
Embedded Linux System Development

QEMU ARM variant

Practical Labs

https://bootlin.com

November 13, 2025

https://bootlin.com

Embedded Linux System Development

About this document
Updates to this document can be found on https://bootlin.com/doc/training/embedded-linux-qemu.

This document was generated from LaTeX sources found on https://github.com/bootlin/training-materials.

More details about our training sessions can be found on https://bootlin.com/training.

Copying this document
© 2004-2025, Bootlin, https://bootlin.com.

This document is released under the terms of the Creative Commons CC BY-SA 3.0 license
. This means that you are free to download, distribute and even modify it, under certain
conditions.

Corrections, suggestions, contributions and translations are welcome!

2 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com/doc/training/embedded-linux-qemu
https://github.com/bootlin/training-materials
https://bootlin.com/training
https://bootlin.com
https://creativecommons.org/licenses/by-sa/3.0/
https://bootlin.com

Embedded Linux System Development

Training setup
Download files and directories used in practical labs

Install lab data
For the different labs in this course, your instructor has prepared a set of data (kernel images, kernel config-
urations, root filesystems and more). Download and extract its tarball from a terminal:

$ cd
$ wget https://bootlin.com/doc/training/embedded-linux-qemu/embedded-linux-qemu-labs.tar.xz
$ tar xvf embedded-linux-qemu-labs.tar.xz

Lab data are now available in an embedded-linux-qemu-labs directory in your home directory. This directory
contains directories and files used in the various practical labs. It will also be used as working space, in
particular to keep generated files separate when needed.

Update your distribution
To avoid any issue installing packages during the practical labs, you should apply the latest updates to the
packages in your distro:

$ sudo apt update
$ sudo apt dist-upgrade

You are now ready to start the real practical labs!

Install extra packages
Feel free to install other packages you may need for your development environment. In particular, we
recommend to install your favorite text editor and configure it to your taste. The favorite text editors of
embedded Linux developers are of course Vim and Emacs, but there are also plenty of other possibilities,
such as Visual Studio Code1, GEdit, Qt Creator, CodeBlocks, Geany, etc.

It is worth mentioning that by default, Ubuntu comes with a very limited version of the vi editor. So if you
would like to use vi, we recommend to use the more featureful version by installing the vim package.

More guidelines
Can be useful throughout any of the labs

• Read instructions and tips carefully. Lots of people make mistakes or waste time because they missed
an explanation or a guideline.

• Always read error messages carefully, in particular the first one which is issued. Some people stumble
on very simple errors just because they specified a wrong file path and didn’t pay enough attention to
the corresponding error message.

• Never stay stuck with a strange problem more than 5 minutes. Show your problem to your colleagues
or to the instructor.

• You should only use the root user for operations that require super-user privileges, such as: mounting
a file system, loading a kernel module, changing file ownership, configuring the network. Most regular
tasks (such as downloading, extracting sources, compiling...) can be done as a regular user.

1This tool from Microsoft is Open Source! To try it on Ubuntu: sudo snap install code --classic

© 2004-2025 Bootlin, CC BY-SA license 3

https://bootlin.com

Embedded Linux System Development

• If you ran commands from a root shell by mistake, your regular user may no longer be able to handle
the corresponding generated files. In this case, use the chown -R command to give the new files back
to your regular user.
Example: $ sudo chown -R myuser.myuser linux/

4 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

Building a cross-compiling toolchain
Objective: Learn how to compile your own cross-compiling toolchain for the
musl C library

After this lab, you will be able to:

• Configure the crosstool-ng tool

• Execute crosstool-ng and build up your own cross-compiling toolchain

Setup
Go to the $HOME/embedded-linux-qemu-labs/toolchain directory.

For this lab, you need a system or VM with a least 4 GB of RAM.

Install needed packages
Install the packages needed for this lab:

$ sudo apt install build-essential git autoconf bison flex texinfo help2man gawk libtool-bin \
libncurses5-dev unzip gettext python3

Getting Crosstool-ng
Let’s download the sources of Crosstool-ng, through its git source repository, and switch to a commit that
we have tested:

$ git clone https://github.com/crosstool-ng/crosstool-ng
$ cd crosstool-ng/
$ git checkout crosstool-ng-1.28.0

Building and installing Crosstool-ng
As we are not building Crosstool-ng from a release archive but from a git repository, we first need to generate
a configure script and more generally all the generated files that are shipped in the source archive for a
release:

$./bootstrap

We can then either install Crosstool-ng globally on the system, or keep it locally in its download direc-
tory. We’ll choose the latter solution. As documented at https://crosstool-ng.github.io/docs/install/
#hackers-way, do:

$./configure --enable-local
$ make

Then you can get Crosstool-ng help by running

$./ct-ng help

© 2004-2025 Bootlin, CC BY-SA license 5

https://crosstool-ng.github.io/docs/install/#hackers-way
https://crosstool-ng.github.io/docs/install/#hackers-way
https://bootlin.com

Embedded Linux System Development

Configure the toolchain to produce
A single installation of Crosstool-ng allows to produce as many toolchains as you want, for different archi-
tectures, with different C libraries and different versions of the various components.

Crosstool-ng comes with a set of ready-made configuration files for various typical setups: Crosstool-ng calls
them samples. They can be listed by using ./ct-ng list-samples.

We will load the Cortex A9 sample. Load it with the ./ct-ng command.

Then, to refine the configuration, let’s run the menuconfig interface:

$./ct-ng menuconfig

In Path and misc options:

• If not set yet, enable Try features marked as EXPERIMENTAL

In Toolchain options:

• Set Tuple's vendor string (TARGET_VENDOR) to training.

• Set Tuple's alias (TARGET_ALIAS) to arm-linux. This way, we will be able to use the compiler with
arm-linux-gcc, a shorter name that the name based on complete toolchain tuple.

In Operating System:

• Set Version of linux to the closest, but older version to 6.1. It’s important that the kernel headers
used in the toolchain are not more recent than the kernel that will run on the board (v6.1).

In C-library:

• If not set yet, set C library to musl (LIBC_MUSL)

• Keep the default version that is proposed

In C compiler:

• Set Version of gcc to 14.2.0.

• Make sure that C++ (CC_LANG_CXX) is enabled

In Debug facilities:

• Remove all options here. Some debugging tools can be provided in the toolchain, but they can also be
built by filesystem building tools.

Explore the different other available options by traveling through the menus and looking at the help for some
of the options. Don’t hesitate to ask your trainer for details on the available options. However, remember
that we tested the labs with the configuration described above. You might waste time with unexpected issues
if you customize the toolchain configuration.

Produce the toolchain
Nothing is simpler:

$./ct-ng build

The toolchain will be installed by default in $HOME/x-tools/. That’s something you could have changed in
Crosstool-ng’s configuration.

And wait!

6 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

Testing the toolchain
You can now test your toolchain by adding $HOME/x-tools/arm-training-linux-musleabihf/bin/ to your
PATH environment variable and compiling the simple hello.c program in your main lab directory with arm-
linux-gcc:

$ arm-linux-gcc -o hello hello.c

You can use the file command on your binary to make sure it has correctly been compiled for the ARM
architecture.

Did you know that you can still execute this binary from your x86 host? To do this, install the QEMU user
emulator, which just emulates target instruction sets, not an entire system with devices:

$ sudo apt install qemu-user

Now, try to run QEMU ARM user emulator:

$ qemu-arm hello
qemu-arm: Could not open '/lib/ld-musl-armhf.so.1': No such file or directory

What’s happening is that qemu-arm is missing the shared library loader (compiled for ARM) that this binary
relies on. Let’s find it in our newly compiled toolchain:

$ find ~/x-tools -name ld-musl-armhf.so.1

/home/tux/x-tools/arm-training-linux-musleabihf/arm-training-linux-musleabihf/sysroot/lib/
ld-musl-armhf.so.1

We can now use the -L option of qemu-arm to let it know where shared libraries are:

$ qemu-arm -L ~/x-tools/arm-training-linux-musleabihf/arm-training-linux-musleabihf/sysroot \
hello

Hello world!

Cleaning up
Do this only if you have limited storage space. In case you made a mistake in the toolchain configuration,
you may need to run Crosstool-ng again, keeping generated files would save a significant amount of time.

To save about 9 GB of storage space, do a ./ct-ng clean in the Crosstool-NG source directory. This will
remove the source code of the different toolchain components, as well as all the generated files that are now
useless since the toolchain has been installed in $HOME/x-tools.

© 2004-2025 Bootlin, CC BY-SA license 7

https://bootlin.com

Embedded Linux System Development

Bootloader - U-Boot
Objectives: Compile and install the U-Boot bootloader, use basic U-Boot com-
mands, set up TFTP communication with the development workstation.

Setup
Go to the $HOME/embedded-linux-qemu-labs/bootloader directory.

Install the qemu-system-arm package. In this lab and in the following ones, we will use a QEMU emulated
ARM Vexpress Cortex A9 board.

Configuring and building U-Boot
Download U-Boot:

$ git clone https://gitlab.denx.de/u-boot/u-boot
$ cd u-boot
$ git checkout v2023.01

Now configure U-Boot to support the ARM Vexpress Cortex A9 board (vexpress_ca9x4_defconfig).

Get an understanding of U-Boot’s configuration and compilation steps by reading the README file, and specif-
ically the Building the Software section.

