| /* |
| ** 2015-08-12 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ****************************************************************************** |
| ** |
| ** SQLite JSON functions. |
| ** |
| ** This file began as an extension in ext/misc/json1.c in 2015. That |
| ** extension proved so useful that it has now been moved into the core. |
| ** |
| ** The original design stored all JSON as pure text, canonical RFC-8259. |
| ** Support for JSON-5 extensions was added with version 3.42.0 (2023-05-16). |
| ** All generated JSON text still conforms strictly to RFC-8259, but text |
| ** with JSON-5 extensions is accepted as input. |
| ** |
| ** Beginning with version 3.45.0 (circa 2024-01-01), these routines also |
| ** accept BLOB values that have JSON encoded using a binary representation |
| ** called "JSONB". The name JSONB comes from PostgreSQL, however the on-disk |
| ** format for SQLite-JSONB is completely different and incompatible with |
| ** PostgreSQL-JSONB. |
| ** |
| ** Decoding and interpreting JSONB is still O(N) where N is the size of |
| ** the input, the same as text JSON. However, the constant of proportionality |
| ** for JSONB is much smaller due to faster parsing. The size of each |
| ** element in JSONB is encoded in its header, so there is no need to search |
| ** for delimiters using persnickety syntax rules. JSONB seems to be about |
| ** 3x faster than text JSON as a result. JSONB is also tends to be slightly |
| ** smaller than text JSON, by 5% or 10%, but there are corner cases where |
| ** JSONB can be slightly larger. So you are not far mistaken to say that |
| ** a JSONB blob is the same size as the equivalent RFC-8259 text. |
| ** |
| ** |
| ** THE JSONB ENCODING: |
| ** |
| ** Every JSON element is encoded in JSONB as a header and a payload. |
| ** The header is between 1 and 9 bytes in size. The payload is zero |
| ** or more bytes. |
| ** |
| ** The lower 4 bits of the first byte of the header determines the |
| ** element type: |
| ** |
| ** 0: NULL |
| ** 1: TRUE |
| ** 2: FALSE |
| ** 3: INT -- RFC-8259 integer literal |
| ** 4: INT5 -- JSON5 integer literal |
| ** 5: FLOAT -- RFC-8259 floating point literal |
| ** 6: FLOAT5 -- JSON5 floating point literal |
| ** 7: TEXT -- Text literal acceptable to both SQL and JSON |
| ** 8: TEXTJ -- Text containing RFC-8259 escapes |
| ** 9: TEXT5 -- Text containing JSON5 and/or RFC-8259 escapes |
| ** 10: TEXTRAW -- Text containing unescaped syntax characters |
| ** 11: ARRAY |
| ** 12: OBJECT |
| ** |
| ** The other three possible values (13-15) are reserved for future |
| ** enhancements. |
| ** |
| ** The upper 4 bits of the first byte determine the size of the header |
| ** and sometimes also the size of the payload. If X is the first byte |
| ** of the element and if X>>4 is between 0 and 11, then the payload |
| ** will be that many bytes in size and the header is exactly one byte |
| ** in size. Other four values for X>>4 (12-15) indicate that the header |
| ** is more than one byte in size and that the payload size is determined |
| ** by the remainder of the header, interpreted as a unsigned big-endian |
| ** integer. |
| ** |
| ** Value of X>>4 Size integer Total header size |
| ** ------------- -------------------- ----------------- |
| ** 12 1 byte (0-255) 2 |
| ** 13 2 byte (0-65535) 3 |
| ** 14 4 byte (0-4294967295) 5 |
| ** 15 8 byte (0-1.8e19) 9 |
| ** |
| ** The payload size need not be expressed in its minimal form. For example, |
| ** if the payload size is 10, the size can be expressed in any of 5 different |
| ** ways: (1) (X>>4)==10, (2) (X>>4)==12 following by one 0x0a byte, |
| ** (3) (X>>4)==13 followed by 0x00 and 0x0a, (4) (X>>4)==14 followed by |
| ** 0x00 0x00 0x00 0x0a, or (5) (X>>4)==15 followed by 7 bytes of 0x00 and |
| ** a single byte of 0x0a. The shorter forms are preferred, of course, but |
| ** sometimes when generating JSONB, the payload size is not known in advance |
| ** and it is convenient to reserve sufficient header space to cover the |
| ** largest possible payload size and then come back later and patch up |
| ** the size when it becomes known, resulting in a non-minimal encoding. |
| ** |
| ** The value (X>>4)==15 is not actually used in the current implementation |
| ** (as SQLite is currently unable to handle BLOBs larger than about 2GB) |
| ** but is included in the design to allow for future enhancements. |
| ** |
| ** The payload follows the header. NULL, TRUE, and FALSE have no payload and |
| ** their payload size must always be zero. The payload for INT, INT5, |
| ** FLOAT, FLOAT5, TEXT, TEXTJ, TEXT5, and TEXTROW is text. Note that the |
| ** "..." or '...' delimiters are omitted from the various text encodings. |
| ** The payload for ARRAY and OBJECT is a list of additional elements that |
| ** are the content for the array or object. The payload for an OBJECT |
| ** must be an even number of elements. The first element of each pair is |
