Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Over the last few decades, molecular neurobiology has uncovered many genes whose deficiency in mice results in behavioral traits associated with human neuropsychiatric disorders such as autism, obsessive-compulsive disorder (OCD), and schizophrenia. However, the etiology of these common diseases remains enigmatic with the potential involvement of a battery of genes. Here, we report abnormal behavioral phenotypes of mice deficient in a cell adhesion molecule Ninjurin 1 (Ninj1), which are relevant to repetitive and anxiety behaviors of neuropsychiatric disorders. Ninj1 knockout (KO) mice exhibit compulsive grooming-induced hair loss and self-made lesions as well as increased anxiety-like behaviors. Histological analysis reveals that Ninj1 is predominantly expressed in cortico-thalamic circuits, and neuron-specific Ninj1 conditional KO mice manifest aberrant phenotypes similar to the global Ninj1 KO mice. Notably, the brains of Ninj1 KO mice display altered synaptic transmission in thalamic neurons as well as a reduced number of functional synapses. Moreover, the disruption of Ninj1 leads to glutamatergic abnormalities, including increased ionotropic glutamate receptors but reduced glutamate levels. Furthermore, chronic treatment with fluoxetine, a drug reportedly ameliorates compulsive behaviors in mice, prevents progression of hair loss and alleviates the compulsive grooming and anxiety-like behavior of Ninj1 KO mice. Collectively, our results suggest that Ninj1 could be involved in neuropsychiatric disorders associated with impairments of repetitive and anxiety behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ASD:

Autism spectrum disorder

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CNS:

Central nervous system

CSTC:

Cortico-striatal-thalamo-cortical

EPM:

Elevated plus maze

KO:

Knockout mice

Ninj1:

Nerve injury-induced protein 1

NMDA:

N-methyl-D-aspartate

OCD:

Obsessive-compulsive disorder

OFT:

Open field test

PBS:

Phosphate-buffered saline

SSRI:

Selective serotonin reuptake inhibitor

SEM:

Standard errors of the mean

WT:

Wild-type

References

  1. Hyman SE (2008) A glimmer of light for neuropsychiatric disorders. Nature 455(7215):890–893

    Article  CAS  PubMed  Google Scholar 

  2. Taber KH, Hurley RA, Yudofsky SC (2010) Diagnosis and treatment of neuropsychiatric disorders. Annu Rev Med 61:121–133

    Article  CAS  PubMed  Google Scholar 

  3. Whiteford HA, Ferrari AJ, Degenhardt L, Feigin V, Vos T (2015) The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PLoS One 10(2):e0116820

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pauls DL, Abramovitch A, Rauch SL, Geller DA (2014) Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci 15(6):410–424

    Article  CAS  PubMed  Google Scholar 

  5. Subramaniam M, Soh P, Vaingankar JA, Picco L, Chong SA (2013) Quality of life in obsessive-compulsive disorder: impact of the disorder and of treatment. CNS Drugs 27(5):367–383

    Article  PubMed  Google Scholar 

  6. Chou IH, Chouard T (2008) Neuropsychiatric disease. Nature 455(7215):889

    Article  CAS  PubMed  Google Scholar 

  7. Fernando AB, Robbins TW (2011) Animal models of neuropsychiatric disorders. Annu Rev Clin Psychol 7:39–61

    Article  CAS  PubMed  Google Scholar 

  8. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z et al (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472(7344):437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, Ha S, Chung C et al (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486(7402):261–265

    Article  CAS  PubMed  Google Scholar 

  10. Ahmari SE (2015) Using mice to model obsessive compulsive disorder: from genes to circuits. Neuroscience 321:121–137

  11. Schmeisser MJ (2015) Translational neurobiology in Shank mutant mice-model systems for neuropsychiatric disorders. Ann Anat 200:115–117

  12. Stachowiak MK, Kucinski A, Curl R, Syposs C, Yang Y, Narla S, Terranova C, Prokop D et al (2013) Schizophrenia: a neurodevelopmental disorder-integrative genomic hypothesis and therapeutic implications from a transgenic mouse model. Schizophr Res 143(2–3):367–376

  13. Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, Janssen AL, Udvardi PT et al (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486(7402):256–260

    CAS  PubMed  Google Scholar 

  14. Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG, Milde T, Shmelkov E, Kushner JS et al (2010) Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med 16(5):598–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, Feliciano C, Chen M et al (2007) Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448(7156):894–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dalva MB, McClelland AC, Kayser MS (2007) Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8(3):206–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moya PR, Dodman NH, Timpano KR, Rubenstein LM, Rana Z, Fried RL, Reichardt LF, Heiman GA et al (2013) Rare missense neuronal cadherin gene (CDH2) variants in specific obsessive-compulsive disorder and Tourette disorder phenotypes. Eur J Hum Genet 21(8):850–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O’Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, Morris D, Corvin A (2011) Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry 16(3):286–292

    Article  PubMed  Google Scholar 

  19. Proenca CC, Gao KP, Shmelkov SV, Rafii S, Lee FS (2011) Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends Neurosci 34(3):143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS, Mukaddes NM, Balkhy S et al (2008) Identifying autism loci and genes by tracing recent shared ancestry. Science 321(5886):218–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Araki T, Milbrandt J (1996) Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron 17(2):353–361

