Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Recent advances in phase change materials for thermal energy storage-a review

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The research on phase change materials (PCMs) for thermal energy storage systems has been gaining momentum in a quest to identify better materials with low-cost, ease of availability, improved thermal and chemical stabilities and eco-friendly nature. The present article comprehensively reviews the novel PCMs and their synthesis and characterization techniques for improving the properties and long-term storage capabilities. They include eco-friendly PCMs based on wood and tree fruit oils, microPCMs, nanoconfinement of organic PCMs, metal organic PCMs, bio-based PCMs, metal organic framework (MOF) PCMs and form-stable PCMs with gelators. The novel approaches such as cryogenically treated microencapsulated PCMs and treating them with photo-switching dopants to improve the properties are also presented. This review provides the useful insights about recent advances in the field of PCMs. The phase change slurries can effectively improve the thermal performance of photovoltaic/thermal systems. The thermal conductivity of PCMs can be enhanced significantly by PCM slurries, MOFs, exfoliated graphite nanoplatelets and composite PCMs. Optical control of PCMs by doping them with azobenzene dopants is found to be the most promising technique to improve the thermal stability and long-term storage capacity of PCMs. Cyclic cryogenic treatment by liquid nitrogen followed by heat treatment of PCMs can improve the latent heat, thermal and chemical stabilities significantly. The insightful information presented in this article can serve as an important tool for the researchers in the field of PCMs research to further innovate the technology in different applications such as thermal management of buildings, solar energy storage and cryogenic storage etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSP:

Concentrated solar power

FSPCM:

Form-stabilized PCMs

IR:

Infra-red

LHTESS:

Latent heat thermal energy storage system

MOF:

Metal organic framework

PCESW:

Phase change energy storage wood

PV/T:

Photovoltaic/thermal

UV:

Ultra-violet

References

  1. Lefebvre D, Tezel FH (2017) A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications. Renew Sustain Energy Rev 67:116–125

    Article  Google Scholar 

  2. N’Tsoukpoe KE, Liu H, Le Pierrès N, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sustain Energy Rev 13:2385–2396

    Article  Google Scholar 

  3. Kalnæs SE, Jelle BP (2015) Phase change materials and products for building applications: a state-of-the-art review and future research opportunities. Energy Build 94:150–176

    Article  Google Scholar 

  4. Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernandez AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15:1675–1695

    Article  Google Scholar 

  5. Zalba B, Marin JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  Google Scholar 

  6. Sharma A, Tyagi VV, Chen CR (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345

    Article  Google Scholar 

  7. Du K, Calautit J, Wang Z, Wu Y, Liu H (2018) A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energy 220:242–273

    Article  Google Scholar 

  8. Waqas A, Ji J, Ali M, Alvi JZ (2018) Effectiveness of the phase change material-based thermal energy storage integrated with the conventional cooling systems of the buildings – a review. Proc Inst Mech Eng Part A: J Power Energy 232:735–766

    Article  Google Scholar 

  9. Feng L, Zheng J, Yang H, Guo Y, Li W, Li X (2011) Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol Energy Mater Sol Cells 2011(95):644–650

    Article  Google Scholar 

  10. Chen C, Liu K, Wang H, Liu W, Zhang H (2013) Synthesis and characterization of novel solid–solid phase change materials with a polyurethane urea copolymer structure for thermal energy storage. Sol Energy Mater Sol Cells 2013(117):372–381

    Article  Google Scholar 

  11. Wang C, Feng L, Li W, Zheng J, Tian W, Li X (2012) Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials. Sol Energy Mater Sol Cells 105:21–26

    Article  Google Scholar 

  12. Ferrer G, Sol A, Barreneche C, Martorell I, Cabeza LF (2015) Review on the methodology used in thermal stability characterization of phase change materials. Renew Sustain Energy Rev 50:665–685

    Article  Google Scholar 

  13. Wang X, Lu E, Lin W (2000) Micromechanism of heat storage in a binary system of two kinds of polyalcohols as a solid–solid phase change material. Energy Convers Manage 41:135–144

