Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Friction
  3. Article

State of the art of friction modelling at interfaces subjected to elastohydrodynamic lubrication (EHL)

  • Review Article
  • Open access
  • Published: 18 November 2020
  • Volume 9, pages 207–227, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Friction Aims and scope
State of the art of friction modelling at interfaces subjected to elastohydrodynamic lubrication (EHL)
Download PDF
  • Zhuming Bi1,
  • Donald W. Mueller1 &
  • Chris W. J. Zhang2 
  • 1923 Accesses

  • Explore all metrics

Abstract

Elastohydrodynamic lubrication (EHL) is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity. Modelling of contact interfaces under EHL is challenging due to high nonlinearity, complexity, and the multi-disciplinary nature. This paper aims to understand the state of the art of computational modelling of EHL by (1) examining the literature on modeling of contact surfaces under boundary and mixed lubricated conditions, (2) emphasizing the methods on the friction prediction occurring to contact surfaces, and (3) exploring the feasibility of using commercially available software tools (especially, Simulia/Abaqus) to predict the friction and wear at contact surfaces of objects with relative reciprocating motions.

Article PDF

Download to read the full article text

Similar content being viewed by others

Theoretical analysis and numerical investigation on the two-dimensional lubrication characteristics of line contact friction pair

Article 07 February 2025

A practical approach to model tightly coupled elastohydrodynamic lubrication (EHL) at sliding contacts

Article 15 March 2025

Thin Film Lubrication, Lubricants and Additives

Chapter © 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Engineering Fluid Dynamics
  • Engineering Mechanics
  • Surface and Interface and Thin Film
  • Tribology
  • Hydraulic Engineering
  • Surfaces, Interfaces and Thin Film
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Ai X L, Cheng H S, Hua D Y, Moteki K, Aoyama S. A finite element analysis of dynamically loaded journal bearings in mixed lubrication. Tribol Trans 41(2): 273–281(1998)

    Article  Google Scholar 

  2. Andersson S. Prediction of wear in rolling and sliding contacts. In Proceedings of 21 IRG-OECD Meeting on wear of engineering materials, Amsterdam, the Netherlands, 1999: 25–26.

  3. Beheshti A, Khonsari M M. An engineering approach for the prediction of wear in mixed lubricated contacts. Wear 308(1–2): 121–131 (2013)

    Article  Google Scholar 

  4. Dowson D. Elastohyodynamic and micro-elastohydrodynamic lubrication. Wear 190(2): 125–138 (1995)

    Article  Google Scholar 

  5. Liu Y F, Li J, Hu X H, Zhang Z M, Cheng L, Lin Y, Zhang W J. Modeling and control of piezoelectric inertia-friction actuators: review and future research directions. Mech Sci 6(2): 95–107 (2015)

    Article  Google Scholar 

  6. Liu Y F, Zhang W J, Zhang Z M, Hu X H. Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mech Sci 6(1): 15–28 (2015)

    Article  Google Scholar 

  7. Zhang Z M, An Q, Li J W, Zhang W J. Piezoelectric friction-inertia actuator—A critical review and future perspective. Int J Adv Manuf Technol 62(5): 669–685 (2012)

    Article  Google Scholar 

  8. Zhang Q S, Chen D, Yang Q Q, Zhang W J. Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces. Int J Adv Manuf Technol 61(9–12): 1029–1034 (2012)

    Article  Google Scholar 

  9. Zhang Z M, An Q, Zhang W J, Tang Y J, Yang Q, Chen X B. Modelling of directional friction on a fully lubricated surface with regular anisotropic asperities. Meccanica 46(3): 535–545 (2011)

    Article  MATH  Google Scholar 

  10. Li J W, Chen X B, An Q, Tu S D, Zhang W J. Friction models incorporating thermal effects in highly precision actuators. Rev Sci Instrum 80(4): 045104 (2009)

    Article  Google Scholar 

  11. Hu X H, Luo Y G, Chen A, Cao L, Zhang E, Zhang W J. A novel methodology for comprehensive modeling of the kinetic behavior of steerable catheters. IEEE/ASME Trans Mech 24(4): 1785–1797 (2019)

    Article  Google Scholar 

  12. Hu X H, Luo Y G, Chen A, Zhang C, Zhang E. Steerable catheters for minimally invasive surgery: A review and future directions. Comput Assist Surg 23(1): 21–41 (2018)

    Article  Google Scholar 

  13. Blau P J. Fifty years of research on the wear of metals. Tribol Int 30(5): 321–331 (1997)

    Article  Google Scholar 

  14. Abu-Bakar A R, Ouyang H J. Wear prediction of friction material and brake a squeal using the finite element method. Wear 264 (11–12): 1069–1076 (2008)

    Article  Google Scholar 

  15. Bayer R G. Fundamentals of wear failures. In Failure Analysis and Prevention. Becker W T, Shipley R J, Ed. ASM International, 2002: 901–905.

