Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Rotenone Induces Cell Death of Cholinergic Neurons in an Organotypic Co-Culture Brain Slice Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In Alzheimer and Parkinson’s disease cell death of cholinergic and dopaminergic neurons are characteristic hallmarks, respectively. It is well established that rotenone, an inhibitor of complex I of the electron transport chain, induces cell death of dopaminergic neurons, however, not much is known on the effects of rotenone on cholinergic neurons. The aim of the present study was to evaluate the effects of rotenone on cholinergic neurons in an organotypic in vitro brain co-slice model. When co-cultures were treated with 10 μM rotenone for 24 h a significantly decreased number of cholinergic neurons was found in the basal nucleus of Meynert but not in the dorsal striatum. This cell death exhibited apoptotic DAPI-positive malformed nuclei and enhanced TUNEL-positive cells. In summary, inhibition of complex I of the electron transport chain may play a role in neurodegeneration of cholinergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403. doi:10.1016/S0140-6736(76)91936-X

    Article  CAS  PubMed  Google Scholar 

  2. Whitehouse PJ, Price DL, Struble RG et al (1982) Alzheimer’s disease and senile dementia: loss of neurons in basal forebrain. Science 215:1237–1239. doi:10.1126/science.7058341

    Article  CAS  PubMed  Google Scholar 

  3. Wilcock GK, Esiri MM, Bowen DM et al (1982) Alzheimer’s disease-correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 57:407–417. doi:10.1016/0022-510X(82)90045-4

    Article  CAS  PubMed  Google Scholar 

  4. Winkler J, Thal LJ, Gage FH et al (1998) Cholinergic strategies for Alzheimer’s disease. J Mol Med 76:555–567. doi:10.1007/s001090050250

    Article  CAS  PubMed  Google Scholar 

  5. Ganten D, Ruckpaul K (2004) Molekularmedizinische Grundlagen von alters-spezifischen Erkrankungen. Springer, Berlin, pp 200–227

    Google Scholar 

  6. Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144. doi:10.1146/annurev.neuro.22.1.123

    Article  CAS  PubMed  Google Scholar 

  7. Zhu X, Raina AK, Lee H et al (2000) Oxidative stress signalling in Alzheimer’s disease. Brain Res 1000:32–39. doi:10.1016/j.brainres.2004.01.012

    Article  Google Scholar 

  8. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147. doi:10.1016/S0891-5849(96)00629-6

    Article  CAS  PubMed  Google Scholar 

  9. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:26–38. doi:10.1002/ana.10483

    Article  Google Scholar 

  10. Zhang Y, Dawson VL, Dawson TM (2000) Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 7:240–250. doi:10.1006/nbdi.2000.0319

    Article  CAS  PubMed  Google Scholar 

  11. Blandini F, Porter RHP, Greenamyre JT (1996) Glutamate and Parkinson’s disease. Mol Neurobiol 12:73–94. doi:10.1007/BF02740748

    Article  CAS  PubMed  Google Scholar 

  12. Masliah E, Alford M, DeTeresa R et al (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40:759–766. doi:10.1002/ana.410400512

    Article  CAS  PubMed  Google Scholar 

  13. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. doi:10.1016/S0896-6273(03)00568-3

    Article  CAS  PubMed  Google Scholar 

  14. Mrak RE, Sheng JG, Griffin WST (1995) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum Pathol 26:816–823. doi:10.1016/0046-8177(95)90001-2

    Article  CAS  PubMed  Google Scholar 

  15. Vila M, Jackson-Lewis V, Guégen C et al (2001) The role of glial cells in Parkinson’s disease. Curr Opin Neurol 14:483–489. doi:10.1097/00019052-200108000-00009

    Article  CAS  PubMed  Google Scholar 

  16. Honig LS, Rosenberg RN (2000) Apoptosis and neurologic disease. Am J Med 108:317–330. doi:10.1016/S0002-9343(00)00291-6

