16 releases (7 breaking)
Uses new Rust 2024
| new 0.99.9 | Jan 15, 2026 |
|---|---|
| 0.7.0 | Jan 1, 2026 |
| 0.6.0 | Dec 24, 2025 |
| 0.2.0 | Nov 23, 2025 |
#142 in Biology
551 downloads per month
Used in fastlowess
260KB
5K
SLoC
LOWESS Project
One LOWESS to Rule Them All
The fastest, most robust, and most feature-complete language-agnostic LOWESS (Locally Weighted Scatterplot Smoothing) implementation for Rust, Python, R, Julia, JavaScript, C++, and WebAssembly.
[!IMPORTANT]
The
lowess-projectcontains a complete ecosystem for LOWESS smoothing:
lowess- Core single-threaded Rust implementation withno_stdsupportfastLowess- Parallel CPU and GPU-accelerated Rust wrapper with ndarray integrationR bindings- extendr-based R packagePython bindings- PyO3-based Python packageJulia bindings- Native Julia package with C FFIJavaScript bindings- Node.js packageWebAssembly bindings- WASM packageC++ bindings- Native C++ package with CMake integration
LOESS vs. LOWESS
| Feature | LOESS (This Crate) | LOWESS |
|---|---|---|
| Polynomial Degree | Linear, Quadratic, Cubic, Quartic | Linear (Degree 1) |
| Dimensions | Multivariate (n-D support) | Univariate (1-D only) |
| Flexibility | High (Distance metrics) | Standard |
| Complexity | Higher (Matrix inversion) | Lower (Weighted average/slope) |
[!TIP] Note: For a LOESS implementation, use
loess-project.
Documentation
[!NOTE]
📚 View the full documentation
Why this package?
Speed
The lowess project crushes the competition in terms of speed, wether in single-threaded or multi-threaded parallel execution.
Speedup relative to Python's statsmodels.lowess (higher is better):
| Category | statsmodels | R (stats) | Serial | Parallel | GPU |
|---|---|---|---|---|---|
| Clustered | 163ms | 83× | 203× | 433× | 32× |
| Constant Y | 134ms | 92× | 212× | 410× | 18× |
| Delta (large–none) | 105ms | 2× | 4× | 6× | 16× |
| Extreme Outliers | 489ms | 106× | 201× | 388× | 29× |
| Financial (500–10K) | 106ms | 105× | 252× | 293× | 12× |
| Fraction (0.05–0.67) | 221ms | 104× | 228× | 391× | 22× |
| Genomic (1K–50K) | 1833ms | 7× | 9× | 20× | 95× |
| High Noise | 435ms | 133× | 134× | 375× | 32× |
| Iterations (0–10) | 204ms | 115× | 224× | 386× | 18× |
| Scale (1K–50K) | 1841ms | 264× | 487× | 581× | 98× |
| Scientific (500–10K) | 167ms | 109× | 205× | 314× | 15× |
| Scale Large* (100K–2M) | — | — | 1× | 1.4× | 0.3× |
*Scale Large benchmarks are relative to Serial (statsmodels cannot handle these sizes)
The numbers are the average across a range of scenarios for each category (e.g., Delta from none, to small, medium, and large).
Robustness
This implementation is more robust than R's lowess and Python's statsmodels due to two key design choices:
MAD-Based Scale Estimation:
For robustness weight calculations, this crate uses Median Absolute Deviation (MAD) for scale estimation:
s = median(|r_i - median(r)|)
In contrast, statsmodels and R's lowess uses the median of absolute residuals (MAR):
s = median(|r_i|)
- MAD is a breakdown-point-optimal estimator—it remains valid even when up to 50% of data are outliers.
- The median-centering step removes asymmetric bias from residual distributions.
- MAD provides consistent outlier detection regardless of whether residuals are centered around zero.
Boundary Padding:
This crate applies a range of different boundary policies at dataset edges:
- Extend: Repeats edge values to maintain local neighborhood size.
- Reflect: Mirrors data symmetrically around boundaries.
- Zero: Pads with zeros (useful for signal processing).
