Abstract
The glycosaminoglycan (GAG) heparin is a polyanionic sulfated polysaccharide most recognized for its anticoagulant activity. In the present study, the GAGs were extracted from bivalve mollusc Amussium pleuronectus. The crude GAGs were fractionated by ion-exchange (DEAE-cellulose and Amberlite IRA-900 & 120) chromatography. The recovered active fractions (as determined by metachromatic assay) were confirmed by agarose gel electrophoresis and the active fractions were purified in Sephadex G-100 column. Fractionated and purified GAG molecular weight was determined through gradient polyacrylamide gel electrophoresis. The structural characterization of low molecular weight GAG was analyzed by Fourier transform infrared spectroscopy. The activated partial thromboplastin time of purified GAG is 95 IU/mg and has molecular weight 6,500–7,500 Da. The disaccharide compositional analysis on the GAG sample was sulfated like porcine intestinal mucosal heparan sulfate, and it contains equivalent amount of uronic acid and hexosamine. The results of this study suggest that the GAG from A. pleuronectus could be an alternative source of heparin.
Similar content being viewed by others
References
Camara, J. E., Satterfield, M. B., & Nelson, B. C. (2007). Journal of Pharmaceutical and Biomedical Analysis, 43, 706–1714. doi:10.1016/j.jpba.2007.01.006.
Calero, R. V., Puignou, L., & Galceran, M. T. (1998). Journal of Chromatography. A, 828, 497–508. doi:10.1016/S0021-9673(98)00662-1.
Linhardt, R. J., & Gunay, N. S. (1999). Seminars in Thrombosis and Hemostasis, 25(3), 5–6.
Warda, M., Gouda, E. M., Toida, T., Chi, L., & Linhardt, R. J. (2003). Comparative Biochemistry and Physiology, 136(Part C), 357–365. doi:10.1016/S1096-4959(03)00247-1.
Fareed, J., & Hoppensteadt, D. A. (1996). Seminars in Thrombosis and Hemostasis, 22(2), 13–18.
Green, D., Hirsh, J., Heit, J., Prins, A., Davidson, A., & Lensing, W. A. (1994). Pharmacological Reviews, 46, 89–109.
Prandoni, P., Lensing, A., Buller, H., Carta, M., Cogo, A., Vigo, M., et al. (1992). Lancet, 339, 441–445. doi:10.1016/0140-6736(92)91054-C.
Harenberg, J., Huhle, G., Piazolo, L., Giese, C., & Heene, D. L. (1997). Seminars in Thrombosis and Hemostasis, 23, 167–172. doi:10.1055/s-2007-996086.
Guo, X., Condra, M., Kimura, K., Berth, G., Dautzenberg, H., & Dubin, P. L. (2003). Analytical Biochemistry, 312, 33–39. doi:10.1016/S0003-2697(02)00428-1.
Brieger, D., & Dawes, J. (1997). Thrombosis and Haemostasis, 77, 317–322.
Ely, R., Supriya, T., & Naik, C. G. (2004). Journal of Experimental Marine Biology and Ecology, 309, 121–127. doi:10.1016/j.jembe.2004.03.010.
Arumugam, M., & Shanmugam, A. (2004). Indian Journal of Experimental Biology, 42, 529–532.
Holick, M. F., Judikiewicz, A., Walworth, N., & Wang, M. Y. (1985). In R. R. Colwell, E. R. Pariser, & A. J. Sinnskey (Eds.), Biotechnology of marine polysaccharides pp. 389–397. New York: Hemisphere.
Mauro-Poiva, S. G., & Karin-Aiello, R. M. (1998). The Journal of Biological Chemistry, 273, 27848–27857. doi:10.1074/jbc.273.43.27848.
Nishino, T., Yokoyama, G., Dobashi, K., Fujihara, M., & Nagumo, T. (1989). Carbohydrate Research, 186(1), 119–129. doi:10.1016/0008-6215(89)84010-8.
Volpi, N. (1994). Analytical Biochemistry, 218, 382–391. doi:10.1006/abio.1994.1196.
Grant, A. C., Linhardt, R. J., Fitzgerald, G. L., Park, J. J., & Langer, R. (1984). Analytical Biochemistry, 137, 25–32. doi:10.1016/0003-2697(84)90341-5.
Laurent, T. C., Tengblad, A., Thunberg, L., Hook, M., & Lindhal, U. (1978). The Biochemical Journal, 175, 691–701.
Dietrich, C. P., Nader, H. B., Depaiva, J. F., & Santos, E. A. (1989). International Journal of Biological Macromolecules, 11, 361–366. doi:10.1016/0141-8130(89)90008-1.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28(3), 350–356. doi:10.1021/ac60111a017.
Bitter, T., & Muir, H. M. (1962). Analytical Biochemistry, 4, 300–334. doi:10.1016/0003-2697(62)90095-7.
Wagner, W. D. (1979). Analytical Biochemistry, 94, 394–398. doi:10.1016/0003-2697(79)90379-8.
Terho, T., & Haritiala, K. (1971). Analytical Biochemistry, 41, 471–776. doi:10.1016/0003-2697(71)90167-9.
Linhardt, R. J., Wang, H. M., Loganathan, D., & Bae, J. H. (1992). The Journal of Biological Chemistry, 267, 2380–2387.
Cassaro, C. M., & Dietrich, C. P. (1997). The Journal of Biological Chemistry, 252, 2254–2261.
Vijayabaskar, V. P. (2004). MPhil Thesis, Annamalai University, India.
Salzman, E. W., Rosenborg, R. D., Smith, M. H., Lindon, J. N., & Favreau, L. (1980). The Journal of Clinical Investigation, 65, 64–73. doi:10.1172/JCI109661.
Mousa, S. A. (2007). In S. A. Mousa (Ed.), Methods in molecular medicine, vol. 93: anticoagulants, antiplatelets; and thrombolytics pp. 1–7. Totowa: Humana.
Acknowledgement
The authors are thankful to the authorities of Annamalai University and the Director, CAS in Marine Biology for providing the facilities to carry out this work. One of the authors (RS) is also thankful to the ICMR for the financial assistance in the form of SRF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saravanan, R., Shanmugam, A. Isolation and Characterization of Low Molecular Weight Glycosaminoglycans from Marine Mollusc Amussium pleuronectus (Linne) using Chromatography. Appl Biochem Biotechnol 160, 791–799 (2010). https://doi.org/10.1007/s12010-008-8498-3
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s12010-008-8498-3