Abstract
Current exploitation of rhizobacteria as plant growth regulators for application in sustainable agriculture has attracted much attention. The objective of this study was to characterize the effects of indigenous plant growth-promoting rhizobacteria (PGPR) isolated from rice rhizosphere on growth at the early stage of Thai jasmine rice (Oryza sativa L. cv. KDML105) plants. Five isolates with the ability to produce indole acetic acid (IAA) were obtained and identified by 16S rDNA sequence analysis. These strains were identified as Enterobacter sp. NRRU-N13, NRRU-N20, NRRU-N21, NRRU-D47, and Bacillus sp. NRRU-D40. In the presence of tryptophan precursor, these IAA-producing isolates produced high IAA concentrations ranging from 37.92 to 46.97 \(\upmu \hbox {g}\,\hbox { mL}^{-1}\), with the highest IAA production observed for Enterobacter sp. NRRU-N13. In addition, four of the IAA-producing isolates exhibited phosphate solubilizing activities of \(>\,400\hbox { mg}\,\hbox { L}^{-1}\), with the highest activity of \(422.50\hbox { mg}\,\hbox { L}^{-1}\) observed for Enterobacter sp. NRRU-N13. Maximum growth of rice seedlings measured in terms of root and shoot lengths and dry weights, and biomass was achieved when NRRU-N13 was employed as inoculants, thereby indicating that this isolate was the most promising PGPR. This study has highlighted the beneficial effects of PGPR isolates on growth of rice seedlings, with the isolate NRRU-N13 being the most promising one. As with the obtained results, this isolate could be used as plant growth-stimulating agents to increase crop production and yield.
Similar content being viewed by others
References
Kloepper, J.W.; Lifshitz, R.; Zablotowicz, R.M.: Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. (1989). https://doi.org/10.1016/0167-7799(89)90057-7
Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V.: Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. (2015). https://doi.org/10.4172/1948-5948.1000188
Shokri, D.; Emtiazi, G.: Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by taguchi design. Curr. Microbiol. (2010). https://doi.org/10.1007/s00284-010-9600-y
Vessey, J.K.: Plant growth promoting rhizobacteria as biofertilizers. Plant Soil (2003). https://doi.org/10.1023/A:1026037216893
Bal, H.B.; Nayak, L.; Das, S.; Adhya, T.K.: Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil (2013). https://doi.org/10.1007/s11104-012-1402-5
Cakmakci, R.; Dönmez, M.F.; Erdoğan, Ü.: The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk. J. Agric. For. 31, 189–199 (2007)
Hongrittipun, P.; Youpensuk, S.; Rerkasem, B.: Screening of nitrogen fixing endophytic bacteria in Oryza sativa L. J. Agric. Sci. (2014). https://doi.org/10.5539/jas.v6n6p66
Ji, S.H.; Gururani, M.A.; Chun, S.C.: Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol. Res. (2013). https://doi.org/10.1016/j.micres.2013.06.003
Rungin, S.; Indananda, C.; Suttiviriya, P.; Kruasuwan, W.; Jaemsaeng, R.; Thamchaipenet, A.: Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Leeuwenhoek (2012). https://doi.org/10.1007/s10482-012-9778-z
Sapsirisopa, S.; Chookietwattana, K.; Maneewan, K.; Khaengkhan, P.: Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. As. J. Food Ag Ind. S69–S74 (2009) (Special Issue)
Suprapta, D.N.; Maulina, N.M.I.; Khalimi, K.: Effectiveness of Enterobacter cloacae to promote the growth and increase the yield of rice. J. Biol. Agric. Healthc. 4, 44–50 (2014)
Savci, S.: An agricultural pollutant: chemical fertilizer. IJESD 3, 77–80 (2012)
Wilson, P.W.; Knight, S.C.: Experiments in Bacterial Physiology. Burguess, Minneapolis (1952)
Shrivastava, U.P.; Kumar, A.: A simple and rapid plate assay for the screening of indole-3-acetic acid producing microorganisms. Int. J. Appl. Biol. Pharm. Technol. 2, 120–123 (2011)
Bharucha, U.; Patel, K.; Trivedi, U.B.: Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric. Res. (2013). https://doi.org/10.1007/s40003-013-0065-7
Pikovskaya, R.I.: Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17, 362–370 (1948)
Kumar, A.; Kumar, A.; Devi, S.; Patil, S.; Payal, C.; Negi, S.: Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Res. Sci. Technol. (2012). https://doi.org/10.3389/fmicb.2015.00198
Dye, D.W.: The inadequacy of the usual determinative tests for identification of Xanthomonas sp. N. Z. J. Sci. 5, 393–416 (1962)
Schwyn, B.; Neilands, J.B.: Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. (1987). https://doi.org/10.1016/0003-2697(87)90612-9
CLSI.: Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fourth Informational Supplement, CLSI document M100-S24. Clinical and Laboratory Standards Institute, Wayne (2014)
