Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Functional Expression Profile of Voltage-Gated K+ Channel Subunits in Rat Small Mesenteric Arteries

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2–1.5–β1.2 and K v 2.1–9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nelson, M. T., & Quayle, L. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. American Journal of Physiology, 268, C799–C822.

    CAS  PubMed  Google Scholar 

  2. Stekiel, W. J. (1989). Electrophysiological mechanisms of force development by vascular smooth muscle membrane in hypertension. In R. M. K. W. Lee (Ed.), Blood Vessel Changes in Hypertension: Structure and Fucntion (Vol. II, pp. 127–170). Boca Raton: CRC Press.

    Google Scholar 

  3. Nelson, M. T., Patlak, J. B., Worley, J. F., & Standen, N. B. (1990). Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. American Journal of Physiology, 259, C3–C18.

    CAS  PubMed  Google Scholar 

  4. Cox, R. H. (2005). Molecular determinants of voltage gated potassium currents in vascular smooth muscle. Cell Biochemistry and Biophysics, 42, 167–195.

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y., Um, S. Y., & McDonald, T. V. (2006). Voltage-gated potassium channels: regulation by accessory subunits. Neuroscientist, 12, 199–210.

    Article  CAS  PubMed  Google Scholar 

  6. Torres, Y. P., Morera, F. J., Carvacho, I., & Latorre, R. (2007). A marriage of convenience: β-subunits and voltage-dependent K + channels. Journal of Biological Chemistry, 282, 24485–24489.

    Article  CAS  PubMed  Google Scholar 

  7. Coetzee, W. A., Amarillo, Y., Chiu, J., Chow, A., Lau, D., McCormick, T., et al. (1999). Molecular diversity of K+ channels. Annals of the New York Academy of Sciences, 868, 233–285.

    Article  CAS  PubMed  Google Scholar 

  8. Chandy, K. G., & Gutman, G. A. (1994). Voltage-gated potassium channels. In R. A. North (Ed.), Handbook of receptors and channels. ligand and voltage-gated ion channels (pp. 1–71). Boca Raton: CRC Press.

    Google Scholar 

  9. Fergus, D. J., Martens, J. R., & England, S. K. (1998). K v channel subunits that contribute to voltage-gated K+ current in renal vascular smooth muscle. Pflugers Archiv, 445, 697–704.

    Article  Google Scholar 

  10. Yuan, X. J., Wang, J., Juhaszova, M., Golovina, V. A., & Rubin, L. J. (2003). Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. American Journal of Physiology, 274, L621–L635.

    Google Scholar 

  11. Thorneloe, K. S., Chen, T. T., Grier, E. F., Horowitz, B., Cole, W. C., & Walsh, M. P. (2001). Molecular composition of 4-aminopyridine-sensitive voltage-gated K+ channels of vascular smooth muscle. Circulation Research, 9, 1030–1037.

    Article  Google Scholar 

  12. Cheong, A., Dedman, A. M., Xu, S. Z., & Beech, D. J. (2001). K vα1 channels in murine arterioles: differential cellular expression and regulation of diameter. American Journal of Physiology, 281, H1057–H1065.

    CAS  PubMed  Google Scholar 

  13. Xu, C., Lu, Y., Tang, G., & Wang, R. (1999). Expression of voltage-dependent K+ channel genes in mesenteric artery smooth muscle cells. American Journal of Physiology, 277, G1055–G1063.

    CAS  PubMed  Google Scholar 

  14. McGahon, M. K., Dawicki, J. M., Arora, A., Simpson, D. A., Gardiner, T. A., Stitt, A. W., et al. (2007). K v 1.5 is a major component underlying the A-type potassium current in retinal arteriolar smooth muscle. American Journal of Physiology, 292, H1001–H1008.