Basically, you need to specify the cross-compiler prefix (the part before gcc in the cross-compiler executable
name):

$ export CROSS_COMPILE=arm-linux-

Now that you have a valid initial configuration, run make menuconfig to further edit your bootloader features:

• In the Environment submenu, we will configure U-Boot so that it stores its environment inside a file
called uboot.env in a FAT filesystem on an MMC/SD card, as our emulated machine won’t have flash
storage:

– Unset Environment in flash memory (CONFIG_ENV_IS_IN_FLASH)

– Set Environment is in a FAT filesystem (CONFIG_ENV_IS_IN_FAT)

– Set Name of the block device for the environment (CONFIG_ENV_FAT_INTERFACE): mmc

– Device and partition for where to store the environment in FAT (CONFIG_ENV_FAT_DEVICE_
AND_PART): 0:1
The above two settings correspond to the arguments of the fatload command.

• Also add support for the editenv (CONFIG_CMD_EDITENV) and bootd (which can be abbreviated as boot,
CONFIG_CMD_BOOTD) that are not present in the default configuration for our board.

Install the following packages which should be needed to compile U-Boot for your board:

$ sudo apt install libssl-dev device-tree-compiler swig \
python3-dev python3-setuptools

Finally, run

8 © 2004-2025 Bootlin, CC BY-SA license

https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_ENV_IS_IN_FLASH
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_ENV_IS_IN_FAT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_ENV_FAT_INTERFACE
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_ENV_FAT_DEVICE_AND_PART
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_ENV_FAT_DEVICE_AND_PART
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_EDITENV
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_BOOTD
https://bootlin.com

Embedded Linux System Development

make

which will build U-Boot 2.

This generates several binaries, including u-boot and u-boot.bin.

Testing U-Boot
Still in U-Boot sources, test that U-Boot works:

$ qemu-system-arm -M vexpress-a9 -m 128M -nographic -kernel u-boot

• -M: emulated machine

• -m: amount of memory in the emulated machine

• -kernel: allows to load the binary directly in the emulated machine and run the machine with it. This
way, you don’t need a first stage bootloader. Of course, you don’t have this with real hardware.

Press a key before the end of the timeout, to access the U-Boot prompt.

You can then type the help command, and explore the few commands available.

Note: to exit QEMU, type [Ctrl][a] followed by [h] to see available commands. One of them is [Ctrl][a]
followed by [x], which allows to exit the emulator.

SD card setup
Go back to the main bootloader directory.

We now need to add an SD card image to the QEMU virtual machine, in particular to get a way to store
U-Boot’s environment.

In later labs, we will also use such storage for other purposes (to store the kernel and device tree, root
filesystem and other filesystems).

The commands that we are going to use will be further explained during the Block filesystems lectures.

First, using the dd command, create a 1 GB file filled with zeros, called sd.img:

$ dd if=/dev/zero of=sd.img bs=1M count=1024

This will be used by QEMU as an SD card disk image

Now, let’s use the cfdisk command to create the partitions that we are going to use:

$ cfdisk sd.img

If cfdisk asks you to Select a label type, choose dos, as we don’t really need a gpt partition table for our
labs.

In the cfdisk interface, create three primary partitions, starting from the beginning, with the following
properties:

• One partition, 64MB big, with the FAT16 partition type. Mark this partition as bootable.

• One partition, 8 MB big3, that will be used for the root filesystem. Due to the geometry of the device,
the partition might be larger than 8 MB, but it does not matter. Keep the Linux type for the partition.

• One partition, that fills the rest of the SD card image, that will be used for the data filesystem. Here
also, keep the Linux type for the partition.

2You can speed up the compiling by using the -jX option with make, where X is the number of parallel jobs used for compiling.
Twice the number of CPU cores is a good value.

3For the needs of our system, the partition could even be much smaller, and 1 MB would be enough. However, with the 8
GB SD cards that we use in our labs, 8 MB will be the smallest partition that cfdisk will allow you to create.

© 2004-2025 Bootlin, CC BY-SA license 9

https://bootlin.com

Embedded Linux System Development

Press Write when you are done.

We will now use the loop driver4 to emulate block devices from this image and its partitions:

$ sudo losetup -f --show --partscan sd.img

• -f: finds a free loop device

• --show: shows the loop device that it used

• --partscan: scans the loop device for partitions and creates additional /dev/loop<x>p<y> block de-
vices.

Also run sudo dmesg to confirm that 3 partitions were detected for the loop device selected by losetup:

[62778.965018] loop13: detected capacity change from 0 to 2097152
[62778.966862] loop13: p1 p2 p3

Last but not least, format the first partition as FAT16 with a boot label:

$ sudo mkfs.vfat -F 16 -n boot /dev/loop<x>p1

The other partitions will be formated later.

Now, you can release the loop device:

$ sudo losetup -d /dev/loop<x>

Testing U-Boot’s environment
Start QEMU again, but this time with the emulated SD card (you can type the command in a single line):

$ qemu-system-arm -M vexpress-a9 -m 128M -nographic \
-kernel u-boot/u-boot \
-sd sd.img

Now, in the U-Boot prompt, make sure that you can set and store an environment variable:

$ setenv foo bar
$ saveenv

Type reset which reboots the board, and then check that the foo variable is still set:

$ printenv foo

Setup networking between QEMU and the host
To load a kernel in the next lab, we will setup networking between the QEMU emulated machine and the
host.

To do so, create a qemu-myifup script that will bring up a network interface between QEMU and the host.
Here are its contents:

#!/bin/sh
/sbin/ip a add 192.168.0.1/24 dev $1
/sbin/ip link set $1 up

If necessary, modify the above network address range so that it doesn’t collide with the one of the main
company network.

Of course, make this script executable:
4Once again, this will be properly be explained during our Block filesystems lectures.

10 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

$ chmod +x qemu-myifup

As you can see, the host side will have the 192.168.0.1 IP address. We will use 192.168.0.100 for the target
side. Of course, use a different IP address range if this conflicts with your local network.

Then, you will need root privileges to run QEMU this time, because of the need to bring up the network
interface:

$ sudo qemu-system-arm -M vexpress-a9 -m 128M -nographic \
-kernel u-boot/u-boot \
-sd sd.img \
-net tap,script=./qemu-myifup -net nic

Note the new net options:

• -net tap: creates a software network interface on the host side

• -net nic: adds a network device to the emulated machine

On the host machine, using the ip a command, check that there is now a tap0 network interface with the
expected IP address.

On the U-Boot command line, you will have to configure the environment variables for networking:

=> setenv ipaddr 192.168.0.100
=> setenv serverip 192.168.0.1

To make these settings permanent, save the environment:

=> saveenv

You can now test the connection to the host:

=> ping 192.168.0.1

It should finish by:

host 192.168.0.1 is alive

Setting up the TFTP server
Let’s install a TFTP server on your development workstation:

sudo apt install tftpd-hpa

Back in U-Boot, run bdinfo, which will allow you to find out that RAM starts at 0x60000000. Therefore, we
will use the 0x61000000 address to test tftp.

To test the TFTP connection, put a small text file in the directory exported through TFTP on your devel-
opment workstation. Then, from U-Boot, do:

$ tftp 0x61000000 textfile.txt

The tftp command should have downloaded the textfile.txt file from your development workstation into
the board’s memory at location 0x61000000.

You can verify that the download was successful by dumping the contents of the memory:

=> md 0x61000000

© 2004-2025 Bootlin, CC BY-SA license 11

https://bootlin.com

Embedded Linux System Development

Rescue binary
If you have trouble generating binaries that work properly, or later make a mistake that causes you to lose
your bootloader binary, you will find a working version under data/ in the current lab directory.

12 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

Fetching Linux kernel sources
Objective: learn how to fetch the Linux kernel sources from git, from both the
master and stable branches.

After this lab, you will be able to:

• Get the kernel sources from git, using the official Linux source tree.

• Fetch the sources for the stable Linux releases, by declaring a remote tree and getting stable branches
from it.

Setup
Create the $HOME/embedded-linux-qemu-labs/kernel directory and go into it.

Since the Linux kernel git repository is huge, our goal here is to start downloading it right now, before starting
the lectures about the Linux kernel.

Cloning the mainline Linux tree
To begin working with the Linux kernel sources, we need to clone its reference git tree, the one managed by
Linus Torvalds.

However, this requires downloading more than 2.8 GB of data. If you are running this command from home,
or if you have very fast access to the Internet at work (and if you are not 256 participants in the training
room), you can do it directly by connecting to https://git.kernel.org:

git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux
cd linux

If Internet access is not fast enough and if multiple people have to share it, your instructor will give you a
USB flash drive with a tar.gz archive of a recently cloned Linux source tree.

You will just have to extract this archive in the current directory, and then pull the most recent changes over
the network:

tar xf linux-git.tar.gz
cd linux
git checkout master
git pull

Of course, if you directly ran git clone, you won’t have to run git pull, as git clone already retrieved the
latest changes. You may need to run git pull in the future though, if you want to update a newer Linux
version.

Accessing stable releases
The Linux kernel repository from Linus Torvalds contains all the main releases of Linux, but not the stable
versions: they are maintained by a separate team, and hosted in a separate repository.

We will add this separate repository as another remote to be able to use the stable releases:

git remote add stable https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux
git fetch stable

© 2004-2025 Bootlin, CC BY-SA license 13

https://git.kernel.org
https://bootlin.com

Embedded Linux System Development

As this still represents many git objects to download (2.4 GiB when 6.9 was the latest version), if you are
using an already downloaded git tree, your instructor will probably have fetched the stable branch ahead of
time for you too. You can check by running:

git branch -a

We will choose a particular stable version in the next labs.

Now, let’s continue the lectures. This will leave time for the commands that you typed to complete their
execution (if needed).

14 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

Kernel - Cross-compiling
Objective: Learn how to cross-compile a kernel for an ARM target platform.

After this lab, you will be able to:

• Checkout a stable version of the Linux kernel

• Set up a cross-compiling environment

• Cross compile the kernel for the QEMU ARM Versatile Express for Cortex-A9

• Use U-Boot to download the kernel

• Check that the kernel you compiled starts the system

Setup
Stay in the $HOME/embedded-linux-qemu-labs/kernel directory.

