Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(10), p 4595–4603.

    Article  CAS  Google Scholar 

  17. K. Sawada, H. Kushima, and K. Kimura, Z-Phase Formation during Creep and Aging in 9–12% Cr Heat Resistant Steels, ISIJ Int., 2006, 46(5), p 769–775. https://doi.org/10.2355/isijinternational.46.769

    Article  CAS  Google Scholar 

  18. H. Chilukuru, K. Durst, S. Wadekar, M. Schwienheer, A. Scholz, C. Berger, K.H. Mayer, and W. Blum, Coarsening of Precipitates and Degradation of Creep Resistance in Tempered Martensite Steels, Mater. Sci. Eng. A, 2009, 510–511, p 81–87. https://doi.org/10.1016/j.msea.2008.04.088

    Article  CAS  Google Scholar 

  19. F. Abe, Precipitate Design for Creep Strengthening of 9% Cr Tempered Martensitic Steel for Ultra-Supercritical Power Plants, Sci. Technol. Adv. Mater., 2008, 9(1), p 013002.

    Article  Google Scholar 

  20. F. Abe, T.-U. Kern, and R. Viswanathan, Creep-resistant steels, Woodhead Publishing in Materials, Cambridge, 2008.

    Book  Google Scholar 

  21. R.G. Faulkner, J.A. Williams, E.G. Sanchez, and A.W. Marshall, Influence of Co, Cu and W on Microstructure of 9%Cr Steel Weld Metals, Mater. Sci. Technol., 2003, 19(3), p 347–354. https://doi.org/10.1179/026708303225009652

    Article  CAS  Google Scholar 

  22. F.C. Hull, Delta Ferrite and Martensite Formation in Stainless Steels, Weld. J., 1973, 52(5), p 193.

    Google Scholar 

  23. H. He, J. Zhang, L. Yu, Q. Gao, C. Liu, Z. Ma, H. Li, Y. Liu, and H. Wang, Effects of Cu-Rich Phases on Microstructure Evolution and Creep Deformation Behavior of a Novel Martensitic Heat-Resistant Steel G115, Mater. Sci. Eng. A, 2022, 855, p 143937. https://doi.org/10.1016/j.msea.2022.143937

    Article  CAS  Google Scholar 

  24. J.P. Sanhueza, D. Rojas, J. García, M.F. Melendrez, E. Toledo, F.M. Cerda, C.C. Montalba, and A.F. Jaramillo, Effect of Boron in the Coarsening Rate of Chromium-Rich Carbides in 9%–12% Chromium Martensitic Creep-Resistant Steel: Experiment and Modeling at 650°C, Met. Mater. Int., 2020 https://doi.org/10.1007/s12540-020-00676-y

    Article  Google Scholar 

  25. Z. Dong, M. Li, Y. Behnamian, J.-L. Luo, W. Chen, B.S. Amirkhiz, P. Liu, X. Pang, J. Li, W. Zheng, D. Guzonas, and C. Xia, Effects of Si, Mn on the Corrosion Behavior of Ferritic–Martensitic Steels in Supercritical Water (SCW) Environments, Corros. Sci., 2019, 166, p 108432. https://doi.org/10.1016/j.corsci.2020.108432

    Article  CAS  Google Scholar 

  26. X. Jin, S. Chen, and L. Rong, Effects of Mn on the Mechanical Properties and High Temperature Oxidation of 9Cr2WVTa Steel, J. Nucl. Mater., 2017, 494, p 103–113. https://doi.org/10.1016/j.jnucmat.2017.07.024

    Article  CAS  Google Scholar 

  27. M. Schütze, D. Renusch, and M. Schorr, Parameters Determining the Breakaway Oxidation Behaviour of Ferritic Martensitic 9%Cr Steels in Environments Containing H2O, Corros. Eng. Sci. Technol., 2004, 39(2), p 157–166. https://doi.org/10.1179/147842204225016921

    Article  CAS  Google Scholar 

  28. L. Cipolla, H.K. Danielsen, D. Venditti, P.E. Di Nunzio, J. Hald, and M.A.J. Somers, Conversion of MX Nitrides to Z-Phase in a Martensitic 12% Cr Steel, Acta Mater., 2010, 58(2), p 669–679. https://doi.org/10.1016/j.actamat.2009.09.045