    Article  Google Scholar 

  14. Chen K, Yu X, Tian C, Wang J (2014) Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage. Energy Convers Manage 77:13–21

    Article  Google Scholar 

  15. Faraj K, Khaled M, Faraj J, Hachem F, Castelain C (2020) Phase change material thermal energy storage systems for cooling applications in buildings: a review. Review Sustain Energy Rev 119:109579

    Article  Google Scholar 

  16. Akeiber H, Nejat P, Majid MZA, Wahid MA, Jomehzadeh F, Famileh IZ, Calautit JK, Hughes BR, Zaki SA (2016) A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev 60:1470

    Article  Google Scholar 

  17. Arivazhagan R, Geetha N, Sivasamy P, Kumaran P, Gnanamithra MK, Sankar S, Loganathan GB, Arivarasan A (2020) Review on performance assessment of phase change materials in buildings for thermal management through passive approach. Mater Today: Proc 22:419

    Google Scholar 

  18. Rathod MK, Banerjee J (2013) Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev 18:246–258

    Article  Google Scholar 

  19. Tung-Chai L, Chi-Sun P (2013) Use of phase change materials for thermal energy storage in concrete: an overview. Constr Build Mater 46:55–62

    Article  Google Scholar 

  20. Lee T, Hawes D, Banu D, Feldman D (2000) Control aspects of latent heat storage and recovery in concrete. Solar Energy Mater Solar Cells 62:217–237

    Article  Google Scholar 

  21. Memon SA (2014) Phase change materials integrated in building walls: a state of the art review. Renew Sustain Energy Rev 31:870–906

    Article  Google Scholar 

  22. Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005

    Article  Google Scholar 

  23. Nazir H, Batool M, Osorio FJB, Isaza-Ruiz M, Xu X, Vignarooban K, Phelan P, Kannan AM (2019) Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf 129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

    Article  Google Scholar 

  24. Liu C, Zhao K, Guo Y, Guo L, Deng T (2020) Solid-liquid phase diagram of the binary system octadecanoic acid and octadecanol and the thermal chemical property of the composition at Eutectic point. J Chem. https://doi.org/10.1155/2020/6750605

    Article  Google Scholar 

  25. Kuznik F, David D, Johannes K, Roux JJ (2011) A review on phase change materials integrated in building walls. Renew Sustain Energy Rev 15:379–391

    Article  Google Scholar 

  26. Asimakopoulou EK, Kolaitis DI, Founti MA (2015) Fire safety aspects of PCM-enhanced gypsum plasterboards: an experimental and numerical investigation. Fire Saf J 72:50–58

    Article  Google Scholar 

  27. Hayat MA, Ali HM, Janjua MM, Pao W, Li C, Alizadeh M (2020) Phase change material/heat pipe and Copper foam-based heat sinks for thermal management of electronic systems. J Energy Storage. https://doi.org/10.1016/j.est.2020.101971

    Article  Google Scholar 

  28. Baetens R, Jelle BP, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build 42:11–1368

    Google Scholar 

  29. Mariaenrica F, Mariateresa L, Antonella S (2019) Phase change materials for energy efficiency in buildings and their use in mortars. Materials 12, 1260. https://doi.org/10.3390/ma12081260www.mdpi.com/journal/materials

  30. Bamonte P, Caverzan A, Kalaba N, Lamperti Tornaghi M (2017) Lightweight concrete containing phase change materials (PCMs): a numerical investigation on the thermal behaviour of cladding panels. Buildings 7:35. https://doi.org/10.3390/buildings7020035

    Article  Google Scholar 

  31. Akeiber H, Nejat P, Majid MZA, Wahid MA, Jomehzadeh F, Zeynali Famileh I, Calautit JK, Hughes BR, Zaki SA (2016) A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev 60:1470–1497

    Article  Google Scholar 

  32. Lu S, Li Y, Kong X, Pang B, Chen Y, Zheng S, Sun L (2017) A review of PCM energy storage technology used in buildings for the global warming solution. In: Energy solutions to combat global warming; Zhang, X., Dincer, I., Eds.; Springer International Publishing: Cham, Switzerland, pp. 611–644.ISBN 978–3–319–26950–4