  16. Berger E J. Friction modeling for dynamic system simulation. ApplMech Rev 55(6): 535–577 (2002)

    Google Scholar 

  17. Garnham J E. The wear of bainitic and pearlitic steels. Ph.D. Thesis. Leicester (UK): University of Leicester, 1995.

    Google Scholar 

  18. Podra P, Ansersson S. Simulating sliding wear with finite element method. Tribol Int 32(2): 71–81 (1999)

    Article  Google Scholar 

  19. Bjorling M, Habchi W, Bair S, Larsson R, Marklund P. Towards the true prediction of EHL friction. Tribol Int 66: 19–26 (2013)

    Article  Google Scholar 

  20. Bi Z M, Mueller D W. Friction prediction on pin-to-plate interface of PTFE materials and steel. Friction 7(3): 268–281 (2018)

    Article  Google Scholar 

  21. Jones J R. Lubrication, friction, and wear processes analyzed for space vehicle design criteria. NASA-SP-8063, Sep. 2013.

  22. Xin Q F. Friction and lubrication in diesel engine system design. In Diesel Engine System Design. Xin Q F, Ed. Woodhead Publishing, 2013: 651–758.

  23. Akbarzadeh S, Khonsari M M. Effect of surface pattern on stribeck curve. Tribol Lett 37: 477–486 (2010).

    Article  Google Scholar 

  24. Hironaka S. Boundary lubrication and lubricants, three bond technical new. https://www.threebond.co.jp/en/technical/technicalnews/pdf/tech09.pdf, 1984.

  25. Carden P. Calculation of friction in high performance engines. https://docplayer.net/38162480-Calculation-of-friction-in-high-performance-engines.html, 2010.

  26. Wang Y S, Wang Q J, Lin C H, Shi F H. Development of a set of Stribeck curves for conformal contacts of rough surfaces. Tribol Trans 49(4): 526–535 (2006)

    Article  Google Scholar 

  27. Wang Y S, Wang Q J, Lin C H, Shi F H. Development of a set of Stribeck curves for conformal contacts of rough surfaces. Tribol Lubr Technol 63(4): 32–40 (2007)

    Google Scholar 

  28. Katyal P, Kumar P. On the role of second Newtonian viscosity in EHL point contacts using double newtonian shear-thinning model. Tribol Int 71: 140–148 (2014)

    Article  Google Scholar 

  29. Jacobson B O. Chapter 20 mixed lubrication. Tribol Ser 19: 321–339 (1991)

    Article  Google Scholar 

  30. Seabra J, Scottomayor A, Campos A. Non-Newtonian EHL model for traction evaluation in a rolling-inner ring contact in a rolling bearing. Wear 195(1–2): 53–65 (1996)

    Article  Google Scholar 

  31. Sander D E, Allmaie H, Priebsch H H, Reich F M, Witt M, Fullenback T, Skiadas A, Brouwer L, Schwarze H. Impact of high pressure and shear thinning on journal bearing friction. Tribol Int 81: 29–37 (2015)

    Article  Google Scholar 

  32. Fang N, Chang L, Johnston G J, Webster M N, Jackson A. An experimental/theoretical approach to modeling the viscous behavior of liquid lubricants under EHL conditions. Tribol Ser 39: 769–778 (2001)

    Article  Google Scholar 

  33. Bou-Chakra E, Cayer-Barrioz J, Mazuyer D, Jarnias F, Bouffet A. A non-Newtonian model based on Ree-Eyring theory and surface effect to predict friction in elastohydrodynamic lubrication. Tribol Int 43(9): 1674–1682 (2010)

    Article  Google Scholar 

  34. Anuradha P, Kumar P. Effect of lubricant selection on EHL performance of involute spur gears. Tribol Int 50: 82–90 (2012)

    Article  Google Scholar 

  35. Liu Q. Friction in mixed and elastohydrodynamic lubricated contacts including thermal effects. Ph.D. Thesis. Enschede (the Netherlands): Universiteit Twente, 2002.