    Article  CAS  Google Scholar 

  29. A. Strang and V. Vodarek, Modelling and experimental verification of minor phase composition changes in creep resistant 12%CrMoVNb steels, in 5th International Charles Parsons Turbine Conference: Advanced Materials for 21st Century Turbines and Power Plants, IOM Communication Ltd, (Cambridge, UK, 2000)

  30. F. Kauffmann, K.H. Mayer, S. Straub, G. Zies, C. Scheu, D. Willer, H. Ruoff, and K. Maile, Characterization of the precipitates in modern boron containing 9-12%Cr steels developed in the frame of the cost program,”in 8th Liege Conference on Materials for Advanced Power Engineering, (Liege, Belgium, 2006)

  31. T.-U. Kern, K.H. Mayer, B. Donth, G. Zeiler, and A. DiGianfrancesco, The European efforts in development of new high temperature casting materials, COST 536, ed. by J. Lecomte-Beckers, Q. Contrepois, T. Beck, and B. Kuhr. 9th Liege Conference: Materials for Advanced Power Engineering 2010, (2010) pp. 27–36

  32. D. Jandová, J. Kasl, and E. Chvostová, Microstructure of CB2 Steel before and after Long-Term Creep Tests, Mater. Sci. Forum, 2015, 2014(782), p 311–318.

    Google Scholar 

  33. J. Parker and J. Siefert, Creep Fracture in Tempered Martensitic Steels, Int. J. Petrochem. Sci. Eng., 2018, 3(1), p 1–7. https://doi.org/10.15406/ipcse.2018.03.00068

    Article  Google Scholar 

  34. Y. Gu, G.D. West, R.C. Thomson, and J. Parker, Investigation of creep damage and cavitation mechanisms in P92 steels, in Advances in Materials Technology for Fossil Power Plants—Proceedings from 7th International Conference, (2014), pp. 596–606

  35. T. Hamaguchi, H. Okada, H. Semba, H. Hirata, A. Iseda, and M. Yoshizawa, Development of high strength 9Cr-3W-3Co-Nd-B heat-resistant steel tube and pipe, in Proceedings of the 1st International Conference on Advanced Technology for Sustainable and Reliable Power Engineering (123HiMAT-2015), ASM International, (Sapporo, Japan, 2015), pp. 114–117

  36. M. Mikami, T. Miyata, M. Tabuchi, and F. Abe, Development of 9Cr steels for high temperature steam turbine rotors, in Proceedings of the 8th International Conference on Advances in Materials Technology for Fossil Power Plants (8th EPRI 2016), ASM International, (Algavre, Portugal, 2016), pp. 791–802

  37. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26(2), p 273–312. https://doi.org/10.1016/S0364-5916(02)00037-8

    Article  CAS  Google Scholar 

  38. N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, and J.P. Schillé, Using JMatPro to Model Materials Properties and Behavior, JOM, 2003, 55(12), p 60–65. https://doi.org/10.1007/s11837-003-0013-2

    Article  CAS  Google Scholar 

  39. P.D. Jablonski and J.A. Hawk, Nitrogen Control in VIM Melts, in Proceedings of the 2013 International Symposium on Liquid Metal Processing & Casting, ed. by M.J.M. Krane, A. Jardy, R.L. Williamson, and J.J. Beaman, (Springer International Publishing, Cham, 2013), pp. 315–319

  40. P.D. Jablonski and J.A. Hawk, Homogenizing Advanced Alloys: Thermodynamic and Kinetic Simulations Followed by Experimental Results, J. Mater. Eng. Perform., 2017, 26(1), p 4–13. https://doi.org/10.1007/s11665-016-2451-3

    Article  CAS  Google Scholar 

  41. ASTM International, ASTM E139–11(2018), standard test methods for conducting creep, creep-rupture, and stress-rupture tests of metallic materials, West Conshohocken, PA, 2018.

    Google Scholar 

  42. ASTM International, ASTM E8 / E8M–16a, standard test methods for tension testing of metallic materials, West Conshohocken, PA, 2016.

