Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Carbonic anhydrase (CA) is an essential metalloenzyme in living systems for accelerating the hydration and dehydration of carbon dioxide. CA-catalyzed reactions can be applied in vitro for capturing industrially emitted gaseous carbon dioxide in aqueous solutions. To facilitate this type of practical application, the immobilization of CA on or inside solid or soft support materials is of great importance because the immobilization of enzymes in general offers the opportunity for enzyme recycling or long-term use in bioreactors. Moreover, the thermal/storage stability and reactivity of immobilized CA can be modulated through the physicochemical nature and structural characteristics of the support material used. This review focuses on (i) immobilization methods which have been applied so far, (ii) some of the characteristic features of immobilized forms of CA, and (iii) biotechnological applications of immobilized CA. The applications described not only include the CA-assisted capturing and sequestration of carbon dioxide, but also the CA-supported bioelectrochemical conversion of CO2 into organic molecules, and the detection of clinically important CA inhibitors. Furthermore, immobilized CA can be used in biomimetic materials synthesis involving cascade reactions, e.g. for bone regeneration based on calcium carbonate formation from urea with two consecutive reactions catalyzed by urease and CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addo PK, Arechederra RL, Waheed A, Shoemaker JD, Sly WS, Minteer SD (2011) Methanol production via bioelectrocatalytic reduction of carbon dioxide: role of carbonic anhydrase in improving electrode performance. Electrochem Solid-State Lett 14:E9–E13

    CAS  Google Scholar 

  • Annesini MC, Di Giorgio L, Di Marzio L, Finazzi-Agrò A, Serafino AL, Mossa G (1993) Carbon dioxide hydration with liposomes entrapping carbonic anhydrase. J Liposome Res 3:639–648

    CAS  Google Scholar 

  • Arazawa DT, Kimmel JD, Finn MC, Federspiel WJ (2015) Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood. Acta Biomater 25:143–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assarsson A, Pastoriza-Santos I, Cabaleiro-Lago C (2014) Inactivation and adsorption of human carbonic anhydrase II by nanoparticles. Langmuir 30:9448–9456

    CAS  PubMed  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanism in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    CAS  PubMed  Google Scholar 

  • Badjić JD, Kostić NM (1999) Effects of encapsulation in sol–gel silica glass on esterase activity, conformational stability, and unfolding of bovine carbonic anhydrase II. Chem Mater 11:3671–3679

    Google Scholar 

  • Bagchi S, Sengupta S, Mondal S (2017) Development and characterization of carbonic anhydrase-based CO2 biosensor for primary diagnosis of respiratory health. IEEE Sens J 17:1384–1390

    CAS  Google Scholar 

  • Bajracharya S, Srikanth S, Mohanakrishna G, Zacharia R, Stirk DPBTB, Pant D (2017) Biotransformation of carbon dioxide in bioelectochemical systems: State of the art and future perspective. J Power Sour 356:256–273

    CAS  Google Scholar 

  • Bhattacharya S, Nayak A, Schiavone M, Bhattacharya SK (2004) Solubilization and concentration of carbon dioxide: novel spray reactors with immobilized carbonic anhydrase. Biotechnol Bioeng 86:37–46

    CAS  PubMed  Google Scholar 

  • Bickerstaff GF (1997) Immobilization of enzymes and cells. Humana Press, New York, pp 1–11

    Google Scholar 

  • Boone CD, Pinard M, McKenna R, Silverman D (2014) Chap. 3 Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer. In: Frost SC, McKenna R (eds) Carbonic anhydrase: Mechanism, regulation, links to disease, and industrial applications, Subcellular Biochemistry. Springer Science + Business Media, Dordrecht

    Google Scholar 

  • Broun G, Selegny E, Minh CT, Thomas D (1970) Facilitated transport of CO2 across a membrane bearing carbonic anhydrase. FEBS Lett 7:223–226

    CAS  PubMed  Google Scholar 

  • Cammaroto C, Diliberto L, Ferralis M, Manca R, Sanna A, Giordano M (1998) Use of carbonic anhydrase in electrochemical biosensors for dissolved CO2. Sens Actuators B 48:439–447

    CAS  Google Scholar 

  • Cao L (2005) Carrier-bound immobilized enzymes. Wiley-VCH, Weinheim

    Google Scholar 

  • Carter MJ (1972) Carbonic anhydrase: isoenzymes, properties, distribution, and functional significance. Biol Rev 47:465–513

    CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Wang P (2015) Peptide-induced affinity binding of carbonic anhydrase to carbon nanotubes. Langmuir 31:397–403

    CAS  PubMed  Google Scholar 

  • Chien L-J, Sureshkumar M, Hsieh H-H, Wang J-L (2013) Biosequestration of carbon dioxide using a silicified carbonic anhydrase catalyst. Biotechnol Bioprocess Eng 18:567–574

    CAS  Google Scholar 

  • Cowan RM, Ge J-J, Qin Y-J, McGregor ML, Trachtenberg MC (2003) CO2 capture by means of an enzyme-based reactor. Ann N Y Acad Sci 984:453–469

    CAS  PubMed  Google Scholar 

  • Crumbliss AL, Perine SC, Stonehuerner J, Tubergen KR, Zhao J, Henkens RW (1992) Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 40:483–490

    CAS  PubMed  Google Scholar 

  • Datta S, Henry MP, Lin YPJ, Fracaro AT, Millard QS (2013) Electrochemical CO2 capture using resin-wafer electrodeionization. Ind Eng Chem Res 52:15177–15186

    CAS  Google Scholar 

  • Dominguez-Benetton X, Srikanth S, Satyawali Y, Vanbroekhoven K, Pant D (2013) Enzymatic electrosynthesis: an overview on the progress in enzyme-electrodes for the production of electricity, fuels and chemicals. J Microb Biochem Technol S6:007

    Google Scholar 

  • Donaldson TL, Quinn JA (1975) Carbon dioxide transport through enzymatically active synthetic membranes. Chem Eng Sci 30:103–115

    CAS  Google Scholar 

  • Drevon GF, Urbanke C, Russell AJ (2003) Enzyme-containing Michael-adduct-based coating. Biomacromolecules 4:675–682

    CAS  PubMed  Google Scholar 

  • Drozdov AS, Shapovalova OE, Ivanovski V, Avnir D, Vinogradov VV (2016) Entrapment of enzymes within sol–gel-derived magnetite. Chem Mater 28:2248–2253

    CAS  Google Scholar 

  • Edman P, Ekman B, Sjöholm I (1980) Immobilization of proteins in microspheres of biodegradable polyacryldextran. J Pharmaceut Sci 69:838–842

    CAS  Google Scholar 

  • Epton R, Hobson ME, Marr G (1977) Synthesis and properties of expanded poly(acryloyl morpholine)/carbonic anhydrase conjugates with catalytic activity in aqueous-organic media. Polymer 18:1203–1207

    CAS  Google Scholar 

  • Forsyth C, Yip TWS, Patwardhan SV (2013) CO2 sequestration by enzyme immobilized onto bioinspired silica. Chem Commun 49:3191–3193

    CAS  Google Scholar 

  • Frey R, Mantri S, Rocca M, Hilvert D (2016) Bottom-up construction of a primordial carboxysome mimic. J Am Chem Soc 138:10072–10075

    CAS  PubMed  Google Scholar 

  • Fu J, Liu M, Liu Y, Woodbury NM, Yan H (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabelman A, Hwang S-T (1999) Hollow fiber membrane contactors. J Membr Sci 159:61–106

    CAS  Google Scholar 

  • Gao S, Mohammad M, Yang H-C, Xu J, Liang K, Hou J, Chen V (2017) Janus reactors with highly efficient enzymatic CO2 nanocascade at air-liquid interface. ACS Appl Mater Interfaces 9:42806–42815

    CAS  PubMed  Google Scholar 

  • Godoy-Gallardo M, York-Duran MJ, Hosta-Rigau L (2018) Recent progress in micro/nanoreactors toward the creation of artificial organelles. Adv Healthcare Mater 7:1700917

    Google Scholar 

  • Grunwald P (2009) Biocatalysis: biochemical fundamentals and applications. Imperial College Press, London

    Google Scholar 

  • Hämäläinen M, Zhukov A, Ivarsson M, Fex T, Gottfries J, Karlsson R, Björsne M (2008) Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels. J Biomol Screening 13:202–209

    Google Scholar 

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    CAS  PubMed  Google Scholar 

