Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Production of Oligosaccharide from Alginate Using Pseudoalteromonas agarovorans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A marine bacterium was isolated from seawater near the Korean south coast for efficient saccharification from alginate. Based on 16S rDNA sequence, the isolated strain was identified as Pseudoalteromonas agarovorans. Various environmental factors affecting saccharification of alginate using P. agarovorans CHO-12 have been investigated in flask cultures. The optimum concentration of sugar was obtained at 30 rpm and 29 °C. Among various NaCl concentrations, when NaCl concentration was increased from 10 to 30 g/l, the cell concentration sharply increased, while there is no increase at above 40 g/l. The maximum sugar concentration was obtained at 13.8 when 30 g/l of NaCl was used. Yeast extract and corn steep liquor were the best nitrogen source for efficient saccharification. Especially, the sugar concentration of 14.9 g/l was obtained after 3 days of culture using a mixture of 1.0 g/l of yeast extract and 1.5 g/l of corn steep liquor. Scale up was carried out at 50 l of reactor for 3 days using P. agarovorans CHO-12 and Stenotrophomonas maltophilia sp. When S. maltophilia was used, cell concentration was about twofold higher than that of P. agarovorans CHO-12. On the other hand, when P. agarovorans CHO-12 was used, the maximum saccharification rate was obtained, 7.5 g/l/day after 2 days of culture, which was about tenfold higher than that of S. maltophilia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Min, K. H., Sasaki, S. F., Kashiwabara, Y., Suzuki, H., & Nisizawa, K. (1977). Mutiple components of endo-polyguluronide lyase of Pseudomonas. Journal of Biochemistry, 81, 539–546.

    CAS  Google Scholar 

  2. Gacesa, P. (1992). Enzymic degradation of alginate. The International Journal of Biochemistry, 24, 545–552. doi:10.1016/0020-711X(92)90325-U.

    Article  CAS  Google Scholar 

  3. Dicosmo, F., & Misawa, M. (1989). Eliciting secondary metabolism in plant cell culture. Trends in Biotechnology, 3, 318–322. doi:10.1016/0167-7799(85)90036-8.

    Article  Google Scholar 

  4. Otteriei, M., Skjark-Braek, G., Smidsord, O., & Espevik, T. (1991). Induction of cytokine production from human monocytes stimulated with alginate. Jounal of Immune Therapy, 10, 286–291.

    Google Scholar 

  5. Tomoda, Y., Umemura, K., & Adachi, T. (1994). Promotion of barley root enogation under hyperoxic conditions by alginate lyase. Bioscience, Biotechnology, and Biochemistry, 58, 202–203.

    Article  CAS  Google Scholar 

  6. Yonemoto, Y., Tanaka, H., Yamashita, T., Kitabatake, N., Ishida, Y., Kimura, A., et al. (1993). Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase. Journal of Fermentation and Bioengineering, 75, 687–690.

    Google Scholar 

  7. Jenog, G. T., & Park, D. H. (2005). Enhancement of growth and secondary metabolite biosynthesis. Biotechnology and Bioprocess Bioengineering, 10, 73–77. doi:10.1007/BF02931186.

    Article  Google Scholar 

  8. Akimoto, C., Aoyagi, H., & Tanaka, H. (1999). Endogenous elicitor-like effects of alginate on physiological activities of plant cells. Applied Microbiology and Biotechnology, 52, 429–436. doi:10.1007/s002530051542.

    Article  CAS  Google Scholar 

  9. Natsume, M., Kamo, Y., Hirayama, T., & Adachi, T. (1994). Isolation and characterization of alginate-derived oligosaccharides with root growth-promoting activities. Carbohydrate Research, 258, 187–197. doi:10.1016/0008-6215(94)84085-7.

    Article  CAS  Google Scholar 

  10. Bolatito, T. A., Christopher, B., & Tajalli, K. (1997). Alginate oligosaccharides as enhancers of penicillin production in culture of Penicillium chrysogenum. Biotechnology and Bioengineering, 53, 17–20. doi:10.1002/(SICI)1097-0290(19970105)53:1<17::AID-BIT3>3.0.CO;2-1.

    Article  Google Scholar 

  11. Akiyama, K., Endo, H., Nakakita, R., Murata, K., Yenemoto, Y., & Okayama, K. (1992). Effect of depolymerised alginates on the growth of Bifidobacteria. Bioscience, Biotechnology, and Biochemistry, 56, 355–356.

    Article  CAS  Google Scholar 

  12. Matsubara, Y., Inoue, M., & Iwasaki, K. (1988). Continuous degradation of sodium alginate in bioreactor using immobilized alginate lyase. Food Science and Technology Tokyo, 4, 71–76.