    CAS  PubMed  Google Scholar 

  15. Mackie, A. R., Brueggemann, L. I., Henderson, K. K., Shiels, A. J., Cribbs, L. L., Scrogin, K. E., & Byron, K. L. (2008). Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance. Journal of Pharmacology and Experimental Therapeutics, 325, 475–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng, F. L., Davis, A. J., Jepps, T. A., Harhun, M. I., Yeung, S. Y., Wan, A., et al. (2011). Expression and function of the K+ channel KCNQ genes in human arteries. British Journal of Pharmacology, 162, 42–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu, Y., Zhang, J., Tang, G., & Wang, R. (2001). Modulation of voltage-dependent K+ channel current in vascular smooth muscle cells from rat mesenteric arteries. The Journal of Membrane Biology, 180, 163–175.

    Article  CAS  PubMed  Google Scholar 

  18. Albarwani, S., Nemetz, L. T., Madden, J. A., Tobin, A. A., England, S. K., Pratt, P. F., & Rusch, N. J. (2003). Voltage-gated K+ channels in rat small cerebral arteries: molecular identity of the functional channels. Journal of Physiology, 551, 751–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amberg, G. C., & Santana, L. F. (2006). K v 2 channels oppose myogenic constriction of rat cerebral arteries. American Journal of Physiology, 291, C348–C356.

    Article  CAS  PubMed  Google Scholar 

  20. Zhong, X. Z., Abd-Elrahman, K. S., Liao, C. H., El-Yazbi, A. F., Wash, E. J., Walsh, M. P., & Cole, W. C. (2010). Stromatoxin-sensitive, heteromultimeric K v 2.1/K v 9.3 channels contribute to myogenic control of cerebral arterial diameter. Journal of Physiology, 588, 4519–4537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., et al. (1994). Pharmacological characterization of five cloned voltage-gated channels, types K v 1.1, 1.2, 1.3, 1.5 and 3.1, stably expressed in mammalian cell lines. Molecular Pharmacology, 45, 1227–1234.

    CAS  PubMed  Google Scholar 

  22. Colinas, O., Gallego, M., Setien, R., Lopez-Lopex, J. M., Perez-Garcia, M. T., & Casis, O. (2006). Differential modulation of K v 4.2 and K v 4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. American Journal of Physiology, 291, H1978–H1987.

    CAS  PubMed  Google Scholar 

  23. Lu, Z., Abe, J., Taunton, J., Lu, Y., Shishido, T., McClain, C., et al. (2008). Reactive oxygen species-induced activation of p90 ribosomal S6 kinase prolongs cardiac repolarization through inhibiting outward K+ channel activity. Circulation Research, 103, 269–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bett, G. C., & Rasmusson, R. L. (2008). Modification of K+ channel-drug interactions by ancillary subunits. Journal of Physiology, 586, 929–950.

    Article  CAS  PubMed  Google Scholar 

  25. Gelband, C. H., & Hume, J. R. (1995). (Ca2 +)i inhibition of K + channels in canine renal artery. Novel mechanism for agonist-induced membrane depolarization. Circulation Research, 77, 121–130.

    Article  CAS  PubMed  Google Scholar 

  26. Cox, R. H., & Petrou, S. (1999). Ca(2+) influx inhibits voltage-dependent and augments Ca( dependent K(+) currents in arterial myocytes. American Journal of Physiology, 277, C51–C63.

    CAS  PubMed  Google Scholar 

  27. Brignell, J. L., Perry, M. D., Nelson, C. P., Willets, J. M., Challiss, R. A., & Davies, N. W. (2015). Steady-state modulation of voltage-gated K + channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B. PLoS One., 10(3), e0121285. doi:10.1371/journal.pone.0121285.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fishman, J. A., Ryan, G. B., & Karnovsky, M. J. (1975). Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Laboratory Investigation, 32, 339–351.

    CAS  PubMed  Google Scholar 

  29. Cox, R. H., Folander, K., & Swanson, R. (2001). Differential expression of voltage-gated K + channel genes in arteries from spontaneously hypertensive and Wistar-Kyoto rats. Hypertension, 37, 1315–1322.

