Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Isolation and Characterization of Indigenous Plant Growth-Promoting Rhizobacteria and Their Effects on Growth at the Early Stage of Thai Jasmine Rice (Oryza sativa L. KDML105)

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Current exploitation of rhizobacteria as plant growth regulators for application in sustainable agriculture has attracted much attention. The objective of this study was to characterize the effects of indigenous plant growth-promoting rhizobacteria (PGPR) isolated from rice rhizosphere on growth at the early stage of Thai jasmine rice (Oryza sativa L. cv. KDML105) plants. Five isolates with the ability to produce indole acetic acid (IAA) were obtained and identified by 16S rDNA sequence analysis. These strains were identified as Enterobacter sp. NRRU-N13, NRRU-N20, NRRU-N21, NRRU-D47, and Bacillus sp. NRRU-D40. In the presence of tryptophan precursor, these IAA-producing isolates produced high IAA concentrations ranging from 37.92 to 46.97 \(\upmu \hbox {g}\,\hbox { mL}^{-1}\), with the highest IAA production observed for Enterobacter sp. NRRU-N13. In addition, four of the IAA-producing isolates exhibited phosphate solubilizing activities of \(>\,400\hbox { mg}\,\hbox { L}^{-1}\), with the highest activity of \(422.50\hbox { mg}\,\hbox { L}^{-1}\) observed for Enterobacter sp. NRRU-N13. Maximum growth of rice seedlings measured in terms of root and shoot lengths and dry weights, and biomass was achieved when NRRU-N13 was employed as inoculants, thereby indicating that this isolate was the most promising PGPR. This study has highlighted the beneficial effects of PGPR isolates on growth of rice seedlings, with the isolate NRRU-N13 being the most promising one. As with the obtained results, this isolate could be used as plant growth-stimulating agents to increase crop production and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kloepper, J.W.; Lifshitz, R.; Zablotowicz, R.M.: Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. (1989). https://doi.org/10.1016/0167-7799(89)90057-7

    Google Scholar 

  2. Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V.: Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. (2015). https://doi.org/10.4172/1948-5948.1000188

    Google Scholar 

  3. Shokri, D.; Emtiazi, G.: Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by taguchi design. Curr. Microbiol. (2010). https://doi.org/10.1007/s00284-010-9600-y

    Google Scholar 

  4. Vessey, J.K.: Plant growth promoting rhizobacteria as biofertilizers. Plant Soil (2003). https://doi.org/10.1023/A:1026037216893

    Google Scholar 

  5. Bal, H.B.; Nayak, L.; Das, S.; Adhya, T.K.: Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil (2013). https://doi.org/10.1007/s11104-012-1402-5

    Google Scholar 

  6. Cakmakci, R.; Dönmez, M.F.; Erdoğan, Ü.: The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk. J. Agric. For. 31, 189–199 (2007)

    Google Scholar 

  7. Hongrittipun, P.; Youpensuk, S.; Rerkasem, B.: Screening of nitrogen fixing endophytic bacteria in Oryza sativa L. J. Agric. Sci. (2014). https://doi.org/10.5539/jas.v6n6p66

  8. Ji, S.H.; Gururani, M.A.; Chun, S.C.: Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol. Res. (2013). https://doi.org/10.1016/j.micres.2013.06.003

    Google Scholar 

  9. Rungin, S.; Indananda, C.; Suttiviriya, P.; Kruasuwan, W.; Jaemsaeng, R.; Thamchaipenet, A.: Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Leeuwenhoek (2012). https://doi.org/10.1007/s10482-012-9778-z

  10. Sapsirisopa, S.; Chookietwattana, K.; Maneewan, K.; Khaengkhan, P.: Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. As. J. Food Ag Ind. S69–S74 (2009) (Special Issue)

  11. Suprapta, D.N.; Maulina, N.M.I.; Khalimi, K.: Effectiveness of Enterobacter cloacae to promote the growth and increase the yield of rice. J. Biol. Agric. Healthc. 4, 44–50 (2014)

    Google Scholar 

  12. Savci, S.: An agricultural pollutant: chemical fertilizer. IJESD 3, 77–80 (2012)

    Google Scholar 

  13. Wilson, P.W.; Knight, S.C.: Experiments in Bacterial Physiology. Burguess, Minneapolis (1952)

    Google Scholar 

  14. Shrivastava, U.P.; Kumar, A.: A simple and rapid plate assay for the screening of indole-3-acetic acid producing microorganisms. Int. J. Appl. Biol. Pharm. Technol. 2, 120–123 (2011)

    Google Scholar 

  15. Bharucha, U.; Patel, K.; Trivedi, U.B.: Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric. Res. (2013). https://doi.org/10.1007/s40003-013-0065-7

  16. Pikovskaya, R.I.: Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17, 362–370 (1948)

    Google Scholar 

  17. Kumar, A.; Kumar, A.; Devi, S.; Patil, S.; Payal, C.; Negi, S.: Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Res. Sci. Technol. (2012). https://doi.org/10.3389/fmicb.2015.00198

    Google Scholar 

  18. Dye, D.W.: The inadequacy of the usual determinative tests for identification of Xanthomonas sp. N. Z. J. Sci. 5, 393–416 (1962)

    Google Scholar 

  19. Schwyn, B.; Neilands, J.B.: Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. (1987). https://doi.org/10.1016/0003-2697(87)90612-9

    Google Scholar 

  20. CLSI.: Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fourth Informational Supplement, CLSI document M100-S24. Clinical and Laboratory Standards Institute, Wayne (2014)

