Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Salt stress is an increasing problem in agricultural soils in many parts of the world, and salt tolerant cropping systems are in great demand. We investigated the effect of co-inoculation of Galega officinalis with Rhizobium galegae and two plant growth promoting Pseudomonas species on plant growth, nodulation, and N content under salt stress.

Methods

The effect of inoculation with R. galegae sv. officinalis HAMBI 1141 alone and in combination with the root-colonizing Pseudomonas extremorientalis TSAU20 or Pseudomonas trivialis 3Re27 on the growth of G. officinalis exposed to salt stress (50 and 75 mM NaCl) was studied under gnotobiotic and greenhouse conditions.

Results

The growth of goat’s rue was reduced at 50 and 75 mM NaCl both in the gnotobiotic sand system and in low-fertilized potting soil in the greenhouse. Co-inoculation of unstressed and salt-stressed goat’s rue with R. galegae HAMBI 1141 and either P. extremorientalis TSAU20 or P. trivialis 3Re27 significantly improved root and shoot growth and increased nodulation of plant roots in both growth systems compared with plants inoculated with R. galegae alone. The nitrogen content of co-inoculated plant roots was significantly increased at 75 mM NaCl in potting soil. Co-inoculation of G. officinalis with either of the two plant growth promoting (PGPR) Pseudomonas strains also improved root tip-colonization by R. galegae cells.

Conclusions

The co-inoculation of goat’s rue with Rhizobium and PGPR Pseudomonas strains alleviated salt stress of plants grown in NaCl-amended gnotobiotic sand systems and in potting soil in the greenhouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afzal I, Basra SH, Iqbal A (2005) The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1(1):6–14

    Google Scholar 

  • Al Sherif EA (2009) Melilotus indicus (L.) A salt tolerant wild leguminous herb with high potential for use as a forage crop in salt-affected soils. Flora 204:737–246

    Article  Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Atanasov AT (1994) Effect of the water extract of Galega officinalis L. on human platelet aggregation in vitro. Phytother Res 8:314–316

    Article  Google Scholar 

  • Atanasov AT, Spasov V (2000) Inhibiting and disaggregating effect of gel-filtered Galega officinalis L. herbal extract on platelet aggregation. J Ethnopharmacol 69(3):235–240

    Article  PubMed  CAS  Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46:324–328

    Article  PubMed  CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J (2005) Comparison of endophytic and ectophytic potato-associated bacterial communities and their antagonistic activity against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Beringer JB (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    Article  PubMed  CAS  Google Scholar 

  • Bouhmouch I, Souad-Mouhsine B, Brhada F, Aurag J (2005) Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. J Plant Physiol 162:1103–1113

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    Article  CAS  Google Scholar 

  • ChampavierY ADP, Chulia AJ, Kaouadji M (2000) Acetylated and non-acetylated flavonol triglycosides from Galega officinalis. Chem Pharmacol Bull 48:281–282

    Article  Google Scholar 

  • Debez A, Chaibi W, Bouzid S (2001) Effect du NaCl et de regulatoeurs de croissance sur la germination d’Atriplex halimus L. Cahiers Agric 10:135–138

    Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Phys Plant 31:861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34:751–756

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fert Soils 45:563–571

    Article  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen L (2010a) Root colonising Pseudomonas spp. improve growth and symbiosis performance of fodder galega (Galega orientalis Lam) grown in potting soil. Eur J Soil Biol 46(3–4):269–272

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2010b) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fert Soils 47:197–205

    Article  Google Scholar 

  • Elsheikh EAE, Wood M (1990) Effect of salinity on growth, nodulation and nitrogen yield of chickpea (Cicer arietinum L.). J Exp Bot 41:1263–1269

    Article  CAS  Google Scholar 

  • Fairey NA, Lefkovitch LP, Coulman BE, Fairey DT, Kunelius T, McKenzie DB, Michaud R, Thomas WG (2000) Cross-Canada comparison of the productivity of fodder galega (Galega orientalis Lam.) with traditional herbage legumes. Can J Plant Sci 80(4):793–800

    Article  Google Scholar 

  • FAO (2002a) Crops and drops: making the best use of water for agriculture. FAO, Rome. Available from http://www.fao.org/docrep/w5146e/w5146e0a.htm

  • FAO (2002b) Agricultural drainage water management in arid and semi-arid areas. Annex 1. Crop salt tolerance data. FAO, Rome. Available from http://www.fao.org/docrep/005/y4263e/y4263e0e.htm