Oyebanji, O.B.; Nweke, O.; Odebunmi, O.; Galadima, N.B.; Idris, M.S.; Nnodi, U.N.; Afolabi, A.S.; Ogbadu, G.H.: Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. Afr. J. Biotechnol. (2009). https://doi.org/10.5897/AJB09.923
Jegathambigai, V.; Wijeratnam, R.S.W.; Wijesundera, R.L.C.: Trichoderma as a seed treatment to control Helminthosporium leaf spot disease of Chrysalidocarpus lutescens. World J. Agric. Sci. 5, 720–728 (2009)
Meeker, N.D.; Hutchinson, S.A.; Ho, L.; Trede, N.S.: Method for isolation of PCR-ready genomic DNA from zebrafish tissues. BioTechniques 43, 610–614 (2007)
Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J.: 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. (1991). https://doi.org/10.1128/jb.173.2.697-703.1991
Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; Thompson, J.D.; Gibson, T.J.; Higgins, D.G.: ClustalW and ClustalX version 2. Bioinformatics (2007). https://doi.org/10.1093/bioinformatics/btm404
Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S.: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. (2013). https://doi.org/10.1093/molbev/mst197
Lavakush, J.Y.; Verna, P.: Isolation and characterization of effective plant growth promoting rhizobacteria from rice rhizosphere of Indian soil. Asian J. Biol. Sci. (2012). https://doi.org/10.3923/ajbs.2012
Khalimi, K.; Suprapta, D.N.; Nitta, Y.: Effect of Pantoea agglomerans on growth promotion and yield of rice. Agric. Sci. Res. J. 2, 240–249 (2012)
Mehnaz, S.; Mirza, M.S.; Haurat, J.; Bally, R.; Normand, P.; Bano, A.; Malik, K.A.: Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can. J. Microbiol. 47, 110–117 (2001)
Lodewyckx, C.; Vangronsveld, J.; Porteous, F.; Moore, E.R.; Taghavi, S.; Mezgeay, M.; der Lelie, D.V.: Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 (2002)
Mohite, B.: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant. Nutr. (2013). https://doi.org/10.4067/S0718-95162013005000051
Sridevi, M.; Mallaiah, K.V.: Production of extracellular polysaccharide by Rhizobium strains from root nodules of leguminous green manure crop, Sesbania sesban (L.) Merr. Int. J. Soil Sci. (2007). https://doi.org/10.3923/ijss.2007.308.313
Khan, M.S.; Zaidi, A.; Ahmad, E.: Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan, M.S., Zaidi, A., Musarrat, J. (eds.) Phosphate Solubilizing Microorganisms: Principle and Application of Microphos Technology, pp. 31–62. Springer, Heidelberg (2014)
Rana, A.; Saharan, B.; Joshi, M.; Prasanna, R.; Kumar, K.; Nain, L.: Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. (2011). https://doi.org/10.1007/s13213-011-0211-z
Blanch, H.W.; Eiensele, A.: The kinetics of yeast growth on pure hydrocarbons. Biotechnol. Bioeng. (1973). https://doi.org/10.1002/bit.260150504
García, J.E.; Maroniche, G.; Creus, C.; Suárez-Rodríguez, R.; Ramirez-Trujillo, J.A.; Groppa, M.D.: In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol. Res. (2017). https://doi.org/10.1016/j.micres.2017.04.007
Yu, Y.Y.; Jiang, C.H.; Wang, C.; Chen, L.J.; Li, H.Y.; Xu, Q.; Guo, J.H.: An improved strategy for stable biocontrol agents selecting to control rice sheath blight caused by Rhizoctonia solani. Microbiol. Res. (2017). https://doi.org/10.1016/j.micres.2017.05.006
Singh, R.K.; Singh, N.P.; Shahi, J.P.; Jaiswal, H.K.: Multiple antibiotic resistant plant growth promoting rhizobacteria (PGPR) expressed significant increase in growth of maize plants. Int. J. Pharm. Biol. Res. 3, 240–248 (2013)
Ramesh, A.; Sharma, S.K.; Sharma, M.P.; Yadav, N.; Joshi, O.P.: Plant growth-promoting traits in Enterobacter cloacae subsp. dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agric. Res. (2014). https://doi.org/10.1007/s40003-014-0100-3
Ghevariya, K.K.; Desai, P.B.: Rhizobacteria of sugarcane: in vitro screening for their plant growth promoting potentials. Res. J. Recent Sci. 3, 52–58 (2014)
Hariprasad, P.; Niranjana, S.R.: Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil (2009). https://doi.org/10.1007/s11104-008-9754-6
Kaur, G.; Reddy, M.S.: Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.). J. Gen. Appl. Microbiol. (2013). https://doi.org/10.2323/jgam.59.295
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saengsanga, T. Isolation and Characterization of Indigenous Plant Growth-Promoting Rhizobacteria and Their Effects on Growth at the Early Stage of Thai Jasmine Rice (Oryza sativa L. KDML105). Arab J Sci Eng 43, 3359–3369 (2018). https://doi.org/10.1007/s13369-017-2999-8
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s13369-017-2999-8