    Google Scholar 

  36. Lu X B, Khonsari M M, Gelinck E R M. The stribeck curve: Experimental results and theoretical prediction. J Tribol 128(4): 789–794 (2006)

    Article  Google Scholar 

  37. Lu X B, Khonsari M M. An experimental investigation of dimple effect on the stribeck curve of journal bearings. Tribol Lett 27(2): 169–176 (2007)

    Article  Google Scholar 

  38. Galda L, Pawlus P, Sep J. Dimples shape and distribution effect on characteristics of stribeck curve. Tribol Int 42(10): 1505–1512 (2009)

    Article  Google Scholar 

  39. Menezes P L, Kishore, Kailas S V. Influence of roughness parameters on coefficient of friction under lubricated conditions. Sadhana 33(3): 181–190 (2008)

    Article  Google Scholar 

  40. Hua D Y, Qiu L, Cheng H S. Modeling of lubrication in micro contact. Tribol Lett 3(1): 81–86 (1997)

    Article  Google Scholar 

  41. Godet M, Play D. Third-body formation and elimination on carbon-fibre/epoxy composite. In Space Tribology Proceedings of the First European Space Tribology, Frascasti, Italy, 1975: 165–173.

  42. Prakash J, Czichos H. Influence of surface roughness and its orientation on partial elastohydrodynamic lubrication of rollers. J Lubricat Technol 105(4): 591–597(1983)

    Article  Google Scholar 

  43. Akbarzadeh S, Khonsari M M. Performance of spur gears considering surface roughness and shear thinning lubricant. J Tribol 130(2): 021503 (2008)

    Article  Google Scholar 

  44. Menezes P L, Kishore S M, Kailas S V. Role of surface texture on friction and transfer layer formation when Mg-8Al alloy slid against steel counterface. In Proceedings of International Conference on Industrial Tribology, Bangalore, India, 2006: 46–54.

  45. Bair S. Rheology and high-pressure models for quantitative elastohydrodynamics. Proc Inst Mech Eng Part J J Eng Tribol 223(4): 617–628 (2009)

    Article  Google Scholar 

  46. Li J W, Yang G S, Zhang W J, Tu S D, Chen X B. Thermal effect on displacement of piezoelectric slip-stick actuator. Rev Sci Instrum 79(4): 046108 (2008)

    Article  Google Scholar 

  47. Ludema K C. Mechanism-based modeling of friction and wear, Wear 200(1–2): 1–7 (1996)

    Article  Google Scholar 

  48. Siniawski M T, Harris S J, Wang Q. A universal wear law for abrasion. Wear 262(7–8): 883–888 (2007)

    Article  Google Scholar 

  49. Yang J, Fridici V, Messaadi M, Kapsa P. Survival and factorial analysis of durability and friction coefficient of a solid lubricant under different working conditions. Wear 302(1–2): 998–1009 (2013)

    Article  Google Scholar 

  50. Kragelsky I V. Friction and Wear. London (UK): Butterworths, 1965.

    Google Scholar 

  51. Paouris L, Rahmani R, Theodossades S, Rahnejat H, Hunt G, Barton W. Inefficiency predictions in a hypoid gear pair through tribodynamics analysis. Tribol Int 119: 631–644 (2018).

    Article  Google Scholar 

  52. Johnson K L, Greenwood J A, Poon S Y. A Simple theory of asperity contact in elastohydrodynamic lubrication. Wear 19(1): 91–108 (1972)

    Article  Google Scholar 

  53. Challen J M, Oxley P L B, Hockenhull B S. Prediction of Archard’s wear coefficient for metallic sliding friction assuming a low cycle fatigue wear mechanism. Wear 111(3): 275–288 (1986)

    Article  Google Scholar 

  54. Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. Proc Roy Soc A 295(1442): 300–319 (1966)

    Google Scholar 

  55. Ford J J. Roughness effect on friction for multi-asperity contact between surfaces. J Phys D Appl Phys 26(12): 2219–2225 (1993)