| ** the label and must be of type TEXT, TEXTJ, TEXT5, or TEXTRAW. |
| ** |
| ** A valid JSONB blob consists of a single element, as described above. |
| ** Usually this will be an ARRAY or OBJECT element which has many more |
| ** elements as its content. But the overall blob is just a single element. |
| ** |
| ** Input validation for JSONB blobs simply checks that the element type |
| ** code is between 0 and 12 and that the total size of the element |
| ** (header plus payload) is the same as the size of the BLOB. If those |
| ** checks are true, the BLOB is assumed to be JSONB and processing continues. |
| ** Errors are only raised if some other miscoding is discovered during |
| ** processing. |
| ** |
| ** Additional information can be found in the doc/jsonb.md file of the |
| ** canonical SQLite source tree. |
| */ |
| #ifndef SQLITE_OMIT_JSON |
| #include "sqliteInt.h" |
| |
| /* JSONB element types |
| */ |
| #define JSONB_NULL 0 /* "null" */ |
| #define JSONB_TRUE 1 /* "true" */ |
| #define JSONB_FALSE 2 /* "false" */ |
| #define JSONB_INT 3 /* integer acceptable to JSON and SQL */ |
| #define JSONB_INT5 4 /* integer in 0x000 notation */ |
| #define JSONB_FLOAT 5 /* float acceptable to JSON and SQL */ |
| #define JSONB_FLOAT5 6 /* float with JSON5 extensions */ |
| #define JSONB_TEXT 7 /* Text compatible with both JSON and SQL */ |
| #define JSONB_TEXTJ 8 /* Text with JSON escapes */ |
| #define JSONB_TEXT5 9 /* Text with JSON-5 escape */ |
| #define JSONB_TEXTRAW 10 /* SQL text that needs escaping for JSON */ |
| #define JSONB_ARRAY 11 /* An array */ |
| #define JSONB_OBJECT 12 /* An object */ |
| |
| /* Human-readable names for the JSONB values. The index for each |
| ** string must correspond to the JSONB_* integer above. |
| */ |
| static const char * const jsonbType[] = { |
| "null", "true", "false", "integer", "integer", |
| "real", "real", "text", "text", "text", |
| "text", "array", "object", "", "", "", "" |
| }; |
| |
| /* |
| ** Growing our own isspace() routine this way is twice as fast as |
| ** the library isspace() function, resulting in a 7% overall performance |
| ** increase for the text-JSON parser. (Ubuntu14.10 gcc 4.8.4 x64 with -Os). |
| */ |
| static const char jsonIsSpace[] = { |
| #ifdef SQLITE_ASCII |
| /*0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, /* 0 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1 */ |
| 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 6 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7 */ |
| |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 8 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 9 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* a */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* b */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* c */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* e */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* f */ |
| #endif |
| #ifdef SQLITE_EBCDIC |
| /*0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, /* 0 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1 */ |
| 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3 */ |
| 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 6 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7 */ |
| |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 8 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 9 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* a */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* b */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* c */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* e */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* f */ |
| #endif |
| |
| }; |
| #define jsonIsspace(x) (jsonIsSpace[(unsigned char)x]) |
| |
| /* |
| ** The set of all space characters recognized by jsonIsspace(). |
| ** Useful as the second argument to strspn(). |
| */ |
| #ifdef SQLITE_ASCII |
| static const char jsonSpaces[] = "\011\012\015\040"; |
| #endif |
| #ifdef SQLITE_EBCDIC |
| static const char jsonSpaces[] = "\005\045\015\100"; |
| #endif |
| |
| |
| /* |
| ** Characters that are special to JSON. Control characters, |
| ** '"' and '\\' and '\''. Actually, '\'' is not special to |
| ** canonical JSON, but it is special in JSON-5, so we include |
| ** it in the set of special characters. |
| */ |
| static const char jsonIsOk[256] = { |
| #ifdef SQLITE_ASCII |
| /*0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1 */ |
| 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, /* 2 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 3 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, /* 5 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */ |
| |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 8 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 9 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* a */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* b */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* c */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* d */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 /* f */ |
| #endif |
| #ifdef SQLITE_EBCDIC |
| /*0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2 */ |
| 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, /* 3 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 5 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, /* 7 */ |
| |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 8 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 9 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* a */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* b */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* c */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* d */ |
| 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 /* f */ |
| #endif |
| }; |
| |
| /* Objects */ |
| typedef struct JsonCache JsonCache; |
| typedef struct JsonString JsonString; |
| typedef struct JsonParse JsonParse; |
| |
| /* |
| ** Magic number used for the JSON parse cache in sqlite3_get_auxdata() |
| */ |
| #define JSON_CACHE_ID (-429938) /* Cache entry */ |
| #define JSON_CACHE_SIZE 4 /* Max number of cache entries */ |
| |
| /* |
| ** jsonUnescapeOneChar() returns this invalid code point if it encounters |
| ** a syntax error. |
| */ |
| #define JSON_INVALID_CHAR 0x99999 |
| |
| /* A cache mapping JSON text into JSONB blobs. |
| ** |
| ** Each cache entry is a JsonParse object with the following restrictions: |
| ** |
| ** * The bReadOnly flag must be set |
| ** |
| ** * The aBlob[] array must be owned by the JsonParse object. In other |
| ** words, nBlobAlloc must be non-zero. |
| ** |
| ** * eEdit and delta must be zero. |
| ** |
| ** * zJson must be an RCStr. In other words bJsonIsRCStr must be true. |
| */ |
| struct JsonCache { |
| sqlite3 *db; /* Database connection */ |
| int nUsed; /* Number of active entries in the cache */ |
| JsonParse *a[JSON_CACHE_SIZE]; /* One line for each cache entry */ |
| }; |
| |
| /* An instance of this object represents a JSON string |
| ** under construction. Really, this is a generic string accumulator |
| ** that can be and is used to create strings other than JSON. |
| ** |
| ** If the generated string is longer than will fit into the zSpace[] buffer, |
| ** then it will be an RCStr string. This aids with caching of large |
| ** JSON strings. |
| */ |
| struct JsonString { |
| sqlite3_context *pCtx; /* Function context - put error messages here */ |
| char *zBuf; /* Append JSON content here */ |
| u64 nAlloc; /* Bytes of storage available in zBuf[] */ |
| u64 nUsed; /* Bytes of zBuf[] currently used */ |
| u8 bStatic; /* True if zBuf is static space */ |
| u8 eErr; /* True if an error has been encountered */ |
| char zSpace[100]; /* Initial static space */ |
| }; |
| |
| /* Allowed values for JsonString.eErr */ |
| #define JSTRING_OOM 0x01 /* Out of memory */ |
| #define JSTRING_MALFORMED 0x02 /* Malformed JSONB */ |
| #define JSTRING_ERR 0x04 /* Error already sent to sqlite3_result */ |
| |
| /* The "subtype" set for text JSON values passed through using |
| ** sqlite3_result_subtype() and sqlite3_value_subtype(). |
| */ |
| #define JSON_SUBTYPE 74 /* Ascii for "J" */ |
| |
| /* |
| ** Bit values for the flags passed into various SQL function implementations |
| ** via the sqlite3_user_data() value. |
| */ |
| #define JSON_JSON 0x01 /* Result is always JSON */ |
| #define JSON_SQL 0x02 /* Result is always SQL */ |
| #define JSON_ABPATH 0x03 /* Allow abbreviated JSON path specs */ |
| #define JSON_ISSET 0x04 /* json_set(), not json_insert() */ |
| #define JSON_BLOB 0x08 /* Use the BLOB output format */ |
| |
| |
| /* A parsed JSON value. Lifecycle: |
| ** |
| ** 1. JSON comes in and is parsed into a JSONB value in aBlob. The |
| ** original text is stored in zJson. This step is skipped if the |
| ** input is JSONB instead of text JSON. |
| ** |
| ** 2. The aBlob[] array is searched using the JSON path notation, if needed. |
| ** |
| ** 3. Zero or more changes are made to aBlob[] (via json_remove() or |
| ** json_replace() or json_patch() or similar). |
| ** |
| ** 4. New JSON text is generated from the aBlob[] for output. This step |
| ** is skipped if the function is one of the jsonb_* functions that |
| ** returns JSONB instead of text JSON. |
| */ |
| struct JsonParse { |
| u8 *aBlob; /* JSONB representation of JSON value */ |
| u32 nBlob; /* Bytes of aBlob[] actually used */ |
| u32 nBlobAlloc; /* Bytes allocated to aBlob[]. 0 if aBlob is external */ |
| char *zJson; /* Json text used for parsing */ |
| sqlite3 *db; /* The database connection to which this object belongs */ |
| int nJson; /* Length of the zJson string in bytes */ |
| u32 nJPRef; /* Number of references to this object */ |
| u32 iErr; /* Error location in zJson[] */ |