Choose a particular stable version of Linux
We will use linux-6.1.x, which this lab was tested with.

First, let’s get the list of branches we have available:

cd linux
git branch -a

As we will do our labs with the Linux 6.1, the remote branch we are interested in is
remotes/stable/linux-6.1.y.

First, execute the following command to check which version you currently have:

make kernelversion

You can also open the Makefile and look at the beginning of it to check this information.

Now, let’s create a local branch starting from that remote branch:

git checkout stable/linux-6.1.y

Check the version again using the make kernelversion command to make sure you now have a 6.1.x version.

Cross-compiling environment setup
To cross-compile Linux, you need to have a cross-compiling toolchain. We will use the cross-compiling
toolchain that we previously produced, so we just need to make it available in the PATH:

$ export PATH=$HOME/x-tools/arm-training-linux-musleabihf/bin:$PATH

Also, don’t forget to either:

• Define the value of the ARCH and CROSS_COMPILE variables in your environment (using export)

• Or specify them on the command line at every invocation of make, i.e.: make ARCH=... CROSS_COMPILE=
... <target>

It is assumed that the ARCH and CROSS_COMPILE variables have been exported.

© 2004-2025 Bootlin, CC BY-SA license 15

https://bootlin.com

Embedded Linux System Development

Linux kernel configuration
By running make help, look for the proper Makefile target to configure the kernel for your processor.

In course case, use the configuration for the ARM Vexpress boards (vexpress_defconfig).

So, apply this configuration by running make <default-configuration>, and then run make menuconfig to
fine-tune it.

• Disable CONFIG_GCC_PLUGINS if it is set. This will skip building special gcc plugins, which would require
extra dependencies for the build. Also start make menuconfig to add CONFIG_DEVTMPFS_MOUNT to your
configuration.

Cross compiling
You’re now ready to cross-compile your kernel. Simply run:

$ make

and wait a while for the kernel to compile. Don’t forget to use make -j<n> if you have multiple cores on your
machine!

Look at the kernel build output to see which file contains the kernel image.

Also look in the Device Tree Source directory to see which .dtb files got compiled. Find which .dtb file
corresponds to your board.

Load and boot the kernel using U-Boot
As we are going to boot the Linux kernel from U-Boot, we need to set the bootargs environment corresponding
to the Linux kernel command line:

=> setenv bootargs console=ttyAMA0
=> saveenv

We will use TFTP to load the kernel image on the board:

• On your workstation, copy the zImage and DTB (vexpress-v2p-ca9.dtb) to the directory exposed by
the TFTP server.

• On the target (in the U-Boot prompt), load zImage from TFTP into RAM:

=> tftp 0x61000000 zImage

• Now, also load the DTB file into RAM:

=> tftp 0x62000000 vexpress-v2p-ca9.dtb

• Boot the kernel with its device tree:

=> bootz 0x61000000 - 0x62000000

You should see Linux boot and finally panicking. This is expected: we haven’t provided a working root
filesystem for our device yet.

You can now automate all this every time the board is booted or reset. Reset the board, and customize
bootcmd:

=> setenv bootcmd 'tftp 0x61000000 zImage; tftp 0x62000000 vexpress-v2p-ca9.dtb; bootz
0x61000000 - 0x62000000'

=> saveenv

Restart the board to make sure that booting the kernel is now automated.

16 © 2004-2025 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GCC_PLUGINS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT
https://bootlin.com

Embedded Linux System Development

Tiny embedded system with BusyBox
Objective: making a tiny yet full featured embedded system

After this lab, you will:

• be able to configure and build a Linux kernel that boots on a directory on your workstation, shared
through the network by NFS.

• be able to create and configure a minimalistic root filesystem from scratch (ex nihilo, out of nothing,
entirely hand made...) for your target board.

• understand how small and simple an embedded Linux system can be.

• be able to install BusyBox on this filesystem.

• be able to create a simple startup script based on /sbin/init.

• be able to set up a simple web interface for the target.

Lab implementation
While (s)he develops a root filesystem for a device, a developer needs to make frequent changes to the
filesystem contents, like modifying scripts or adding newly compiled programs.

It isn’t practical at all to reflash the root filesystem on the target every time a change is made. Fortunately,
it is possible to set up networking between the development workstation and the target. Then, workstation
files can be accessed by the target through the network, using NFS.

Unless you test a boot sequence, you no longer need to reboot the target to test the impact of script or
application updates.

Setup
Go to the $HOME/embedded-linux-qemu-labs/tinysystem/ directory.

Kernel configuration
We will re-use the kernel sources from our previous lab, in $HOME/embedded-linux-qemu-labs/kernel/.

In the kernel configuration built in the previous lab, verify that you have all options needed for booting the
system using a root filesystem mounted over NFS. Also check that CONFIG_DEVTMPFS_MOUNT is enabled (we
will explain it later in this lab). If necessary, rebuild your kernel.

© 2004-2025 Bootlin, CC BY-SA license 17

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT
https://bootlin.com

Embedded Linux System Development

Setting up the NFS server
Create a nfsroot directory in the current lab directory. This nfsroot directory will be used to store the
contents of our new root filesystem.

Install the NFS server by installing the nfs-kernel-server package if you don’t have it yet. Once installed,
edit the /etc/exports file as root to add the following line, assuming that the IP address of your board will
be 192.168.0.100:

/home/<user>/embedded-linux-qemu-labs/tinysystem/nfsroot 192.168.0.100(rw,no_root_squash,
no_subtree_check)

Of course, replace <user> by your actual user name.

Make sure that the path and the options are on the same line. Also make sure that there is no space between
the IP address and the NFS options, otherwise default options will be used for this IP address, causing your
root filesystem to be read-only.

Then, make the NFS server use the new configuration:

$ sudo exportfs -r

Booting the system
First, boot the board to the U-Boot prompt. Before booting the kernel, we need to tell it that the root
filesystem should be mounted over NFS, by setting some kernel parameters.

So add settings to the bootargs environment variable, in just 1 line:

=> setenv bootargs ${bootargs} root=/dev/nfs ip=192.168.0.100
nfsroot=192.168.0.1:/home/<user>/embedded-linux-qemu-labs/tinysystem/nfsroot,nfsvers=3,tcp rw

Once again, replace <user> by your actual user name.

Of course, you need to adapt the IP addresses to your exact network setup. Save the environment variables
(with saveenv).

Now, boot your system. The kernel should be able to mount the root filesystem over NFS:

VFS: Mounted root (nfs filesystem) on device X:Y.

If the kernel fails to mount the NFS filesystem, look carefully at the error messages in the console. If this
doesn’t give any clue, you can also have a look at the NFS server logs in /var/log/syslog.

However, at this stage, the kernel should stop because of the below issue:

[7.476715] devtmpfs: error mounting -2

This happens because the kernel is trying to mount the devtmpfs filesystem in /dev/ in the root filesystem.
This virtual filesystem contains device files (such as ttyS0) for all the devices known to the kernel, and with
CONFIG_DEVTMPFS_MOUNT, our kernel tries to automatically mount devtmpfs on /dev.

To address this, just create a dev directory under nfsroot and reboot.

Now, the kernel should complain for the last time, saying that it can’t find an init application:

Kernel panic - not syncing: No working init found. Try passing init= option to
kernel. See Linux Documentation/admin-guide/init.rst for guidance.

Obviously, our root filesystem being mostly empty, there isn’t such an application yet. In the next paragraph,
you will add BusyBox to your root filesystem and finally make it usable.

18 © 2004-2025 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT
https://bootlin.com

Embedded Linux System Development

Root filesystem with BusyBox
Download the sources of the latest BusyBox 1.37.x release:

git clone https://git.busybox.net/busybox
cd busybox/
git checkout 1_37_stable

Now, configure BusyBox with the configuration file provided in the data/ directory (remember that the
BusyBox configuration file is .config in the BusyBox sources).

Then, you can use $ make menuconfig to further customize the BusyBox configuration. At least, keep the
setting that builds a static BusyBox. Compiling BusyBox statically in the first place makes it easy to set
up the system, because there are no dependencies on libraries. Later on, we will set up shared libraries and
recompile BusyBox.

If you are running on a distribution that uses GCC >= 14.x, you will face an issue when trying to run
make menuconfig, caused by a bug in Busybox, unfixed as of Busybox 1.37.0. You can fix this issue by
applying an additional patch to the Busybox source:

git am $HOME/embedded-linux-qemu-labs/tinysystem/data/\
0001-menuconfig-GCC-failing-saying-ncurses-is-not-found.patch

Build BusyBox using the toolchain that you used to build the kernel.

Going back to the BusyBox configuration interface, check the installation directory for BusyBox5. Set it to
the path to your nfsroot directory.

Now run $ make install to install BusyBox in this directory.

Try to boot your new system on the board. You should now reach a command line prompt, allowing you to
execute the commands of your choice.

Virtual filesystems
Run the # ps command. You can see that it complains that the /proc directory does not exist. The ps
command and other process-related commands use the proc virtual filesystem to get their information from
the kernel.

From the Linux command line in the target, create the proc, sys and etc directories in your root filesystem.

Now mount the proc virtual filesystem. Now that /proc is available, test again the ps command.

Note that you can also now halt your target in a clean way with the halt command, thanks to proc being
mounted6.

System configuration and startup
The first user space program that gets executed by the kernel is /sbin/init and its configuration file is
/etc/inittab.

In the BusyBox sources, read details about /etc/inittab in the examples/inittab file.

Then, create a /etc/inittab file and a /etc/init.d/rcS startup script declared in /etc/inittab. In this
startup script, mount the /proc and /sys filesystems.