    Article  Google Scholar 

  56. Johnson K L, Tevaarwerk J L. Shear behavior of EHD oil films. Proc Roy Soc A Math Phys Eng Sci 356(1685): 215–236 (1977)

    MATH  Google Scholar 

  57. Gupta P K. Visco-elastic effects in MIL-L-7808-type lubricant part III: model implementation in bearing dynamics computer code. Tribol Trans 35(4): 724–730 (1992)

    Article  Google Scholar 

  58. Gupta P K, Cheng H S, Zhu D, Forster N H, Schrand J B. Visco-elastic effects in MIL-L-7808-type lubricant part I: analytical formulation. Tribol Trans 35(2): 269–274 (1992)

    Article  Google Scholar 

  59. Stanley H M, Kato T. An FFT-based method for rough surface contact. J Tribol 119(3): 481–485 (1997)

    Article  Google Scholar 

  60. Ogilvy J A. Numerical simulations of friction between contacting rough surfaces. J Phys D Appl Phys 24(11): 2098–2109 (1991)

    Article  Google Scholar 

  61. Molinari J F, Ortiz M, Radovitzky R, Repetto E A. Finite-element modeling of dry sliding wear in metals. Eng Comput 18(3–4): 592–610 (2001)

    Article  MATH  Google Scholar 

  62. Tian X F, Bhshan B. A numerical three-dimensional model for the contact of rough surfaces by variational principle. J Tribol 118(1): 33–42 (1996)

    Article  Google Scholar 

  63. Hu Y Z, Barber G C, Zhu D. Numerical analysis for the elastic contact of real rough surfaces. Tribol Trans 42(3): 443–452 (1999)

    Article  Google Scholar 

  64. Stolarski T A. Tribology in Machine Design. Amsterdam (the Netherlands): Elsevier, 1999.

    Google Scholar 

  65. Patir N, Cheng H S. Application of average flow model to lubrication bewteen rough sliding surfaces. J Lubricat Technol 101(2): 220–229 (1979)

    Article  Google Scholar 

  66. Patir N, Cheng H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J Lubricat Technol 100(1): 12–17 (1978)

    Article  Google Scholar 

  67. Tripp H J. Surface roughness effects in hydrodynamic lubrication: The flow factor method. J Tribol 105(3): 458–463 (1983)

    Google Scholar 

  68. Xie Z L, Rao Z S, Na T, Liu L, Chen R G. Theoretical and experimental research on the friction coefficient of water lubricated bearing with consideration of wall slip effects. Mech Ind 17(1): 106 (2016)

    Article  Google Scholar 

  69. Payvar P, Salant R F. A computational method for cavitation in a wavy mechanical seal. J Tribol 114(1): 199–204(1992)

    Article  Google Scholar 

  70. Harp S R, Salant R F. Analysis of mechanical seal behavior during transient operation. J Tribol 120(2): 191–197 (1998)

    Article  Google Scholar 

  71. Harp S R, Salant R F. An average flow model of rough surface lubrication with inter-asperity cavitation. J Tribol 123(1): 134–143 (2001)

    Article  Google Scholar 

  72. Stoyanov P, Stemmer P, Järvi T T, Merz R, Romero P A, Scherge M, Kopnarski M, Moseler M, Fischer A, Dienwiebel M. Friction and wear mechanisms of tungsten-carbon systems: A comparison of dry and lubricated conditions. ACS Appl Mater Interfaces 5(13): 6123–6135 (2013)

    Article  Google Scholar 

  73. Carreau P J. Rheological equations from molecular network theories. Trans Soc Rheol 16(1): 99–127 (1972)

    Article  Google Scholar 

  74. Morgado P L, Otero J E, Lejarrago J B S P, Sanz J L M, Lantada A D, Munoz-Guijosa J M, Yustos H L, Wina P L, Garcia J M. Models for predicting friction coefficient and parameters with influence in elastohydrodynamic lubrication. Proc Inst Mech Eng J J Eng Tribol 223(7): 949–958 (2009)

    Article  Google Scholar 

  75. Bair S, Vergne P, Querry M. A unified shear-thinning treatment of both film thickness and tracition in EHD. Tribol Lett 18(2): 145–152 (2005)

    Article  Google Scholar 

  76. Sharif K J, Evans H P, Snidle R W, Newall J P. Modeling of film thickness and traction in a variable ratio traction drive rig. J Tribol 126(1): 92–104 (2004)

    Article  Google Scholar 

  77. Hacioglu B, Dursunkaya Z. Effect of surface texture on compressor piston lubrication. In Proceedings of 2010 International Compressor Engineering Conference at Purdue, Purdue, USA, 2010: 1445.

