Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Bacterial Polysaccharides: An Overview

  • Reference work entry
  • First Online:
Polysaccharides
  • 7275 Accesses

  • 18 Citations

Abstract

Bacterial cell wall and membrane are associated with a variety of glycoconjugates and polysaccharides which aids in structural formation as well as performing various functions in the bacterial cell. In gram-negative bacteria, peptidoglycan is majorly present in the periplasmic space and it provides mechanical strength as well as shape to the cell. In some cases, the periplasm contains membrane-derived oligosaccharides (MDOs), which are involved in osmoregulation. The outer membrane mainly contains lipopolysaccharides (LPSs) that bind to divalent cations or chelators for structure stabilization and to increase outer membrane permeability. This LPS contains lipid A, also known as endotoxin, which has shown a powerful biological effect in mammals such as fever, septic shock, multiple organ failure, and mortality. The mucoid (slime-producing) strains contain capsular polysaccharide which aids as virulence factor. The gram-positive bacteria lack an outer membrane and have a much thicker peptidoglycan layer along with a specialized polysaccharide known as teichoic acid. It provides cell wall integrity through complex formation with cations and also assists in cell growth regulation. The present report attempts to provide an overview of bacterial polysaccharide structure, occurrence, and their important functions, along with the biosynthesis and major inhibitors to block biosynthetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 449.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 449.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ACP:

Acyl carrier protein

CPS:

Capsular polysaccharide

Gal:

Galactose

Glc:

Glucose

GlcNAc:

N-Acetylglucosamine

GT:

Glycosyltransferase

HMM-PBPs:

High molecular mass PBPs

LAL assay:

Limulus amebocyte lysate assay

LOS:

Lipooligosaccharides

LPS:

Lipopolysaccharides

LTA polymers:

Lipoteichoic acid polymers

lDAP:

l-Diaminopimelic acid

Man:

Mannose

MDOs:

Membrane-derived oligosaccharides

MurNaC:

N-Acetylmuramic acid

NBD:

Nucleotide-binding domain

OPGs:

Osmoregulated periplasmic glucans

PBPs:

Penicillin-binding proteins

PG:

Lysophosphatidylglycerol

WTAs:

Wall TAs

References

  • Abbas AK (2006) Basic immunology. W.B. Saunders Company, Elsevier – Health Sciences Division, St. Louis MO 63146-3313 USA. ISBN 978-1-4160-2974

    Google Scholar 

  • Agrawal A, Murphy TF (2011) Haemophilus influenzae infections in the H. influenzae Type b conjugate vaccine era. J Clin Microbiol 49:3728–3732

    Article  CAS  Google Scholar 

  • Aly R, Shinefield HR, Litz C, Maibach HI (1980) Role of teichoic acid in the binding of Staphylococcus aureus to nasal epithelial cells. J Infect Dis 141:463–465

    Article  CAS  Google Scholar 

  • Banerjee DK (1989) Amphomycin inhibits mannosylphosphoryldolichol synthesis by forming a complex with dolichylmonophosphate. J Biol Chem 264:2024–2028

    CAS  Google Scholar 

  • Banerjee A, Wang R, Supernavage SL, Ghosh SK, Parker J, Ganesh NF, Wang PG, Gulati S, Rice PA (2002) Implications of phase variation of a gene (pgt A) encoding a pilin galactosyltransferase in gonococcal pathogenesis. J Exp Med 196:147–162

    Article  CAS  Google Scholar 

  • Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in response to the gut microbiota. Cell Host Microbe 2:371–382

    Article  CAS  Google Scholar 

  • Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176

    Article  CAS  Google Scholar 

  • Bhattacharjee A, Jennings H, Kenny C, Martin A, Smith I (1975) Structural determination of the sialic acid polysaccharide antigens of Neisseria meningitidis serogroups B and C with carbon 13 nuclear magnetic resonance. J Biol Chem 250:1926–1932

    CAS  Google Scholar 

  • Bhavsar AP, D’Elia MA, Sahakian TD, Brown ED (2007) The amino terminus of Bacillus subtilis TagB possesses separable localization and functional properties. J Bacteriol 189:6816–6823

    Article  CAS  Google Scholar 

  • Bohin JP (2000) Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 186:11–19

    Article  CAS  Google Scholar 

  • Bohin JP, Lacroix JM (2006) Osmoregulation in the periplasm. In: Ehrmann M (ed) The periplasm. ASM Press, Washington, DC, pp 325–341