- NoBoundary: Original Cleveland behavior
statsmodels and R's lowess do not apply boundary padding, which can lead to:
- Biased estimates near boundaries due to asymmetric local neighborhoods.
- Increased variance at the edges of the smoothed curve.
Features
A variety of features, supporting a range of use cases:
| Feature | This package | statsmodels | R (stats) |
|---|---|---|---|
| Kernel | 7 options | only Tricube | only Tricube |
| Robustness Weighting | 3 options | only Huber | only Huber |
| Scale Estimation | 2 options | only MAR | only MAR |
| Boundary Padding | 4 options | no padding | no padding |
| Zero Weight Fallback | 3 options | no | no |
| Auto Convergence | yes | no | no |
| Online Mode | yes | no | no |
| Streaming Mode | yes | no | no |
| Confidence Intervals | yes | no | no |
| Prediction Intervals | yes | no | no |
| Cross-Validation | 2 options | no | no |
| Parallel Execution | yes | no | no |
| GPU Acceleration | yes* | no | no |
no-std Support |
yes | no | no |
* GPU acceleration is currently in beta and may not be available on all platforms.
Validation
All implementations are numerical twins of R's lowess:
| Aspect | Status | Details |
|---|---|---|
| Accuracy | ✅ EXACT MATCH | Max diff < 1e-12 across all scenarios |
| Consistency | ✅ PERFECT | Multiple scenarios pass with strict tolerance |
| Robustness | ✅ VERIFIED | Robust smoothing matches R exactly |
Installation
Currently available for R, Python, Julia, and Rust:
R (from R-universe, recommended):
install.packages("rfastlowess", repos = "https://thisisamirv.r-universe.dev")
Python (from PyPI):
pip install fastlowess
Or from conda-forge:
conda install -c conda-forge fastlowess
Rust (lowess, no_std compatible):
[dependencies]
lowess = "0.99"
Rust (fastLowess, parallel + GPU):
[dependencies]
fastLowess = { version = "0.99", features = ["cpu"] }
Julia (from Julia General Registry):
using Pkg
Pkg.add("fastLowess")
Node.js (from npm):
npm install fastlowess
WebAssembly (from npm):
npm install fastlowess-wasm
Or via CDN:
<script type="module">
import init, { smooth } from 'https://unpkg.com/fastlowess-wasm@latest';
await init();
</script>
C++ (build from source):
make cpp
# Links against libfastlowess_cpp.so
Quick Example
R:
library(rfastlowess)
x <- c(1, 2, 3, 4, 5)
y <- c(2.0, 4.1, 5.9, 8.2, 9.8)
result <- fastlowess(x, y, fraction = 0.5, iterations = 3)
print(result$y)
Python:
import fastlowess as fl
import numpy as np
x = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
y = np.array([2.0, 4.1, 5.9, 8.2, 9.8])
result = fl.smooth(x, y, fraction=0.5, iterations=3)
print(result["y"])
Rust:
use lowess::prelude::*;
let x = vec![1.0, 2.0, 3.0, 4.0, 5.0];
let y = vec![2.0, 4.1, 5.9, 8.2, 9.8];
let model = Lowess::new()
.fraction(0.5)
.iterations(3)
.adapter(Batch)
.build()?;
let result = model.fit(&x, &y)?;
println!("{}", result);
Julia:
using fastlowess
x = [1.0, 2.0, 3.0, 4.0, 5.0]
y = [2.0, 4.1, 5.9, 8.2, 9.8]
result = fit(Lowess(fraction=0.5, iterations=3), x, y)
println(result.y)
Node.js:
const { Lowess } = require('fastlowess');
const x = [1.0, 2.0, 3.0, 4.0, 5.0];
const y = [2.0, 4.1, 5.9, 8.2, 9.8];
const model = new Lowess({ fraction: 0.5, iterations: 3 });
const result = model.fit(x, y);
console.log(result.y);
WebAssembly:
import init, { smooth } from 'fastlowess-wasm';
await init();
const x = new Float64Array([1.0, 2.0, 3.0, 4.0, 5.0]);
const y = new Float64Array([2.0, 4.1, 5.9, 8.2, 9.8]);
const result = smooth(x, y, { fraction: 0.5, iterations: 3 });