Any issue after doing this?

5You will find this setting in Settings -> Install Options -> Destination path for 'make install'.
6halt can find the list of mounted filesystems in /proc/mounts, and unmount each of them in a clean way before shutting

down.

© 2004-2025 Bootlin, CC BY-SA license 19

https://elixir.bootlin.com/busybox/latest/source/examples/inittab
https://bootlin.com

Embedded Linux System Development

Starting the shell in a proper terminal
Before the shell prompt, you probably noticed the below warning message:

/bin/sh: can't access tty; job control turned off

This happens because the shell specified in the /etc/inittab file in started by default in /dev/console:

::askfirst:/bin/sh

When nothing is specified before the leading ::, /dev/console is used. However, while this device is fine for
a simple shell, it is not elaborate enough to support things such as job control ([Ctrl][c] and [Ctrl][z]),
allowing to interrupt and suspend jobs.

So, to get rid of the warning message, we need init to run /bin/sh in a real terminal device:

ttyAMA0::askfirst:/bin/sh

Reboot the system and the message will be gone!

Switching to shared libraries
Take the hello.c program supplied in the lab data directory. Cross-compile it for ARM, dynamically-linked
with the libraries7, and run it on the target.

You will first encounter a very misleading not found error, which is not because the hello executable is not
found, but because something else was not found while trying to execute this executable.

You can find it by running file hello on the host:

hello: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-musl-armhf.so.1, not stripped

So, what’s missing is the /lib/ld-musl-armhf.so.1 executable, which is the dynamic linker required to
execute any program compiled with shared libraries. Using the find command, look for this file in the
toolchain install directory, and copy it to the lib/ directory on the target.

Then, running the executable again and see that the loader executes and finds out which shared libraries are
missing.

In our case with the Musl C library, the dynamic linker also contains the C library, so the program should
execute fine, as no further shared libraries are required.

If you still get the same error message, just try again a few seconds later. Such a delay can be needed because
the NFS client can take a little time (at most 30-60 seconds) before seeing the changes made on the NFS
server.

Now that the small test program works, we are going to recompile BusyBox without the static compilation
option, so that BusyBox takes advantage of the shared libraries that are now present on the target.

Before doing that, measure the size of the busybox executable.

Then, build BusyBox with shared libraries, and install it again on the target filesystem. Make sure that the
system still boots and see how much smaller the busybox executable got.

Implement a web interface for your device
Replicate data/www/ to the /www directory in your target root filesystem.

Now, run the BusyBox http server from the target command line:

7Invoke your cross-compiler in the same way you did during the toolchain lab

20 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

=> /usr/sbin/httpd -h /www/

It will automatically background itself.

If you use a proxy, configure your host browser so that it doesn’t go through the proxy to connect to the
target IP address, or simply disable proxy usage. Now, test that your web interface works well by opening
http://192.168.0.100/index.html on the host.

See how the dynamic pages are implemented. Very simple, isn’t it?

Finish by adding the command that starts the web server to your startup script, so that it is always started
on your target.

Going further
If you have time before the others complete their labs...

Initramfs booting
Configure your kernel to include the contents of the nfsroot directory as an initramfs.

Before doing this, you will need to create an init link in the toplevel directory to sbin/init, because the
kernel will try to execute /init.

You will also need to mount devtmpfs from the rcS script, it cannot be mounted automatically by the kernel
when you’re booting from an initramfs.

Note: you won’t need to modify your root= setting in the kernel command line. It will just be ignored if you
have an initramfs.

When this works, go back to booting the system through NFS. This will be much more convenient in the
next labs.

© 2004-2025 Bootlin, CC BY-SA license 21

https://bootlin.com

Embedded Linux System Development

Accessing Hardware Devices
Objective: learn how to access hardware devices.

Goals
Now that we have access to a command line shell thanks to a working root filesystem, we can now explore
existing devices.

Important: The manipulations in this lab are limited because we’re working with an emulated platform, not
with real hardware. It would be best to get your hands on the hardware platforms we support. Our instructions
for such platforms really cover practising with internal and external hardware devices.

Setup
Go to the $HOME/embedded-linux-qemu-labs/hardware directory, which provides useful files for this lab.

However, we will go on booting the system through NFS, using the root filesystem built by the previous lab.

Exploring /dev
Start by exploring /dev on your target system. Here are a few noteworthy device files that you will see:

• Terminal devices: devices starting with tty. Terminals are user interfaces taking text as input and
producing text as output, and are typically used by interactive shells. In particular, you will find
console which matches the device specified through console= in the kernel command line. You will
also find the ttyAMA0 device file.

• Pseudo-terminal devices: devices starting with pty, used when you connect through SSH for example.
Those are virtual devices, but there are so many in /dev that we wanted to give a description here.

• MMC device(s) and partitions: devices starting with mmcblk. You should here recognize the MMC
device(s) on your system and the associated partitions.

Don’t hesitate to explore /dev on your workstation too and ask any questions to your instructor.

Exploring /sys
The next thing you can explore is the Sysfs filesystem.

A good place to start is /sys/class, which exposes devices classified by the kernel frameworks which manage
them.

For example, go to /sys/class/net, and you will see all the networking interfaces on your system, whether
they are internal, external or virtual ones.

Find which subdirectory corresponds to the network connection to your host system, and then check device
properties such as:

• speed: will show you whether this is a gigabit or hundred megabit interface.

• address: will show the device MAC address. No need to get it from a complex command!

• statistics/rx_bytes will show you how many bytes were received on this interface.

Don’t hesitate to look for further interesting properties by yourself!

You can also check whether /sys/class/thermal exists and is not empty on your system. That’s the thermal
framework, and it allows to access temperature measures from the thermal sensors on your system.

22 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

Next, you can now explore all the buses (virtual or physical) available on your system, by checking the
contents of /sys/bus.

In particular, go to /sys/bus/mmc/devices to see all the MMC devices on your system. Go inside the directory
for the first device and check several files (for example):

• serial: the serial number for your device.

• preferred_erase_size: the preferred erase block for your device. It’s recommended that partitions
start at multiples of this size.

• name: the product name for your device. You could display it in a user interface or log file, for example.

• date: apparently the manufacturing date for the device.

Don’t hesitate to spend more time exploring /sys on your system and asking questions to your instructor.

That’s all for now!

© 2004-2025 Bootlin, CC BY-SA license 23

https://bootlin.com

Embedded Linux System Development

Filesystems - Block file systems
Objective: configure and boot an embedded Linux system relying on block
storage

After this lab, you will be able to:

• Produce file system images.

• Configure the kernel to use these file systems

• Use the tmpfs file system to store temporary files

• Load the kernel and DTB from a FAT partition

Goals
After doing the A tiny embedded system lab, we are going to copy the filesystem contents to the emulated
SD card. The storage will be split into several partitions, and your QEMU emulated board will be booted
from this SD card, without using NFS anymore.

Setup
Throughout this lab, we will continue to use the root filesystem we have created in the $HOME/embedded-
linux-qemu-labs/tinysystem/nfsroot directory, which we will progressively adapt to use block filesystems.

Filesystem support in the kernel
Recompile your kernel with support for SquashFS and ext48.

Update your kernel image on the tftp server. We will only later copy the kernel to our FAT partition.

Boot your board with this new kernel and on the NFS filesystem you used in this previous lab.

Now, check the contents of /proc/filesystems. You should see that ext4 and SquashFS are now supported.

Format the third partition
We are going to format the third partition of the SD card image with the ext4 filesystem, so that it can
contain uploaded images.

Setup the loop device again:

$ sudo losetup -f --show --partscan sd.img

And then format the third partition:

$ sudo mkfs.ext4 -L data /dev/loop<x>p3

Now, mount this new partition on a directory on your host (you could create the /mnt/data directory, for
example) and move the contents of the /www/upload/files directory (in your target root filesystem) into it.
The goal is to use the third partition of the SD card as the storage for the uploaded images.

You can now unmount the partition and free the loop device:

8Basic configuration options for these filesystems will be sufficient. No need for things like extended attributes.

24 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

$ sudo umount /mnt/data
$ sudo losetup -d /dev/loop<x>

Now, restart QEMU and from the Linux command line and mount this third partition on /www/upload/files.

Once this works, modify the startup scripts in your root filesystem to do it automatically at boot time.

Reboot your target system again and with the mount command, check that /www/upload/files is now a
mount point for the third SD card partition. Also make sure that you can still upload new images, and that
these images are listed in the web interface.

Adding a tmpfs partition for log files
For the moment, the upload script was storing its log file in /www/upload/files/upload.log. To avoid seeing
this log file in the directory containing uploaded files, let’s store it in /var/log instead.

Add the /var/log/ directory to your root filesystem and modify the startup scripts to mount a tmpfs
filesystem on this directory. You can test your tmpfs mount command line on the system before adding it to
the startup script, in order to be sure that it works properly.

Modify the www/cgi-bin/upload.cfg configuration file to store the log file in /var/log/upload.log. You will
lose your log file each time you reboot your system, but that’s OK in our system. That’s what tmpfs is for:
temporary data that you don’t need to keep across system reboots.

Reboot your system and check that it works as expected.

Making a SquashFS image
We are going to store the root filesystem in a SquashFS filesystem in the second partition of the SD card.

In order to create SquashFS images on your host, you need to install the squashfs-tools package. Now
create a SquashFS image of your NFS root directory.

Setup the loop device again, and using the dd command, copy the file system image to the second partition
in the SD card image. Release the loop device.