  • Hong S-G, Jeon H, Kim HS, Jun S-H, Jin ES, Kim J (2015) One-pot enzymatic conversion of carbon dioxide and utilization for improved microbial growth. Environ Sci Technol 49:4466–4472

    CAS  PubMed  Google Scholar 

  • Hou J, Dong G, Xiao B, Malassigne C, Chen V (2015) Preparation of titania based biocatalytic nanoparticles and membranes for CO2 conversion. J Mater Chem A 3:3332–3342

    CAS  Google Scholar 

  • Hu G, Nicholas NJ, Smith KH, Mumford KA, Kentish SE, Stevens GW (2016) Carbon dioxide absorption into promoted potassium carbonate solutions: a review. Int J Greenhouse Gas Control 53:28–40

    CAS  Google Scholar 

  • Hwang ET, Seo B-K, Gu MB, Zeng A-P (2016) Successful bi-enzyme stabilization for the biomimetic cascade transformation of carbon dioxide. Cat Sci Technol 6:7267–7272

    CAS  Google Scholar 

  • Iliuta I, Iliuta MC (2017) Investigation of CO2 removal by immobilized carbonic anhydrase enzyme in a hollow-fiber membrane bioreactor. AIChE J 63:2996–3007

    CAS  Google Scholar 

  • Jensen FB (2004) Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand 182:215–227

    CAS  PubMed  Google Scholar 

  • Jerónimo PCA, Araújo AN, Montenegro MCBSM, Satinský D, Solich P (2005) Flow-through sol-gel optical biosensor for the colorimetric determination of acetazolamide. Analyst 130:1190–1197

    PubMed  Google Scholar 

  • Ji X, Su Z, Wang P, Ma G, Zhang S (2015) Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes. ACS Nano 9:4600–4610

    CAS  PubMed  Google Scholar 

  • Kaar JL, Oh H-I, Russell AJ, Federspiel WJ (2007) Towards improved artificial lungs through biocatalysis. Biomaterials 28:3131–3139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanth BK, Lee J, Pack SP (2013) Carbonic anhydrase: its biocatalytic mechanisms and functional properties for efficient CO2 capture process development. Eng Life Sci 13:422–431

    CAS  Google Scholar 

  • Karlsson M, Carlsson U (2005) Protein adsorption orientation in the light of fluorescent probes: mapping of the interaction between site-directly labeled human carbonic anhydrase II and silica Nanoparticles. Biophys J 88:3536–3544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalifah RG (1973) Carbon dioxide hydration activity of carbonic anhydrase: Paradoxical consequences of the unusually rapid catalysis. Proc Natl Acad Sci USA 70:1986–1989

    CAS  PubMed  Google Scholar 

  • Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM (2008) Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev 108:946–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krull FF, Melin CFT (2008) Liquid membranes for gas/vapor separations. J Membr Sci 325:509–519

    CAS  Google Scholar 

  • Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P (2016) Enzymatic reactions in confined environments. Nat Nanotechnol 11:409–420

    PubMed  Google Scholar 

  • Küchler A, Messmer D, Schlüter AD, Walde P (2017) Preparation and applications of dendronized polymer-enzyme conjugates. Methods Enzymol 590:445–474

    PubMed  Google Scholar 

  • Lahiri J, Isaacs L, Tien J, Whitesides GM (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 71:777–790

    CAS  PubMed  Google Scholar 

  • Leimbrink M, Nikoleit KG, Spitzer R, Salmon S, Bucholz T, Górak A, Skiborowski M (2018) Enzymatic reactive absorption of CO2 in MDEA by means of an innovative biocatalyst delivery system. Chem Eng J 334:1195–1205

    CAS  Google Scholar 

  • Li J, Zhou X, Zhang L, Di H, Wu H, Yang L (2017) Investigation on the immobilization of carbonic anhydrase and the catalytic absorption of carbon dioxide. Energy Fuels 31:778–784

    CAS  Google Scholar 

  • Lopes JH, Guilhou M, Marelli B, Omenetto FG, Kaplan DL, Barralet JE, Merle G (2015) Silk fibroin hydroxyapatite composite thermal stabilization of carbonic anhydrase. J Mater Chem A 3:19282–19287