    Article  CAS  PubMed  Google Scholar 

  30. Cox, R. H., Fromme, S., Folander, K., & Swanson, R. (2008). Voltage gated K+ channel expression in arteries of Wistar Kyoto and spontaneously hypertensive rats. American Journal of Hypertension, 2008(21), 213–218.

    Article  Google Scholar 

  31. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  32. Cox, R. H., Haas, K. S., Moisey, D. M., & Tulenko, T. N. (1989). Effects of endothelium regeneration on canine coronary artery function. American Journal of Physiology, 257, H1681–H1692.

    CAS  PubMed  Google Scholar 

  33. Felix, J. P., Bugianesi, R. M., Schmalhofer, W. A., Borris, R., Goetz, M. A., Hensens, O. D., et al. (1999). Identification and biochemical characterization of a novel nortriterpene inhibitor of the human lymphocyte voltage-gated potassium channel, K v 1.3. Biochemistry, 38, 4922–4930.

    Article  CAS  PubMed  Google Scholar 

  34. Russell, S. N., Overturf, K. E., & Horowitz, B. (1994). Heterotetramer formation and charybdotoxin sensitivity of two K + channels cloned from smooth muscle. American Journal of Physiology, 267, C1729–C1733.

    CAS  PubMed  Google Scholar 

  35. Escoubas, P., Diochot, S., Célérier, M. L., Nakajima, T., & Lazdunski, M. (2002). Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the K v 2 and K v 4 subfamilies. Molecular Pharmacology, 62, 48–57.

    Article  CAS  PubMed  Google Scholar 

  36. Patel, A. J., Lazdubski, M., & Honore, E. (1997). K v 2.1/K v 9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO Journal, 6, 6615–6625.

    Article  Google Scholar 

  37. Kramer, J. W., Post, M. A., Brown, A. M., & Kirsch, G. E. (1998). Modulation of potassium channel gating by coexpression of K v 2.1 with regulatory K v 5.1 or K v 6.1 alpha-subunits. American Journal of Physiology, 274, C1501–C1510.

    CAS  PubMed  Google Scholar 

  38. Amberg, G. C., Koh, S. D., Imaizumi, Y., Ohya, S., & Sanders, K. M. (2003). A-type potassium currents in smooth muscle. American Journal of Physiology, 284, C583–C595.

    Article  CAS  PubMed  Google Scholar 

  39. Cartwright, T. A., Corey, M. J., & Schwalbe, R. A. (2007). Complex oligosaccharides are N-linked in K v 3 voltage-gated K+ channels in brain. Biochimica et Biophysica Acta, 1770, 666–671.

    Article  CAS  PubMed  Google Scholar 

  40. Diochot, S., Schweitz, H., Béress, L., & Lazdunski, M. (1998). Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel K v 3.4. Journal of Biological Chemistry, 273, 6744–6749.

    Article  CAS  PubMed  Google Scholar 

  41. Birnbaum, S. G., Varga, A. W., Yuan, L. L., Anderson, A. E., Sweatt, J. D., & Schrader, L. A. (2004). Structure and function of K v 4-family transient potassium channels. Physiological Reviews, 84, 803–833.

    Article  CAS  PubMed  Google Scholar 

  42. Zhong, X. Z., Harhun, M. I., Olesen, S. P., Phya, S., Moffatt, J. D., Cole, W. C., & Greenwood, I. A. (2010). Participation of KCNQ (K v 7) potassium channels in myogenic control of cerebral artery diameter. Journal of Physiology, 588, 3277–3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cox RH, Fromme S. (2015) Comparison of voltage gated K+ currents in arterial myocytes with K v subunits expressed in HEK293 cells. 2015. Submitted.

  44. Misonou, H., & Trimmer, J. S. (2004). Determinants of voltage-gated potassium channel surface expression and localization in mammalian neurons. Critical Reviews in Biochemistry and Molecular Biology, 39, 125–145.

    Article  CAS  PubMed  Google Scholar 

  45. Bocksteins, E., & Snyders, D. J. (2012). Electrically silent K v subunits: Their molecular and functional characteristics. Physiology, 27, 73–84.