Booting on the SquashFS partition
In the U-boot shell, configure the kernel command line to use the second partition of the SD card as the
root file system. Also add the rootwait boot argument, to wait for the SD card to be properly initialized
before trying to mount the root filesystem. Since the SD cards are detected asynchronously by the kernel,
the kernel might try to mount the root filesystem too early without rootwait.

Check that your system still works. Congratulations if it does!

Store the kernel image and DTB on the SD card
Setup the loop device again, and mount the FAT partition in the SD card image (for example on /mnt/boot).
Then copy the kernel image and Device Tree to it.

Unmount the FAT partition and release the loop device.

You now need to adjust the bootcmd of U-Boot so that it loads the kernel and DTB from the SD card instead
of loading them from the network.

In U-boot, you can load a file from a FAT filesystem using a command like

=> fatload mmc 0:1 0x61000000 filename

Which will load the file named filename from the first partition of the device handled by the first MMC
controller to the system memory at the address 0x61000000.

Type => reset in U-Boot to reboot the board and make sure that your system still boots fine.

© 2004-2025 Bootlin, CC BY-SA license 25

https://bootlin.com

Embedded Linux System Development

Third party libraries and applications
Objective: Learn how to leverage existing libraries and applications: how to
configure, compile and install them

To illustrate how to use existing libraries and applications, we will extend the small root filesystem built in
the A tiny embedded system lab to add the ALSA libraries and tools to run basic sound support tests. ALSA
stands for Advanced Linux Sound Architecture, and is the Linux audio subsystem.

We’ll see that manually re-using existing libraries is quite tedious, so that more automated procedures are
necessary to make it easier. However, learning how to perform these operations manually will significantly
help you when you face issues with more automated tools.

Figuring out library dependencies
We’re going to integrate the alsa-utils and ipcalc executables. In our case, the dependency chain for alsa-utils
is quite simple, it only depends on the alsa-lib library. ipcalc is standalone and doesn’t have any dependency.

Of course, all these libraries rely on the C library, which is not mentioned here, because it is already part
of the root filesystem built in the A tiny embedded system lab. You might wonder how to figure out this
dependency tree by yourself. Basically, there are several ways, that can be combined:

• Read the library documentation, which often mentions the dependencies;

• Read the help message of the configure script (by running ./configure --help).

• By running the configure script, compiling and looking at the errors.

To configure, compile and install all the components of our system, we’re going to start from the bottom of
the tree with alsa-lib, then continue with alsa-utils. Then, we will also build ipcalc.

Preparation
For our cross-compilation work, we will need two separate spaces:

• A staging space in which we will directly install all the packages: non-stripped versions of the libraries,
headers, documentation and other files needed for the compilation. This staging space can be quite big,
but will not be used on our target, only for compiling libraries or applications;

• A target space, in which we will only copy the required files from the staging space: binaries and

26 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

libraries, after stripping, configuration files needed at runtime, etc. This target space will take a lot
less space than the staging space, and it will contain only the files that are really needed to make the
system work on the target.

To sum up, the staging space will contain everything that’s needed for compilation, while the target space
will contain only what’s needed for execution.

Create the $HOME/embedded-linux-qemu-labs/thirdparty directory, and inside, create two directories: staging
and target.

For the target, we need a basic system with BusyBox and initialization scripts. We will re-use the system
built in the A tiny embedded system lab, so copy this system in the target directory:

$ cp -a $HOME/embedded-linux-qemu-labs/tinysystem/nfsroot/* target/

Note that for this lab, a lot of typing will be required. To save time typing, we advise you to copy and paste
commands from the electronic version of these instructions.

Testing
Make sure the target/ directory is exported by your NFS server to your board by modifying /etc/exports
and restarting your NFS server.

Make your board boot from this new directory through NFS.

alsa-lib
alsa-lib is a library supposed to handle the interaction with the ALSA subsystem. It is available at https://
alsa-project.org. Download version 1.2.13, and extract it in $HOME/embedded-linux-qemu-labs/thirdparty/.

Tip: if the website for any of the source packages that we need to download in the next sections is down, a
great mirror that you can use is http://sources.buildroot.net/.

Back to alsa-lib sources, look at the configure script and see that it has been generated by autoconf (the
header contains a sentence like Generated by GNU Autoconf 2.69). Most of the time, autoconf comes with
automake, that generates Makefiles from Makefile.am files. So alsa-lib uses a rather common build system.
Let’s try to configure and build it:

$./configure
$ make

If you look at the generated binaries, you’ll see that they are x86 ones because we compiled the sources with
gcc, the default compiler. This is obviously not what we want, so let’s clean-up the generated objects and
tell the configure script to use the ARM cross-compiler:

$ make clean
$ CC=arm-linux-gcc ./configure

Of course, the arm-linux-gcc cross-compiler must be in your PATH prior to running the configure script. The
CC environment variable is the classical name for specifying the compiler to use.

Quickly, you should get an error saying:

checking whether we are cross compiling... configure: error: in `/home/mike/
embedded-linux-qemu-labs/thirdparty/alsa-lib-1.2.13':
configure: error: cannot run C compiled programs.
If you meant to cross compile, use `--host'.
See `config.log' for more details

If you look at the config.log file, you can see that the configure script compiles a binary with the cross-
compiler and then tries to run it on the development workstation. This is a rather usual thing to do for a

© 2004-2025 Bootlin, CC BY-SA license 27

https://alsa-project.org
https://alsa-project.org
http://sources.buildroot.net/
https://bootlin.com

Embedded Linux System Development

configure script, and that’s why it tests so early that it’s actually doable, and bails out if not.

Obviously, it cannot work in our case, and the scripts exits. The job of the configure script is to test the
configuration of the system. To do so, it tries to compile and run a few sample applications to test if this
library is available, if this compiler option is supported, etc. But in our case, running the test examples is
definitely not possible.

We need to tell the configure script that we are cross-compiling, and this can be done using the --build
and --host options, as described in the help of the configure script:

System types:
--build=BUILD configure for building on BUILD [guessed]
--host=HOST cross-compile to build programs to run on HOST [BUILD]

The --build option allows to specify on which system the package is built, while the --host option allows
to specify on which system the package will run. By default, the value of the --build option is guessed
and the value of --host is the same as the value of the --build option. The value is guessed using the
./config.guess script, which on your system should return x86_64-pc-linux-gnu. See https://www.gnu.
org/software/autoconf/manual/html_node/Specifying-Names.html for more details on these options.

So, let’s override the value of the --host option:

$./configure --host=arm-linux

Note that CC is not required anymore. It is implied by --host.

The configure script should end properly now, and create a Makefile.

However, there is one subtle issue to handle. We need to tell alsa-lib to disable a feature called alsa topology.
alsa-lib will build fine but we will encounter some problems afterwards, during alsa-utils building. So you
should configure alsa-lib as follows:

$./configure --host=arm-linux --disable-topology

Run the make command, which should run just fine.

Look at the result of compiling in src/.libs: a set of object files and a set of libasound.so* files.

The libasound.so* files are a dynamic version of the library. The shared library itself is libasound.so.2.0.0,
it has been generated by the following command line:

$ arm-linux-gcc -shared conf.o confmisc.o input.o output.o async.o error.o dlmisc.o socket.o \
shmarea.o userfile.o names.o -lm -ldl -lpthread -lrt -Wl,-soname -Wl,libasound.so.2 -o \
libasound.so.2.0.0

And creates the symbolic links libasound.so and libasound.so.2.

$ ln -s libasound.so.2.0.0 libasound.so.2
$ ln -s libasound.so.2.0.0 libasound.so

These symlinks are needed for two different reasons:

• libasound.so is used at compile time when you want to compile an application that is dynamically
linked against the library. To do so, you pass the -lLIBNAME option to the compiler, which will look for
a file named lib<LIBNAME>.so. In our case, the compilation option is -lasound and the name of the
library file is libasound.so. So, the libasound.so symlink is needed at compile time;

• libasound.so.2 is needed because it is the SONAME of the library. SONAME stands for Shared Object
Name. It is the name of the library as it will be stored in applications linked against this library. It
means that at runtime, the dynamic loader will look for exactly this name when looking for the shared
library. So this symbolic link is needed at runtime.

28 © 2004-2025 Bootlin, CC BY-SA license

https://www.gnu.org/software/autoconf/manual/html_node/Specifying-Names.html
https://www.gnu.org/software/autoconf/manual/html_node/Specifying-Names.html
https://bootlin.com

Embedded Linux System Development

To know what’s the SONAME of a library, you can use:

$ arm-linux-readelf -d libasound.so.2.0.0

and look at the (SONAME) line. You’ll also see that this library needs the C library, because of the (NEEDED)
line on libc.so.0.

The mechanism of SONAME allows to change the library without recompiling the applications linked with this
library. Let’s say that a security problem is found in the alsa-lib release that provides libasound 2.0.0, and
fixed in the next alsa-lib release, which will now provide libasound 2.0.1.

You can just recompile the library, install it on your target system, change the libasound.so.2 link so that
it points to libasound.so.2.0.1 and restart your applications. And it will work, because your applications
don’t look specifically for libasound.so.2.0.0 but for the SONAME libasound.so.2.

However, it also means that as a library developer, if you break the ABI of the library, you must change the
SONAME: change from libasound.so.2 to libasound.so.3.

Finally, the last step is to tell the configure script where the library is going to be installed. Most configure
scripts consider that the installation prefix is /usr/local/ (so that the library is installed in /usr/local/lib,
the headers in /usr/local/include, etc.). But in our system, we simply want the libraries to be installed in
the /usr prefix, so let’s tell the configure script about this:

$./configure --host=arm-linux --disable-topology --prefix=/usr
$ make

For this library, this option may not change anything to the resulting binaries, but for safety, it is always
recommended to make sure that the prefix matches where your library will be running on the target system.