    Article  CAS  PubMed  Google Scholar 

  17. Takadera T, Fujibayashi M, Kaniyu H et al (2007) Caspase-dependent apoptosis induced by thapsigargin was prevented by glycogen synthase kinase-3 inhibitors in cultured rat cortical neurons. Neurochem Res 32:1336–1342. doi:10.1007/s11064-007-9310-4

    Article  CAS  PubMed  Google Scholar 

  18. Höglinger GU, Féger J, Prigent A et al (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502. doi:10.1046/j.1471-4159.2003.01533.x

    Article  PubMed  Google Scholar 

  19. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9:59–64. doi:10.1016/S1353-8020(03)00023-3

    Article  Google Scholar 

  20. Ferrante RJ, Schulz JB, Kowall NW et al (1997) Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res 753:157–162. doi:10.1016/S0006-8993(97)00008-5

    Article  CAS  PubMed  Google Scholar 

  21. Testa CM, Sherer TB, Greenamyre JT (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 134:109–118. doi:10.1016/j.molbrainres.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  22. Betarbet R, Sherer TB, MacKenzie G et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306. doi:10.1038/81834

    Article  CAS  PubMed  Google Scholar 

  23. Weis C, Marksteiner J, Humpel C (2001) Nerve growth factor and glial cell line-derived neurotrophic factor restore the cholinergic phenotype in organotypic brain slices of the basal nucleus of Meynert. Neuroscience 102:129–138. doi:10.1016/S0306-4522(00)00452-8

    Article  CAS  PubMed  Google Scholar 

  24. Humpel C, Weis C (2002) Nerve growth factor and cholinergic CNS neurons studied in organotypic brain slices. J Neural Trans 62:253–263

    CAS  Google Scholar 

  25. Schatz DS, Kaufmann WA, Schuligoi R et al (2000) 3, 4-methylen-edioxymetamphetamine (Ecstasy) induces c-fos-like protein and mRNA in rat organotypic dorsal striatal slices. Synapse 36:75–83. doi:10.1002/(SICI)1098-2396(200004)36:1<75::AID-SYN8>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  26. Ullrich C, Humpel C (2009) The pro-apoptotic substance thapsigargin selectively stimulates re-growth of brain capillaries (submitted)

  27. Schatz DS, Kaufmann WA, Saria A et al (1999) Dopamine neurons in a simple GDNF-treated meso-striatal organotypic co-culture model. Exp Brain Res 127:270–278. doi:10.1007/s002210050796

    Article  CAS  PubMed  Google Scholar 

  28. Zimmer J, Kristensen BW, Jakobsen B et al (2000) Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures. Amino Acids 19:7–21. doi:10.1007/s007260070029

    Article  CAS  PubMed  Google Scholar 

  29. Johnson HA, Buonomano DV (2009) A method for chronic stimulation of cortical organotypic cultures using implanted electrodes. J Neurosci Methods 176:136–143. doi:10.1016/j.jneumeth.2008.08.037

    Article  PubMed  Google Scholar 

  30. Gähwiler BH, Hefti F (1984) Guidance of acetylcholinesterase-containing fibres by target tissue in co-cultured brain slices. Neuroscience 40:235–243

    Google Scholar 

  31. Gähwiler BH, Capogna M, Debanne D et al (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477. doi:10.1016/S0166-2236(97)01122-3

    Article  PubMed  Google Scholar 

  32. Stoppini L, Buch PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182. doi:10.1016/0165-0270(91)90128-M

    Article  CAS  PubMed  Google Scholar 

  33. Buchs PA, Stoppini L, Muller D (1993) Structural modifications associated with synaptic development in area CA1 of rat hippocampal organotypic cultures. Brain Res Dev 71:81–91. doi:10.1016/0165-3806(93)90108-M