  33. Mosaffa AH, Garousi FL (2016) Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage. Appl Energy 162:51–526

    Article  Google Scholar 

  34. Iten M, Liu S (2015) Experimental study on the performance of RT 25 to be used as ambient energy storage. Energy Procedia 70:229–240

    Article  Google Scholar 

  35. Osterman E, Hagel K, Rathgeber C, Butala V, Stritih U (2015) Parametrical analysis of latent heat and cold storage for heating and cooling of rooms. Appl Therm Eng 84:138–149

    Article  Google Scholar 

  36. Qureshi FA, Ahmad N, Ali HM (2021) Heat dissipation in bituminous asphalt catalyzed by different metallic oxide nanopowders. Constr Build Mater 276:122220. https://doi.org/10.1016/j.conbuildmat.2020.122220

    Article  Google Scholar 

  37. Cui Y, Xie J, Liu J et al (2015) Review of phase change materials integrated in building walls for energy saving. Procedia Eng 121:763–770

    Article  Google Scholar 

  38. Adesina A (2019) Use of phase change materials in concrete: current challenges. Renew Energy Environ Sustain 4:9

    Article  Google Scholar 

  39. Waqas Adeel, Ji Jie, Ali Majid, Alvi Jahan Zeb (2018) Effectiveness of the phase change material-based thermal energy storage integrated with the conventional cooling systems of the buildings – a review. Proc Inst Mech Eng Part A: J Power Energy 232:735–766

    Article  Google Scholar 

  40. Parameshwaran R, Naresh R, Vinayak Ram V, Srinivas PV (2021) Microencapsulated bio-based phase change material-micro concrete composite for thermal energy storage. J Build Eng 39:102247. https://doi.org/10.1016/j.jobe.2021.102247

    Article  Google Scholar 

  41. Rattner AS, Garimella S (2011) Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA. Energy 36:6172–6183

    Article  Google Scholar 

  42. Li D, Wang J, Ding Y, Yao H, Huang Y (2019) Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage. Appl Energy 236:1168–1182

    Article  Google Scholar 

  43. Li Bo, Kuo H, Wang X, Chen Y, Wang Y, Gerada D, Worall S, Stone I, Yan Y (2020) Thermal management of electrified propulsion system for low-carbon vehicles. Automot Innov 3:299–316. https://doi.org/10.1007/s42154-020-00124-y

    Article  Google Scholar 

  44. Al Hallaj S, Selman JR (2019) A novel thermal management system for electric vehicle batteries using phase-change material. J Electrochem Soc 147(9):3231–3236

    Article  Google Scholar 

  45. Mao Q, Liu N, Peng Li (2018) Recent investigations of phase change materials use in solar thermal energy storage system. Adv Mater Sci Eng. https://doi.org/10.1155/2018/9410560

    Article  Google Scholar 

  46. Dwivedi VK, Tiwari P, T Tiwari (2016) Importance of phase change material (PCM) in solar thermal applications: a review. In: International conference on emerging trends in electrical, electronics and sustainable energy systems (ICETEESES–16). https://doi.org/10.1109/ICETEESES.2016.7581349

  47. Sivashankar M, Selvam C, Manikandan S (2021) A review on the selection of phase change materials for photovoltaic thermal management. IOP Conf Series: Mater Sci Eng 1130:012026. https://doi.org/10.1088/1757-899X/1130/1/012026

    Article  Google Scholar 

  48. Ali HM (2020) Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems–a comprehensive review. Solar Energy 197:163–198. https://doi.org/10.1016/j.solener.2019.11.075

    Article  Google Scholar 

  49. Furqan J, Muhammad AH, Ali NM, Mehmet K, Janjua MM, Ammar N, Ali E, Asim PR (2021) Evaluation of photovoltaic panels using different nano phase change material and a concise comparison: an experimental study. Renew Energy 169:1265–1279. https://doi.org/10.1016/j.renene.2021.01.089

    Article  Google Scholar 

  50. Freeman J, Guarracino I, Kalogirou SA, Markides CN (2017) A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage. Appl Therm Eng 127:1543–1554