    CAS  Google Scholar 

  • Lopez-Heredia MA, Łapa A, Mendes AC, Balcaen L, Samal SK, Chai F, Van der Voort P, Stevens CV, Parakhonskiy BV, Chronakis IS, Vanhaecke F, Blanchemain N, Pamuła E, Skirtach AG, Douglas TEL (2017) Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate. Mat Lett 190:13–16

    CAS  Google Scholar 

  • Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22:211–213

    CAS  PubMed  Google Scholar 

  • Lundqvist M, Sethson I, Jonsson B-H (2004) Protein adsorption onto Silica Nanoparticles: conformational changes depend on the particle’s curvature and the protein stability. Langmuir 20:10639–10647

    CAS  PubMed  Google Scholar 

  • Maeshima K, Yoshimoto M (2017) Preparation and characterization of carbonic anhydrase-conjugated liposomes for catalytic synthesis of calcium carbonate particles. Enzyme Microb Technol 105:9–17

    CAS  PubMed  Google Scholar 

  • Malankowska M, Martins CF, Rho HS, Neves LA, Tiggelaar RM, Crespo JG, Pina MP, Mallada R, Gardeniers H, Coelhoso IM (2018) Microfluidic devices as gas-ionic liquid membrane contactors for CO2 removal from anaesthesia gases. J Memb Sci 545:107–115

    CAS  Google Scholar 

  • Manap HH, Wahab AKA (2017) Extracorporeal carbon dioxide removal (ECCO2R) in respiratory deficiency and current investigations on its improvement: a review. J Artf Organs 20:8–17

    CAS  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    CAS  Google Scholar 

  • Méndez J, Monteagudo A, Griebenow K (2012) Stimulus-responsive controlled release system by covalent immobilization of enzyme into mesoporous silica nanoparticles. Bioconjugate Chem 23:698–704

    Google Scholar 

  • Merle G, Fradette S, Madore E, Barralet JE (2014) Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture. Langmuir 30:6915–6919

    CAS  PubMed  Google Scholar 

  • Migliardini F, De Luca V, Carginale V, Rossi M, Corbo P, Supuran CT, Capasso C (2014) Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam. J Enzyme Inhib Med Chem 29:146–150

    CAS  PubMed  Google Scholar 

  • Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46:921–926

    CAS  Google Scholar 

  • Ostuni E, Grzybowski BA, Mrksich M, Roberts CS, Whitesides GM (2003) Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers. Langmuir 19:1861–1872

    CAS  Google Scholar 

  • Oviya M, Sukumaran V, Giri SS (2013) Immobilization and characterization of carbonic anhydrase purified from E. coli MO1 and its influence on CO2 sequestration. World J Microbiol Biotechnol 29:1813–1820

    CAS  PubMed  Google Scholar 

  • Park J-M, Kim M, Lee HJ, Jang A, Min J, Kim Y-H (2012) Enhancing the production of Rhodobacter sphaeroides-derived physiologically active substances using carbonic anhydrase-immobilized electrospun nanofibers. Biomacromol 13:3780–3786

    CAS  Google Scholar 

  • Peirce S, Russo ME, De Luca V, Capasso C, Rossi M, Olivieri G, Salatino P, Marzocchella A (2015) Immobilization of carbonic anhydrase for biomimetic CO2 capture in a slurry absorber as cross-linked enzyme aggregates (CLEA). Chem Eng Trans 43:259–264

    Google Scholar 

  • Power IM, Harrison AL, Dipple GM (2016) Accelerating mineral carbonation using carbonic anhydrase. Environ Sci Technol 50:2610–2618

    CAS  PubMed  Google Scholar 

  • Ramanan R, Kannan K, Sivanesan SD, Mudliar S, Kaur S, Tripathi AK, Chakrabarti T (2009) Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World J Microbiol Biotechnol 25:981–987

    CAS  Google Scholar 

  • Ramundo-Orlando A, Gallerano GP, Stano P, Doria A, Giovenale E, Messina G, Cappelli M, D’Arienzo M, Spassovsky I (2007) Permeability changes induced by 130 GHz pulsed radiation on cationic liposomes loaded with carbonic anhydrase. Bioelectromagnetics 28:587–598

    CAS  PubMed  Google Scholar 

  • Reardon J, Bucholz T, Hulvey M, Tuttle J, Shaffer A, Pulvirenti D, Weber L, Killian K, Zaks A (2014) Low energy CO2 capture enabled by biocatalysts delivery system. Energy Procedia 63:301–321

    CAS  Google Scholar 

  • Russo ME, Bareschino P, Olivieri G, Chirone R, Salatino P, Marzocchella A (2016) Modeling of slurry staged bubble column for biomimetic CO2 capture. Int J Greenhouse Gas Control 47:200–209

    CAS  Google Scholar 

  • Salley SO, Song JY, Whittlesey GC, Klein MD (1992) Thermal, operational, and storage stability of immobilized carbonic anhydrase in membrane lungs. ASAIO J 38:M684–M687

    CAS  PubMed  Google Scholar 

  • Scarabelli S, Tan KT, Griss R, Hovius R, D’Alessandro PL, Vorherr T, Johnsson K (2017) Evaluating cellular drug uptake with fluorescent sensor proteins. ACS Sens 2:1191–1197

    CAS  PubMed  Google Scholar 

  • Schmidt S, Castiglione K, Kourist R (2018) Overcoming the incompatibility challenge in chemoenzymatic and multi-catalytic cascade reactions. Chem Eur J 24:1755–1768

    CAS  PubMed  Google Scholar 

  • Senior L, Crump MP, Williams C, Booth PJ, Mann S, Perriman AW, Curnow P (2015) Structure and function of the silicifying peptide R5. J Mater Chem B 3:2607–2614

    CAS  Google Scholar 

  • Shanbhag BK, Liu B, Fu J, Haritos VS, He L (2016) Self-assembled enzyme nanoparticles for carbon dioxide capture. Nano Lett 16:3379–3384

    CAS  PubMed  Google Scholar 

  • Shapovalova OE, Levy D, Avnir D, Vinogradov VV (2016) Protection of enzymes from photodegradation by entrapment within alumina. Coll Surf B 146:731–736

    CAS  Google Scholar 

  • Shekh AY, Krishnamurthi K, Mudliar SN, Yadav RR, Fulke AB, Devi SS, Chakrabarti T (2012) Recent advancements in carbonic anhydrase-driven processes for CO2 sequestration: minireview. Crit Rev Environ Sci Technol 42:1419–1440

    CAS  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    CAS  PubMed  Google Scholar 

  • Singh M, Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2014) Electrochemical biosensor with ceria-polyaniline core shell nano-interface for the detection of carbonic acid in blood. J Coll Interf Sci 425:52–58

    CAS  Google Scholar 

  • Sperl JM, Sieber V (2018) Multienzyme cascade reactions-status and recent advances. ACS Catal 8:2385–2396

    CAS  Google Scholar 

  • Srikanth S, Alvarez-Gallego Y, Vanbroekhoven K, Pant D (2017) Enzymatic electrosynthesis of formic acid through carbon dioxide reduction in a bioelectrochemical system: effect of immobilization and carbonic anhydrase addition. ChemPhysChem 18:3174–3181

    CAS  PubMed  Google Scholar 

  • Sun J, Wei L, Wang Y, Zhao Z, Liu W (2018) Immobilization of carbonic anhydrase on polyvinylidene fluoride membranes. Biotechnol Appl Biochem 65:362–371

    CAS  PubMed  Google Scholar 

  • Supuran CT (2008) Carbonic anhydrase: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    CAS  PubMed  Google Scholar 

  • Supuran CT (2016) Structure and function of carbonic anhydrases. Biochem J 473:2023–2032

    CAS  PubMed  Google Scholar 

  • Supuran CT, De Simone G (2015) Chap. 1 Carbonic anhydrases: an overview. In: Supuran CT, De Simone G (eds) Carbonic anhydrases as biocatalysts. Elsevier, Amsterdam

    Google Scholar 

  • Uygun M, Singh VV, Kaufmann K, Uygun DA, de Oliveira SDS, Wang J (2015) Micromotor-based biomimetic carbon dioxide sequestration: towards mobile microscrubbers. Angw Chem Int Ed 54:12900–12904

    CAS  Google Scholar 

  • Varghese S, Halling PJ, Häussinger D, Wimperis S (2016) High-resolution structural characterization of a heterogeneous biocatalyst using solid-state NMR. J Phys Chem C 120:28717–28726

    CAS  Google Scholar 

  • Varghese S, Halling PJ, Häussinger D, Wimperis S (2018) Two-dimensional 1H and 1H-detected NMR study of a heterogeneous biocatalyst using fast MAS at high magnetic fields. Solid State Nucl Magn Reson 92:7–11