Do not confuse the prefix (where the application or library will be running on the target system) from the
location where the application or library will be installed on your host while building the root filesystem.

For example, libasound will be installed in $HOME/embedded-linux-qemu-labs/thirdparty/target/usr/lib/
because this is the directory where we are building the root filesystem, but once our target system will be
running, it will see libasound in /usr/lib.

The prefix corresponds to the path in the target system and never on the host. So, one should never pass a
prefix like $HOME/embedded-linux-qemu-labs/thirdparty/target/usr, otherwise at runtime, the application
or library may look for files inside this directory on the target system, which obviously doesn’t exist! By
default, most build systems will install the application or library in the given prefix (/usr or /usr/local),
but with most build systems (including autotools), the installation prefix can be overridden, and be different
from the configuration prefix.

We now only have the installation process left to do.

First, let’s make the installation in the staging space:

$ make DESTDIR=$HOME/embedded-linux-qemu-labs/thirdparty/staging install

Now look at what has been installed by alsa-lib:

• Some configuration files in /usr/share/alsa

• The headers in /usr/include

• The shared library and its libtool (.la) file in /usr/lib

• A pkgconfig file in /usr/lib/pkgconfig. We’ll come back to these later

Finally, let’s install the library in the target space:

1. Create the target/usr/lib directory, it will contain the stripped version of the library

© 2004-2025 Bootlin, CC BY-SA license 29

https://bootlin.com

Embedded Linux System Development

2. Copy the dynamic version of the library. Only libasound.so.2 and libasound.so.2.0.0 are needed,
since libasound.so.2 is the SONAME of the library and libasound.so.2.0.0 is the real binary:

• $ cp -a staging/usr/lib/libasound.so.2* target/usr/lib

3. Measure the size of the target/usr/lib/libasound.so.2.0.0 library before stripping.

4. Strip the library:
• $ arm-linux-strip target/usr/lib/libasound.so.2.0.0

5. Measure the size of the target/usr/lib/libasound.so.2.0.0 library library again after stripping. How
many unnecessary bytes were saved?

Then, we need to install the alsa-lib configuration files:

$ mkdir -p target/usr/share
$ cp -a staging/usr/share/alsa target/usr/share

Now, we need to adjust one small detail in one of the configuration files. Indeed, /usr/share/alsa/alsa.conf
assumes a UNIX group called audio exists, which is not the case on our very small system. So edit this file,
and replace defaults.pcm.ipc_gid audio by defaults.pcm.ipc_gid 0 instead.

And we’re done with alsa-lib!

Alsa-utils
Download alsa-utils from the ALSA offical webpage. We tested the lab with version 1.2.13. The gettext
package is needed during the build so we have to install it.

sudo apt install gettext

Once uncompressed, we quickly discover that the alsa-utils build system is based on the autotools, so we will
work once again with a regular configure script.

As we’ve seen previously, we will have to provide the prefix and host options:

$./configure --host=arm-linux --prefix=/usr

Now, we should quiclky get an error in the execution of the configure script:

checking for libasound headers version >= 1.2.5 (1.2.5)... not present.
configure: error: Sufficiently new version of libasound not found.

Again, we can check in config.log what the configure script is trying to do:

configure:15855: checking for libasound headers version >= 1.2.5 (1.2.5)
configure:15902: arm-linux-gcc -c -g -O2 conftest.c >&5
conftest.c:24:10: fatal error: alsa/asoundlib.h: No such file or directory

Of course, since alsa-utils uses alsa-lib, it includes its header file! So we need to tell the C compiler where
the headers can be found: there are not in the default directory /usr/include/, but in the /usr/include
directory of our staging space. The help text of the configure script says:

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if
you have headers in a nonstandard directory <include dir>

Let’s use it:

$ CPPFLAGS=-I$HOME/embedded-linux-qemu-labs/thirdparty/staging/usr/include \
./configure --host=arm-linux --prefix=/usr

Now, it should stop a bit later, this time with the error:

30 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

checking for snd_ctl_open in -lasound... no
configure: error: No linkable libasound was found.

The configure script tries to compile an application against libasound (as can be seen from the -lasound
option): alsa-utils uses alsa-lib, so the configure script wants to make sure this library is already installed.
Unfortunately, the ld linker doesn’t find it. So, let’s tell the linker where to look for libraries using the -L
option followed by the directory where our libraries are (in staging/usr/lib). This -L option can be passed
to the linker by using the LDFLAGS at configure time, as told by the help text of the configure script:

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

Let’s use this LDFLAGS variable:

$ LDFLAGS=-L$HOME/embedded-linux-qemu-labs/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/embedded-linux-qemu-labs/thirdparty/staging/usr/include \
./configure --host=arm-linux --prefix=/usr

Once again, it should fail a bit further down the tests, this time complaining about a missing curses helper
header. curses or ncurses is a graphical framework to design UIs in the terminal. This is only used by
alsamixer, one of the tools provided by alsa-utils, that we are not going to use. Hence, we can just disable
the build of alsamixer.

Of course, if we wanted it, we would have had to build ncurses first, just like we built alsa-lib.

$ LDFLAGS=-L$HOME/embedded-linux-qemu-labs/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/embedded-linux-qemu-labs/thirdparty/staging/usr/include \
./configure --host=arm-linux --prefix=/usr \
--disable-alsamixer

Then, run the compilation with make. You should hit a final error:

Making all in po
make[2]: Entering directory '/home/tux/embedded-linux-qemu-labs/thirdparty/alsa-utils-1.2.13/alsaconf/po'
mv: cannot stat 't-ja.gmo': No such file or directory

This can be fixed by disabling support for alsaconf too:

$ LDFLAGS=-L$HOME/embedded-linux-qemu-labs/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/embedded-linux-qemu-labs/thirdparty/staging/usr/include \
./configure --host=arm-linux --prefix=/usr \
--disable-alsamixer --disable-alsaconf

You can now run make again. It should work this time.

Let’s now begin the installation process. Before really installing in the staging directory, let’s install in a
dummy directory, to see what’s going to be installed (this dummy directory will not be used afterwards, it
is only to verify what will be installed before polluting the staging space):

$ make DESTDIR=/tmp/alsa-utils/ install

The DESTDIR variable can be used with all Makefiles based on automake. It allows to override the installation
directory: instead of being installed in the configuration prefix directory, the files will be installed in DESTDIR/
configuration-prefix.

Now, let’s see what has been installed in /tmp/alsa-utils/ (run tree /tmp/alsa-utils):

/tmp/alsa-utils/
|-- lib
| `-- udev

© 2004-2025 Bootlin, CC BY-SA license 31

https://bootlin.com

Embedded Linux System Development

| `-- rules.d
| `-- 90-alsa-restore.rules
|-- usr
| |-- bin
| | |-- aconnect
| | |-- alsabat
| | |-- alsaloop
| | |-- alsaucm
| | |-- amidi
| | |-- amixer
| | |-- aplay
| | |-- aplaymidi
| | |-- arecord -> aplay
| | |-- arecordmidi
| | |-- aseqdump
| | |-- aseqnet
| | |-- axfer
| | |-- iecset
| | `-- speaker-test
| |-- sbin
| | |-- alsabat-test.sh
| | |-- alsactl
| | `-- alsa-info.sh
| `-- share
| |-- alsa
| | `-- init
| | |-- 00main
| | |-- ca0106
| | |-- default
| | |-- hda
| | |-- help
| | |-- info
| | `-- test
| |-- locale
| | |-- de
| | | `-- LC_MESSAGES
| | | `-- alsa-utils.mo
| | |-- eu
| | | `-- LC_MESSAGES
| | | `-- alsa-utils.mo
| | |-- fr
| | | `-- LC_MESSAGES
| | | `-- alsa-utils.mo
| | |-- ja
| | | `-- LC_MESSAGES
| | | `-- alsa-utils.mo
| | |-- ka
| | | `-- LC_MESSAGES
| | | `-- alsa-utils.mo
| | `-- sk
| | `-- LC_MESSAGES
| | `-- alsa-utils.mo
| |-- man
| | |-- man1

32 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

| | | |-- aconnect.1
| | | |-- alsabat.1
| | | |-- alsactl.1
| | | |-- alsa-info.sh.1
| | | |-- alsaloop.1
| | | |-- amidi.1
| | | |-- amixer.1
| | | |-- aplay.1
| | | |-- aplaymidi.1
| | | |-- arecord.1 -> aplay.1
| | | |-- arecordmidi.1
| | | |-- aseqdump.1
| | | |-- aseqnet.1
| | | |-- axfer.1
| | | |-- axfer-list.1
| | | |-- axfer-transfer.1
| | | |-- iecset.1
| | | `-- speaker-test.1
| | `-- man7
| `-- sounds
| `-- alsa
| |-- Front_Center.wav
| |-- Front_Left.wav
| |-- Front_Right.wav
| |-- Noise.wav
| |-- Rear_Center.wav
| |-- Rear_Left.wav
| |-- Rear_Right.wav
| |-- Side_Left.wav
| `-- Side_Right.wav
`-- var

`-- lib
`-- alsa

30 directories, 59 files

So, we have:

• The udev rules in lib/udev

• The alsa-utils binaries in /usr/bin and /usr/sbin

• Some sound samples in /usr/share/sounds

• The various translations in /usr/share/locale

• The manual pages in /usr/share/man/, explaining how to use the various tools

• Some configuration samples in /usr/share/alsa.

Now, let’s make the installation in the staging space:

$ make DESTDIR=$HOME/embedded-linux-qemu-labs/thirdparty/staging/ install

Then, let’s manually install only the necessary files in the target space. We are only interested in speaker-
test:

$ cd ..