console.log(result.y);
C++:
#include <fastlowess.hpp>
std::vector<double> x = {1.0, 2.0, 3.0, 4.0, 5.0};
std::vector<double> y = {2.0, 4.1, 5.9, 8.2, 9.8};
fastlowess::LowessOptions options;
options.fraction = 0.5;
options.iterations = 3;
fastlowess::Lowess model(options);
auto result = model.fit(x, y);
for (double val : result.y_vector()) std::cout << val << " ";
API Reference
R:
fastlowess(
x, y,
fraction = 0.5,
iterations = 3L,
delta = 0.01,
weight_function = "tricube",
robustness_method = "bisquare",
zero_weight_fallback = "use_local_mean",
boundary_policy = "extend",
confidence_intervals = 0.95,
prediction_intervals = 0.95,
return_diagnostics = TRUE,
return_residuals = TRUE,
return_robustness_weights = TRUE,
cv_fractions = c(0.3, 0.5, 0.7),
cv_method = "kfold",
cv_k = 5L,
auto_converge = 1e-4,
parallel = TRUE
)
Python:
fastlowess.smooth(
x, y,
fraction=0.5,
iterations=3,
delta=0.01,
weight_function="tricube",
robustness_method="bisquare",
zero_weight_fallback="use_local_mean",
boundary_policy="extend",
confidence_intervals=0.95,
prediction_intervals=0.95,
return_diagnostics=True,
return_residuals=True,
return_robustness_weights=True,
cv_fractions=[0.3, 0.5, 0.7],
cv_method="kfold",
cv_k=5,
auto_converge=1e-4,
parallel=True
)
Rust:
Lowess::new()
.fraction(0.5) // Smoothing span (0, 1]
.iterations(3) // Robustness iterations
.delta(0.01) // Interpolation threshold
.weight_function(Tricube) // Kernel selection
.robustness_method(Bisquare)
.zero_weight_fallback(UseLocalMean)
.boundary_policy(Extend)
.confidence_intervals(0.95)
.prediction_intervals(0.95)
.return_diagnostics()
.return_residuals()
.return_robustness_weights()
.cross_validate(KFold(5, &[0.3, 0.5, 0.7]).seed(123))
.auto_converge(1e-4)
.adapter(Batch) // or Streaming, Online
.parallel(true) // fastLowess only
.backend(CPU) // fastLowess only: CPU or GPU
.build()?;
Julia:
Lowess(;
fraction=0.5,
iterations=3,
delta=NaN, # NaN for auto
weight_function="tricube",
robustness_method="bisquare",
zero_weight_fallback="use_local_mean",
boundary_policy="extend",
confidence_intervals=NaN,
prediction_intervals=NaN,
return_diagnostics=true,
return_residuals=true,
return_robustness_weights=true,
cv_fractions=Float64[], # e.g. [0.3, 0.5]
cv_method="kfold",
cv_k=5,
auto_converge=NaN,
parallel=true
)
Node.js:
new Lowess({
fraction: 0.5,
iterations: 3,
delta: 0.01,
weightFunction: "tricube",
robustnessMethod: "bisquare",
zeroWeightFallback: "use_local_mean",
boundaryPolicy: "extend",
confidenceIntervals: 0.95,
predictionIntervals: 0.95,
returnDiagnostics: true,
returnResiduals: true,
returnRobustnessWeights: true,
cvFractions: [0.3, 0.5, 0.7],
cvMethod: "kfold",
cvK: 5,
autoConverge: 1e-4,
parallel: true
}).fit(x, y)
WebAssembly:
smooth(x, y, {
fraction: 0.5,
iterations: 3,
delta: 0.01,
weightFunction: "tricube",
robustnessMethod: "bisquare",
zeroWeightFallback: "use_local_mean",
boundaryPolicy: "extend",
confidenceIntervals: 0.95,
predictionIntervals: 0.95,
returnDiagnostics: true,
returnResiduals: true,
returnRobustnessWeights: true,
cvFractions: [0.3, 0.5, 0.7],
cvMethod: "kfold",
cvK: 5,
autoConverge: 1e-4
})
C++:
fastlowess::LowessOptions options;
options.fraction = 0.5;
options.iterations = 3;
options.delta = 0.01;
options.weight_function = "tricube";
options.robustness_method = "bisquare";
options.zero_weight_fallback = "use_local_mean";
options.boundary_policy = "extend";
options.confidence_intervals = 0.95;
options.prediction_intervals = 0.95;