    CAS  PubMed  Google Scholar 

  • Vinoba M, Bhagiyalakshmi M, Jeong SK, Yoon YII, Nam SC (2011) Capture and sequestration of CO2 by human carbonic anhydrase covalently immobilized onto amine-functionalized SBA-15. J Phys Chem C 115:20209–20216

    CAS  Google Scholar 

  • Walde P, Marzetta B (1998) Bilayer permeability-based substrate selectivity of an enzyme in liposomes. Biotechnol Bioeng 57:216–219

    CAS  PubMed  Google Scholar 

  • Woo KM, Lee I, Hong S-G, An S, Lee J, Oh E, Kim J (2015) Crosslinked chitosan coating on magnetic mesoporous silica with pre-adsorbed carbonic anhydrase for carbon dioxide conversion. Chem Eng J 276:232–239

    CAS  Google Scholar 

  • Yadav RR, Krishnamurthi K, Mudliar SN, Devi SS, Naoghare PK, Bafana A, Chakrabarti T (2014) Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects. J Basic Microbiol 54:472–481

    CAS  PubMed  Google Scholar 

  • Yan M, Liu Z, Lu D, Liu Z (2007) Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperatures. Biomacromol 8:560–565

    CAS  Google Scholar 

  • Yong JKJ, Stevens GW, Caruso F, Kentish SE (2015) The use of carbonic anhydrase to accelerate carbon dioxide capture processes. J Chem Technol Biotechnol 90:3–10

    CAS  Google Scholar 

  • Yong JKJ, Stevens GW, Caruso F, Kentish SE (2016) In situ layer-by-layer assembled carbonic anhydrase-coated hollow fiber membrane contactor for rapid CO2 adsorption. J Membr Sci 514:556–565

    CAS  Google Scholar 

  • Yoshimoto M, Okamoto M, Ujihashi K, Okita T (2014) Selective oxidation of d-amino acids catalyzed by oligolamellar liposomes intercalated with d-amino acid oxidase. Langmuir 30:6180–6186

    CAS  PubMed  Google Scholar 

  • Yoshimoto M, Schweizer T, Rathlef M, Pleij T, Walde P (2018) Immobilization of carbonic anhydrase in glass micropipettes and glass fiber filters for flow-through reactor applications. ACS Omega 3:10391–10405

    CAS  Google Scholar 

  • Yu Y, Chen B, Qi W, Li X, Shin Y, Lei C, Liu J (2012) Enzymatic conversion of CO2 to bicarbonate in functionalized mesoporous silica. Microporous Mesoporous Mater 153:166–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu K, Mitch WA, Dai N (2017) Nitrosamines and nitramines in amine-based carbon dioxide capture systems: fundamentals, engineering implications, and knowledge gaps. Environ Sci Technol 51:11522–11536

    CAS  PubMed  Google Scholar 

  • Zhang Y-T, Zhang L, Chen H-L, Zhang H-M (2010) Selective separation of lo concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chem Eng Sci 65:3199–3207

    CAS  Google Scholar 

  • Zhang S, Zhang Z, Lu Y, Rostam-Abadi M, Jones A (2011) Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture. Bioresour Technol 102:10194–10201

    CAS  PubMed  Google Scholar 

  • Zhang S, Lu H, Lu Y (2013) Enhanced stability and chemical resistance of a new nanoscale biocatalyst for accelerating CO2 absorption into a carbonate solution. Environ Sci Technol 47:13882–13888

    CAS  PubMed  Google Scholar 

  • Zhang Y, Legrand Y-M, Petit E, Supuran CT, Barbouiu M (2016) Dynamic encapsulation of carbonic anhydrase in multivalent dynamic host matrices. Chem Commun 52:4053–4055

    CAS  Google Scholar 

  • Zhou D, Wang X, Birch L, Rayment T, Abell C (2003) AFM study on protein immobilization on charged surfaces at the nanoscale: toward the fabrication of three-dimensional protein nanostructures. Langmuir 19:10557–10562

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number 15KK0241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yoshimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimoto, M., Walde, P. Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World J Microbiol Biotechnol 34, 151 (2018). https://doi.org/10.1007/s11274-018-2536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2536-2

Keywords