  21. Oyebanji, O.B.; Nweke, O.; Odebunmi, O.; Galadima, N.B.; Idris, M.S.; Nnodi, U.N.; Afolabi, A.S.; Ogbadu, G.H.: Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. Afr. J. Biotechnol. (2009). https://doi.org/10.5897/AJB09.923

    Google Scholar 

  22. Jegathambigai, V.; Wijeratnam, R.S.W.; Wijesundera, R.L.C.: Trichoderma as a seed treatment to control Helminthosporium leaf spot disease of Chrysalidocarpus lutescens. World J. Agric. Sci. 5, 720–728 (2009)

    Google Scholar 

  23. Meeker, N.D.; Hutchinson, S.A.; Ho, L.; Trede, N.S.: Method for isolation of PCR-ready genomic DNA from zebrafish tissues. BioTechniques 43, 610–614 (2007)

    Article  Google Scholar 

  24. Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J.: 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. (1991). https://doi.org/10.1128/jb.173.2.697-703.1991

    Google Scholar 

  25. Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; Thompson, J.D.; Gibson, T.J.; Higgins, D.G.: ClustalW and ClustalX version 2. Bioinformatics (2007). https://doi.org/10.1093/bioinformatics/btm404

    Google Scholar 

  26. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S.: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. (2013). https://doi.org/10.1093/molbev/mst197

    Google Scholar 

  27. Lavakush, J.Y.; Verna, P.: Isolation and characterization of effective plant growth promoting rhizobacteria from rice rhizosphere of Indian soil. Asian J. Biol. Sci. (2012). https://doi.org/10.3923/ajbs.2012

    Google Scholar 

  28. Khalimi, K.; Suprapta, D.N.; Nitta, Y.: Effect of Pantoea agglomerans on growth promotion and yield of rice. Agric. Sci. Res. J. 2, 240–249 (2012)

    Google Scholar 

  29. Mehnaz, S.; Mirza, M.S.; Haurat, J.; Bally, R.; Normand, P.; Bano, A.; Malik, K.A.: Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can. J. Microbiol. 47, 110–117 (2001)

    Article  Google Scholar 

  30. Lodewyckx, C.; Vangronsveld, J.; Porteous, F.; Moore, E.R.; Taghavi, S.; Mezgeay, M.; der Lelie, D.V.: Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 (2002)

    Article  Google Scholar 

  31. Mohite, B.: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant. Nutr. (2013). https://doi.org/10.4067/S0718-95162013005000051

    Google Scholar 

  32. Sridevi, M.; Mallaiah, K.V.: Production of extracellular polysaccharide by Rhizobium strains from root nodules of leguminous green manure crop, Sesbania sesban (L.) Merr. Int. J. Soil Sci. (2007). https://doi.org/10.3923/ijss.2007.308.313

  33. Khan, M.S.; Zaidi, A.; Ahmad, E.: Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan, M.S., Zaidi, A., Musarrat, J. (eds.) Phosphate Solubilizing Microorganisms: Principle and Application of Microphos Technology, pp. 31–62. Springer, Heidelberg (2014)

    Google Scholar 

  34. Rana, A.; Saharan, B.; Joshi, M.; Prasanna, R.; Kumar, K.; Nain, L.: Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. (2011). https://doi.org/10.1007/s13213-011-0211-z

    Google Scholar 

  35. Blanch, H.W.; Eiensele, A.: The kinetics of yeast growth on pure hydrocarbons. Biotechnol. Bioeng. (1973). https://doi.org/10.1002/bit.260150504

    Google Scholar 

  36. García, J.E.; Maroniche, G.; Creus, C.; Suárez-Rodríguez, R.; Ramirez-Trujillo, J.A.; Groppa, M.D.: In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol. Res. (2017). https://doi.org/10.1016/j.micres.2017.04.007

  37. Yu, Y.Y.; Jiang, C.H.; Wang, C.; Chen, L.J.; Li, H.Y.; Xu, Q.; Guo, J.H.: An improved strategy for stable biocontrol agents selecting to control rice sheath blight caused by Rhizoctonia solani. Microbiol. Res. (2017). https://doi.org/10.1016/j.micres.2017.05.006

  38. Singh, R.K.; Singh, N.P.; Shahi, J.P.; Jaiswal, H.K.: Multiple antibiotic resistant plant growth promoting rhizobacteria (PGPR) expressed significant increase in growth of maize plants. Int. J. Pharm. Biol. Res. 3, 240–248 (2013)

    Google Scholar 

  39. Ramesh, A.; Sharma, S.K.; Sharma, M.P.; Yadav, N.; Joshi, O.P.: Plant growth-promoting traits in Enterobacter cloacae subsp. dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agric. Res. (2014). https://doi.org/10.1007/s40003-014-0100-3

  40. Ghevariya, K.K.; Desai, P.B.: Rhizobacteria of sugarcane: in vitro screening for their plant growth promoting potentials. Res. J. Recent Sci. 3, 52–58 (2014)

    Google Scholar 

  41. Hariprasad, P.; Niranjana, S.R.: Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil (2009). https://doi.org/10.1007/s11104-008-9754-6

    Google Scholar 

  42. Kaur, G.; Reddy, M.S.: Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.). J. Gen. Appl. Microbiol. (2013). https://doi.org/10.2323/jgam.59.295

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanakorn Saengsanga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saengsanga, T. Isolation and Characterization of Indigenous Plant Growth-Promoting Rhizobacteria and Their Effects on Growth at the Early Stage of Thai Jasmine Rice (Oryza sativa L. KDML105). Arab J Sci Eng 43, 3359–3369 (2018). https://doi.org/10.1007/s13369-017-2999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13369-017-2999-8

Keywords

Profiles

  1. Thanakorn Saengsanga