    Article  Google Scholar 

  51. Iasiello M, Braimakis K, Andreozzi A, Karellas S (2017) Thermal analysis of a phase change material for a solar organic rankine cycle. J Phys Conf Ser 923:12042

    Article  Google Scholar 

  52. Regin AF, Solanki S, Saini J (2008) Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev 12:2438–2458

    Article  Google Scholar 

  53. Agyenim F, Eames P, Smyth M (2011) Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew Energy 35:198–207

    Article  Google Scholar 

  54. Alvi JZ, Feng Y, Wang Q, Imran M, Khan LA, Pei G (2020) Effect of phase change material storage on the dynamic performance of a direct vapor generation solar organic Rankine cycle system. Energies 13:5904. https://doi.org/10.3390/en13225904

    Article  Google Scholar 

  55. Zhai W, Yang B, Li M, Li S, Xin M, Lin J, Wang L, (2015) Preparation of multi nitrate molten salt and its properties tests. In: 2015 International symposium on material, energy and environment engineering, Changsha, China, pp 28–29

  56. Solé A, Neumann H, Niedermaier S, Martorell I, Schossig P, Cabeza LF (2014) Stability of sugar alcohols as PCM for thermal energy storage. Sol Energy Mater Sol Cells 126:25–134

    Article  Google Scholar 

  57. Mathura A, Kasettya R, Oxleyb J, Mendezb J, Nithyanandam K (2014) Using encapsulated phase change salts for concentrated solar power plant. Energy Procedia 49:908–915. https://doi.org/10.1016/j.egypro.2014.03.098

    Article  Google Scholar 

  58. Zhao J, Rao Z, Liu C, Li Y (2016) Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management”. Appl Therm Eng 93:90–100

    Article  Google Scholar 

  59. Costa SC, Mahkamov K, Kenisarin M, Lynn K, Halimic E, Mullen D (2018) Solar salt latent heat thermal storage for a small solar organic rankine cycle plant. In: Proceedings of the ASME 2018 12th International conference on energy sustainability collocated with the ASME 2018 power conference and the ASME Nuclear Forum, Lake Buena Vista, FL, USA, 24–28 Volume ES2018–7326, p. V001T08A002

  60. Guizzi GL, Manno M, Tolomei LM, Vitali RM (2015) Thermodynamic analysis of a liquid air energy storage system. Energy 93:1639–1647

    Article  Google Scholar 

  61. Peng H, Shan X, Yang Y, Ling X (2018) A study on performance of a liquid air energy storage system with packed bed units. Appl Energy 211:126–135

    Article  Google Scholar 

  62. Morgan R, Nelmes S, Gibson E, Brett G (2015) Liquid air energy storage analysis and first results from a pilot scale demonstration plant. Appl Energy 137:845–853

    Article  Google Scholar 

  63. She X, Peng X, Nie B, Leng G, Zhang X, Weng L (2017) Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression. Appl Energy 206:1632–1642

    Article  Google Scholar 

  64. Edelstein F (1991) The behavior of cryogenic phase change materials used for IR sensor thermal control in space. SAE Transactions. Vol. 100, Section1: Journal of Aerospace, Part 2 pp. 1774–1782. https://www.jstor.org/stable/44548036

  65. Bruzzia M, Chesi A, Baldi A, Tarani F, Mori R, Scaringella M, Carnevale E (2012) Cryogenic thermal storage system for discontinuous industrial vacuum processes. EPJ Web Conf 33:04006

    Article  Google Scholar 

  66. Chen W, Lv G, Hu W, Li D, Chen S, Dai Z (2018) Synthesis and applications of graphene quantum dots: a review. Nanotechnol Rev 7:157–185. https://doi.org/10.1515/ntrev-2017-0199

    Article  Google Scholar 

  67. Sivanathan A, Dou Q, Wang Y, Li Y, Corker J, Zhou Y, Fan M (2020) Phase change materials for building construction: an overview of nano-/microencapsulation. Nanotechnol Rev 9:896–921. https://doi.org/10.1515/ntrev-2020-0067