© 2004-2025 Bootlin, CC BY-SA license 33

https://bootlin.com

Embedded Linux System Development

$ cp -a staging/usr/bin/speaker-test target/usr/bin/
$ arm-linux-strip target/usr/bin/speaker-test

And we’re finally done with alsa-utils!

Now test that all is working fine by running the speaker-test util on your board, with the headset provided
by your instructor plugged in. You may need to add the missing libraries from the toolchain install directory.

Now you can use:

• speaker-test with no arguments to generate pink noise

• speaker-test -t sine to generate a sine wave, optionally with -f <freq> for a specific frequency

Known issue: according to our tests, you are likely to hear no sound on your Ubuntu 22.04 host when you
run speaker-test. There should be no issue with what you built if speaker-test executes without an error,
and if that’s the case, you should consider this a success. Sound was working with the QEMU version on
Ubuntu 20.04 and works again on Ubuntu 22.10. So, there is probably an issue somewhere in the QEMU
integration in Ubuntu.

There you are: you built and ran your first program depending on a library different from the C library.

ipcalc
After practicing with autotools based packages, let’s build ipcalc, which is using Meson as build system. We
won’t really need this utility in our system, but at least it has no dependencies and therefore offers an easy
way to build our first Meson based package.

So, first install the meson package:

$ sudo apt install meson

In the main lab directory, then let’s check out the sources through git:

$ git clone https://gitlab.com/ipcalc/ipcalc.git
$ cd ipcalc/
$ git checkout 1.0.3

To cross-compile with Meson, we need to create a cross file. Let’s create the ../cross-file.txt file with
the below contents:

[binaries]
c = 'arm-linux-gcc'

[host_machine]
system = 'linux'
cpu_family = 'arm'
cpu = 'cortex-a9'
endian = 'little'

We also need to create a special directory for building:

$ mkdir cross-build
$ cd cross-build

We can now have meson create the Ninja build files for us:

$ meson --cross-file ../../cross-file.txt --prefix /usr ..

We are now ready to build ipcalc:

34 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

$ ninja

And now install ipcalc to the build space:

$ DESTDIR=$HOME/embedded-linux-qemu-labs/thirdparty/staging ninja install

Check that the staging/usr/bin/ipcalc file is indeed an ARM executable.

The last thing to do is to copy it to the target space and strip it:

$ cd ../..
$ cp staging/usr/bin/ipcalc target/usr/bin/
$ arm-linux-strip target/usr/bin/ipcalc

Note that we could have asked ninja install to strip the executable for us when installing it into the staging
directory. To do, this, we would have added a strip entry in the cross file, and passed --strip to Meson.
However, it’s better to keep files unstripped in the staging space, in case we need to debug them.

You can now test that ipcalc works on the target:

ipcalc 192.168.0.100
Address: 192.168.0.100
Address space: Private Use

Final touch
To finish this lab completely, and to be consistent with what we’ve done before, let’s strip the C library and
its loader too.

First, check the initial size of the binaries:

$ ls -l target/lib

Then strip the binaries in /lib:

$ chmod +w target/lib/*.so.*
$ arm-linux-strip target/lib/*.so.*

And check the final size:

$ ls -l target/lib/

© 2004-2025 Bootlin, CC BY-SA license 35

https://bootlin.com

Embedded Linux System Development

Using a build system, example with Buil-
droot
Objectives: discover how a build system is used and how it works, with the
example of the Buildroot build system. Build a full Linux system, including
the Linux kernel.

Goals
Compared to the previous lab, we are going to build a more elaborate system, still containing alsa-utils (and
of course its alsa-lib dependency), but this time using Buildroot, an automated build system.

The automated build system will also allow us to add more packages and play real audio on our system,
thanks to the Music Player Daemon (mpd) (https://www.musicpd.org/ and its mpc client.

As in a real project, we will also build the Linux kernel from Buildroot, and install the kernel modules in the
root filesystem.

Important note: because of the current sound playing issues mentioned before, this lab will be less exhaustive
compared to our instructions on real hardware. You should be able to run the commands in the QEMU
emulated machine though, proving that the tools were built correctly. So, we will build tools like mpd and
mpc, but won’t test them because of the absence of sound.

Setup
Go to the $HOME/embedded-linux-qemu-labs/buildroot directory.

Get Buildroot and explore the source code
The official Buildroot website is available at https://buildroot.org/. Clone the Git repository:

git clone https://gitlab.com/buildroot.org/buildroot.git
cd buildroot

Now checkout the tag corresponding to the latest 2023.02.<n> release (Long Term Support), which we have
tested for this lab.

Several subdirectories or files are visible, the most important ones are:

• boot contains the Makefiles and configuration items related to the compilation of common bootloaders
(GRUB, U-Boot, Barebox, etc.)

• board contains board specific configurations and root filesystem overlays.

• configs contains a set of predefined configurations, similar to the concept of defconfig in the kernel.

• docs contains the documentation for Buildroot.

• fs contains the code used to generate the various root filesystem image formats

• linux contains the Makefile and configuration items related to the compilation of the Linux kernel

• Makefile is the main Makefile that we will use to use Buildroot: everything works through Makefiles
in Buildroot;

36 © 2004-2025 Bootlin, CC BY-SA license

https://www.musicpd.org/
https://buildroot.org/
https://bootlin.com

Embedded Linux System Development

• package is a directory that contains all the Makefiles, patches and configuration items to compile
the user space applications and libraries of your embedded Linux system. Have a look at various
subdirectories and see what they contain;

• system contains the root filesystem skeleton and the device tables used when a static /dev is used;

• toolchain contains the Makefiles, patches and configuration items to generate the cross-compiling
toolchain.

Configure Buildroot
In our case, we would like to:

• Generate an embedded Linux system for ARM;

• Use an already existing external toolchain instead of having Buildroot generating one for us;

• Compile the Linux kernel and deploy its modules in the root filesystem;

• Integrate BusyBox, alsa-utils, mpd, mpc and evtest in our embedded Linux system;

• Integrate the target filesystem into a tarball

To run the configuration utility of Buildroot, simply run:

$ make menuconfig

Set the following options. Don’t hesitate to press the Help button whenever you need more details about a
given option:

• Target options

– Target Architecture: ARM (little endian)

– Target Architecture Variant: cortex-A9

– Enable NEON SIMD extension support: Enabled

– Enable VFP extension support: Enabled

– Target ABI: EABIhf

– Floating point strategy: VFPv3-D16

• Toolchain

– Toolchain type: External toolchain

– Toolchain: Custom toolchain

– Toolchain path: use the toolchain you built: /home/<user>/x-tools/arm-training-linux-musleabihf
(replace <user> by your actual user name)

– External toolchain gcc version: 12.x

– External toolchain kernel headers series: 6.1.x or later

– External toolchain C library: musl (experimental)

– We must tell Buildroot about our toolchain configuration, so select Toolchain has SSP support?
and Toolchain has C++ support?. Buildroot will check these parameters anyway.

• Kernel

– Enable Linux Kernel

– Set Kernel version to Latest version (6.1)

– Set Kernel configuration to Using an in-tree defconfig file

© 2004-2025 Bootlin, CC BY-SA license 37

https://bootlin.com

Embedded Linux System Development

– Set Defconfig name to vexpress

– Select Build a Device Tree Blob (DTB)

– Set In-tree Device Tree Source file names to vexpress-v2p-ca9

• Target packages

– Keep BusyBox (default version) and keep the BusyBox configuration proposed by Buildroot;

– Audio and video applications

∗ Select alsa-utils, and in the submenu:

· Select alsamixer. You will be able to test this application too, and that will also pull the
ncurses library, which we will also use in the next lab.

· Select speaker-test

∗ Select mpd, and in the submenu:

· Keep only alsa, vorbis and tcp sockets

∗ Select mpd-mpc.

• Filesystem images

– Select tar the root filesystem

Exit the menuconfig interface. Your configuration has now been saved to the .config file.

Generate the embedded Linux system
Just run:

$ make

Buildroot will first create a small environment with the external toolchain, then download, extract, configure,
compile and install each component of the embedded system.

All the compilation has taken place in the output/ subdirectory. Let’s explore its contents:

• build, is the directory in which each component built by Buildroot is extracted, and where the build
actually takes place

• host, is the directory where Buildroot installs some components for the host. As Buildroot doesn’t
want to depend on too many things installed in the developer machines, it installs some tools needed
to compile the packages for the target. In our case it installed pkg-config (since the version of the host
may be ancient) and tools to generate the root filesystem image (genext2fs, makedevs, fakeroot).

• images, which contains the final images produced by Buildroot. In our case it contains a tarball of the
filesystem, called rootfs.tar, plus the compressed kernel and Device Tree binary. Depending on the
configuration, there could also a bootloader binary or a full SD card image.

• staging, which contains the “build” space of the target system. All the target libraries, with headers
and documentation. It also contains the system headers and the C library, which in our case have been
copied from the cross-compiling toolchain.

• target, is the target root filesystem. All applications and libraries, usually stripped, are installed in
this directory. However, it cannot be used directly as the root filesystem, as all the device files are
missing: it is not possible to create them without being root, and Buildroot has a policy of not running
anything as root.

38 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

Run the generated system
Go back to the $HOME/embedded-linux-qemu-labs/buildroot/ directory. Create a new nfsroot directory
that is going to hold our system, exported over NFS. Go into this directory, and untar the rootfs using:

$ tar xvf ../buildroot/output/images/rootfs.tar

Add our nfsroot directory to the list of directories exported by NFS in /etc/exports.

Also update the kernel and Device Tree binaries used by your board, from the ones compiled by Buildroot
in output/images/.

Boot the board, and log in (root account, no password).

You should now reach a shell.

Even though we have no sound at the moment, you can run speaker-test to check that this application
works. You can also test the alsamixer command too.

