Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3′-hydroxylase (CrtZ) and β,β-carotenoid 4,4′-ketolase (4,4′-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8 %) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2 % of total carotenoids), astaxanthin monoester (18.2 %), and the free forms of astaxanthin (10.0 %) and the other ketocarotenoids (17.5 %), which indicated that artificial ketocarotenoids corresponded to 94.9 % of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8 %) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ando S, Osada K, Hatano M, Saneyoshi M (1989) Comparison of carotenoids in muscle and ovary from four genera of salmonoid fishes. Comp Biochem Physiol 93B:503–508

    CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhäuser Verlag, Basel

    Book  Google Scholar 

  • Choi SK, Nishida Y, Matsuda S, Adachi K, Kasai H, Peng X, Komemushi S, Miki W, Misawa N (2005) Characterization of β-carotene ketolases, CrtW, from marine bacteria by complementation analysis in Escherichia coli. Mar Biotechnol 7:515–522

    Article  CAS  PubMed  Google Scholar 

  • Choi SK, Matsuda S, Hoshino T, Peng X, Misawa N (2006) Characterization of bacterial β-carotene 3,3′-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli. Appl Microbiol Biotechnol 72:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Farré G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu C, Christou P (2010) Travel advice on the road to carotenoids in plants. Plant Sci 179:28–48

    Article  Google Scholar 

  • Fraser PD, Enfissi EMA, Bramley PM (2009) Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch Biochem Biophys 483:196–204

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key-enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332

    Article  CAS  PubMed  Google Scholar 

  • Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57:3639–3645

    Article  CAS  PubMed  Google Scholar 

  • Gloor A, Simon W (2007) Astaxanthin esters. United States Patent US 7,253,297 B2

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  • Hasunuma T, Miyazawa SI, Yoshimura S, Shinzaki Y, Tomizawa KI, Shindo K, Choi SK, Misawa N, Miyake C (2008) Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J 55:857–868

    Article  CAS  PubMed  Google Scholar 

  • Hirayama O, Nakamura K, Hamada S, Kobayashi Y (1994) Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids 29:149–150

    Article  CAS  PubMed  Google Scholar 

  • Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

    Article  CAS  PubMed  Google Scholar 

  • Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa KI (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kidd PM (2011) Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 16:355–364

    PubMed  Google Scholar 

  • Kobayashi M, Sakamoto Y (1999) Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol Lett 21:265–269

    Article  CAS  Google Scholar 

  • Krinsky NI, Landrum JT, Bone RA (2003) Biological mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201

    Article  CAS  PubMed  Google Scholar 

  • Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:1374–1393

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332:392–397

    Article  CAS  PubMed  Google Scholar 

  • Maoka T, Etoh T, Kishimoto S, Sakata S (2011) Carotenoids and their fatty acid esters in the petals of Adonis aestivalis. J Oleo Sci 60:47–52

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Kasai H, Choi SK, Ramasamy AK, Inomata Y, Misawa N (2007) Structure of a complete carotenoid biosynthesis gene cluster of marine bacterium Paracoccus sp. strain N81106. Carotenoid Sci 11:50–55

    Google Scholar 

  • Matsuno T, Katsuyama M, Nagata S (1980) Comparative biochemical studies of carotenoids in fishes-XIX Carotenoids of chum salmon, coho salmon, biwa trout, red-spotted masu salmon, masu salmon, kokanee. Bull Jpn Soc Sci Fish 46:879–884

    Article  CAS  Google Scholar 

  • Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146

    Article  CAS  Google Scholar 

  • Milborrow BV (2001) The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. J Exp Bot 52:1145–1164

    Article  CAS  PubMed  Google Scholar 

  • Misawa N (2009) Pathway engineering of plants toward astaxanthin production. Plant Biotechnol 26:93–99

    Article  CAS  Google Scholar 

  • Morris WL, Ducreux LJ, Fraser PD, Millam S, Taylor MA (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253–263

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K, Sawabe A, Komemushi S, Miki W, Misawa N (2005) Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-β-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 71:4286–4296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishino H, Murakoshi M, Ii T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Wada S, Masuda M, Ohsaka Y, Yogosawa S, Satomi Y, Jinno K (2002) Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 21:257–264

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Ishikura M, Maoka T (2009) Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits. Biosci Biotechnol Biochem 73:1928–1932

    Article  CAS  PubMed  Google Scholar 

  • Rogalski M, Carrer H (2011) Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnol J 9:554–564

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schiedt K, Liaaen-Jensen S (1995) Isolation and analysis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A. Birkhäuser, Basel, pp 81–108

    Google Scholar 

  • Schiedt K, Bischof S, Glinz E (1995) Example 5: fish isolation of astaxanthin and its metabolites from skin of Atlantic salmon (Salmo salar). In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A. Birkhäuser, Basel, pp 243–252

    Google Scholar 

  • Shindo K, Hasunuma T, Asagi E, Sano A, Hotta E, Minemura N, Miyake C, Maoka T, Misawa N (2008) 4-Ketoantheraxanthin, a novel carotenoid produced by the combination of the bacterial enzyme β-carotene ketolase CrtW and endogeneous carotenoid biosynthetic enzymes in higher plants. Tetrahedron Lett 49:3294–3296

    Article  CAS  Google Scholar 

  • Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Yano M (2012) High serum carotenoids associated with lower risk for bone loss and osteoporosis in post-menopausal Japanese female subjects: prospective cohort study. PLoS ONE 7:e52643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talegawkar SA, Johnson EJ, Carithers TC, Taylor HA Jr, Bogle ML, Tucker KL (2008) Carotenoid intakes, assessed by food-frequency questionnaires (FFQs), are associated with serum carotenoid concentrations in the Jackson Heart Study: validation of the Jackson Heart Study Delta NIRI Adult FFQs. Public Health Nutr 11:989–997

    Article  PubMed Central  PubMed  Google Scholar 

  • Tatsuzawa H, Maruyama T, Misawa N, Fujimori K, Nakano M (2000) Quenching of singlet oxygen by carotenoids produced in Escherichia coli-attenuation of singlet oxygen-mediated bacterial killing by carotenoids. FEBS Lett 484:280–284

    Article  CAS  PubMed  Google Scholar 

  • Wolf AM, Asoh S, Hiranuma H, Ohsawa I, Iio K, Satou A, Ishikura M, Ohta S (2010) Astaxanthin protects mitochondrial redox state and functional integrity against oxidative stress. J Nutr Biochem 21:381–389

    Article  CAS  PubMed  Google Scholar 

  • Yamashita E (2006) The effects of a dietary supplement containing astaxanthin on skin condition. Carotenoid Sci 10:91–95

    Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J, Sandamnn G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd., since this work was initially performed there under support from the New Energy and Industrial Technology Development Organization (NEDO). We thank Dr. Tomohisa Hasunuma for the gift of the pLD7–rrnP–crtZ–crtW plasmid. The authors also thank Mss Miyuki Murakami, Megumi Hashida, and Kazuko Arai for their assistance in experiments on plant transformation and cultivation. We also thank Mss Kumiko Ito and Nami Fukuo, Nihon Women’s University, for their in vitro antioxidative experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiko Misawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, H., Maoka, T., Osawa, A. et al. Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res 23, 303–315 (2014). https://doi.org/10.1007/s11248-013-9750-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11248-013-9750-3

Keywords

Profiles

  1. Norihiko Misawa