Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

A Hydrostatic Laser Surface Textured Gas Seal

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A theoretical model is developed to study the effect of partial laser surface texturing (LST) on a hydrostatic gas seal. The partial LST provides a mechanism for hydrostatic pressure build up in the sealing dam similar to that of a radial step. The surface texturing parameters are numerically optimized to obtain maximum efficiency in terms of the ratio of load carrying capacity over gas leakage. The performance of the optimum partial LST seal compares favorably with that of a radial step seal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

b :

LST length

c :

nominal clearance

d i :

internal seal diameter

d o :

external seal diameter

d p :

textured diameter

E :

efficiency parameter, \(E=\Delta P_{{\rm av}} /Q\)

h :

local film thickness

h max :

maximum film thickness

h eq :

equivalent film thickness

h p :

dimple maximum depth

h pl :

dimple local depth

H :

dimensionless film thickness, H=h/c

l :

dimples column length

p :

local pressure

p a :

ambient pressure

p o :

sealed pressure

P :

dimensionless pressure, P=p/p a

q * x :

leakage in x direction

q x :

leakage per unit length

Q :

dimensionless leakage, \(Q=q_{\rm x} \left/\left( \frac{c^{3}\rho_{\rm a} p_{\rm a}}{12\mu l} \right)\right.\)

r :

imaginary cell half length

R :

imaginary cell dimensionless half length, R=r/l

S p :

area density

W :

dimensionless load carrying capacity

x, z :

Cartesian coordinates

x l , z l :

local Cartesian coordinates

X, Z :

dimensionless coordinates, X=x / l, Z=z / l

α clearance ratio,:

α =h max/c

δ:

dimensionless dimple diameter, δ=2r p/c

ɛ:

dimensionless dimple depth, ɛ =h p/c

γ:

texture portion or step location

μ:

dynamic viscosity

ρa :

density at ambient pressure

av:

average

LST:

laser surface texturing

ps:

parallel surfaces

References

  1. Hamilton D.B., Walowit J.A., Allen C.M. (1966). J. Basic Eng., Trans. ASME 88: 177

    Google Scholar 

  2. Anno J.N., Walowit J.A., Allen C.M. (1968). J. Lubr. Technol., Trans ASME 90: 351

    Google Scholar 

  3. Anno J.N., Walowit J.A., Allen C.M. (1969). J. Lubr. Technol., Trans ASME 91: 726

    Google Scholar 

  4. Wang X., Kato K., Adachi K., Aizawa K. (2002). Tribol. Int. 36: 189

    Article  Google Scholar 

  5. Wang X., Kato K. (2002). Tribol. Lett. 14: 275

    Article  CAS  Google Scholar 

  6. So H., Chen C. (2004). Tribol. Lett. 17: 513

    Article  Google Scholar 

  7. So H., Chen C. (2005). Tribol. Lett. 19: 83

    Article  Google Scholar 

  8. Etsion I., Burstein L. (1996). Tribol. Trans. 39: 677

    Article  CAS  Google Scholar 

  9. Etsion I., Kligerman Y., Halperin G. (1999). Tribol. Trans. 42: 511

    Article  CAS  Google Scholar 

  10. I. Etsion, Proceedings of the 17th International Pump Users Symposium (2000) 17

  11. Yu X.Q., He S., Cai R.L. (2002). J. Mater. Process. Technol. 129: 463

    Article  Google Scholar 

  12. A. Hoppermann and M. Kordt, O+P “Oelhydraulik und Pneumatik” 46 (2002) Vereinigte Fachverlage Mainz, ISSN 0341-2660

  13. Etsion I., Halperin G. (2002). Tribol. Trans. 45: 430

    Article  CAS  Google Scholar 

  14. Pride S., Folkert K., Guichelaar P., Etsion I. (2002). J. Lubr. Eng. 58: 16

    CAS  Google Scholar 

  15. Brizmer V., Kligerman Y., Etsion I. (2003). Tribol. Trans. 46: 397

    Article  CAS  Google Scholar 

  16. Etsion I., Halperin G., Brizmer V., Kligerman Y. (2004). Tribol. Lett. 17: 295

    Article  Google Scholar 

  17. Kligerman Y., Etsion I., Shinkarenko A. (2005). J. Tribol., Trans. ASME 127: 632

    Article  Google Scholar 

  18. G. Ryk, Y. Kligerman, I. Etsion and A. Shinkarenko, Tribol. Trans. 48 (2005) 583

    Google Scholar 

  19. Kligerman Y., Etsion I. (2001). Tribol. Trans. 44: 472.

    Article  CAS  Google Scholar 

  20. McNikel A., Etsion I. (2004). J. Tribol., Trans. ASME 126: 788

    Article  Google Scholar 

  21. Y. Feldman, Y. Kligerman, I. Etsion and S. Haber, J. Tribol., Trans. ASME 128 (2006) 345.

    Google Scholar 

  22. Etsion I. (1976). J. Fluids Eng., Trans. ASME 98: 494

    Google Scholar 

  23. Etsion I. (2005). J. Tribol., Trans. ASME 127: 248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kligerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, Y., Kligerman, Y. & Etsion, I. A Hydrostatic Laser Surface Textured Gas Seal. Tribol Lett 22, 21–28 (2006). https://doi.org/10.1007/s11249-006-9066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-006-9066-z

Keywords