  78. Otero J E, Morgado P L, Tanarro E C, de la Guerra Ochoa E, Lantada A D, Munoz-Guijosa J M, Sanz J L M. Analytical model for predicting the friction coefficient in point contacts with thermal elastohydrodynamic lubrication. Proc Inst Mech Eng J J Eng Tribol 225(4): 181–191 (2011)

    Article  Google Scholar 

  79. Sui H, Pohl H, Schomburg U, Uppe, G, Heini S. Wear and friction of PTFE seals. Wear 224(2): 175–182 (1999)

    Article  Google Scholar 

  80. Rao A R, Mohanram P V. A study of mixed lubrication parameters of journal bearings. Wear 160(1): 111–118 (1993)

    Article  Google Scholar 

  81. Roshan R, Priest M, Neville A, Morina A, Xia X, Warrens C P, Payne M J. Subscale tribofilm tribological modelling in boundary lubrication using multivariate analysis. Proc Inst Mech Eng J J Eng Tribol 225(2): 58–71 (2011)

    Article  Google Scholar 

  82. Fryza J, Sperka P, Kaneta M, Krupka I, Hartl M. Effects of lubricant rheology and impact speed on EHL film thickness at pure squeeze action. Tribol Int 106: 1–9 (2017)

    Article  Google Scholar 

  83. Chang L. Deterministic modeling and numerical simulation of lubrication between rough surfaces—A review of recent developments. Wear 184(2): 155–160 (1995)

    Article  Google Scholar 

  84. Shirzadegan M, Almqvist A, Larsson R. Fully Coupled EHL model for simulation of finite length line cam-roller follower contacts. Tribol Int 103: 584–598 (2016)

    Article  Google Scholar 

  85. Ghahbavieh A B, Akbarzadeh S, Mosaddegh P. A numerical study on the performance of straight bevel gears operating under lubrication regime. Mech Mach Theory 75: 27–40 (2014)

    Article  Google Scholar 

  86. Olver A V, Spikers H A. Prediction of traction in elastohydrodynamic lubrication. Proc Inst Mech Eng J J Eng Tribol 212(5): 321–332 (1998)

    Article  Google Scholar 

  87. Fillot N, Berro H, Vergne P. From continuous to molecular scale in modeling elastohydrodynamic lubrication: nanoscale surface slip effects on film thickness and friction. Tribol Lett 43(3): 257–266 (2011)

    Article  Google Scholar 

  88. Ghaednia H, Jackson R L. The effect of nanoparticles on the real area of contact, friction, and wear. J Tribol 135(4): 041603 (2013)

    Article  Google Scholar 

  89. Lee C H, Polycarpou A A. Static friction experiments and verification of an improved elastic-plastic model including roughness effects. J Tribol 129(4): 754–760 (2007)

    Article  Google Scholar 

  90. Zhao B, Zhang Z N, Dai X D. Modeling and prediction of wear at revolute clearance joints in flexible multibody systems. Proc Inst Mech Eng C J Mech Eng Sci 228(2): 317–329(2014)

    Article  Google Scholar 

  91. Zheng K, Liu H J. Investigation on wear prediction model of dental restoration material based on ensemble learning. Mater Res Innov 18(S2): S2-987–S2-991 (2014)

    Article  MathSciNet  Google Scholar 

  92. Kumar K R, Mohanasundaram K M, Arumaikkannu G, Subramanian R. Artificial neural networks based prediction of wear and frictional behaviour of aluminium (A380)-fly ash composites. Tribol Mater Surf Interfaces 6(1): 15–19 (2012)

    Article  Google Scholar 

  93. Nagaraj A, Shivalingappa D, Koti H, Channankaiah. Modeling and predicting adhesive wear behavior of aluminum-silicon alloy using neural networks. Int J Recent Sci Res 3(5): 378–381 (2012)

    Google Scholar 

  94. Senatore A, D’Agostino V, di Giuda R, Petrone V. Experimental investigation and neural network prediction of brakes and clutch material frictional behaviour considering the sliding acceleration influence. Tribol Int 44(10): 1199–1207 (2011)