    Google Scholar 

  43. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat. Methods, 2012, 9(7), p 671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  44. N. Monsegue, W.T. Reynolds, J.A. Hawk, and M. Murayama, How TEM Projection Artifacts Distort Microstructure Measurements: A Case Study in a 9 Pct Cr-Mo-V Steel, Metall. Mater. Trans. A, 2014, 45(9), p 3708–3713. https://doi.org/10.1007/s11661-014-2331-0

    Article  CAS  Google Scholar 

  45. V. Knežević, J. Balun, G. Sauthoff, G. Inden, and A. Schneider, Design of Martensitic/Ferritic Heat-Resistant Steels for Application at 650°C with Supporting Thermodynamic Modelling, Mater. Sci. Eng. A, 2008, 477(1–2), p 334–343. https://doi.org/10.1016/j.msea.2007.05.047

    Article  CAS  Google Scholar 

  46. J.A. Hawk, P.D. Jablonski, and C.J. Cowen, Creep Resistant High Temperature Martensitic Steel, U.S. Patent US9181597B1 (2015)

  47. J.A. Hawk, P.D. Jablonski, and C.J. Cowen, Creep Resistant High Temperature Martensitic Steel, U.S. Patent US9556503B1 (2017)

  48. R. Agamennone, W. Blum, C. Gupta, and J.K. Chakravartty, Evolution of Microstructure and Deformation Resistance in Creep of Tempered Martensitic 9–12%Cr–2%W–5%Co Steels, Acta Mater., 2006, 54(11), p 3003–3014. https://doi.org/10.1016/j.actamat.2006.02.038

    Article  CAS  Google Scholar 

  49. T. Fujita, K. Asakura, and H. Miyake, Effect of Chromium on Creep Heat Rupture Strength and Microstructure of 10Cr-2Mo-V-Nb Resisting Steels, Trans. ISIJ, 1982, 22, p 13–21.

    Article  Google Scholar 

  50. F. Liu, D.H.R. Fors, A. Golpayegani, H.-O. Andrén, and G. Wahnström, Effect of Boron on Carbide Coarsening at 873 K (600°C) in 9 to 12 Pct Chromium Steels, Metall. Mater. Trans. A, 2012, 43(11), p 4053–4062. https://doi.org/10.1007/s11661-012-1205-6

    Article  CAS  Google Scholar 

  51. K. Sakuraya, H. Okada, and F. Abe, BN Type Inclusions Formed in High Cr Ferritic Heat Resistant Steel, Energy Mater., 2006, 1(3), p 158–166. https://doi.org/10.1179/174892406X160624

    Article  CAS  Google Scholar 

  52. L. Li, R. Maclachlan, M.A.E. Jepson, and R. Thomson, Microstructural Evolution of Boron Nitride Particles in Advanced 9Cr Power Plant Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(7), p 3411–3418.

    Article  CAS  Google Scholar 

  53. S.K. Albert, M. Kondo, M. Tabuchi, F. Yin, K. Sawada, and F. Abe, Improving the Creep Properties of 9Cr-3W-3Co-NbV Steels and Their Weld Joints by the Addition of Boron, Metall. Mater. Trans. A, 2005, 36(2), p 333–343. https://doi.org/10.1007/s11661-005-0306-x

    Article  Google Scholar 

  54. H.W. Lee, Y.H. Kim, S.H. Lee, K.H. Lee, J.U. Park, and J.H. Sung, Effect of Boron Contents on Weldability in High Strength Steel, J. Mech. Sci. Technol., 2007, 21(5), p 771–777. https://doi.org/10.1007/BF02916355

    Article  Google Scholar 

  55. A. Pirscher, B. Scarlin, and R. Vanstone, Material development and mechanical integrity analysis for advanced steam turbines, Advances in Materials Technology for Fossil Power Plants: Proceedings from the fifth International Conference, , ASM International, (Marco Island, FL, USA, 2007) pp. 338–352

  56. M. Staubli, W. Bendick, J. Orr, F. Deshayes, and C. Henry, European collaborative evaluation of advanced boiler materials, Materials for advanced power engineering. J. Lecomte-Beckers, F. Schubert, P.J. Ennis Ed., Univeriste de Liege, 1998, p 87–103

    Google Scholar 

  57. NIMS, NIMS Creep Data Sheet No. 48B. https://www.nims.go.jp/

  58. K. Sawada, K. Kimura, and F. Abe, Data Sheets on the Elevated-Temperature Properties of 9Cr–0.5Mo–1.8W–V–Nb Steel Tube for Power Boilers (ASME SA-213/SA-213M Grade T92) and 9Cr–0.5Mo–1.8W–V–Nb Steel Pipe for High Temperature Service (ASME SA-335/SA-335M Grade P92),in NIMS Creep Data Sheet No. 48B Natl. Inst. Mater. Sci., (2018)

  59. M. Murayama, W.T. Reynolds, and N. Monsegue, Alloy modeling and life prediction–microstructure modeling, Blacksburg, VA, 2014.