    Article  CAS  Google Scholar 

  34. Ostergaard K, Schou JP, Zimmer J (1990) Rat ventral mesencephalon grown as organotypic slice cultures and co-cultured, hippocampus, and cerebellum. Exp Brain Res 82:547–565. doi:10.1007/BF00228796

    Article  CAS  PubMed  Google Scholar 

  35. Ostergaard K (1993) Organotypic slice cultures of rat striatum, I. A histochemical and immunohistochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA. Neuroscience 53:679–693. doi:10.1016/0306-4522(93)90616-N

    Article  CAS  PubMed  Google Scholar 

  36. Gähwiler BH, Tietschin L, Knöpfel T et al (1990) Continuous presence of nerve growth factor is required for maintenance of cholinergic septal neurons in organotypic slice cultures. Neuroscience 36:27–31. doi:10.1016/0306-4522(90)90348-8

    Article  PubMed  Google Scholar 

  37. Robertson RT, Baratta J, Kageyama GH et al (1997) Specificity of attachment and neurite outgrowth of dissociated basal forebrain cholinergic neurons seeded on to organotypic slice cultures of forebrain. Neuroscience 80:741–752. doi:10.1016/S0306-4522(97)00067-5

    Article  CAS  PubMed  Google Scholar 

  38. Humpel C, Johansson M, Marksteiner J et al (1995) Mesencephalic grafts increase preprotachykinin-A mRNA expression in striatal grafts in an in oculo co-graft model. Regul Pept 56:9–17. doi:10.1016/0167-0115(95)00122-R

    Article  CAS  PubMed  Google Scholar 

  39. Zassler B, Dechant G, Humpel C (2005) Urea enhances the nerve growth factor-induced neuroprotective effect on cholinergic neurons in organotypic rat brain slices. Neuroscience 130:317–323. doi:10.1016/j.neuroscience.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  40. Zassler B, Weis C, Humpel C (2003) Tumor necrosis factor-alpha triggers cell death of sensitized potassium chloride-stimulated cholinergic neurons. Brain Res Mol Brain Res 113:78–85. doi:10.1016/S0169-328X(03)00092-5

    Article  CAS  PubMed  Google Scholar 

  41. Björklund A, Lindvall O (1984) Dopamine-containing in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, part I, vol 2. Elsevier, Amsterdam, pp 55–122

    Google Scholar 

  42. Heimer L, Zahm DS, Alheid GF (1995) Basal ganglia. In: Paxinos G (ed) The rat nervous system. Academic Press, New York, pp 579–628

    Google Scholar 

  43. Gao H-M, Hong J-S, Zhang W et al (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790

    CAS  PubMed  Google Scholar 

  44. Keeney PM, Xie J, Capaldi RA et al (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5226–5264. doi:10.1523/JNEUROSCI.0984-06.2006

    Article  Google Scholar 

  45. Borland MK, Trimmer PA, Rubinstein JD et al (2008) Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener 3:21. doi:10.1186/1750-1326-3-21

    Article  PubMed  Google Scholar 

  46. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  Google Scholar 

  47. De Torres C, Munell F, Ferrer I et al (1997) Identification of necrotic cell death by the TUNEL assay in the hypoxic-ischemic neonatal rat brain. Neurosci Lett 230:1–4. doi:10.1016/S0304-3940(97)00445-X

    Article  PubMed  Google Scholar 

  48. Bonsi P, Calabresi P, De Persis C et al (2004) Early ionic and membrane potential changes caused by the pesticide rotenone in striatal cholinergic interneurons. Exp Neurol 185:169–181. doi:10.1016/j.expneurol.2003.09.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Austrian Science Funds (P19122-B05). We thank Ursula Kirzenberger-Winkler for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Humpel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, C., Humpel, C. Rotenone Induces Cell Death of Cholinergic Neurons in an Organotypic Co-Culture Brain Slice Model. Neurochem Res 34, 2147–2153 (2009). https://doi.org/10.1007/s11064-009-0014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11064-009-0014-9

Keywords