| u16 iDepth; /* Nesting depth */ |
| u8 nErr; /* Number of errors seen */ |
| u8 oom; /* Set to true if out of memory */ |
| u8 bJsonIsRCStr; /* True if zJson is an RCStr */ |
| u8 hasNonstd; /* True if input uses non-standard features like JSON5 */ |
| u8 bReadOnly; /* Do not modify. */ |
| /* Search and edit information. See jsonLookupStep() */ |
| u8 eEdit; /* Edit operation to apply */ |
| int delta; /* Size change due to the edit */ |
| u32 nIns; /* Number of bytes to insert */ |
| u32 iLabel; /* Location of label if search landed on an object value */ |
| u8 *aIns; /* Content to be inserted */ |
| }; |
| |
| /* Allowed values for JsonParse.eEdit */ |
| #define JEDIT_DEL 1 /* Delete if exists */ |
| #define JEDIT_REPL 2 /* Overwrite if exists */ |
| #define JEDIT_INS 3 /* Insert if not exists */ |
| #define JEDIT_SET 4 /* Insert or overwrite */ |
| |
| /* |
| ** Maximum nesting depth of JSON for this implementation. |
| ** |
| ** This limit is needed to avoid a stack overflow in the recursive |
| ** descent parser. A depth of 1000 is far deeper than any sane JSON |
| ** should go. Historical note: This limit was 2000 prior to version 3.42.0 |
| */ |
| #ifndef SQLITE_JSON_MAX_DEPTH |
| # define JSON_MAX_DEPTH 1000 |
| #else |
| # define JSON_MAX_DEPTH SQLITE_JSON_MAX_DEPTH |
| #endif |
| |
| /* |
| ** Allowed values for the flgs argument to jsonParseFuncArg(); |
| */ |
| #define JSON_EDITABLE 0x01 /* Generate a writable JsonParse object */ |
| #define JSON_KEEPERROR 0x02 /* Return non-NULL even if there is an error */ |
| |
| /************************************************************************** |
| ** Forward references |
| **************************************************************************/ |
| static void jsonReturnStringAsBlob(JsonString*); |
| static int jsonArgIsJsonb(sqlite3_value *pJson, JsonParse *p); |
| static u32 jsonTranslateBlobToText(const JsonParse*,u32,JsonString*); |
| static void jsonReturnParse(sqlite3_context*,JsonParse*); |
| static JsonParse *jsonParseFuncArg(sqlite3_context*,sqlite3_value*,u32); |
| static void jsonParseFree(JsonParse*); |
| static u32 jsonbPayloadSize(const JsonParse*, u32, u32*); |
| static u32 jsonUnescapeOneChar(const char*, u32, u32*); |
| |
| /************************************************************************** |
| ** Utility routines for dealing with JsonCache objects |
| **************************************************************************/ |
| |
| /* |
| ** Free a JsonCache object. |
| */ |
| static void jsonCacheDelete(JsonCache *p){ |
| int i; |
| for(i=0; i<p->nUsed; i++){ |
| jsonParseFree(p->a[i]); |
| } |
| sqlite3DbFree(p->db, p); |
| } |
| static void jsonCacheDeleteGeneric(void *p){ |
| jsonCacheDelete((JsonCache*)p); |
| } |
| |
| /* |
| ** Insert a new entry into the cache. If the cache is full, expel |
| ** the least recently used entry. Return SQLITE_OK on success or a |
| ** result code otherwise. |
| ** |
| ** Cache entries are stored in age order, oldest first. |
| */ |
| static int jsonCacheInsert( |
| sqlite3_context *ctx, /* The SQL statement context holding the cache */ |
| JsonParse *pParse /* The parse object to be added to the cache */ |
| ){ |
| JsonCache *p; |
| |
| assert( pParse->zJson!=0 ); |
| assert( pParse->bJsonIsRCStr ); |
| assert( pParse->delta==0 ); |
| p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID); |
| if( p==0 ){ |
| sqlite3 *db = sqlite3_context_db_handle(ctx); |
| p = sqlite3DbMallocZero(db, sizeof(*p)); |
| if( p==0 ) return SQLITE_NOMEM; |
| p->db = db; |
| sqlite3_set_auxdata(ctx, JSON_CACHE_ID, p, jsonCacheDeleteGeneric); |
| p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID); |
| if( p==0 ) return SQLITE_NOMEM; |
| } |
| if( p->nUsed >= JSON_CACHE_SIZE ){ |
| jsonParseFree(p->a[0]); |
| memmove(p->a, &p->a[1], (JSON_CACHE_SIZE-1)*sizeof(p->a[0])); |
| p->nUsed = JSON_CACHE_SIZE-1; |
| } |
| assert( pParse->nBlobAlloc>0 ); |
| pParse->eEdit = 0; |
| pParse->nJPRef++; |
| pParse->bReadOnly = 1; |
| p->a[p->nUsed] = pParse; |
| p->nUsed++; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Search for a cached translation the json text supplied by pArg. Return |
| ** the JsonParse object if found. Return NULL if not found. |
| ** |
| ** When a match if found, the matching entry is moved to become the |
| ** most-recently used entry if it isn't so already. |
| ** |
| ** The JsonParse object returned still belongs to the Cache and might |
| ** be deleted at any moment. If the caller wants the JsonParse to |
| ** linger, it needs to increment the nPJRef reference counter. |
| */ |
| static JsonParse *jsonCacheSearch( |
| sqlite3_context *ctx, /* The SQL statement context holding the cache */ |
| sqlite3_value *pArg /* Function argument containing SQL text */ |
| ){ |
| JsonCache *p; |
| int i; |
| const char *zJson; |
| int nJson; |
| |
| if( sqlite3_value_type(pArg)!=SQLITE_TEXT ){ |
| return 0; |