    Article  CAS  PubMed  Google Scholar 

  22. Araki T, Zimonjic DB, Popescu NC, Milbrandt J (1997) Mechanism of homophilic binding mediated by ninjurin, a novel widely expressed adhesion molecule. J Biol Chem 272(34):21373–21380

    Article  CAS  PubMed  Google Scholar 

  23. Ahn BJ, Le H, Shin MW, Bae SJ, Lee EJ, Wee HJ, Cha JH, Lee HJ et al (2014) Ninjurin1 deficiency attenuates susceptibility of experimental autoimmune encephalomyelitis in mice. J Biol Chem 289(6):3328–3338

    Article  CAS  PubMed  Google Scholar 

  24. Shin MW, Bae SJ, Wee HJ, Lee HJ, Ahn BJ, Le H, Lee EJ, Kim RH et al (2016) Ninjurin1 regulates lipopolysaccharide-induced inflammation through direct binding. Int J Oncol 48(2):821–828

    Article  CAS  PubMed  Google Scholar 

  25. Ifergan I, Kebir H, Terouz S, Alvarez JI, Lecuyer MA, Gendron S, Bourbonniere L, Dunay IR et al (2011) Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann Neurol 70(5):751–763

    Article  CAS  PubMed  Google Scholar 

  26. Matsuki M, Kabara M, Saito Y, Shimamura K, Minoshima A, Nishimura M, Aonuma T, Takehara N et al (2015) Ninjurin1 is a novel factor to regulate angiogenesis through the function of pericytes. Circ J 79(6):1363–1371

    Article  PubMed  Google Scholar 

  27. Jang YS, Kang JH, Woo JK, Kim HM, Hwang JI, Lee SJ, Lee HY, Oh SH (2016) Ninjurin1 suppresses metastatic property of lung cancer cells through inhibition of interleukin 6 signaling pathway. Int J Cancer 139(2):383–395

    Article  CAS  PubMed  Google Scholar 

  28. Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33(1):23–34

    Article  CAS  PubMed  Google Scholar 

  29. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Angoa-Perez M, Kane MJ, Briggs DI, Francescutti DM, Kuhn DM (2013) Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J Vis Exp 82:50978

    Google Scholar 

  31. Ahn BJ, Le H, Shin MW, Bae SJ, Lee EJ, Wee HJ, Cha JH, Park JH et al (2012) The N-terminal ectodomain of Ninjurin1 liberated by MMP9 has chemotactic activity. Biochem Biophys Res Commun 428(4):438–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, Duffney LJ, Kumar S et al (2016) Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 7:11459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garner JP, Weisker SM, Dufour B, Mench JA (2004) Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp Med 54(2):216–224

    CAS  PubMed  Google Scholar 

  34. Carcani-Rathwell I, Rabe-Hasketh S, Santosh PJ (2006) Repetitive and stereotyped behaviours in pervasive developmental disorders. J Child Psychol Psychiatry 47(6):573–581

    Article  PubMed  Google Scholar 

  35. Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC (2016) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17(1):45–59

    Article  CAS  PubMed  Google Scholar 

  36. Leckman JF, Denys D, Simpson HB, Mataix-Cols D, Hollander E, Saxena S, Miguel EC, Rauch SL et al (2010) Obsessive-compulsive disorder: a review of the diagnostic criteria and possible subtypes and dimensional specifiers for DSM-V. Depress Anxiety 27(6):507–527

    Article  PubMed  PubMed Central  Google Scholar 

  37. Reaven J (2011) The treatment of anxiety symptoms in youth with high-functioning autism spectrum disorders: developmental considerations for parents. Brain Res 1380:255–263

    Article  CAS  PubMed  Google Scholar 

  38. Ting JT, Feng G (2008) Glutamatergic synaptic dysfunction and obsessive-compulsive disorder. Curr Chem Genomics 2:62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ting JT, Feng G (2011) Neurobiology of obsessive-compulsive disorder: insights into neural circuitry dysfunction through mouse genetics. Curr Opin Neurobiol 21(6):842–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pittenger C, Bloch MH, Williams K (2011) Glutamate abnormalities in obsessive-compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Ther 132(3):314–332

  41. Lee EJ, Choi SY, Kim E (2015) NMDA receptor dysfunction in autism spectrum disorders. Curr Opin Pharmacol 20:8–13

    Article  CAS  PubMed  Google Scholar 

  42. Lin CH, Lane HY, Tsai GE (2012) Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 100(4):665–677

    Article  CAS  PubMed  Google Scholar 

  43. Wu K, Hanna GL, Rosenberg DR, Arnold PD (2012) The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacol Biochem Behav 100(4):726–735

    Article  CAS  PubMed  Google Scholar 

  44. Goddard AW, Shekhar A, Whiteman AF, McDougle CJ (2008) Serotoninergic mechanisms in the treatment of obsessive-compulsive disorder. Drug Discov Today 13(7–8):325–332