    Article  Google Scholar 

  68. Dang Wu, Ni B, Liu Y, Chen S, Zhang H (2015) Preparation and characterization of side-chain liquid crystal polymer/paraffin composites as form-stable phase change materials. J Mater ChemA 18(3):9645–9657

    Google Scholar 

  69. Xiong W, Chen Y, Hao M, Zhang L, Mei T, Wang J, Li J, Wang X (2015) Facile synthesis of PEG based shape-stabilized phase change materials and their photo-thermal energy conversion. Appl Therm Eng 91(5):630–63

    Article  Google Scholar 

  70. Jiang Y, Ding EY, Li GK (2002) Study on transition characteristics of PEG/CDA solid–solid phase change materials. Polymer 43:117–120

    Article  Google Scholar 

  71. Pielichowski K, Flejtuch K (2002) Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym Adv Technol 13:690–696

    Article  Google Scholar 

  72. Feng L, Zheng J, Yang H, Guo Y, Li W, Li X (2011) Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol Energy Mater Sol Cells 95(2):644–650

    Article  Google Scholar 

  73. Umair MM, Zhang Y, Iqbal K, Zhang S, Tang B (2019) Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–a review. Appl Energy 235:846–873. https://doi.org/10.1016/j.apenergy.2018.11.017

    Article  Google Scholar 

  74. Liu H, Wang X, Dezhen Wu (2019) Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. Sustain Energy Fuels. https://doi.org/10.1039/C9SE00019D,pp1-129

    Article  Google Scholar 

  75. Lawer-Yolar G, Dawson-Andoh B, Atta-Obeng E (2019) Novel phase change materials for thermal energy storage: evaluation of tropical tree fruit oils. Biotechnol Rep 24(e00359):1–10

    Google Scholar 

  76. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu J, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374

    Article  Google Scholar 

  77. Barreneche C, Vecstaudza J, Bajare D, Fernandez AI (2017) PCM/wood composite to store thermal energy in passive building envelopes. IOP Conf Ser: Mater Sci Eng 251(1):012111. https://doi.org/10.1088/1757-899X/251/1/012111

    Article  Google Scholar 

  78. Lin X, Jia S, Liu J, Wang W, Cao H, Guo Xi, Sun W (2020) Fabrication of thermal energy storage wood based on graphene aerogel encapsulated polyethylene glycol as phase change material. Mater Res Exp 7(095503):1–10. https://doi.org/10.1088/2053-1591/abb261

    Article  Google Scholar 

  79. Tan B, Huang Z, Yin Z, Min X, Liu YG, Wu X, Fang M (2013) Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato. RSC Adv 6:15821–15830

    Article  Google Scholar 

  80. Wang W, Cao H, Liu J, Jia S, Ma L, Guo X, Sun W (2020) A thermal energy storage composite by incorporating microencapsulated phase change material into wood. RSC Adv 10:8097–8103

    Article  Google Scholar 

  81. Parvate S, Singh J, Dixit P, Vennapusa JR, Maiti TK, Chattopadhyay S (2021) Titanium dioxide nanoparticle-decorated polymer microcapsules enclosing phase change material for thermal energy storage and photocatalysis. ACS Appl Polym Mater 3(4):1866–1879. https://doi.org/10.1021/acsapm.0c01410

    Article  Google Scholar 

  82. Zhong Y, Zhou M, Huang F, Lin T, Wan D (2013) Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol Energy Mater Sol Cells 113:195–200

    Article  Google Scholar 

  83. Huang X, Xia W, Zou R (2014) Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage. J Mater Chem A. https://doi.org/10.1039/C4TA04605F

    Article  Google Scholar 

  84. Li G, Zhang X, Zhang X (2018) Graphene aerogel-directed fabrication of phase change composites. Open access peer-reviewed chapter. https://doi.org/10.5772/intechopen.74616

  85. Mitran RA, Ionita S, Lincu D, Berger D, Matei C (2021) A Review of composite phase change materials based on porous silica nanomaterials for latent heat storage applications. Molecules 26:241. https://doi.org/10.3390/molecules26010241

