Thanks to visit codestin.com
Credit goes to lib.rs

#rwkv #llm #mamba #neural-network

no-std kizzasi-model

Model architectures for Kizzasi AGSP - Mamba, RWKV, S4, Transformer

1 unstable release

new 0.1.0 Jan 19, 2026

#8 in #mamba


Used in kizzasi-inference

MIT/Apache

1MB
25K SLoC

kizzasi-model

Model architectures for Kizzasi AGSP - Mamba, RWKV, S4, Transformer.

Overview

Production-ready implementations of state-of-the-art sequence models with unified interfaces. All models support O(1) recurrent inference for streaming applications.

Features

  • Mamba & Mamba2: Selective state space models with SSD
  • RWKV v6 & v7: Receptance Weighted Key Value architecture
  • S4/S4D/S5: Structured state space models with HiPPO initialization
  • H3: Hungry Hungry Hippos with shift SSMs
  • Transformer: KV-cache optimized attention
  • Hybrid: Combined Mamba + Attention architectures
  • MoE: Mixture of Experts layer with routing strategies

Quick Start

use kizzasi_model::{Mamba, MambaConfig, AutoregressiveModel};

// Create Mamba model
let config = MambaConfig::base(32, 64); // input_dim, hidden_dim
let mut model = Mamba::new(config)?;

// Single-step inference
let input = Array1::zeros(32);
let output = model.forward(&input)?;

// Or use presets
let tiny_model = Mamba::tiny(32, 32);  // For edge devices
let large_model = Mamba::large(64, 1024); // High accuracy

Supported Models

Model Complexity Memory Best For
Mamba2 O(1) Low Real-time streaming
RWKV O(1) Very Low Long sequences
S4D O(1) Low Continuous signals
Transformer O(n²) High Short contexts
Hybrid O(n) Medium Balanced performance

Documentation

License

Licensed under either of Apache License, Version 2.0 or MIT license at your option.

Dependencies

~36–55MB
~839K SLoC