    Google Scholar 

  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Audrey MN, Francesca F, Kieran MT, Chantal C, Aure´lie W, Evelyne D, Be´atrice C, Thierry S, Bernard C, Jean F, Jean-François T, Glenn RG, Louis C, Nathalie MD, Marie CA, Re´my B (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  CAS  Google Scholar 

  • Ceccanti M, Attili A, Balducci G, Attilia F, Giacomelli S, Rotondo C, Sasso GF, Xirouchakis E, Attilia ML (2006) Acute alcoholic hepatitis. J Clin Gastroenterol 40(9):833–841

    Article  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Fermentative production of microbial cellulose. Food Technol Biotechnol 47(2):107–124

    CAS  Google Scholar 

  • Chia J-S, Chang LY, Chen J-Y (2001) A 60-kilodalton immunodominant glycoprotein is essential for cell wall integrity and the maintenance of cell shape in Streptococcus mutans. Infect Immun 69:6987–6998

    Article  CAS  Google Scholar 

  • Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  CAS  Google Scholar 

  • Currie BJ, Fisher DA, Anstey NM, Jacups SP (2000) Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg 94:301–304

    Article  CAS  Google Scholar 

  • Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. Microbiol Mol Biol Rev 73:155–177

    Article  CAS  Google Scholar 

  • DeAngelis PL (1999) Molecular directionality of polysaccharide polymerization by the Pasteurella multocida Hyaluronan synthase. J Biol Chem 274:26557–26562

    Article  CAS  Google Scholar 

  • Dedonder RA, Hassid WZ (1964) The enzymatic synthesis of a (beta-i, 2-)-linked glucan by an extract of Rhizobium japonicum. Biochim Biophys Acta 90:239–248

    Article  CAS  Google Scholar 

  • Finne J (1982) Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain. J Biol Chem 260:1265–1270

    Google Scholar 

  • Gahlawat G, Srivastava AK (2013) Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies. Bioresour Technol 137:98–105

    Article  CAS  Google Scholar 

  • Geiger B, Ayalon O, Ginsberg D, Volberg T, Rodriguez-Fernandez JL, Yarden Y, Ben-Zeev A (1992) Cytoplasmic control of cell adhesion. Cold Spring Harb Symp Quant Biol 57:631–641

    Article  CAS  Google Scholar 

  • Gotschlich EC, Fraser BA, Nishimura O, Robbins JB, Liu TY (1981) Lipid on capsular polysaccharides of gram-negative bacteria. J Biol Chem 256:8915–8921

    CAS  Google Scholar 

  • Grados O, Ewing VM (1970) Antigenic Relationships between Escherichia coli and Neisseria meningitidis group B. J Infect Dis 122:100–103

    Article  CAS  Google Scholar 

  • Grass S, Buscher AZ, Swords WE, Apicella MA, Barenkamp SJ, Ozchlewski N, Geme JW (2003) The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis. Mol Microbiol 48:737–751

    Article  CAS  Google Scholar 

  • Guerry P, Doig P, Alm RA, Burr DH, Kinsella N, Trust TJ (1996) Identification and characterization of genes required for post-translational modification of Campylobacter coli VC167 flagellin. Mol Microbiol 19:369–378

    Article  CAS  Google Scholar 

  • Hancock IC, Wiseman G, Baddiley J (1976) Biosynthesis of unit that links teichoic-acid to bacterial wall – inhibition by tunicamycin. FEBS Lett 69:75–80

    Article  CAS  Google Scholar 

  • Heijenoort JV (2001) Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11(3):25–36

    Article  Google Scholar 

  • Hershberger C, Binkley SB (1968) Chemistry and metabolism of 3-Deoxy-d-mannooctulosonic acid. I. Stereochemical determination. J Biol Chem 243(7):1578–1584

    CAS  Google Scholar 

  • Howard CJ, Glynn AA (1971) The Virulence for mice of strains of Escherichia coli related to the effects of K antigens on their resistance to phagocytosis and killing by complement. Immunology 20:767–777

    CAS  Google Scholar 

  • Hrabak (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Rev 103:251–256

    CAS  Google Scholar 

  • Ip M, Osterberg LG, Chau PY, Raffin TA (1995) Pulmonary melioidosis. Chest 108:1420–1424

    Article  CAS  Google Scholar 

  • Iwanaga S (2007) Biochemical principle of Limulus test for detecting bacterial endotoxins. Proc Jpn Acad Ser B Phys Biol Sci 4:110–119

    Article  Google Scholar 

  • Jackson BJ, Kennedy EP (1983) The biosynthesis of membrane-derived oligosaccharides: a membrane-bound phosphoglycerol transferase. J Biol Chem 258:2394–2398

    CAS  Google Scholar 

  • Jackson BJ, Bohin J-P, Kennedy EP (1984) Biosynthesis of membrane derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity. J Bacteriol 160(3):976–981

    CAS  Google Scholar 

  • Jimenez N, Senchenkova SN, Knirel YA, Pieretti G, Corsaro MM, Aquilini E, Reque M, Merino S, Tomas JM (2012) Effects of lipopolysaccharide biosynthesis mutations on K1 polysaccharide association with the Escherichia coli cell surface. J Bacteriol 194(13):3356–3367

    Article  CAS  Google Scholar 

  • Kennedy EP (1996) Membrane-derived oligosaccharides (periplasmic l-d-glucans) of Escherichia coli. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Rezniko! WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and salmonella cellular and molecular biology, 2nd edn. American Society for Microbiology, Washington, DC, pp 1064–1074

    Google Scholar 

  • Khanna S, Srivastava AK (2005) Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem 40:2173–2182

    Article  CAS  Google Scholar 

  • Kilár A, Dörnyei Á, Kocsis B (2013) Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-Line separation techniques. Mass Spectrom Rev 32:90–117

    Article  Google Scholar 

  • Lazarevic V, Karamata D (1995) The tagGH operon of Bacillus subtilis168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16:345–355

    Article  CAS  Google Scholar 

  • Lazarevic V, Abellan FX, Moller SB, Karamata D, Mauel C (2002) Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. Microbiology 148:815–824

    CAS  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotech Bioeng 49:1–14

    Article  CAS  Google Scholar 

  • Marceau M, Forest K, Beretti J-L, Tainer J, Nassif X (1998) Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus mediated adhesion. Mol Microbiol 27:705–715

    Article  CAS  Google Scholar 

  • Marquis RE, Mayzel K, Carstensen EL (1976) Cation exchange in the cell walls of gram positive bacteria. Can J Microbiol 22:975–982

    Article  CAS  Google Scholar 

  • Marrec-Fairley M, Piette A, Gallet X, Brasseur R, Hara H, Fraipont C, Ghuysen J-M, Nguyen-Distèche M (2000) Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol Microbiol 37:1019–1031

    Article  CAS  Google Scholar 

  • Masoud H, Ho M, Schollaardt T, Perry MB (1997) Characterization of the capsular polysaccharide of Burkholderia pseudomallei 304b. J Bacteriol 179:5663–5669

    CAS  Google Scholar 

  • Matsuhashi M (1994) Utilization of lipid-linked precursors and the formation of peptidoglycan in the process of cell growth and cell division: membranes enzymes involved in the final steps of synthesis and the mechanism of their regulation. In: Ghuysen J-M, Hakenbeck R (eds) Bacterial cell wall. Elsevier, Amsterdam, pp 55–71

    Chapter  Google Scholar 

  • Moran AP, Prendergast MM, Appelmelk BJ (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol 16:105–115

    Article  CAS  Google Scholar 

  • Opal SM (2010) Endotoxins and other sepsis triggers. Contrib Nephrol 167:14–24

    Article  CAS  Google Scholar 

  • Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA (1995) Structure of the fibre-forming protein pilin a 2.6A ° resolution. Nature 378(6552):32–38

    Article  CAS  Google Scholar 

  • Parija SC (2009) Textbook of microbiology & immunology. Reed Elsevier India Pvt Ltd. ISBN: 8131221636

    Google Scholar 

  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG (2000) The genome sequences of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403(6770):665–668

    Article  CAS  Google Scholar 

  • Perry MB, MacLean LL, Schollaardt T, Bryan LE, Ho M (1995) Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei. Infect Immun 63:3348–3352

    CAS  Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz FJ (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274(13):8405–8410

    Article  CAS  Google Scholar 

  • Power PM, Jennings MP (2003) The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett 218:211–222

    Article  CAS  Google Scholar 

  • Price NPJ, Tsvetanova B (2007) Biosynthesis of the tunicamycins: a review. J Antibiot 60:485–491

    Article  CAS  Google Scholar 

  • Reckseidler-Zenteno SL (2012) Capsular polysaccharides produced by the bacterial pathogen Burkholderia pseudomallei. In: Karunaratne DN (ed) The complex world of polysaccharides. ISBN: 978-953-51-0819-1, InTech Open Access Publisher, Rijeka, Croatia, doi: 10.5772/50116

    Google Scholar 

  • Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CRH, Rick PD (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4(12):495–504

    Article  CAS  Google Scholar 

  • Reid RR, Prodeus AP, Khan W, Hsu T, Rosen FS, Carroll MC (1997) Endotoxin shock in antibody-deficient mice: unraveling the role of natural antibody and complement in the clearance of lipopolysaccharide. J Immunol 159(2):970–975

    CAS  Google Scholar 

  • Reynolds PE (1989) Structure, biochemistry, and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8:943–950

    Article  CAS  Google Scholar 

  • Rittig MG, Kaufmann A, Robins A, Shaw B, Sprenger H, Gemsa D, Foulongne V, Rouot B, Dornand J (2004) Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol 74(6):1045–1055

    Article  Google Scholar 

  • Robbins JB, McCracken GH, Gotschlich EC, Ørskov I, Hanson LA (1974) Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis. N Engl J Med 90:267–271

    Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    Article  CAS  Google Scholar 

  • Roberts IS, Saunders FK, Boulnois GJ (1989) Bacterial capsules and interactions with complement and phagocytes. Biochem Soc Trans 17:462–464

    CAS  Google Scholar 

  • Salton MRJ, Kim KS (1996) Structure. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch, Galveston, Chapter 2. ISBN 0-9631172-1-1

    Google Scholar 

  • Schaeffer C, Messner P (2001) Glycobiology of surface layer proteins. Biochimie 83:591–599

    Article  Google Scholar 

  • Schaeffer C, Graninger M, Messner P (2001) Prokaryotic glycosylation. Proteomics 1:248–261

    Article  Google Scholar 

  • Schertzer JW, Brown ED (2008) Use of CDP-glycerol as an alternate acceptor for the teichoic acid polymerase reveals that membrane association regulates polymer length. J Bacteriol 190:6940–6947

    Article  CAS  Google Scholar 

  • Schirner K, Marles-Wright J, Lewis R, Errington J (2009) Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J 28:830–842

    Article  CAS  Google Scholar 

  • Schmidt MA, Riley LW, Benz I (2003) Sweet new world: glycoproteins in bacterial pathogens. Trends Microbiol 11(12):554–561

    Article  CAS  Google Scholar 

  • Schwan TG, Piesman J (2002) Vector interactions and molecular adaptations of Lyme disease and relapsing fever Spirochetes associated with transmission by ticks. Emerg Infect Dis 8:115–121

    Article  Google Scholar 

  • Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science (N Y) 264(5157):388–393

    Article  CAS  Google Scholar 

  • Stephenson AE, Wu H, Novak J, Tomana M, Mintz K, Fives-Taylor P (2002) The Fab1 fimbrial adhesin is a glycoprotein: antibodies specific for the glycan moiety block the adhesion of Streptococcus parasanguis in an in vitro tooth model. Mol Microbiol 43:147–157

    Article  CAS  Google Scholar 

  • Stimson E, Mumtaz V, Makepeace K, Dell A, Morris HR, Payne G, Saunders JR, Jennings MP, Barker S, Panico M, Blench I, Moxon ER (1995) Meningococcal pilin: a glycoprotein substituted with digalactosyl 2, 4-diacetamido-2, 4, 6,-trideoxyhexose. Mol Microbiol 17:1201–1214

    Article  CAS  Google Scholar 

  • Sutherland IW (1998) Microbial polysaccharides. Biotechnological products of current and future potential. In: Crescenzi V, Dea ICM, Paoletti S, Stivala SS, Sutherland IW (eds) Biomedical and biotechnological advances in industrial polysaccharides. Gordon and Breach Science, New York, pp 123–132

    Google Scholar 

  • Swoboda JG, Campbell J, Meredith TC, Walker S (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11(1):35–45

    Article  CAS  Google Scholar 

  • Szymanski CM, Burr DH, Guerry P (2002) Campylobacter protein glycosylation affects host cell interactions. Infect Immun 70:2242–2244

    Article  CAS  Google Scholar 

  • Szymanski CM, Michael FS, Jarrell HC, Li J, Gilbert M, Larocque S, Vinogradov E, Brisson J-R (2003) Detection of conserved N-linked glycans and phase variable lipo-oligosaccharides and capsules from campylobacter cells by mass spectrometry and high-resolution magic angle spinning NMR spectroscopy. J Biol Chem 278:24509–24520

    Article  CAS  Google Scholar 

  • Todar K (2011) Structure and function of bacterial cells. http://www.textbookofbacteriology.net/structure_5.html

  • Tsujimoto H et al (2003) Diffusion of macrolide antibiotics through the outer membrane of Moraxella catarrhalis. J Infect Chemother 74(4):1045–1055

    Google Scholar 

  • Tzeng YL, Datta A, Kolli VK, Carlson RW, Stephens DS (2002) Endotoxin of Neisseria meningitidis composed only of intact lipid A: inactivation of the meningococcal 3-deoxy-d-manno-octulosonic acid transferase. J Bacteriol 184(9):2379–2388

    Article  CAS  Google Scholar 

  • Upreti RK, Kumar M, Shankar V (2003) Bacterial glycoproteins: functions, biosynthesis and applications. Proteomics 3:363–379

    Article  CAS  Google Scholar 

  • van Heijenoort J (1998) Assembly of the monomer unit of bacterial peptidoglycan. Cell Mol Life Sci 54:300–304

    Article  Google Scholar 

  • Varki A, Cummings R, Esko J et al (eds) (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Ward JB (1981) Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol Rev 45(2):211–243

    CAS  Google Scholar 

  • Warren HS, Fitting C, Hoff E, Adib-Conquy M, Beasley-Topliffe L, Tesini B, Liang X, Valentine C, Hellman J, Hayden D, Cavaillon J-M (2010) Resilience to bacterial infection: difference between species could be due to proteins in serum. J Infect Dis 201(2):223–232

    Article  CAS  Google Scholar 

  • Weidenmaier C, Kokai-Kun J, Kristian S, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond J, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245

    Article  CAS  Google Scholar 

  • Weissborn AC, Kennedy EP (1984) Biosynthesis of membrane-derived oligosaccharides. Novel glucosyltransferase system from Escherichia coli for the elongation of beta 1–2-linked polyglucose chains. J Biol Chem 259(20):12644–12651

    CAS  Google Scholar 

  • White D (2007) The physiology and biochemistry of prokaryotes, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34:415–420

    Article  CAS  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    Article  CAS  Google Scholar 

  • Whitfield C, Valvano M (1993) Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol 35:135–146

    Article  CAS  Google Scholar 

  • Wickham JJR, Halye JL, Kashtanov S, Khandogin J, Rice CV (2009) Revisiting magnesium chelation by teichoic acid with phosphorus solid-state NMR and theoretical calculations. J Phys Chem B 113:2177–2183

    Article  CAS  Google Scholar 

  • Willis LM, Whitfield C (2013) Structure, biosynthesis and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 378:35–44

    Article  CAS  Google Scholar 

  • Wyke AW, Ward JB (1977) Biosynthesis of wall polymers in Bacillus subtilis. J Bacteriol 130(3):1055–1063

    CAS  Google Scholar 

  • Wyle FA, Artenstein MS, Brandt BL, Tramont EC, Kasper DL, Altieri PL, Berman SL, Lowenthal JP (1972) Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis 126:514–521

    Article  CAS  Google Scholar 

  • Yamasaki R, Kerwood DE, Schneider H, Quinn KP, McLeod Griffiss J, Mandrell RE (1994) The structure of lipooligosaccharide produced by neisseria gonorrhoeae, strain 15253, isolated from a patient with disseminated infection: evidence for a new glycosylation pathway of the gonococcal lipooligosaccharide. J Biol Chem 269:30345–30351

    CAS  Google Scholar 

  • Young NM, Brisson J-R, Kelly J, Watson DC, Tessier L, Lanthier PH, Jarrell HC, Cadotte N, Michael FS, Aberg E, Szymanski CM (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277:42530–42539

    Article  CAS  Google Scholar 

  • Zhang YH, Ginsberg C, Yuan Y, Walker S (2006) Acceptor substrate selectivity and kinetic mechanism of Bacillus subtilis TagA. Biochemistry 45:10895–10904

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors, S. M. and V. S., would like to thank the Department of Biotechnology (DBT, India) for providing them assistance in the form of a grant. S. M. and V. S. are the recipients of the DBT-RA.

Authors contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Misra, S., Sharma, V., Srivastava, A.K. (2015). Bacterial Polysaccharides: An Overview. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_68

Download citation

Keywords

Publish with us

Policies and ethics