By running the ps command, you may also check whether the mpd server was started on your system. However,
as said earlier, we won’t try to test it as we currently have no sound in QEMU on Ubuntu 22.04.

Analyzing dependencies
It’s always useful to understand the dependencies drawn by the packages we build.

First we need to install a Graphviz:

$ sudo apt install graphviz

Now, let’s use Buildroot’s target to generate a dependency graph:

$ make graph-depends

We can now study the dependency graph:

$ evince output/graphs/graph-depends.pdf

In particular, you can see that adding MPD and its client required to compile Meson for the host, and in
turn, Python 3 for the host too. This substantially contributed to the build time.

© 2004-2025 Bootlin, CC BY-SA license 39

https://bootlin.com

Embedded Linux System Development

Application development
Objective: Compile and run your own ncurses application on the target.

Setup
Go to the $HOME/embedded-linux-qemu-labs/appdev directory.

Compile your own application
We will re-use the system built during the Buildroot lab and add to it our own application.

In the lab directory the file app.c contains a very simple ncurses application. It is a simple game where you
need to reach a target using the arrow keys of your keyboard. We will compile and integrate this simple
application to our Linux system.

Buildroot has generated toolchain wrappers in output/host/bin, which make it easier to use the toolchain,
since these wrappers pass some mandatory flags (especially the --sysroot gcc flag, which tells gcc where to
look for the headers and libraries).

Let’s add this directory to our PATH:

$ export PATH=$HOME/embedded-linux-qemu-labs/buildroot/buildroot/output/host/bin:$PATH

Let’s try to compile the application:

$ arm-linux-gcc -o app app.c

It complains about undefined references to some symbols. This is normal, since we didn’t tell the compiler to
link with the necessary libraries. So let’s use pkg-config to query the pkg-config database about the location
of the header files and the list of libraries needed to build an application against ncurses9:

$ arm-linux-gcc -o app app.c $(pkg-config --libs --cflags ncurses)

Our application is now compiled! Copy the generated binary to the NFS root filesystem (in the root/
directory for example), start your system, and run your application!

9Again, output/host/bin has a special pkg-config that automatically knows where to look, so it already knows the right paths
to find .pc files and their sysroot.

40 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

Remote application debugging
Objective: Use strace and ltrace to diagnose program issues. Use gdbserver
and a cross-debugger to remotely debug an embedded application

Setup
Go to the $HOME/embedded-linux-qemu-labs/debugging directory. Create an nfsroot directory.

Debugging setup
Because of issues in gdb and ltrace in the musl version that we are using in our toolchain, we will use a
different toolchain in this lab, based on glibc.

As glibc has more complete features than lighter libraries, it looks like a good idea to do your application
debugging work with a glibc toolchain first, and then switch to lighter libraries once your application and
software stack is production ready.

As done in the Buildroot lab, clone once again the Buildroot Git repository, and checkout the tag corresponding
to the latest 2023.02.<n> release (Long Term Support), which we have tested for this lab.

Then, in the menuconfig interface, configure the target architecture as done previously but configure the
toolchain and target packages differently:

• In Toolchain:

– Toolchain type: External toolchain

– Toolchain: Bootlin toolchains

– Toolchain origin: Toolchain to be downloaded and installed

– Bootlin toolchain variant: armv7-eabihf glibc stable 2022.08-1

– Select Copy gdb server to the Target

• Target packages

– Debugging, profiling and benchmark

∗ Select ltrace

∗ Select strace

Now, build your root filesystem.

Go back to the $HOME/embedded-linux-qemu-labs/debugging directory and extract the buildroot/output/
images/rootfs.tar archive in the nfsroot directory.

Add this directory to the /etc/exports file and run sudo exportfs -r.

Boot your ARM board over NFS on this new filesystem, using the same kernel as before.

Using strace
Now, go to the $HOME/embedded-linux-qemu-labs/debugging directory.

strace allows to trace all the system calls made by a process: opening, reading and writing files, starting
other processes, accessing time, etc. When something goes wrong in your application, strace is an invaluable
tool to see what it actually does, even when you don’t have the source code.

© 2004-2025 Bootlin, CC BY-SA license 41

https://bootlin.com

Embedded Linux System Development

Update the PATH:

$ export PATH=$HOME/embedded-linux-qemu-labs/debugging/buildroot/output/host/bin:$PATH

With your cross-compiling toolchain compile the data/vista-emulator.c program, copy the resulting binary
to the /root directory of the root filesystem and then strip it.

Back to target system, try to run the /root/vista-emulator program. It should hang indefinitely!

Interrupt this program by hitting [Ctrl] [C].

Now, running this program again through the strace command and understand why it hangs. You can guess
it without reading the source code!

Now add what the program was waiting for, and now see your program proceed to another bug, failing with
a segmentation fault.

Using ltrace
Now run the program through ltrace.

Now you should see what the program does: it tries to consume as much system memory as it can!

Also run the program through ltrace -c, to see what function call statistics this utility can provide.

It’s also interesting to run the program again with strace. You will see that memory allocations translate
into mmap() system calls. That’s how you can recognize them when you’re using strace.

Using gdbserver
We are now going to use gdbserver to understand why the program segfaults.

Compile vista-emulator.c again with the -g option to include debugging symbols. This time, just keep it
on your workstation, as you already have the version without debugging symbols on your target.

Then, on the target side, run vista-emulator under gdbserver. gdbserver will listen on a TCP port for a
connection from gdb, and will control the execution of vista-emulator according to the gdb commands:

=> gdbserver localhost:2345 vista-emulator

On the host side, run arm-linux-gdb (also found in your toolchain):

$ arm-linux-gdb vista-emulator

gdb starts and loads the debugging information from the vista-emulator binary that has been compiled with
-g.

Then, we need to tell where to find our libraries, since they are not present in the default /lib and /usr/lib
directories on your workstation. This is done by setting the gdb sysroot variable (on one line):

(gdb) set sysroot /home/<user>/embedded-linux-qemu-labs/debugging/\
buildroot/output/staging

Of course, replace <user> by your actual user name.

And tell gdb to connect to the remote system:

(gdb) target remote <target-ip-address>:2345

Then, use gdb as usual to set breakpoints, look at the source code, run the application step by step, etc.
Graphical versions of gdb, such as ddd can also be used in the same way. In our case, we’ll just start the
program and wait for it to hit the segmentation fault:

42 © 2004-2025 Bootlin, CC BY-SA license

https://bootlin.com

Embedded Linux System Development

(gdb) continue

You could then ask for a backtrace to see where this happened:

(gdb) backtrace

This will tell you that the segmentation fault occurred in a function of the C library, called by our program.
This should help you in finding the bug in our application.

Post mortem analysis
Following the details in the slides, configure your shell on the target to get a core file dumped when you run
vista-emulator again.

Once you have such a file, inspect it with arm-linux-gdb on the target, set the sysroot setting, and then
generate a backtrace to see where the program crashed.

This way, you can have information about the crash without running the program through the debugger.

What to remember
During this lab, we learned that...

• It’s easy to study the behavior of programs and diagnose issues without even having the source code,
thanks to strace and ltrace.

• You can leave a small gdbserver program (about 300 KB) on your target that allows to debug target
applications, using a standard gdb debugger on the development host.

• It is fine to strip applications and binaries on the target machine, as long as the programs and libraries
with debugging symbols are available on the development host.

• Thanks to core dumps, you can know where a program crashed, without having to reproduce the issue
by running the program through the debugger.

© 2004-2025 Bootlin, CC BY-SA license 43

https://bootlin.com

	About this document
	Copying this document
	Training setup
	Install lab data
	Update your distribution
	Install extra packages
	More guidelines

	Building a cross-compiling toolchain
	Setup
	Install needed packages
	Getting Crosstool-ng
	Building and installing Crosstool-ng
	Configure the toolchain to produce
	Produce the toolchain
	Testing the toolchain
	Cleaning up

	Bootloader - U-Boot
	Setup
	Configuring and building U-Boot
	Testing U-Boot
	SD card setup
	Testing U-Boot's environment
	Setup networking between QEMU and the host
	Setting up the TFTP server
	Rescue binary

	Fetching Linux kernel sources
	Setup
	Cloning the mainline Linux tree
	Accessing stable releases

	Kernel - Cross-compiling
	Setup
	Choose a particular stable version of Linux
	Cross-compiling environment setup
	Linux kernel configuration
	Cross compiling
	Load and boot the kernel using U-Boot

	Tiny embedded system with BusyBox
	Lab implementation
	Setup
	Kernel configuration
	Setting up the NFS server
	Booting the system
	Root filesystem with BusyBox
	Virtual filesystems
	System configuration and startup
	Starting the shell in a proper terminal
	Switching to shared libraries
	Implement a web interface for your device
	Going further
	Initramfs booting

	Accessing Hardware Devices
	Goals
	Setup
	Exploring /dev
	Exploring /sys

	Filesystems - Block file systems
	Goals
	Setup
	Filesystem support in the kernel
	Format the third partition
	Adding a tmpfs partition for log files
	Making a SquashFS image
	Booting on the SquashFS partition
	Store the kernel image and DTB on the SD card

	Third party libraries and applications
	Figuring out library dependencies
	Preparation
	Testing
	alsa-lib
	Alsa-utils
	ipcalc
	Final touch

	Using a build system, example with Buildroot
	Goals
	Setup
	Get Buildroot and explore the source code
	Configure Buildroot
	Generate the embedded Linux system
	Run the generated system
	Analyzing dependencies

	Application development
	Setup
	Compile your own application

	Remote application debugging
	Setup
	Debugging setup
	Using strace
	Using ltrace
	Using gdbserver
	Post mortem analysis
	What to remember