    Article  Google Scholar 

  86. Tariq SL, Ali HM, Akram MA, Janjua MM, Ahmadlouydarab M (2020) Nanoparticles enhanced phase change materials (NePCMs)-a recent review. Appl Therm Eng 176(25):115305. https://doi.org/10.1016/j.applthermaleng.2020.115305

    Article  Google Scholar 

  87. Sun D-Y, Yan S-X, He Z-Z (2018) Magnetically stirring enhanced thermal performance of phase change material. Case Stud Thermal Eng 12:312–318. https://doi.org/10.1016/j.csite.2018.05.001

    Article  Google Scholar 

  88. Alizadeh M, Nabizadeh A, Fazlollahtabar A, Ganji DD (2021) An optimization study of solidification procedure in a wavy- wall storage unit considering the impacts of NEPCM and curved fin. Int Commun Heat Mass Transfer 124:105249

    Article  Google Scholar 

  89. Dang W, Wen W, Chen S, Zhang H (2015) Preparation and properties of a novel form-stable phase change material based on a gelator. J Mater Chem A 6:2589–2600. https://doi.org/10.1039/c4ta06508e

    Article  Google Scholar 

  90. Vasilyev G, Koifman N, Shuster M, Gishvoliner M, Cohen Y, Zussman E (2020) Synergistic effect of two organogelators for the creation of bio based, shape-stable phase-change materials. Am Chem Soc, Langmuir 36:15572–15582. https://doi.org/10.1021/acs.langmuir.0c02960

    Article  Google Scholar 

  91. Zhang X, Deng P, Feng R, Song J (2011) Novel gelatinous shape-stabilized phase change materials with high heat storage density. Solar Energy Mater Solar Cells 95:1213–1218

    Article  Google Scholar 

  92. Wei W, Wang X, Xia M, Dou Y, Yin Z, Wang J, Ping L (2020) A novel composite PCM for seasonal thermal energy storage of solar water heating system. Renew Energy 161(2020):457–469

    Google Scholar 

  93. Ren Y, Chao X, Wang T, Tian Z, Liao Z (2020) A study of manufacturing processes of composite form-stable phase change materials based on Ca(NO3)2–NaNO3 and expanded graphite. Materials 13(23):5368. https://doi.org/10.3390/ma13235368

    Article  Google Scholar 

  94. Muhammad AH, Furqan J, Hamza B (2021) Thermal energy storage. https://www.springer.com/gp/book/9789811611308

  95. Huang K, Li J, Luan X, Liu L, Yang Z, Wang C (2020) Effect of graphene oxide on phase change materials based on disodium hydrogen phosphate dodecahydrate for thermal storage. ACS Omega 5:15210–15217

    Article  Google Scholar 

  96. Guion J, Sauzade JD, Laügt M (1983) Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates. Thermochim Acta 67:167–179

    Article  Google Scholar 

  97. Su W, Darkwa J, Kokogiannakis G (2015) Review of solid−liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev 48:373–391

    Article  Google Scholar 

  98. Ricci JS, Stevens RC, McMullan RK, Klooster WT (2005) Structure of strontium hydroxide octahydrate, Sr(OH)2·8H2O, at 20, 100 and 200 K from neutron diffraction. Acta Crystallogr Sect B: Struct Sci 61:381–386

    Article  Google Scholar 

  99. Smith HG (1953) The crystal structure of strontium hydroxide octahydrate, Sr(OH)2·8H2O. Acta Crystallogr 6:604–609

    Article  Google Scholar 

  100. Himran S, Suwono A, Mansoorith AG (1994) Characterization of alkanes and paraffin waxes for application as phase change energy storage medium. Energy Sour 16:117–128

    Article  Google Scholar 

  101. Kahwaji S, Johnson MB, Kheirabadi AC, Groulx D, White M (2018) A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications. Energy 162:1169–1182

    Article  Google Scholar 

  102. Butler KT, Walsh A, Cheetham AK, Kieslich G (2016) Organised chaos: entropy in hybrid inorganic−organic systems and other materials. Chem Sci 7:6316–6324