    Article  Google Scholar 

  95. Okuyucu H, Kurt A, Arcaklioglu E. Artificial neural network application to the friction stir welding of aluminum plates. Mater Design 28(1): 78–84 (2007)

    Article  Google Scholar 

  96. Varade B V, Kharde Y R. Prediction of specific wear rate of glass filled ptfe composites by artificial neural networks and taguchi approach. Int J Eng Res Appl 2(6): 679–683 (2012)

    Google Scholar 

  97. Prater T J, Strauss A M, Cook G E, Machemehl C, Sutton P, Cox C D. Statistical modeling and prediction of wear in friction stir welding of a metal matrix composite (Al 350/SiC/20p). J Manuf Technol Res 2: 1–13 (2010)

    Google Scholar 

  98. Békési N. Modelling friction and abrasive wear of elastomers. In Advanced Elastomers-Technology, Properties and Applications. Boczkowska A, Ed. London(UK): IntechOpen, 2012.

    Google Scholar 

  99. Wu J J. The properties of asperities of real surfaces. J Tribol 123(4): 872–883 (2001)

    Article  Google Scholar 

  100. Francis H A. Application on spherical indentation mechanics to reversible and irreversible contact between rough surfaces. Wear 45(2): 221–269 (1977)

    Article  Google Scholar 

  101. Han L, Zhang D W, Wang F J. Predicting film parameter and friction coefficient for helical gears considering surface roughness and load variation. Tribol Trans 56(1): 49–57 (2013)

    Article  Google Scholar 

  102. Kim N H, Won D, Burris D, Holtkamp B, Gessel G R, Swanson P, Sawyer W G. Finite element analysis and experiments of metal/metal wear in oscillatory contacts. Wear 258(11–12): 1787–1793 (2005)

    Article  Google Scholar 

  103. Mendonça A CF, Padua A A H, Malfreyt P. Nonequilibrium molecular simulations of new ionic lubricants at metallic surfaces: Prediction of the friction. J Chem Theory Comput 9(3): 1600–1610 (2013)

    Article  Google Scholar 

  104. van der Steen R. Tyre/road friction modeling. Eindhoven University of Technology. http://www.mate.tue.nl/mate/pdfs/8147.pdf, 2007.

  105. Gay R. Friction and wear behaviours of self-lubricating bearing linear. Ph.D Thesis. Wales (UK): Cardiff University, 2013.

    Google Scholar 

  106. McColl I R, Ding J, Leen S B. Finite element simulation and experimental validation of fretting wear. Wear 256(11–12): 1114–1127 (2004)

    Article  Google Scholar 

  107. Liu J, Shen H M, Yang Y R. Finite element implementation of a varied friction model applied to torsional fretting wear. Wear 314(1–2): 220–227 (2014)

    Article  Google Scholar 

  108. Belhocine A, Bakar A R A, Bouchetara M. Numerical modeling of disc brake system in frictional contact. Tribol Ind 36(1): 49–66 (2014)

    Google Scholar 

  109. Moghaddam S R M. Finite element analysis of contribution of adhesion and hysteresis to shoe-floor friction. M.S. Thesis. Milwaukee (USA): University of Wisconsin-Milwaukee, 2013.

    Google Scholar 

  110. Gustafsson E. Investigation of friction between plastic parts. M.S. Thesis. Göteborg (Sweden): Chalmers University of Technology, 2013.

    Google Scholar 

  111. Jiang X F, Hua D Y, Cheng H S, Ai X L, Lee S C. A mixed elastohydrodynamic lubrication model with asperity contact. J Tribol 121(3): 481–491 (1999)

    Article  Google Scholar 

  112. Wang X Z, Masood S H, Dingle M E. An investigation on tool wear prediction in automotive sheet metal stamping die using numerical simulation. In Proceedings of International MultiConference of Engineers and Computer Scientists, Hong Kong, China: 2009.

  113. Skuric V, de Jaeger P, Jasak H. Lubricated elastoplastic contact model for metal forming processes in OpenFOAM. Comput Fluids 172: 226–240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  114. Salant R F. Rotary Dynamic Seals. In Modern Tribology Handbook. Bhushan B, Ed. Boca Raton: CRC Press LLC, 2001.