    Google Scholar 

  60. H.K. Danielsen, Review of Z Phase Precipitation in 9–12 Wt-%Cr Steels, Mater. Sci. Technol., 2016, 32(2), p 126–137. https://doi.org/10.1179/1743284715Y.0000000066

    Article  CAS  Google Scholar 

  61. S. Holdsworth, Creep-Ductility of High Temperature Steels: A Review, Metals, 2019, 9(3), p 1–13.

    Article  Google Scholar 

  62. K. Miki, T. Azuma, and T. Ishiguro, Improvement of Long Term Creep Strength in High Cr Heat Resistant Steel,in 15th International Forgemasters Meeting IFM 2003, (Kobe, Japan, 2003), pp. 269–275

  63. Y. Prawoto, N. Jasmawati, and K. Sumeru, Effect of Prior Austenite Grain Size on the Morphology and Mechanical Properties of Martensite in Medium Carbon Steel, J. Mater. Sci. Technol., 2012, 28(5), p 461–466. https://doi.org/10.1016/S1005-0302(12)60083-8

    Article  CAS  Google Scholar 

  64. J. Hidalgo and M.J. Santofimia, Effect of Prior Austenite Grain Size Refinement by Thermal Cycling on the Microstructural Features of As-Quenched Lath Martensite, Metall. Mater. Trans. A, 2016, 47(11), p 5288–5301. https://doi.org/10.1007/s11661-016-3525-4

    Article  CAS  Google Scholar 

  65. F. Abe, T. Ohba, H. Miyazaki, Y. Toda, and M. Tabuchi, Effect of W-Mo Balance on Long-Term Creep Life of 9Cr Steel, Mater. High Temp., 2019, 36(4), p 314–324. https://doi.org/10.1080/09603409.2018.1555202

    Article  CAS  Google Scholar 

  66. T. Fujita, T. Sato, and N. Takahashi, Effect of Mo and W on Long Term Creep Rupture Strength of 12%Cr Heat-Resisting Steel Containing V, Nb and B, Trans. ISIJ, 1978, 18, p 115–124.

    Article  CAS  Google Scholar 

  67. A. Hizume, Y. Takeda, H. Yokota, Y. Takano, A. Suzuki, S. Kinoshita, M. Koono, and T. Tsuchiyama, The Probability of a New 12%Cr Rotor Steel Applicable for Steam Temperature above 593C, J. Eng. Mater. Technol., 1987, 109, p 319–325.

    Article  CAS  Google Scholar 

  68. F. Abe, Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700°C and above, Engineering, 2015, 1(2), p 211–224. https://doi.org/10.15302/J-ENG-2015031

    Article  CAS  Google Scholar 

  69. T. Hamaguchi, H. Hirata, H. Semba, H. Okada, S. Kurihara, and M. Yoshizawa, “Creep Rupture Strength and Microstructures of SAVE12AD Welded Joints,” (2018).

  70. H.J. Frost and M.F. Ashby, “Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics,” https://defmech.engineering.dartmouth.edu/

  71. H.J. Frost and M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982.

    Google Scholar 

  72. F. Zhang, L.E. Levine, A.J. Allen, C.E. Campbell, E.A. Lass, S. Cheruvathur, M.R. Stoudt, M.E. Williams, and Y. Idell, Homogenization Kinetics of a Nickel-Based Superalloy Produced by Powder Bed Fusion Laser Sintering, Scr. Mater., 2017, 131, p 98–102. https://doi.org/10.1016/j.scriptamat.2016.12.037