| } |
| zJson = (const char*)sqlite3_value_text(pArg); |
| if( zJson==0 ) return 0; |
| nJson = sqlite3_value_bytes(pArg); |
| |
| p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID); |
| if( p==0 ){ |
| return 0; |
| } |
| for(i=0; i<p->nUsed; i++){ |
| if( p->a[i]->zJson==zJson ) break; |
| } |
| if( i>=p->nUsed ){ |
| for(i=0; i<p->nUsed; i++){ |
| if( p->a[i]->nJson!=nJson ) continue; |
| if( memcmp(p->a[i]->zJson, zJson, nJson)==0 ) break; |
| } |
| } |
| if( i<p->nUsed ){ |
| if( i<p->nUsed-1 ){ |
| /* Make the matching entry the most recently used entry */ |
| JsonParse *tmp = p->a[i]; |
| memmove(&p->a[i], &p->a[i+1], (p->nUsed-i-1)*sizeof(tmp)); |
| p->a[p->nUsed-1] = tmp; |
| i = p->nUsed - 1; |
| } |
| assert( p->a[i]->delta==0 ); |
| return p->a[i]; |
| }else{ |
| return 0; |
| } |
| } |
| |
| /************************************************************************** |
| ** Utility routines for dealing with JsonString objects |
| **************************************************************************/ |
| |
| /* Turn uninitialized bulk memory into a valid JsonString object |
| ** holding a zero-length string. |
| */ |
| static void jsonStringZero(JsonString *p){ |
| p->zBuf = p->zSpace; |
| p->nAlloc = sizeof(p->zSpace); |
| p->nUsed = 0; |
| p->bStatic = 1; |
| } |
| |
| /* Initialize the JsonString object |
| */ |
| static void jsonStringInit(JsonString *p, sqlite3_context *pCtx){ |
| p->pCtx = pCtx; |
| p->eErr = 0; |
| jsonStringZero(p); |
| } |
| |
| /* Free all allocated memory and reset the JsonString object back to its |
| ** initial state. |
| */ |
| static void jsonStringReset(JsonString *p){ |
| if( !p->bStatic ) sqlite3RCStrUnref(p->zBuf); |
| jsonStringZero(p); |
| } |
| |
| /* Report an out-of-memory (OOM) condition |
| */ |
| static void jsonStringOom(JsonString *p){ |
| p->eErr |= JSTRING_OOM; |
| if( p->pCtx ) sqlite3_result_error_nomem(p->pCtx); |
| jsonStringReset(p); |
| } |
| |
| /* Enlarge pJson->zBuf so that it can hold at least N more bytes. |
| ** Return zero on success. Return non-zero on an OOM error |
| */ |
| static int jsonStringGrow(JsonString *p, u32 N){ |
| u64 nTotal = N<p->nAlloc ? p->nAlloc*2 : p->nAlloc+N+10; |
| char *zNew; |
| if( p->bStatic ){ |
| if( p->eErr ) return 1; |
| zNew = sqlite3RCStrNew(nTotal); |
| if( zNew==0 ){ |
| jsonStringOom(p); |
| return SQLITE_NOMEM; |
| } |
| memcpy(zNew, p->zBuf, (size_t)p->nUsed); |
| p->zBuf = zNew; |
| p->bStatic = 0; |
| }else{ |
| p->zBuf = sqlite3RCStrResize(p->zBuf, nTotal); |
| if( p->zBuf==0 ){ |
| p->eErr |= JSTRING_OOM; |
| jsonStringZero(p); |
| return SQLITE_NOMEM; |
| } |
| } |
| p->nAlloc = nTotal; |
| return SQLITE_OK; |
| } |
| |
| /* Append N bytes from zIn onto the end of the JsonString string. |
| */ |
| static SQLITE_NOINLINE void jsonStringExpandAndAppend( |
| JsonString *p, |
| const char *zIn, |
| u32 N |
| ){ |
| assert( N>0 ); |
| if( jsonStringGrow(p,N) ) return; |
| memcpy(p->zBuf+p->nUsed, zIn, N); |
| p->nUsed += N; |
| } |
| static void jsonAppendRaw(JsonString *p, const char *zIn, u32 N){ |
| if( N==0 ) return; |
| if( N+p->nUsed >= p->nAlloc ){ |
| jsonStringExpandAndAppend(p,zIn,N); |
| }else{ |
| memcpy(p->zBuf+p->nUsed, zIn, N); |
| p->nUsed += N; |
| } |
| } |
| static void jsonAppendRawNZ(JsonString *p, const char *zIn, u32 N){ |
| assert( N>0 ); |
| if( N+p->nUsed >= p->nAlloc ){ |
| jsonStringExpandAndAppend(p,zIn,N); |
| }else{ |
| memcpy(p->zBuf+p->nUsed, zIn, N); |
| p->nUsed += N; |
| } |
| } |
| |
| /* Append formatted text (not to exceed N bytes) to the JsonString. |
| */ |
| static void jsonPrintf(int N, JsonString *p, const char *zFormat, ...){ |
| va_list ap; |
| if( (p->nUsed + N >= p->nAlloc) && jsonStringGrow(p, N) ) return; |
| va_start(ap, zFormat); |
| sqlite3_vsnprintf(N, p->zBuf+p->nUsed, zFormat, ap); |
| va_end(ap); |
| p->nUsed += (int)strlen(p->zBuf+p->nUsed); |
| } |
| |
| /* Append a single character |
| */ |
| static SQLITE_NOINLINE void jsonAppendCharExpand(JsonString *p, char c){ |
| if( jsonStringGrow(p,1) ) return; |
| p->zBuf[p->nUsed++] = c; |
| } |
| static void jsonAppendChar(JsonString *p, char c){ |
| if( p->nUsed>=p->nAlloc ){ |
| jsonAppendCharExpand(p,c); |
| }else{ |
| p->zBuf[p->nUsed++] = c; |
| } |
| } |
| |
| /* Remove a single character from the end of the string |
| */ |
| static void jsonStringTrimOneChar(JsonString *p){ |
| if( p->eErr==0 ){ |
| assert( p->nUsed>0 ); |
| p->nUsed--; |
| } |
| } |
| |
| |
| /* Make sure there is a zero terminator on p->zBuf[] |
| ** |
| ** Return true on success. Return false if an OOM prevents this |
| ** from happening. |
| */ |
| static int jsonStringTerminate(JsonString *p){ |
| jsonAppendChar(p, 0); |
| jsonStringTrimOneChar(p); |
| return p->eErr==0; |
| } |
| |
| /* Append a comma separator to the output buffer, if the previous |
| ** character is not '[' or '{'. |
| */ |
| static void jsonAppendSeparator(JsonString *p){ |
