Abstract
A theoretical model is developed to study the effect of partial laser surface texturing (LST) on a hydrostatic gas seal. The partial LST provides a mechanism for hydrostatic pressure build up in the sealing dam similar to that of a radial step. The surface texturing parameters are numerically optimized to obtain maximum efficiency in terms of the ratio of load carrying capacity over gas leakage. The performance of the optimum partial LST seal compares favorably with that of a radial step seal.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- b :
-
LST length
- c :
-
nominal clearance
- d i :
-
internal seal diameter
- d o :
-
external seal diameter
- d p :
-
textured diameter
- E :
-
efficiency parameter, \(E=\Delta P_{{\rm av}} /Q\)
- h :
-
local film thickness
- h max :
-
maximum film thickness
- h eq :
-
equivalent film thickness
- h p :
-
dimple maximum depth
- h pl :
-
dimple local depth
- H :
-
dimensionless film thickness, H=h/c
- l :
-
dimples column length
- p :
-
local pressure
- p a :
-
ambient pressure
- p o :
-
sealed pressure
- P :
-
dimensionless pressure, P=p/p a
- q * x :
-
leakage in x direction
- q x :
-
leakage per unit length
- Q :
-
dimensionless leakage, \(Q=q_{\rm x} \left/\left( \frac{c^{3}\rho_{\rm a} p_{\rm a}}{12\mu l} \right)\right.\)
- r :
-
imaginary cell half length
- R :
-
imaginary cell dimensionless half length, R=r/l
- S p :
-
area density
- W :
-
dimensionless load carrying capacity
- x, z :
-
Cartesian coordinates
- x l , z l :
-
local Cartesian coordinates
- X, Z :
-
dimensionless coordinates, X=x / l, Z=z / l
- α clearance ratio,:
-
α =h max/c
- δ:
-
dimensionless dimple diameter, δ=2r p/c
- ɛ:
-
dimensionless dimple depth, ɛ =h p/c
- γ:
-
texture portion or step location
- μ:
-
dynamic viscosity
- ρa :
-
density at ambient pressure
- av:
-
average
- LST:
-
laser surface texturing
- ps:
-
parallel surfaces
References
Hamilton D.B., Walowit J.A., Allen C.M. (1966). J. Basic Eng., Trans. ASME 88: 177
Anno J.N., Walowit J.A., Allen C.M. (1968). J. Lubr. Technol., Trans ASME 90: 351
Anno J.N., Walowit J.A., Allen C.M. (1969). J. Lubr. Technol., Trans ASME 91: 726
Wang X., Kato K., Adachi K., Aizawa K. (2002). Tribol. Int. 36: 189
Wang X., Kato K. (2002). Tribol. Lett. 14: 275
So H., Chen C. (2004). Tribol. Lett. 17: 513
So H., Chen C. (2005). Tribol. Lett. 19: 83
Etsion I., Burstein L. (1996). Tribol. Trans. 39: 677
Etsion I., Kligerman Y., Halperin G. (1999). Tribol. Trans. 42: 511
I. Etsion, Proceedings of the 17th International Pump Users Symposium (2000) 17
Yu X.Q., He S., Cai R.L. (2002). J. Mater. Process. Technol. 129: 463
A. Hoppermann and M. Kordt, O+P “Oelhydraulik und Pneumatik” 46 (2002) Vereinigte Fachverlage Mainz, ISSN 0341-2660
Etsion I., Halperin G. (2002). Tribol. Trans. 45: 430
Pride S., Folkert K., Guichelaar P., Etsion I. (2002). J. Lubr. Eng. 58: 16
Brizmer V., Kligerman Y., Etsion I. (2003). Tribol. Trans. 46: 397
Etsion I., Halperin G., Brizmer V., Kligerman Y. (2004). Tribol. Lett. 17: 295
Kligerman Y., Etsion I., Shinkarenko A. (2005). J. Tribol., Trans. ASME 127: 632
G. Ryk, Y. Kligerman, I. Etsion and A. Shinkarenko, Tribol. Trans. 48 (2005) 583
Kligerman Y., Etsion I. (2001). Tribol. Trans. 44: 472.
McNikel A., Etsion I. (2004). J. Tribol., Trans. ASME 126: 788
Y. Feldman, Y. Kligerman, I. Etsion and S. Haber, J. Tribol., Trans. ASME 128 (2006) 345.
Etsion I. (1976). J. Fluids Eng., Trans. ASME 98: 494
Etsion I. (2005). J. Tribol., Trans. ASME 127: 248
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Feldman, Y., Kligerman, Y. & Etsion, I. A Hydrostatic Laser Surface Textured Gas Seal. Tribol Lett 22, 21–28 (2006). https://doi.org/10.1007/s11249-006-9066-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11249-006-9066-z