    Article  Google Scholar 

  13. Choi, D. B., Ryu, B. Y., Piao, Y. L., Choi, S. K., Jo, B. W., Shin, W. S., et al. (2008). Studies on saccharification from alginate using Stenotrophomonas. Journal of Industrial Engineering Chemistry, 14, 182–186. doi:10.1016/j.jiec.2007.08.011.

    Article  CAS  Google Scholar 

  14. Wang, Y. J., Chen, K. P., Yao, Q., & Xu, H. (2007). Transcriptional analysis of DNA polymerase gene of Bombyx mori parvo-like virus. Journal of Microbiology (Seoul, Korea), 45, 139–145.

    CAS  Google Scholar 

  15. Park, S. J., Yoon, J. C., Shin, K. S., Kim, E. H., Yim, H., Cho, Y. J., et al. (2007). Dominance of endospore-forming bacterial on a rotating activated Bacillus contactor bioflim foe advanced wasterwater treatment. Journal of Microbiology (Seoul, Korea), 45, 113–121.

    CAS  Google Scholar 

  16. Lee, J. W., Gwak, K. S., Park, J. Y., Park, M. J., Choi, D. H., Kwon, M., et al. (2007). Biological pretreatment of softwood Pinus densiflora by three white rot fungi. Journal of Microbiology (Seoul, Korea), 45, 485–491.

    CAS  Google Scholar 

  17. Kim, I. S., Yun, H. S., Kwak, S. H., & Jin, I. N. (2007). The physiological rol of CPR1 in Saccharimyces cerevisuae KNU5377 against menadione stress by proteomics. Journal of Microbiology (Seoul, Korea), 45, 326–332.

    CAS  Google Scholar 

  18. Haug, A., Larsen, B., & Smidsrod, O. (1967). Studies on the sequence of uronic acid residues in alginic acid. Acta Chemica Scandinavica, 21, 691–704. doi:10.3891/acta.chem.scand.21-0691.

    Article  CAS  Google Scholar 

  19. Gacesa, P. (1987). Alginate-modifying enzymes: a proposed unified mechanism of action for the lyases and epimerases. FEBS Letters, 212, 199–202. doi:10.1016/0014-5793(87)81344-3.

    Article  CAS  Google Scholar 

  20. Kenedy, L., & McDowell, K. (1992). Alginases from Azotobacter speices. Journal of General Microbiology, 138, 2465–2471.

    Google Scholar 

  21. Sawabe, T., Ezura, Y., & Kimura, T. (1992). Purification and characterization of an alginate lyase from amrine Alteromonas sp. Nippon Suisan Kakkaishi, 58, 521–529.

    CAS  Google Scholar 

  22. Nibu, Y., Satoh, T., Nishi, Y., Takeuchi, T., Murata, K., & Kusakabe, I. (1995). Purification and characterization of extracellular alginate lyase from Enterobacter cloacae M-1. Bioscience, Biotechnology, and Biochemistry, 59, 632–637.

    Article  CAS  Google Scholar 

  23. Sutherland, I. W., & Keen, G. A. (1981). Alginases from Beneckea pelogia and Pseudomonas spp. Journal of Applied Biochemistry, 3, 48–57.

    CAS  Google Scholar 

  24. Andrykovitch, G., & Marx, I. (1998). Isolation of new polysaccharide degrading bacterium from a salt marsh. Applied and Environmental Microbiology, 54, 1061–1062.

    Google Scholar 

  25. Boyen, C., Bertheau, Y., Barbeyron, T., & Kloareg, B. (1990). Preparation of guluronate lyase from Pseudomonas alginovora for protoplast isolation in Laminaria. Enzyme and Microbial Technology, 12, 885–890. doi:10.1016/0141-0229(90)90027-N.

    Article  CAS  Google Scholar 

  26. Yonemoto, Y., Murata, K., Kimura, A., Yamguch, H., & Okayama, K. (1991). Bacterial alginate lyase: characterization of alginate lyase-producing bacteria and purification of the enzyme. Journal of Fermentation and Bioengineering, 72, 152–157. doi:10.1016/0922-338X(91)90208-X.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was financially supported by Chosun University, 2007.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woon-Seob Shin or Hoon Cho.

Additional information

Woon-Seob Shin and Hoon Cho contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, D., Piao, Y.L., Shin, WS. et al. Production of Oligosaccharide from Alginate Using Pseudoalteromonas agarovorans . Appl Biochem Biotechnol 159, 438–452 (2009). https://doi.org/10.1007/s12010-008-8514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12010-008-8514-7

Keywords