| char c; |
| if( p->nUsed==0 ) return; |
| c = p->zBuf[p->nUsed-1]; |
| if( c=='[' || c=='{' ) return; |
| jsonAppendChar(p, ','); |
| } |
| |
| /* c is a control character. Append the canonical JSON representation |
| ** of that control character to p. |
| ** |
| ** This routine assumes that the output buffer has already been enlarged |
| ** sufficiently to hold the worst-case encoding plus a nul terminator. |
| */ |
| static void jsonAppendControlChar(JsonString *p, u8 c){ |
| static const char aSpecial[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| assert( sizeof(aSpecial)==32 ); |
| assert( aSpecial['\b']=='b' ); |
| assert( aSpecial['\f']=='f' ); |
| assert( aSpecial['\n']=='n' ); |
| assert( aSpecial['\r']=='r' ); |
| assert( aSpecial['\t']=='t' ); |
| assert( c>=0 && c<sizeof(aSpecial) ); |
| assert( p->nUsed+7 <= p->nAlloc ); |
| if( aSpecial[c] ){ |
| p->zBuf[p->nUsed] = '\\'; |
| p->zBuf[p->nUsed+1] = aSpecial[c]; |
| p->nUsed += 2; |
| }else{ |
| p->zBuf[p->nUsed] = '\\'; |
| p->zBuf[p->nUsed+1] = 'u'; |
| p->zBuf[p->nUsed+2] = '0'; |
| p->zBuf[p->nUsed+3] = '0'; |
| p->zBuf[p->nUsed+4] = "0123456789abcdef"[c>>4]; |
| p->zBuf[p->nUsed+5] = "0123456789abcdef"[c&0xf]; |
| p->nUsed += 6; |
| } |
| } |
| |
| /* Append the N-byte string in zIn to the end of the JsonString string |
| ** under construction. Enclose the string in double-quotes ("...") and |
| ** escape any double-quotes or backslash characters contained within the |
| ** string. |
| ** |
| ** This routine is a high-runner. There is a measurable performance |
| ** increase associated with unwinding the jsonIsOk[] loop. |
| */ |
| static void jsonAppendString(JsonString *p, const char *zIn, u32 N){ |
| u32 k; |
| u8 c; |
| const u8 *z = (const u8*)zIn; |
| if( z==0 ) return; |
| if( (N+p->nUsed+2 >= p->nAlloc) && jsonStringGrow(p,N+2)!=0 ) return; |
| p->zBuf[p->nUsed++] = '"'; |
| while( 1 /*exit-by-break*/ ){ |
| k = 0; |
| /* The following while() is the 4-way unwound equivalent of |
| ** |
| ** while( k<N && jsonIsOk[z[k]] ){ k++; } |
| */ |
| while( 1 /* Exit by break */ ){ |
| if( k+3>=N ){ |
| while( k<N && jsonIsOk[z[k]] ){ k++; } |
| break; |
| } |
| if( !jsonIsOk[z[k]] ){ |
| break; |
| } |
| if( !jsonIsOk[z[k+1]] ){ |
| k += 1; |
| break; |
| } |
| if( !jsonIsOk[z[k+2]] ){ |
| k += 2; |
| break; |
| } |
| if( !jsonIsOk[z[k+3]] ){ |
| k += 3; |
| break; |
| }else{ |
| k += 4; |
| } |
| } |
| if( k>=N ){ |
| if( k>0 ){ |
| memcpy(&p->zBuf[p->nUsed], z, k); |
| p->nUsed += k; |
| } |
| break; |
| } |
| if( k>0 ){ |
| memcpy(&p->zBuf[p->nUsed], z, k); |
| p->nUsed += k; |
| z += k; |
| N -= k; |
| } |
| c = z[0]; |
| if( c=='"' || c=='\\' ){ |
| if( (p->nUsed+N+3 > p->nAlloc) && jsonStringGrow(p,N+3)!=0 ) return; |
| p->zBuf[p->nUsed++] = '\\'; |
| p->zBuf[p->nUsed++] = c; |
| }else if( c=='\'' ){ |
| p->zBuf[p->nUsed++] = c; |
| }else{ |
| if( (p->nUsed+N+7 > p->nAlloc) && jsonStringGrow(p,N+7)!=0 ) return; |
| jsonAppendControlChar(p, c); |
| } |
| z++; |
| N--; |
| } |
| p->zBuf[p->nUsed++] = '"'; |
| assert( p->nUsed<p->nAlloc ); |
| } |
| |
| /* |
| ** Append an sqlite3_value (such as a function parameter) to the JSON |
| ** string under construction in p. |
| */ |
| static void jsonAppendSqlValue( |
| JsonString *p, /* Append to this JSON string */ |
| sqlite3_value *pValue /* Value to append */ |
| ){ |
| switch( sqlite3_value_type(pValue) ){ |
| case SQLITE_NULL: { |
| jsonAppendRawNZ(p, "null", 4); |
| break; |
| } |
| case SQLITE_FLOAT: { |
| jsonPrintf(100, p, "%!0.15g", sqlite3_value_double(pValue)); |
| break; |
| } |
| case SQLITE_INTEGER: { |
| const char *z = (const char*)sqlite3_value_text(pValue); |
| u32 n = (u32)sqlite3_value_bytes(pValue); |
| jsonAppendRaw(p, z, n); |
| break; |
| } |
| case SQLITE_TEXT: { |
| const char *z = (const char*)sqlite3_value_text(pValue); |
| u32 n = (u32)sqlite3_value_bytes(pValue); |
| if( sqlite3_value_subtype(pValue)==JSON_SUBTYPE ){ |
| jsonAppendRaw(p, z, n); |
| }else{ |
| jsonAppendString(p, z, n); |
| } |
| break; |
| } |
| default: { |
| JsonParse px; |
| memset(&px, 0, sizeof(px)); |
| if( jsonArgIsJsonb(pValue, &px) ){ |
| jsonTranslateBlobToText(&px, 0, p); |
| }else if( p->eErr==0 ){ |
| sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1); |
| p->eErr = JSTRING_ERR; |
| jsonStringReset(p); |
| } |
| break; |
| } |
| } |
| } |
| |
| /* Make the text in p (which is probably a generated JSON text string) |
| ** the result of the SQL function. |
| ** |
| ** The JsonString is reset. |
| ** |
| ** If pParse and ctx are both non-NULL, then the SQL string in p is |
| ** loaded into the zJson field of the pParse object as a RCStr and the |
| ** pParse is added to the cache. |
| */ |
| static void jsonReturnString( |
| JsonString *p, /* String to return */ |
| JsonParse *pParse, /* JSONB source or NULL */ |
| sqlite3_context *ctx /* Where to cache */ |
| ){ |
| assert( (pParse!=0)==(ctx!=0) ); |