options.return_diagnostics = true;
options.return_residuals = true;
options.return_robustness_weights = true;
options.cv_fractions = {0.3, 0.5, 0.7};
options.cv_method = "kfold";
options.cv_k = 5;
options.auto_converge = 1e-4;
options.parallel = true;
fastlowess::Lowess model(options);
auto result = model.fit(x, y);
Result Structure
R:
result$x, result$y, result$standard_errors
result$confidence_lower, result$confidence_upper
result$prediction_lower, result$prediction_upper
result$residuals, result$robustness_weights
result$diagnostics, result$iterations_used
result$fraction_used, result$cv_scores
Python:
result.x, result.y, result.standard_errors
result.confidence_lower, result.confidence_upper
result.prediction_lower, result.prediction_upper
result.residuals, result.robustness_weights
result.diagnostics, result.iterations_used
result.fraction_used, result.cv_scores
Rust:
pub struct LowessResult<T> {
pub x: Vec<T>, // Sorted x values
pub y: Vec<T>, // Smoothed y values
pub standard_errors: Option<Vec<T>>,
pub confidence_lower: Option<Vec<T>>,
pub confidence_upper: Option<Vec<T>>,
pub prediction_lower: Option<Vec<T>>,
pub prediction_upper: Option<Vec<T>>,
pub residuals: Option<Vec<T>>,
pub robustness_weights: Option<Vec<T>>,
pub diagnostics: Option<Diagnostics<T>>,
pub iterations_used: Option<usize>,
pub fraction_used: T,
pub cv_scores: Option<Vec<T>>,
}
Julia:
result.x, result.y, result.standard_errors
result.confidence_lower, result.confidence_upper
result.prediction_lower, result.prediction_upper
result.residuals, result.robustness_weights
result.diagnostics, result.iterations_used
result.fraction_used
Node.js:
result.x, result.y, result.standardErrors
result.confidenceLower, result.confidenceUpper
result.predictionLower, result.predictionUpper
result.residuals, result.robustnessWeights
result.diagnostics, result.iterationsUsed
result.fractionUsed, result.cvScores
WebAssembly:
result.x, result.y, result.standardErrors
result.confidenceLower, result.confidenceUpper
result.predictionLower, result.predictionUpper
result.residuals, result.robustnessWeights
result.diagnostics, result.iterationsUsed
result.fractionUsed, result.cvScores
C++:
result.y_vector() // std::vector<double>
result.confidence_lower() // std::vector<double>
result.confidence_upper() // std::vector<double>
result.prediction_lower() // std::vector<double>
result.prediction_upper() // std::vector<double>
result.residuals() // std::vector<double>
result.robustness_weights() // std::vector<double>
result.diagnostics() // Diagnostics struct
result.iterations_used() // size_t
result.fraction_used() // double
Contributing
Contributions are welcome! Please see the CONTRIBUTING.md file for more information.
License
Licensed under either of:
- Apache License, Version 2.0 (LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or https://opensource.org/licenses/MIT)
at your option.
References
- Cleveland, W.S. (1979). "Robust Locally Weighted Regression and Smoothing Scatterplots". JASA.
- Cleveland, W.S. (1981). "LOWESS: A Program for Smoothing Scatterplots". The American Statistician.
Citation
If you use this software in your research, please cite it using the CITATION.cff file or the BibTeX entry below:
@software{lowess_project,
author = {Valizadeh, Amir},
title = {LOWESS Project: High-Performance Locally Weighted Scatterplot Smoothing},
year = {2026},
url = {https://github.com/thisisamirv/lowess-project},
license = {MIT OR Apache-2.0}
}
Dependencies
~2MB
~44K SLoC