    Article  Google Scholar 

  103. McGillicuddy RD, Thapa S, Wenny MB, Gonzalez MI, Mason JA (2020) Metal−organic phase-change materials for thermal energy storage. J Am Chem Soc 142(45):19170–19180. https://doi.org/10.1021/jacs.0c08777

    Article  Google Scholar 

  104. Xiao X, Zhang P, Li M (2013) Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy 112:1357–2136

    Article  Google Scholar 

  105. Xiao X, Zhang P, Li M (2014) Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Therm Sci 81:94–105

    Article  Google Scholar 

  106. Zhang P, MengM ZN, Zhu H, Wang YL, Peng SP (2015) Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl Energy. https://doi.org/10.1016/j.apenergy.(2015).10.075

    Article  Google Scholar 

  107. Xiang J, Drzal LT (2011) Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells 95(7):1811–1818. https://doi.org/10.1016/j.solmat.2011.01.048

    Article  Google Scholar 

  108. Luan Yi, Yang M, Ma Q, Qi Y, Gao H, Zhenyu Wu, Wang Ge (2013) Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties. J Mater Chem A 4:7641–7649. https://doi.org/10.1039/C6TA01676F

    Article  Google Scholar 

  109. Chen X, Gao H, Tang Z, Wang G (2020) Metal-organic framework-based phase change materials for thermal energy storage. Cell Rep Phys Sci 1:100218

    Article  Google Scholar 

  110. Serale G, Cascone Y, Capozzoli A, Fabrizio E, Perino M (2014) Potentialities of a low temperature solar heating system based on slurry phase change materials (PCS). Energy Procedia 62:355–363

    Article  Google Scholar 

  111. Chen H, Gong Y, Wei P, Nie P, Xiong Y, Wang C (2019) Experimental study on the performance of a phase change slurry-based heat pipe solar photovoltaic/thermal cogeneration system. Hindawi Int J Photo Energy 2019:1–10. https://doi.org/10.1155/2019/9579357

    Article  Google Scholar 

  112. Rehman MMU, Qu ZG, Fu RP, Xu HT (2017) Numerical study on free-surface jet impingement cooling with nanoencapsulated phase-change material slurry and nanofluid. Int J Heat Mass Transfer 109, 312–325. https://www.cheric.org/research/tech/periodicals/doi.php?art_seq=1555495

  113. Wu W, Bostanci H, Chow LC, Hong Y, Wang CM, Su M, Kizito JP (2013) Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles. Int J Heat Mass Transfer 58:348–355. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.032

    Article  Google Scholar 

  114. Alqahtani S, Ali HM, Farukh F, Silberschmidt VV, Kandan K (2021) Thermal performance of additively manufactured polymer lattices. J Build Eng 39:102243. https://doi.org/10.1016/j.jobe.2021.102243

    Article  Google Scholar 

  115. Wen-Cong Xu, Sun S, Si Wu (2020) Photoinduced reversible solid-to-liquid transitions using photoswitchable materials. Angew Chem Int Ed. https://doi.org/10.1515/ntrev-2020-0067

    Article  Google Scholar 

  116. Han GGD, Li H, Grossman JC (2017) Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nature Commun. https://doi.org/10.1038/S41467-017-01608-y2pp1-10

    Article  Google Scholar 

  117. Han GGD, Deru JH, Cho EN, Grossman JC (2018) Optically-regulated thermal energy storage in diverse organic phase-change materials. Chem Commun (Camb) 54(76):10722–10725. https://doi.org/10.1039/c8cc05919e

    Article  Google Scholar 

  118. Trivedi GVN, Parameshwaran R (2020) Cryogenic conditioning of microencapsulated phase change material for thermal energy storage. Nature Res Sci Rep 10:18353. https://doi.org/10.1038/s41598-020-75494-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavati Venkateswarlu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkateswarlu, K., Ramakrishna, K. Recent advances in phase change materials for thermal energy storage-a review. J Braz. Soc. Mech. Sci. Eng. 44, 6 (2022). https://doi.org/10.1007/s40430-021-03308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03308-7

Keywords