| assert( ctx==0 || ctx==p->pCtx ); |
| if( p->eErr==0 ){ |
| int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(p->pCtx)); |
| if( flags & JSON_BLOB ){ |
| jsonReturnStringAsBlob(p); |
| }else if( p->bStatic ){ |
| sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed, |
| SQLITE_TRANSIENT, SQLITE_UTF8); |
| }else if( jsonStringTerminate(p) ){ |
| if( pParse && pParse->bJsonIsRCStr==0 && pParse->nBlobAlloc>0 ){ |
| int rc; |
| pParse->zJson = sqlite3RCStrRef(p->zBuf); |
| pParse->nJson = p->nUsed; |
| pParse->bJsonIsRCStr = 1; |
| rc = jsonCacheInsert(ctx, pParse); |
| if( rc==SQLITE_NOMEM ){ |
| sqlite3_result_error_nomem(ctx); |
| jsonStringReset(p); |
| return; |
| } |
| } |
| sqlite3_result_text64(p->pCtx, sqlite3RCStrRef(p->zBuf), p->nUsed, |
| sqlite3RCStrUnref, |
| SQLITE_UTF8); |
| }else{ |
| sqlite3_result_error_nomem(p->pCtx); |
| } |
| }else if( p->eErr & JSTRING_OOM ){ |
| sqlite3_result_error_nomem(p->pCtx); |
| }else if( p->eErr & JSTRING_MALFORMED ){ |
| sqlite3_result_error(p->pCtx, "malformed JSON", -1); |
| } |
| jsonStringReset(p); |
| } |
| |
| /************************************************************************** |
| ** Utility routines for dealing with JsonParse objects |
| **************************************************************************/ |
| |
| /* |
| ** Reclaim all memory allocated by a JsonParse object. But do not |
| ** delete the JsonParse object itself. |
| */ |
| static void jsonParseReset(JsonParse *pParse){ |
| assert( pParse->nJPRef<=1 ); |
| if( pParse->bJsonIsRCStr ){ |
| sqlite3RCStrUnref(pParse->zJson); |
| pParse->zJson = 0; |
| pParse->nJson = 0; |
| pParse->bJsonIsRCStr = 0; |
| } |
| if( pParse->nBlobAlloc ){ |
| sqlite3DbFree(pParse->db, pParse->aBlob); |
| pParse->aBlob = 0; |
| pParse->nBlob = 0; |
| pParse->nBlobAlloc = 0; |
| } |
| } |
| |
| /* |
| ** Decrement the reference count on the JsonParse object. When the |
| ** count reaches zero, free the object. |
| */ |
| static void jsonParseFree(JsonParse *pParse){ |
| if( pParse ){ |
| if( pParse->nJPRef>1 ){ |
| pParse->nJPRef--; |
| }else{ |
| jsonParseReset(pParse); |
| sqlite3DbFree(pParse->db, pParse); |
| } |
| } |
| } |
| |
| /************************************************************************** |
| ** Utility routines for the JSON text parser |
| **************************************************************************/ |
| |
| /* |
| ** Translate a single byte of Hex into an integer. |
| ** This routine only gives a correct answer if h really is a valid hexadecimal |
| ** character: 0..9a..fA..F. But unlike sqlite3HexToInt(), it does not |
| ** assert() if the digit is not hex. |
| */ |
| static u8 jsonHexToInt(int h){ |
| #ifdef SQLITE_ASCII |
| h += 9*(1&(h>>6)); |
| #endif |
| #ifdef SQLITE_EBCDIC |
| h += 9*(1&~(h>>4)); |
| #endif |
| return (u8)(h & 0xf); |
| } |
| |
| /* |
| ** Convert a 4-byte hex string into an integer |
| */ |
| static u32 jsonHexToInt4(const char *z){ |
| u32 v; |
| v = (jsonHexToInt(z[0])<<12) |
| + (jsonHexToInt(z[1])<<8) |
| + (jsonHexToInt(z[2])<<4) |
| + jsonHexToInt(z[3]); |
| return v; |
| } |
| |
| /* |
| ** Return true if z[] begins with 2 (or more) hexadecimal digits |
| */ |
| static int jsonIs2Hex(const char *z){ |
| return sqlite3Isxdigit(z[0]) && sqlite3Isxdigit(z[1]); |
| } |
| |
| /* |
| ** Return true if z[] begins with 4 (or more) hexadecimal digits |
| */ |
| static int jsonIs4Hex(const char *z){ |
| return jsonIs2Hex(z) && jsonIs2Hex(&z[2]); |
| } |
| |
| /* |
| ** Return the number of bytes of JSON5 whitespace at the beginning of |
| ** the input string z[]. |
| ** |
| ** JSON5 whitespace consists of any of the following characters: |
| ** |
| ** Unicode UTF-8 Name |
| ** U+0009 09 horizontal tab |
| ** U+000a 0a line feed |
| ** U+000b 0b vertical tab |
| ** U+000c 0c form feed |
| ** U+000d 0d carriage return |
| ** U+0020 20 space |
| ** U+00a0 c2 a0 non-breaking space |
| ** U+1680 e1 9a 80 ogham space mark |
| ** U+2000 e2 80 80 en quad |
| ** U+2001 e2 80 81 em quad |
| ** U+2002 e2 80 82 en space |
| ** U+2003 e2 80 83 em space |
| ** U+2004 e2 80 84 three-per-em space |
| ** U+2005 e2 80 85 four-per-em space |
| ** U+2006 e2 80 86 six-per-em space |
| ** U+2007 e2 80 87 figure space |
| ** U+2008 e2 80 88 punctuation space |
| ** U+2009 e2 80 89 thin space |
| ** U+200a e2 80 8a hair space |
| ** U+2028 e2 80 a8 line separator |
| ** U+2029 e2 80 a9 paragraph separator |
| ** U+202f e2 80 af narrow no-break space (NNBSP) |
| ** U+205f e2 81 9f medium mathematical space (MMSP) |
| ** U+3000 e3 80 80 ideographical space |
| ** U+FEFF ef bb bf byte order mark |
| ** |
| ** In addition, comments between '/', '*' and '*', '/' and |
| ** from '/', '/' to end-of-line are also considered to be whitespace. |
| */ |
| static int json5Whitespace(const char *zIn){ |
| int n = 0; |
| const u8 *z = (u8*)zIn; |
| while( 1 /*exit by "goto whitespace_done"*/ ){ |