    Google Scholar 

  115. García J M, Martini A. Measured and predicted static friction for real rough surfaces in point contact. J Tribol 134(3): 031501 (2012)

    Article  Google Scholar 

  116. Feng K, Guo Z Y. Prediction of dynamic characteristics of a bump-type foil bearing structure with consideration of dynamic friction. Tribol Trans 57(2): 230–241 (2014)

    Article  Google Scholar 

  117. Gelinck E R M, Schipper D J. Calculation of Stribeck curves for line contacts. Tribol Int 33(3–4): 175–181 (2000)

    Article  Google Scholar 

  118. Stähl J, Jacobson B O. A Non-Newtonian model based on limiting shear stress and slip planes—Parametric studies. Tribol Int 36(11): 801–806 (2003)

    Article  Google Scholar 

  119. Ma Z, Henein N A, Bryzik W. A model for wear and friction in cylinder liners and piston rings. Tribol Trans 49(3): 315–327 (2006)

    Article  Google Scholar 

  120. Kim J S, Sung I H, Kim Y T, Kim D E, Jang Y H. Analytical model development for the prediction of the fictional resistance of a capsule endoscope inside an intestine. Proc Inst Mech Eng H J Eng Med 221(8): 837–845(2007)

    Article  Google Scholar 

  121. Pálfi L, Békési N, Goda T, Váradi K, Czifra A. FE simulation of the hysteretic friction considering the surface topography. Period Polytech Mech Eng 52(2): 83–91 (2008)

    Article  Google Scholar 

  122. Scaraggi M, Persson BNJ. Rolling friction: Comparison of analytical theory with exact numerical results. Tribol Lett 55(1): 15–21 (2014)

    Article  Google Scholar 

  123. Mitutoyo. Practical tip for laboratory and workshop. http://www.mitutoyo.com/pdf/1984_surf_roughness_pg.pdf, 1984.

  124. Bhushan B. Surface roughness analysis and measurement techniques. In Modern Tribology Handbook. Bhushan B, Ed. Boca Raton (USA): CRC, 2001.

    Google Scholar 

  125. Kalin M, Kogovsek J. Surface roughness and its effects in tribology. http://www.biotinet.eu/downloads/1st%20Workshop%20Slovenia/BioTiNet_Kalin.pdf, 2011.

  126. Allen C W, Zaretsky E V. Microasperity Model for Elastohydrodynamic Lubrication of a Spinning Ball on A Flat Surface. https://ntrs.nasa.gov/api/citations/19700033084/downloads/19700033084.pdf, 1970.

  127. Patir N. A numerical procedure for random generation of rough surfaces. Wear 47(2): 263–377 (1978)

    Article  Google Scholar 

  128. Söderberg A. Interface modeling: Friction and wear. Ph.D Thesis. Stockholm (Sweden): Royal Institute of Technology, 2009.

    Google Scholar 

  129. Syafa’at I, Setiyana B, Ismail R, Saputra E, Jamari J, Schipper D J. Prediction of sliding wear of artificial rough surfaces. In Proceedings of International Conference on Chemical and Material Engineering 2012. Semarang, Indonesia, 2012.

  130. Thompson M K. Methods for generating rough surfaces in ANSYS. https://www.researchgate.net/publication/237566348_Methods_for_Generating_Rough_Surfaces_in_ANSYS, 2006.

  131. Tavares S MO. Analysis of surface roughness and models of mechanical contacts. https://paginas.fe.up.pt/~em00021/eramus/project_english.pdf, 2004–2005.

  132. McCormick H, Duho K. A brief history of the development of 2-d surface finish characterization and more recent developments in 3-d surface finish characterization. http://www.c-kengineering.com/images/pdf/product/surface%20finish/see%203da/3-D%20Surface%20Measurement-presentation.pdf, 2007.

  133. Lee S C, Cheng H S. On the relation of load to average gap in the contact between surfaces with longitudinal roughness. Tribol Trans 35(3): 523–529 (1992)

    Article  Google Scholar 

  134. Hu Y Z, Tonder K. Simulation of 3-D random rough surface by 2-d digital filter and Fourier analysis. Int J Mach Tools Manufact 32(1–2): 83–90 (1992)

    Article  Google Scholar 

  135. Taylor J B, Carrano A L, Kandlikar S G. Characterization of the effect of surface roughness and texture on fluid flow—Past, present, and future. Int J Therm Sci 45(10): 962–968 (2006)

    Article  Google Scholar 

  136. Bergström D. Rough surface generation & analysis. http://www.mysimlabs.com/surface_generation.html, 2012.

  137. Pawlus P, Reizer R, Wieczorowski M. A review of methods of random surface topology modeling. Tribol Int 152: 106530 (2020).