  • FAO (2005) Salt-affected soils from sea water intrusion: strategies for rehabilitation and management. Report of the regional workshop, Bangkok, Thailand, p 62

    Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbrof EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29:1233–1239

    Article  CAS  Google Scholar 

  • Gonzalez-Andres F, Redondo PA, Pescador R, Urbano B (2004) Management of Galega officinalis L. and preliminary results on its potential for milk production improvement in sheep. New Zealand J Agr Res 47:233–245

    Article  Google Scholar 

  • Gul B, Khan MA, Weber DJ (2000) Alleviation salinity and dark-enforced dormancy in Allenrolfea occidentalis seeds under various thermoperiods. Aust J Bot 48:745–752

    Article  Google Scholar 

  • Gulash M, Ames P, Larosiliere RC, Bergman K (1984) Rhizobia are attracted to localized sites on legume roots. Appl Env Microb 48:149–152

    CAS  Google Scholar 

  • Hasnain S, Sabri AN (1996) Growth stimulation of Triticum aestivum seedlings under CR-stress by non-rhizospheric Pseudomonas strains. In: Proceeding book of 7th International symposium on nitrogen fixation with non-legumes. Faisalabad, Pakistan, p 36

  • Jackson M (1997) Hormones from roots as signals for the shoots of stressed plants. Elsevier Trends J 2:22–28

    Google Scholar 

  • Kaksonen AH, Jussila IMM, Lindström K, Suominen L (2006) Rhizosphere effect of Galega orientalis in oil-contaminated soil. Soil Biol Biochem 38:817–827

    Article  CAS  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2001) Seed germination characteristics of Halogeton glomeratus. Can J Bot 79:1189–1194

    Article  Google Scholar 

  • Khan MA, Gul B, Weber D (2004) Action of plant growth regulators and salinity on seed germination of Ceratoides lanata. Can J Bot 82:37–42

    Article  CAS  Google Scholar 

  • Lauter DJ, Munns DN, Clarkin KL (1981) Salt response of chickpeas influenced by N supply. Agron J 73:961–966

    Article  CAS  Google Scholar 

  • Leporatti ML, Ivancheva S (2003) Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J Ethnopharm 87:123–142

    Article  Google Scholar 

  • Lindström K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367

    Article  Google Scholar 

  • Lindström K, Lipsanen P, Kaijalainen S (1990) Stability of markers used for identification of two Rhizobium galegae inoculant strains after five years in the field. Appl Env Microbiol 56:444–450

    Google Scholar 

  • Lipsanen P, Lindström K (1988) Infection and root nodule structure in the Rhizobium galegae sp. nov.—Galega sp. symbiosis. Symbiosis 6:81–96

    Google Scholar 

  • Marcar NE, Dart P, Sweeney C (1991) Effect of root zone salinity on growth and chemical composition of Acacia ampliceps BR, Maslin A., auriculiformis A. Cunn ex Benth, and A. mangium Wild, at two nitrogen levels. New Phytol 119:567–573

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Botany 60(6):1729–1742

    Article  CAS  Google Scholar 

  • Nommsalu H (1994) The nutritive value of fodder galega (Galega orientalis Lam.). Nommsalu, H. (ed.) Fodder galega (Galega orientalis Lam.) research in Estonia. The Estonian Research Institute, Saku, pp 25–31

  • Nommsalu H, Meripold H (1996) Forage production quality and seed yield of fodder galega (Galega orientalis Lam.). In: Parente G, Frame J, Orsi S (eds) Grassland and land use systems. Proceedings of the 16th General Meeting of the European Grassland Federation, Grado, Italy, vol. l, pp. 541–544

  • Patricic J, Kalodera J (1982) Galegin in the goat’s rue herb: its toxicity, antidiabetic activity and content determination. Acta Pharm Jugosl 32:219–223

    Google Scholar 

  • Patterson DT (1992) Effect of temperature and photoperiod on growth and reproductive development of goat’s rue. J Range Manag 45(5):449–453

    Article  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Näsholm T, Schmidt S, Lonhienne TGA (2010) Tuning the table: plants consume microbes as source of nutrients. PLoS One 5(7):e11915

    Article  PubMed  Google Scholar 

  • Plazinski J, Rolfe BG (1985) AzospirillumRhizobium interaction leading to a plant growth stimulation without nodule formation. Can J Microbiol 31:1026–1030

    Article  CAS  Google Scholar 

  • Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microbiol Ecol 62:435–445

    Article  Google Scholar 

  • Pundarikakshudu K, Patel JK, Bodar MS, Deans SG (2001) Anti-bacterial activity of Galega officinalis L. (Goat’s rue). J Ethnophar 77:111–112