    Article  CAS  PubMed  Google Scholar 

  45. Sarter M, Bruno JP, Parikh V (2007) Abnormal neurotransmitter release underlying behavioral and cognitive disorders: toward concepts of dynamic and function-specific dysregulation. Neuropsychopharmacology 32(7):1452–1461

    Article  CAS  PubMed  Google Scholar 

  46. Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, Gordon JA, Hen R (2013) Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340(6137):1234–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Milad MR, Rauch SL (2012) Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 16(1):43–51

    Article  PubMed  Google Scholar 

  48. Velikova S, Locatelli M, Insacco C, Smeraldi E, Comi G, Leocani L (2010) Dysfunctional brain circuitry in obsessive-compulsive disorder: source and coherence analysis of EEG rhythms. NeuroImage 49(1):977–983

    Article  PubMed  Google Scholar 

  49. Chakrabarty K, Bhattacharyya S, Christopher R, Khanna S (2005) Glutamatergic dysfunction in OCD. Neuropsychopharmacology 30(9):1735–1740

    Article  CAS  PubMed  Google Scholar 

  50. Kariuki-Nyuthe C, Gomez-Mancilla B, Stein DJ (2014) Obsessive-compulsive disorder and the glutamatergic system. Curr Opin Psychiatry 27(1):32–37

  51. Spooren W, Lindemann L, Ghosh A, Santarelli L (2012) Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci 33(12):669–684

    Article  CAS  PubMed  Google Scholar 

  52. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338(6103):68–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10(3):207–214

    Article  PubMed  PubMed Central  Google Scholar 

  54. Crabtree GW, Gogos JA (2014) Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front Synaptic Neurosci 6:28

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551–563

    Article  CAS  PubMed  Google Scholar 

  56. Wong DT, Perry KW, Bymaster FP (2005) Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 4(9):764–774

    CAS  PubMed  Google Scholar 

  57. Li YF, Zhang YZ, Liu YQ, Wang HL, Cao JB, Guan TT, Luo ZP (2006) Inhibition of N-methyl-D-aspartate receptor function appears to be one of the common actions for antidepressants. J Psychopharmacol 20(5):629–635

    Article  CAS  PubMed  Google Scholar 

  58. Szasz BK, Mike A, Karoly R, Gerevich Z, Illes P, Vizi ES, Kiss JP (2007) Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central nervous system. Biol Psychiatry 62(11):1303–1309

    Article  CAS  PubMed  Google Scholar 

  59. Kiss JP, Szasz BK, Fodor L, Mike A, Lenkey N, Kurko D, Nagy J, Vizi ES (2012) GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine. Neurochem Int 60(2):170–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ji-Hyeon Park for animal behavior assistance; Dr. Hyun-Ho Kim for confocal microscopy setting; Hoang-Kieu-Chi Ngo for discussions, comments, and reading of the manuscript; Dr. Jeongjin Kim and Minju Jeong (Dept. of Biological Sciences, KAIST, Korea) for the electrophysiological experiments; and Dr. Melinda Chan and KOMP project (UC Davis, USA) for Ninj1 tm1a mice. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) through the Global Research Laboratory Program (2011-0021874), Brain Korea 21 Program (2013-036038), the Global Core Research Center (GCRC) Program (2011-0030001), the NRF grant funded by the Korea government (MSIP) (2015R1C1A2A01054446 to H.S. Lee), Basic Science Research Program (2013R1A1A2058956 to J.H. Seo), and the International Cooperation Program (2014K2A1C2074279). E.H. Lo is the recipient of NIH grants (R37-NS37074, R01-76694, and P01-NS55104). G.T.O. was supported by the NRF grant funded by the Korea government (MEST) (No. 2013003407).

Author Contribution

H.L. performed biological, behavioral experiments, constructed Ninj1 conditional knockout mice, analyzed data, prepared the figure, and wrote the manuscript. B.J.A. constructed Ninj1 knockout mice system and Ninj1 antibody, analyzed data, prepared the figure, and edited the manuscript. H.S.L. coordinated collaborations, analyzed data, and prepared the figure and manuscript. S.Y.L. performed behavioral tests, electron microscopy. M.W.S. helped with biological experiments and edited the manuscript. E.-J.L. prepared Ninj1 antibody. J.-H.C. helped with immunostaining, animal experiments, and data discussion. J.H.S., H.-J.W., T.S., and E.H.L. helped with discussion of hypothesis. Y.W.J. gave antibodies of synaptic proteins and helped with data discussion. H.-J.L. initiated Ninj1 study and helped with data discussion. S.J.J. and G.T.O. provided Ninj1 knockout mice. A.N.S., S.J.C., and D.S.K. conducted electrophysiological experiments. H.L. and K.-W.K. developed the hypothesis. K.-W.K. supervised this project, analyzed data, and wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Won Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PPT 1920 kb)

ESM 2

(PPT 436 kb)

ESM 3

(DOC 29.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, H., Ahn, B.J., Lee, H.S. et al. Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol 54, 7353–7368 (2017). https://doi.org/10.1007/s12035-016-0207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12035-016-0207-6

Keywords

Profiles

  1. Yongwoo Jang