    Article  CAS  PubMed  Google Scholar 

  46. Yeung, S. Y., Pucovský, V., Moffatt, J. D., Saldanha, L., Schwake, M., Ohya, S., & Greenwood, I. A. (2007). Molecular expression and pharmacological identification of a role for K(v)7 channels in murine vascular reactivity. British Journal of Pharmacology, 151, 758–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miceli, F., Cilio, M. R., Taglialatela, M., & Bezanilla, F. (2009). Gating currents from neuronal K(V)7.4 channels: general features and correlation with the ionic conductance. Channels (Austin), 3, 274–2783.

    Article  Google Scholar 

  48. Plane, F., Johnson, R., Kerr, P., Wiehler, W., Thorneloe, K., Ishii, K., et al. (2005). Heteromultimeric K v 1 channels contribute to myogenic control of arterial diameter. Circulation Research, 96, 216–224.

    Article  CAS  PubMed  Google Scholar 

  49. Nerbonne, J. M. (1998). Regulation of voltage-gated K+ channel expression in the developing mammalian myocardium. Journal of Neurobiology, 37, 37–59.

    Article  CAS  PubMed  Google Scholar 

  50. Schmitt, N., Grunnet, M., & Olesen, S.-P. (2014). Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiological Reviews, 94, 609–653.

    Article  CAS  PubMed  Google Scholar 

  51. Schulz, D. J., Temporal, S., Barry, D. M., & Garcia, M. L. (2008). Mechanisms of voltage-gated ion channel regulation: from gene expression to localization. Cellular and Molecular Life Sciences, 65, 2215–2231.

    Article  CAS  PubMed  Google Scholar 

  52. Núñez, L., Vaquero, M., Gómez, R., Caballero, R., Mateos-Cáceres, P., Macaya, C., et al. (2006). Nitric oxide blocks hKv1.5 channels by S-nitrosylation and by a cyclic GMP-dependent mechanism. Cardiovascular Research, 72, 80–89.

    Article  PubMed  Google Scholar 

  53. Watanabe, I., Zhu, J., Sutachan, J. J., Gottschalk, A., Recio-Pinto, E., & Thornhill, W. B. (2007). The glycosylation state of K v 1.2 potassium channels affects trafficking, gating, and simulated action potentials. Brain Research, 1144, 1–18.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, Z., Kiehn, J., Yang, Q., Brown, A. M., & Wible, B. A. (1996). Comparison of binding and block produced by alternatively spliced K vβ1 subunits. Journal of Biological Chemistry, 271, 28311–28317.

    Article  CAS  PubMed  Google Scholar 

  55. Schleifenbaum, J., Köhn, C., Voblova, N., Dubrovska, G., Zavarirskaya, O., Gloe, T., et al. (2010). Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. Journal of Hypertension, 28, 1875–1882.

    Article  CAS  PubMed  Google Scholar 

  56. Yuan, X. J., Goldman, W. F., Tod, M. L., Rubuin, L. J., & Blaustein, M. P. (1993). Ionic currents in rat pulmonary and mesenteric arterial myocytes in primary culture and subculture. American Journal of Physiology, 264, L107–L115.

    CAS  PubMed  Google Scholar 

  57. Cox, R. H. (1979). Contribution of smooth muscle to arterial wall mechanics. Basic Research in Cardiology, 74, 1–9.

    Article  CAS  PubMed  Google Scholar 

  58. Strutz-Seebohm, N., Seebohm, G., Fedorenko, O., Baltaev, R., Engel, J., Knirsch, M., & Lang, F. (2006). Functional coassembly of KCNQ4 with KCNE-beta- subunits in Xenopus oocytes. Cellular Physiology and Biochemistry, 18, 57–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Cox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, R.H., Fromme, S. Functional Expression Profile of Voltage-Gated K+ Channel Subunits in Rat Small Mesenteric Arteries. Cell Biochem Biophys 74, 263–276 (2016). https://doi.org/10.1007/s12013-015-0715-4

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12013-015-0715-4

Keywords