Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Isolation and Characterization of Low Molecular Weight Glycosaminoglycans from Marine Mollusc Amussium pleuronectus (Linne) using Chromatography

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The glycosaminoglycan (GAG) heparin is a polyanionic sulfated polysaccharide most recognized for its anticoagulant activity. In the present study, the GAGs were extracted from bivalve mollusc Amussium pleuronectus. The crude GAGs were fractionated by ion-exchange (DEAE-cellulose and Amberlite IRA-900 & 120) chromatography. The recovered active fractions (as determined by metachromatic assay) were confirmed by agarose gel electrophoresis and the active fractions were purified in Sephadex G-100 column. Fractionated and purified GAG molecular weight was determined through gradient polyacrylamide gel electrophoresis. The structural characterization of low molecular weight GAG was analyzed by Fourier transform infrared spectroscopy. The activated partial thromboplastin time of purified GAG is 95 IU/mg and has molecular weight 6,500–7,500 Da. The disaccharide compositional analysis on the GAG sample was sulfated like porcine intestinal mucosal heparan sulfate, and it contains equivalent amount of uronic acid and hexosamine. The results of this study suggest that the GAG from A. pleuronectus could be an alternative source of heparin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Camara, J. E., Satterfield, M. B., & Nelson, B. C. (2007). Journal of Pharmaceutical and Biomedical Analysis, 43, 706–1714. doi:10.1016/j.jpba.2007.01.006.

    Article  Google Scholar 

  2. Calero, R. V., Puignou, L., & Galceran, M. T. (1998). Journal of Chromatography. A, 828, 497–508. doi:10.1016/S0021-9673(98)00662-1.

    Article  Google Scholar 

  3. Linhardt, R. J., & Gunay, N. S. (1999). Seminars in Thrombosis and Hemostasis, 25(3), 5–6.

    CAS  Google Scholar 

  4. Warda, M., Gouda, E. M., Toida, T., Chi, L., & Linhardt, R. J. (2003). Comparative Biochemistry and Physiology, 136(Part C), 357–365. doi:10.1016/S1096-4959(03)00247-1.

    Google Scholar 

  5. Fareed, J., & Hoppensteadt, D. A. (1996). Seminars in Thrombosis and Hemostasis, 22(2), 13–18.

    Google Scholar 

  6. Green, D., Hirsh, J., Heit, J., Prins, A., Davidson, A., & Lensing, W. A. (1994). Pharmacological Reviews, 46, 89–109.

    CAS  Google Scholar 

  7. Prandoni, P., Lensing, A., Buller, H., Carta, M., Cogo, A., Vigo, M., et al. (1992). Lancet, 339, 441–445. doi:10.1016/0140-6736(92)91054-C.

    Article  CAS  Google Scholar 

  8. Harenberg, J., Huhle, G., Piazolo, L., Giese, C., & Heene, D. L. (1997). Seminars in Thrombosis and Hemostasis, 23, 167–172. doi:10.1055/s-2007-996086.

    Article  CAS  Google Scholar 

  9. Guo, X., Condra, M., Kimura, K., Berth, G., Dautzenberg, H., & Dubin, P. L. (2003). Analytical Biochemistry, 312, 33–39. doi:10.1016/S0003-2697(02)00428-1.

    Article  CAS  Google Scholar 

  10. Brieger, D., & Dawes, J. (1997). Thrombosis and Haemostasis, 77, 317–322.

    CAS  Google Scholar 

  11. Ely, R., Supriya, T., & Naik, C. G. (2004). Journal of Experimental Marine Biology and Ecology, 309, 121–127. doi:10.1016/j.jembe.2004.03.010.

    Article  Google Scholar 

  12. Arumugam, M., & Shanmugam, A. (2004). Indian Journal of Experimental Biology, 42, 529–532.

    CAS  Google Scholar 

  13. Holick, M. F., Judikiewicz, A., Walworth, N., & Wang, M. Y. (1985). In R. R. Colwell, E. R. Pariser, & A. J. Sinnskey (Eds.), Biotechnology of marine polysaccharides pp. 389–397. New York: Hemisphere.

    Google Scholar 

  14. Mauro-Poiva, S. G., & Karin-Aiello, R. M. (1998). The Journal of Biological Chemistry, 273, 27848–27857. doi:10.1074/jbc.273.43.27848.

    Article  Google Scholar 

  15. Nishino, T., Yokoyama, G., Dobashi, K., Fujihara, M., & Nagumo, T. (1989). Carbohydrate Research, 186(1), 119–129. doi:10.1016/0008-6215(89)84010-8.

    Article  CAS  Google Scholar 

  16. Volpi, N. (1994). Analytical Biochemistry, 218, 382–391. doi:10.1006/abio.1994.1196.

    Article  CAS  Google Scholar 

  17. Grant, A. C., Linhardt, R. J., Fitzgerald, G. L., Park, J. J., & Langer, R. (1984). Analytical Biochemistry, 137, 25–32. doi:10.1016/0003-2697(84)90341-5.

    Article  CAS  Google Scholar 

  18. Laurent, T. C., Tengblad, A., Thunberg, L., Hook, M., & Lindhal, U. (1978). The Biochemical Journal, 175, 691–701.

    CAS  Google Scholar 

  19. Dietrich, C. P., Nader, H. B., Depaiva, J. F., & Santos, E. A. (1989). International Journal of Biological Macromolecules, 11, 361–366. doi:10.1016/0141-8130(89)90008-1.

    Article  CAS  Google Scholar 

  20. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28(3), 350–356. doi:10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  21. Bitter, T., & Muir, H. M. (1962). Analytical Biochemistry, 4, 300–334. doi:10.1016/0003-2697(62)90095-7.

    Article  Google Scholar 

  22. Wagner, W. D. (1979). Analytical Biochemistry, 94, 394–398. doi:10.1016/0003-2697(79)90379-8.

    Article  CAS  Google Scholar 

  23. Terho, T., & Haritiala, K. (1971). Analytical Biochemistry, 41, 471–776. doi:10.1016/0003-2697(71)90167-9.

    Article  CAS  Google Scholar 

  24. Linhardt, R. J., Wang, H. M., Loganathan, D., & Bae, J. H. (1992). The Journal of Biological Chemistry, 267, 2380–2387.

    CAS  Google Scholar 

  25. Cassaro, C. M., & Dietrich, C. P. (1997). The Journal of Biological Chemistry, 252, 2254–2261.

    Google Scholar 

  26. Vijayabaskar, V. P. (2004). MPhil Thesis, Annamalai University, India.

  27. Salzman, E. W., Rosenborg, R. D., Smith, M. H., Lindon, J. N., & Favreau, L. (1980). The Journal of Clinical Investigation, 65, 64–73. doi:10.1172/JCI109661.

    Article  CAS  Google Scholar 

  28. Mousa, S. A. (2007). In S. A. Mousa (Ed.), Methods in molecular medicine, vol. 93: anticoagulants, antiplatelets; and thrombolytics pp. 1–7. Totowa: Humana.

    Google Scholar 

Download references

Acknowledgement

The authors are thankful to the authorities of Annamalai University and the Director, CAS in Marine Biology for providing the facilities to carry out this work. One of the authors (RS) is also thankful to the ICMR for the financial assistance in the form of SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saravanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanan, R., Shanmugam, A. Isolation and Characterization of Low Molecular Weight Glycosaminoglycans from Marine Mollusc Amussium pleuronectus (Linne) using Chromatography. Appl Biochem Biotechnol 160, 791–799 (2010). https://doi.org/10.1007/s12010-008-8498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12010-008-8498-3

Keywords

Profiles

  1. R. Saravanan