    Article  CAS  Google Scholar 

  73. Z. Miao, A. Shan, W. Wang, J. Lu, W. Xu, and H. Song, Quantitative Characterization of Two-Stage Homogenization Treatment of Alloy 718, in 7th International Symposium on Superalloy 718 Derivatives, (2010). pp. 107–115

  74. P.D. Jablonski and J.A. Hawk, Considerations for Homogenizing Alloys, in 8th International Symposium on Superalloy 718 Derivatives, pp. 741–758, (2014). https://doi.org/10.1002/9781119016854.ch65/summary

  75. P.D. Jablonski and C.J. Cowen, Homogenizing a Nickel-Based Superalloy: Thermodynamic and Kinetic Simulation and Experimental Results, Metall. Mater. Trans. B, 2009, 40(2), p 182–186. https://doi.org/10.1007/s11663-009-9227-1

    Article  CAS  Google Scholar 

  76. M. Detrois, P.D. Jablonski, and J.A. Hawk, Evolution of Tantalum Content During Vacuum Induction Melting and Electroslag Remelting of a Novel Martensitic Steel, Metall. Mater. Trans. B, 2019, 50(4), p 1686–1695. https://doi.org/10.1007/s11663-019-01614-z

    Article  CAS  Google Scholar 

  77. C.-B. Shi, J. Li, J.-W. Cho, F. Jiang, and I.-H. Jung, Effect of SiO2 on the Crystallization Behaviors and In-Mold Performance of CaF2-CaO-Al2O3 Slags for Drawing-Ingot-Type Electroslag Remelting, Metall. Mater. Trans. B, 2015, 46(5), p 2110–2120. https://doi.org/10.1007/s11663-015-0402-2

    Article  CAS  Google Scholar 

  78. Y. Dong, Z. Jiang, Y. Cao, A. Yu, and D. Hou, Effect of Slag on Inclusions During Electroslag Remelting Process of Die Steel, Metall. Mater. Trans. B, 2014, 45(4), p 1315–1324. https://doi.org/10.1007/s11663-014-0070-7

    Article  CAS  Google Scholar 

  79. T.R. Bandyopadhyay, P.K. Rao, and N. Prabhu, Behavior of Alloying Elements during Electro-Slag Remelting of Ultrahigh Strength Steel, Metall. Min. Ind., 2012, 4(1), p 6–16.

    Google Scholar 

  80. Z. Jiang, D. Hou, Y. Dong, Y.-L. Cao, H. Cao, and W. Gong, Effect of Slag on Titanium, Silicon, and Aluminum Contents in Superalloy During Electroslag Remelting, Metall. Mater. Trans. B, 2016, 47(2), p 1465–1474. https://doi.org/10.1007/s11663-015-0530-8

    Article  CAS  Google Scholar 

  81. F. Reyes-Carmona and A. Mitchell, Deoxidation of ESR Slags, ISIJ Int., 1992, 32(4), p 529–537.

    Article  CAS  Google Scholar 

  82. K.A. Rozman, Ö.N. Doğan, R. Chinn, P.D. Jablonksi, M. Detrois, and M.C. Gao, Dataset for Machine Learning of Microstructures for 9% Cr Steels, Data Br., 2022, 45, p 108714. https://doi.org/10.1016/j.dib.2022.108714

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in support of the US Department of Energy’s Fossil Energy and Carbon Management Advanced Energy Materials Research Program executed under the Research and Innovation Center Advanced Alloys Development FWP. The authors would like to thank Dr. David Alman for program direction, Mr. Edward Argetsinger and Mr. Joseph Mendenhall for assistance in melting, Dr. Christopher Cowen for contributions to the research, Dr. Chang-Yu Hung and Dr. Stoichko Antonov for TEM on the JMP steels, Dr. Kyle Rozman for fractography and analysis and Mr. Christopher Powell for mechanical testing and data gathering. TEM imaging on the CPJ steels was provided through work funded as part of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract at Virginia Tech, M. Murayama (PI).

Funding

This project was funded by the US Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the US Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Detrois.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 136 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detrois, M., Hawk, J.A. & Jablonski, P.D. Creep-Resistant Ferritic-Martensitic Steels for Power Plant Applications. J. of Materi Eng and Perform 33, 1–42 (2024). https://doi.org/10.1007/s11665-023-08566-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11665-023-08566-1

Keywords