    Article  Google Scholar 

  138. Chang L. Discussion: “Numerical simulation of the overrolling of a surface feature in an EHL line contact” (Venner, C. H., Lubrecht A. A., and ten Napel, W. E., 1989, ASME J. Tribol., 111, pp. 777–783). J Tribol 115(1): 203 (1993)

    Article  Google Scholar 

  139. Chang L, Webster M N. A study of elastohydrodynamic lubrication of rough surfaces. J Tribol 113(1): 110–115 (1991)

    Article  Google Scholar 

  140. Chang L. Traction in thermal elastohydrodynamic lubrication of rough surfaces. J Tribol 114(1): 186–191 (1992)

    Article  Google Scholar 

  141. Karpenko Y A, Akay A. A numerical model of friction between rough surfaces. Tribol Int 34(8): 531–545 (2001)

    Article  Google Scholar 

  142. Venner C H. EHL Film thickness computations at low speeds: risk of artificial trends as a result of poor accuracy and implications for mixed lubrication modelling. Proc Inst Mech Eng J J Eng Tribol 219(4): 285–290 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The first author Zhuming Bi would like to acknowledge the sponsorship of Senior Summer Faculty Grant from Purdue University Fort Wayne (PFW) and the Faculty Collaborative Research Grant from Purdue University Fort Wayne (PFW).

Author information

Authors and Affiliations

  1. Civil and Mechanical Engineering, Purdue University, Fort Wayne, IN, 46805, USA

    Zhuming Bi & Donald W. Mueller

  2. Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

    Chris W. J. Zhang

Authors
  1. Zhuming Bi
    View author publications

    Search author on:PubMed Google Scholar

  2. Donald W. Mueller
    View author publications

    Search author on:PubMed Google Scholar

  3. Chris W. J. Zhang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Zhuming Bi.

Additional information

Zhuming BI. He received the bachelor degree in manufacturing engineering in 1987 from Harbin University of Science and Technology, the master of Science in mechanical engineering and the Ph.D. degree in mechatronic control and automation from Harbin Institute of Technology in 1991 and 1994, respectively. He received the second Ph.D. degree in mechanical engineering from University of Saskatchewan in 2002. He is a professor of mechanical engineering in Purdue University Fort Wayne, and his research interests are modelling and simulation, manufacturing systems, robotics, and automation.

Donald W. MUELLER. He received all of his bachelor degree, master of science, and Ph.D. degree in mechanical engineering from University of Missouri-Rolla. He is an associate professor of mechanical engineering in Purdue University Fort Wayne, and his research interests are thermal sciences, machine design, and numerical methods.

Chris W. J. ZHANG. He received the Ph.D. degree from the Delft University of Technology, Delft, the Netherlands, in 1994. He is currently a full professor with the Department of Mechanical Engineering and the Division of Biomedical Engineering, University of Saskat-chewan, Saskatoon, SK, Canada. He has authored/coauthored more than 280 technical papers in peer-reviewed journals and more than 190 technical papers in peer-reviewed conference proceedings. His current research interests include informatics, design, modeling, and control of micromotion systems, and modeling and management of large complex systems such as socio-tech and physical-biological systems and human systems.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Z., Mueller, D.W. & Zhang, C.W.J. State of the art of friction modelling at interfaces subjected to elastohydrodynamic lubrication (EHL). Friction 9, 207–227 (2021). https://doi.org/10.1007/s40544-020-0449-1

Download citation

  • Received: 24 May 2020

  • Revised: 14 July 2020

  • Accepted: 25 August 2020

  • Published: 18 November 2020

  • Issue Date: April 2021

  • DOI: https://doi.org/10.1007/s40544-020-0449-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • elastohydrodynamic lubrication (EHL)
  • lubricant rheology
  • finite element analysis (FEA)
  • friction prediction
  • Simulia/Abaqus
  • surface roughness
  • coefficient of friction (CoF)
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature