7 releases
| new 0.1.6 | Jan 24, 2026 |
|---|---|
| 0.1.5 | Jan 21, 2026 |
#64 in Finance
290KB
5.5K
SLoC
polars-backtest
Blazingly fast portfolio backtesting for Polars
- Blazingly fast, written in Rust with Arrow
- Native Polars integration with
df.bt.backtest()namespace - T+1 execution, stop loss, take profit, trailing stop
- Touched exit with intraday OHLC detection
Installation
pip install polars-backtest
# or
uv add polars-backtest
Quick Start
import polars as pl
import polars_backtest as pl_bt
# Long format data: one row per (date, symbol)
df = pl.DataFrame({
"date": ["2024-01-01", "2024-01-01", "2024-01-02", "2024-01-02"],
"symbol": ["AAPL", "GOOGL", "AAPL", "GOOGL"],
"close": [100.0, 50.0, 102.0, 51.0],
"weight": [0.6, 0.4, 0.6, 0.4],
})
# Run backtest
result = df.bt.backtest(trade_at_price="close", position="weight")
Performance
300-day breakout strategy (~2000 stocks, 17 years daily data, 12M rows):
# Finlab
position = close >= close.rolling(300).max()
report = backtest.sim(position, resample="M")
# polars_backtest
df = df.with_columns(
(pl.col("close") >= pl.col("close").rolling_max(300).over("symbol"))
.alias("weight")
)
report = df.bt.backtest_with_report(position="weight", resample="M")
| Finlab | polars_backtest | |
|---|---|---|
| Time | 3.7s | 244ms |
| Speedup | 1x | 15x faster |
just bench # Run benchmarks
Features
- Rust Core - Pure Rust implementation with Arrow
- Native Polars - Works with long format DataFrames, supports Polars expressions
- T+1 Execution - Realistic trading simulation
- Risk Management - Stop loss, take profit, trailing stop, touched exit (OHLC)
- Flexible Rebalancing - Daily, weekly, monthly, or on position change
- Claude Code Skill - AI-powered assistance for backtesting
Claude Code Integration
Get AI-powered assistance for writing and analyzing backtests.
Install the Skill
# 1. Add the marketplace
/plugin marketplace add Yvictor/polars_backtest_extension
# 2. Install the plugin
/plugin install polars-backtest@polars-backtest-marketplace
After installation, Claude Code can help you:
- Write backtest strategies using Polars expressions
- Understand all parameters and their effects
- Analyze results with
get_metrics(),get_stats(), etc. - Debug and optimize your trading strategies
Usage
Basic Backtest
import polars_backtest as pl_bt
# Function API
result = pl_bt.backtest(df, trade_at_price="close", position="weight")
# DataFrame namespace
result = df.bt.backtest(trade_at_price="close", position="weight")
With Expressions
result = df.bt.backtest(
trade_at_price="close",
position=pl.col("signal").cast(pl.Float64),
resample="M",
)
Full Report with Trades
report = pl_bt.backtest_with_report(df, trade_at_price="adj_close", resample="M")
report
BacktestReport(
creturn_len=4219,
trades_count=6381,
total_return=8761.03%,
cagr=29.85%,
max_drawdown=-35.21%,
sharpe=1.13,
win_ratio=46.33%
)
report.get_stats() # or report.stats
shape: (1, 15)
┌────────────┬────────────┬──────┬──────────────┬──────────┬──────────────┬──────────────┐
│ start ┆ end ┆ rf ┆ total_return ┆ cagr ┆ max_drawdown ┆ avg_drawdown │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ date ┆ date ┆ f64 ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
╞════════════╪════════════╪══════╪══════════════╪══════════╪══════════════╪══════════════╡
│ 2008-10-31 ┆ 2025-12-31 ┆ 0.02 ┆ 87.610293 ┆ 0.298538 ┆ -0.352092 ┆ -0.042957 │
└────────────┴────────────┴──────┴──────────────┴──────────┴──────────────┴──────────────┘
┌────────────┬───────────┬──────────────┬───────────────┬──────────┬───────────┬─────────┬───────────┐
│ daily_mean ┆ daily_vol ┆ daily_sharpe ┆ daily_sortino ┆ best_day ┆ worst_day ┆ calmar ┆ win_ratio │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ f64 ┆ f64 ┆ f64 ┆ f64 ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
╞════════════╪═══════════╪══════════════╪═══════════════╪══════════╪═══════════╪═════════╪═══════════╡
│ 0.300815 ┆ 0.249645 ┆ 1.131947 ┆ 1.834553 ┆ 0.195416 ┆ -0.160707 ┆ 0.84784 ┆ 0.463303 │
└────────────┴───────────┴──────────────┴───────────────┴──────────┴───────────┴─────────┴───────────┘
report.creturn # Cumulative returns DataFrame
report.trades # Trade records with MAE/MFE metrics
report.stats # Statistics (same as get_stats())
Benchmark Comparison
Compare strategy performance against a benchmark to get alpha, beta, and rolling win rate:
# Method 1: Use a symbol from your data as benchmark
report = df.bt.backtest_with_report(
position="weight",
benchmark="0050", # Symbol value (e.g., ETF ticker)
)
# Method 2: Provide a benchmark DataFrame
benchmark_df = pl.DataFrame({
"date": [...],
"creturn": [...], # Cumulative return starting at 1.0
})
report = df.bt.backtest_with_report(position="weight", benchmark=benchmark_df)
# Method 3: Set benchmark after creation
report = df.bt.backtest_with_report(position="weight")
report.benchmark = benchmark_df
# get_metrics includes benchmark metrics when benchmark is set
metrics = report.get_metrics()
# Includes: alpha, beta, m12WinRate (12-month rolling win rate vs benchmark)
Liquidity Metrics
Get liquidity metrics by providing optional columns in your DataFrame:
df = pl.DataFrame({
"date": dates,
"symbol": symbols,
"close": prices,
"weight": weights,
"limit_up": limit_up_prices, # For buyHigh metric
"limit_down": limit_down_prices, # For sellLow metric
"trading_value": trading_values, # For capacity metric (e.g., close_raw * volume)
})
report = df.bt.backtest_with_report(position="weight")
metrics = report.get_metrics(sections=["liquidity"])
# Includes: buyHigh, sellLow, capacity
| Metric | Required Column | Description |
|---|---|---|
buyHigh |
limit_up |
Ratio of entries at limit-up price |
sellLow |
limit_down |
Ratio of exits at limit-down price |
capacity |
trading_value |
Strategy capacity (10th percentile of accepted money flow) |
Metrics return null if the required column is not present.
Parameters
| Parameter | Default | Description |
|---|---|---|
trade_at_price |
"close" |
Price column for execution |
position |
"weight" |
Position/weight column |
benchmark |
None |
Benchmark: symbol str or DataFrame with (date, creturn) |
resample |
"D" |
Rebalance frequency |
resample_offset |
None |
Delay rebalance by N days (e.g., "1d", "2d", "1W") |
fee_ratio |
0.001425 |
Transaction fee |
tax_ratio |
0.003 |
Transaction tax |
stop_loss |
1.0 |
Stop loss threshold (1.0 = disabled) |
take_profit |
inf |
Take profit threshold |
trail_stop |
inf |
Trailing stop: exit when maxcr - cr >= trail_stop |
touched_exit |
False |
Use OHLC for intraday stop detection |
Resample Options
| Value | Description |
|---|---|
None |
Only rebalance when position changes |
'D' |
Daily |
'W' |
Weekly (last trading day) |
'W-FRI' |
Weekly on Friday |
'M' |
Monthly (last trading day) |
'Q' |
Quarterly |
'Y' |
Yearly |
Development
Setup
just sync # Install dependencies
just build # Build extension
Test
just test # Fast tests (81)
just test-slow # Slow tests (86)
just test-all # All tests
just bench # Benchmarks
Workflow
just check # Rust check
just test-rust # Rust tests
just build # Build extension
just test # Python tests
just ci # Full CI
Project Structure
polars_backtest_extension/
├── btcore/ # Pure Rust core
│ └── src/simulation/
│ ├── wide.rs # Wide format backtest
│ └── long.rs # Long format (Arrow FFI)
└── polars_backtest/
├── python/ # Python API
│ └── polars_backtest/
│ ├── namespace.py # df.bt namespace
│ └── wide.py # Wide format API
├── src/ # PyO3 bindings
│ └── lib.rs
├── tests/
└── benchmarks/
License
PolyForm Noncommercial 1.0.0
For commercial use, please contact the author to obtain a commercial license.
lib.rs:
btcore: High-performance portfolio backtesting engine
Pure Rust implementation without Python dependencies. This crate can be used standalone or as the backend for polars_backtest.
Overview
This crate provides a complete portfolio backtesting engine that matches the behavior of Finlab's backtest.sim() function.
Key Features
- Equal-weight portfolio simulation
- Configurable transaction costs (fee + tax)
- Stop loss, take profit, and trailing stop
- Position limit per stock
- Comprehensive statistics calculation
Dependencies
~19MB
~338K SLoC