    Article  CAS  Google Scholar 

  • Rabie GH, Aboul-Nasr MB, Al-Humiany A (2005) Increase salinity tolerance of cowpea plants by dual inoculation of AM fungus Glomus clarum and nitrogen-fixer Azospirillum brasilense. Mycobiol 33(1):51–61

    Article  CAS  Google Scholar 

  • Radeva G, Jürgens G, Niemi M, Nick G, Suominen L, Lindström K (2001) Description of two biovars in the Rhizobium galegae species: biovar orientalis and biovar officinalis. Syst Appl Microbiol 24:192–205

    Article  PubMed  CAS  Google Scholar 

  • Räsänen LA, Saijets S, Jokinen K, Lindström K (2003) Evaluation of the roles of two compatible solutes, glycine betaine and trehalose, for the Acacia senegalSinorhizobium symbiosis exposed to drought stress. Plant Soil 260:237–251

    Article  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Gutierrez RT, El-Howeitym M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Robledo M, Jiménez-Zurdo JI, Velázquez E, Trujillo ME, Zurdo-Piñeiro JL, Ramirez-Bahena MH, Ramos B, Díaz-Mínquez JM, Dazzo F, Martínez-Molina E, Mateos PF (2008) Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. PNAS 105:7064–7069

    Article  PubMed  CAS  Google Scholar 

  • Rogers ME, Noble CL, Nicolas ME, Halloran GM (1993) Variation in yield potential and salt tolerance of selected cultivars and natural populations of Trifolium repens L. Aust J Agric Res 44:785–798

    Google Scholar 

  • Rogers ME, Craig AD, Munns R, Colmer TD, Nichols PGH, Malcolm CV, Barrett-Lennard EG, Brown AJ, Semple WS, Evans PM, Cowley K, Hughes SJ, Snowball R, Bennett SJ, Sweeney GC, Dear BS, Ewing MA (2005) The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Aust J Exp Agr 45:301–329

    Article  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg B (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607

    Article  PubMed  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156:353–358

    Article  PubMed  CAS  Google Scholar 

  • Singleton PW, Bohlool BB (1984) Effect of salinity on nodule formation by soybean. Plant Physiol 74:72–76

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic-acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Suominen L, Jussila MM, Mäkeläinen K, Romantschuk M, Lindström K (2000) Evaluation of the GalegaRhizobium galegae system for the bioremediation of oil-contaminated soil. Environ Pollut 107:239–44

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones roles for auxin and gibberellins. Critical Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Tilak KVB, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Europ J Soil Sci 57:67–71

    Article  CAS  Google Scholar 

  • Uncini Manganelli RE, Camangi F, Tomei PE (2001) Curing animals with plants: traditional usage in Tuscany (Italy). J Ethnopharm 78:171–191

    Article  CAS  Google Scholar 

  • Varis E (1986) Goat’s rue (Galega orientalis Lam.), a potential pasture legume for temperate conditions. J Agricul Sci Finland 58:83–101

    CAS  Google Scholar 

  • Velagaleti RR, Marsh S (1989) Influence of host cultivars and Bradyrhizobium strains on the growth and symbiotic performance of soybean under salt stress. Plant Soil 119:133–138

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell, Oxford, p 83

    Google Scholar 

  • Yang J, Kloepper J, Ryu C (2008) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  PubMed  Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plants under salt stress. Ann Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Yousef AN, Sprent JI (1988) Effects of NaCl on growth, nitrogen incorporation and chemical composition of inoculated and NH4NO3 fertilized Vicia faba (L.) plants. J Exp Bot 34:941–950

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  • Zahran HH, Sprent JI (1986) Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167:303–309

    Article  CAS  Google Scholar 

  • Zholkevich VN, Pustovoytova TN (1993) The role of Cucumis sativum L leaves and content of phytohormones under soil drought. Russ J Plant Physiol 40:676–680

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the UNESCO-L”OREAL Fellowship for “Women in Science” and the Academy of Finland. We thank Li Li (University of Helsinki) for technical assistance in the greenhouse and Marjut Wallner (University of Helsinki) for the analysis of the plant nitrogen content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egamberdieva, D., Berg, G., Lindström, K. et al. Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas . Plant Soil 369, 453–465 (2013). https://doi.org/10.1007/s11104-013-1586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11104-013-1586-3

Keywords

Profiles

  1. Dilfuza Egamberdieva