2 unstable releases
| new 0.2.0 | Jan 18, 2026 |
|---|---|
| 0.1.0 | Jan 10, 2026 |
#637 in Simulation
1,778 downloads per month
1MB
6.5K
SLoC
LLMSim
LLM Traffic Simulator - A lightweight, high-performance LLM API simulator for load testing, CI/CD, and local development.
Overview
LLMSim replicates realistic LLM API behavior without running actual models. It solves common challenges when testing LLM-integrated applications:
- Cost: Real API calls during load tests are expensive
- Rate Limits: Production APIs prevent realistic load testing
- Reproducibility: Real models produce variable responses
- Traffic Realism: LLM responses have unique characteristics (streaming, variable latency, token-based billing)
Features
- Multi-Provider API Support - OpenAI Chat Completions and OpenResponses APIs
- Realistic Latency Simulation - Time-to-first-token (TTFT) and inter-token delays with normal distribution
- Streaming Support - Server-Sent Events (SSE) for both OpenAI and OpenResponses streaming formats
- Accurate Token Counting - Uses tiktoken-rs (OpenAI's tokenizer implementation)
- Error Injection - Rate limits (429), server errors (500/503), timeouts
- Multiple Response Generators - Lorem ipsum, echo, fixed, random, sequence
- Model-Specific Profiles - GPT-5, GPT-4, Claude, Gemini latency profiles
- Real-time Stats Dashboard - TUI dashboard with live metrics (requests, tokens, latency, errors)
- Stats API - JSON endpoint for programmatic access to server metrics
Installation
cargo install llmsim
Demo
Usage
CLI Server
# Start with defaults (port 8080, lorem generator)
llmsim serve
# Start with real-time stats dashboard (TUI)
llmsim serve --tui
# All options
llmsim serve \
--port 8080 \
--host 0.0.0.0 \
--generator lorem \
--target-tokens 150 \
--tui
# Using config file
llmsim serve --config config.yaml
Stats Dashboard
The --tui flag launches an interactive terminal dashboard showing real-time metrics:
- Requests: Total, active, streaming vs non-streaming, requests/sec
- Tokens: Prompt, completion, total, tokens/sec
- Latency: Average, min, max response times
- Errors: Total errors, rate limits (429), server errors (5xx), timeouts
- Charts: RPS and token rate sparklines, model distribution
Controls: q to quit, r to force refresh.
As a Library
use llmsim::{
openai::{ChatCompletionRequest, Message},
generator::LoremGenerator,
latency::LatencyProfile,
};
// Create a latency profile
let latency = LatencyProfile::gpt5();
// Count tokens
let tokens = llmsim::count_tokens("Hello, world!", "gpt-5").unwrap();
// Generate responses
let generator = LoremGenerator::new(100);
let response = generator.generate(&request);
API Endpoints
OpenAI API (/openai/v1/...)
| Endpoint | Method | Description |
|---|---|---|
/openai/v1/chat/completions |
POST | Chat completions (streaming & non-streaming) |
/openai/v1/models |
GET | List available models |
/openai/v1/models/{model_id} |
GET | Get specific model details |
/openai/v1/responses |
POST | Responses API (streaming & non-streaming) |
When using OpenAI SDKs, set the base URL to http://localhost:8080/openai/v1.
OpenResponses API (/openresponses/v1/...)
OpenResponses is an open-source specification for building multi-provider, interoperable LLM interfaces.
| Endpoint | Method | Description |
|---|---|---|
/openresponses/v1/responses |
POST | Create response (streaming & non-streaming) |
LLMSim endpoints
| Endpoint | Method | Description |
|---|---|---|
/health |
GET | Health check |
/llmsim/stats |
GET | Real-time server statistics (JSON) |
Configuration
YAML Config File
server:
port: 8080
host: "0.0.0.0"
latency:
profile: "gpt5"
# Custom values (optional):
# ttft_mean_ms: 600
# ttft_stddev_ms: 150
# tbt_mean_ms: 40
# tbt_stddev_ms: 12
response:
generator: "lorem"
target_tokens: 100
errors:
rate_limit_rate: 0.01
server_error_rate: 0.001
timeout_rate: 0.0
timeout_after_ms: 30000
models:
available:
- "gpt-5"
- "gpt-5-mini"
- "gpt-4o"
- "claude-opus"
Supported Models
| Family | Models |
|---|---|
| GPT-5 | gpt-5, gpt-5-mini, gpt-5.1, gpt-5.2, gpt-5-codex |
| O-Series | o3, o3-mini, o4, o4-mini |
| GPT-4 | gpt-4, gpt-4-turbo, gpt-4o, gpt-4o-mini, gpt-4.1 |
| Claude | claude-opus, claude-sonnet, claude-haiku (with versions) |
| Gemini | gemini-pro |
Latency Profiles
| Profile | TTFT Mean | TBT Mean |
|---|---|---|
| gpt-5 | 600ms | 40ms |
| gpt-5-mini | 300ms | 20ms |
| gpt-4 | 800ms | 50ms |
| gpt-4o | 400ms | 25ms |
| o-series | 2000ms | 30ms |
| claude-opus | 1000ms | 60ms |
| claude-sonnet | 500ms | 30ms |
| claude-haiku | 200ms | 15ms |
| instant | 0ms | 0ms |
| fast | 10ms | 1ms |
Use Cases
- Load Testing - Simulate thousands of concurrent LLM requests
- CI/CD Pipelines - Fast, deterministic tests for LLM integrations
- Local Development - Develop without API keys or costs
- Chaos Engineering - Test behavior under failure scenarios
- Cost Estimation - Estimate token usage before production
Requirements
- Rust 1.83+ (for building from source)
- OR Docker
License
MIT License - see LICENSE for details.
Contributing
See CONTRIBUTING.md for contribution guidelines.
Dependencies
~39–59MB
~707K SLoC