Triangulating Rectangular Regions
In this tutorial, we show how you can easily triangulate rectangular regions of the form $[a, b] \times [c, d]$. Rather than using triangulate, you can use triangulate_rectangle for this purpose. To start, we give a simple example
using DelaunayTriangulation
using CairoMakie
a, b, c, d = 0.0, 2.0, 0.0, 10.0
nx, ny = 10, 25
tri = triangulate_rectangle(a, b, c, d, nx, ny)
fig, ax, sc = triplot(tri)
fig
This can be much faster than if we just construct the points in the lattice manually and triangulate those. Here's a comparison of the times.
using BenchmarkTools
points = get_points(tri)
@benchmark triangulate($points; randomise = $false) # randomise=false because points are already in lattice order, i.e. spatially sortedBenchmarkTools.Trial: 837 samples with 1 evaluation per sample.
Range (min … max): 5.692 ms … 18.861 ms ┊ GC (min … max): 0.00% … 61.75%
Time (median): 5.826 ms ┊ GC (median): 0.00%
Time (mean ± σ): 5.972 ms ± 853.484 μs ┊ GC (mean ± σ): 1.01% ± 4.64%
▅█▆▄▁
█████▅▅▄▅▄▁▁▁▁▁▄▁▁▄▄▁▁▄▁▁▄▁▁▁▁▁▁▁▁▄▁▁▁▁▄▄▁▁▄▁▁▁▁▁▅▁▁▁▄▄▁▅▄▅ ▇
5.69 ms Histogram: log(frequency) by time 10.3 ms <
Memory estimate: 1.15 MiB, allocs estimate: 2635.@benchmark triangulate_rectangle($a, $b, $c, $d, $nx, $ny)BenchmarkTools.Trial: 9998 samples with 1 evaluation per sample.
Range (min … max): 364.320 μs … 14.589 ms ┊ GC (min … max): 0.00% … 88.58%
Time (median): 421.827 μs ┊ GC (median): 0.00%
Time (mean ± σ): 496.679 μs ± 526.310 μs ┊ GC (mean ± σ): 12.32% ± 11.00%
██▃▃▁ ▂
█████▆▅▅▄▃▄▃▁▁▃▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▄▆▇▆▆▇▇ █
364 μs Histogram: log(frequency) by time 3.58 ms <
Memory estimate: 1.09 MiB, allocs estimate: 2375.This difference would be more pronounced for larger nx, ny.
Note that the output of triangulate_rectangle treats the boundary as a constrained boundary:
get_boundary_nodes(tri)4-element Vector{Vector{Int64}}:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100 … 160, 170, 180, 190, 200, 210, 220, 230, 240, 250]
[250, 249, 248, 247, 246, 245, 244, 243, 242, 241]
[241, 231, 221, 211, 201, 191, 181, 171, 161, 151 … 91, 81, 71, 61, 51, 41, 31, 21, 11, 1]This boundary is split into four separate sections, one for each side of the rectangle. If you would prefer to keep the boundary as one contiguous section, use single_boundary=true. Moreover, note that this tri has ghost triangles:
triDelaunay Triangulation.
Number of vertices: 250
Number of triangles: 432
Number of edges: 681
Has boundary nodes: true
Has ghost triangles: true
Curve-bounded: false
Weighted: false
Constrained: trueYou can opt into not having these by using delete_ghosts=true:
tri = triangulate_rectangle(a, b, c, d, nx, ny; single_boundary = true, delete_ghosts = true)
triDelaunay Triangulation.
Number of vertices: 250
Number of triangles: 432
Number of edges: 681
Has boundary nodes: true
Has ghost triangles: false
Curve-bounded: false
Weighted: false
Constrained: trueget_boundary_nodes(tri)67-element Vector{Int64}:
1
2
3
4
5
6
7
8
9
10
⋮
81
71
61
51
41
31
21
11
1DelaunayTriangulation.has_ghost_triangles(tri)falseJust the code
An uncommented version of this example is given below. You can view the source code for this file here.
using DelaunayTriangulation
using CairoMakie
a, b, c, d = 0.0, 2.0, 0.0, 10.0
nx, ny = 10, 25
tri = triangulate_rectangle(a, b, c, d, nx, ny)
fig, ax, sc = triplot(tri)
fig
using BenchmarkTools
points = get_points(tri)
@benchmark triangulate($points; randomise = $false) # randomise=false because points are already in lattice order, i.e. spatially sorted
@benchmark triangulate_rectangle($a, $b, $c, $d, $nx, $ny)
get_boundary_nodes(tri)
tri
tri = triangulate_rectangle(a, b, c, d, nx, ny; single_boundary = true, delete_ghosts = true)
tri
get_boundary_nodes(tri)
DelaunayTriangulation.has_ghost_triangles(tri)This page was generated using Literate.jl.