| switch( z[n] ){ |
| case 0x09: |
| case 0x0a: |
| case 0x0b: |
| case 0x0c: |
| case 0x0d: |
| case 0x20: { |
| n++; |
| break; |
| } |
| case '/': { |
| if( z[n+1]=='*' && z[n+2]!=0 ){ |
| int j; |
| for(j=n+3; z[j]!='/' || z[j-1]!='*'; j++){ |
| if( z[j]==0 ) goto whitespace_done; |
| } |
| n = j+1; |
| break; |
| }else if( z[n+1]=='/' ){ |
| int j; |
| char c; |
| for(j=n+2; (c = z[j])!=0; j++){ |
| if( c=='\n' || c=='\r' ) break; |
| if( 0xe2==(u8)c && 0x80==(u8)z[j+1] |
| && (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2]) |
| ){ |
| j += 2; |
| break; |
| } |
| } |
| n = j; |
| if( z[n] ) n++; |
| break; |
| } |
| goto whitespace_done; |
| } |
| case 0xc2: { |
| if( z[n+1]==0xa0 ){ |
| n += 2; |
| break; |
| } |
| goto whitespace_done; |
| } |
| case 0xe1: { |
| if( z[n+1]==0x9a && z[n+2]==0x80 ){ |
| n += 3; |
| break; |
| } |
| goto whitespace_done; |
| } |
| case 0xe2: { |
| if( z[n+1]==0x80 ){ |
| u8 c = z[n+2]; |
| if( c<0x80 ) goto whitespace_done; |
| if( c<=0x8a || c==0xa8 || c==0xa9 || c==0xaf ){ |
| n += 3; |
| break; |
| } |
| }else if( z[n+1]==0x81 && z[n+2]==0x9f ){ |
| n += 3; |
| break; |
| } |
| goto whitespace_done; |
| } |
| case 0xe3: { |
| if( z[n+1]==0x80 && z[n+2]==0x80 ){ |
| n += 3; |
| break; |
| } |
| goto whitespace_done; |
| } |
| case 0xef: { |
| if( z[n+1]==0xbb && z[n+2]==0xbf ){ |
| n += 3; |
| break; |
| } |
| goto whitespace_done; |
| } |
| default: { |
| goto whitespace_done; |
| } |
| } |
| } |
| whitespace_done: |
| return n; |
| } |
| |
| /* |
| ** Extra floating-point literals to allow in JSON. |
| */ |
| static const struct NanInfName { |
| char c1; |
| char c2; |
| char n; |
| char eType; |
| char nRepl; |
| char *zMatch; |
| char *zRepl; |
| } aNanInfName[] = { |
| { 'i', 'I', 3, JSONB_FLOAT, 7, "inf", "9.0e999" }, |
| { 'i', 'I', 8, JSONB_FLOAT, 7, "infinity", "9.0e999" }, |
| { 'n', 'N', 3, JSONB_NULL, 4, "NaN", "null" }, |
| { 'q', 'Q', 4, JSONB_NULL, 4, "QNaN", "null" }, |
| { 's', 'S', 4, JSONB_NULL, 4, "SNaN", "null" }, |
| }; |
| |
| |
| /* |
| ** Report the wrong number of arguments for json_insert(), json_replace() |
| ** or json_set(). |
| */ |
| static void jsonWrongNumArgs( |
| sqlite3_context *pCtx, |
| const char *zFuncName |
| ){ |
| char *zMsg = sqlite3_mprintf("json_%s() needs an odd number of arguments", |
| zFuncName); |
| sqlite3_result_error(pCtx, zMsg, -1); |
| sqlite3_free(zMsg); |
| } |
| |
| /**************************************************************************** |
| ** Utility routines for dealing with the binary BLOB representation of JSON |
| ****************************************************************************/ |
| |
| /* |
| ** Expand pParse->aBlob so that it holds at least N bytes. |
| ** |
| ** Return the number of errors. |
| */ |
| static int jsonBlobExpand(JsonParse *pParse, u32 N){ |
| u8 *aNew; |
| u64 t; |
| assert( N>pParse->nBlobAlloc ); |
| if( pParse->nBlobAlloc==0 ){ |
| t = 100; |
| }else{ |
| t = pParse->nBlobAlloc*2; |
| } |
| if( t<N ) t = N+100; |
| aNew = sqlite3DbRealloc(pParse->db, pParse->aBlob, t); |
| if( aNew==0 ){ pParse->oom = 1; return 1; } |
| assert( t<0x7fffffff ); |
| pParse->aBlob = aNew; |
| pParse->nBlobAlloc = (u32)t; |
| return 0; |
| } |
| |
| /* |
| ** If pParse->aBlob is not previously editable (because it is taken |
| ** from sqlite3_value_blob(), as indicated by the fact that |
| ** pParse->nBlobAlloc==0 and pParse->nBlob>0) then make it editable |
| ** by making a copy into space obtained from malloc. |
| ** |
| ** Return true on success. Return false on OOM. |
| */ |
| static int jsonBlobMakeEditable(JsonParse *pParse, u32 nExtra){ |
| u8 *aOld; |
| u32 nSize; |
| assert( !pParse->bReadOnly ); |
| if( pParse->oom ) return 0; |
| if( pParse->nBlobAlloc>0 ) return 1; |
| aOld = pParse->aBlob; |
| nSize = pParse->nBlob + nExtra; |
| pParse->aBlob = 0; |
| if( jsonBlobExpand(pParse, nSize) ){ |
| return 0; |
| } |
| assert( pParse->nBlobAlloc >= pParse->nBlob + nExtra ); |
| memcpy(pParse->aBlob, aOld, pParse->nBlob); |
| return 1; |
| } |
| |
| /* Expand pParse->aBlob and append one bytes. |
| */ |
| static SQLITE_NOINLINE void jsonBlobExpandAndAppendOneByte( |
| JsonParse *pParse, |
| u8 c |
| ){ |
| jsonBlobExpand(pParse, pParse->nBlob+1); |
| if( pParse->oom==0 ){ |
| assert( pParse->nBlob+1<=pParse->nBlobAlloc ); |
| pParse->aBlob[pParse->nBlob++] = c; |
| } |
| } |
| |
| /* Append a single character. |
| */ |
| static void jsonBlobAppendOneByte(JsonParse *pParse, u8 c){ |
| if( pParse->nBlob >= pParse->nBlobAlloc ){ |
| jsonBlobExpandAndAppendOneByte(pParse, c); |
| }else{ |
| pParse->aBlob[pParse->nBlob++] = c; |
| } |
| } |
| |
| /* Slow version of jsonBlobAppendNode() that first resizes the |
| ** pParse->aBlob structure. |
| */ |
| static void jsonBlobAppendNode(JsonParse*,u8,u32,const void*); |
| static SQLITE_NOINLINE void jsonBlobExpandAndAppendNode( |
| JsonParse *pParse, |
| u8 eType, |
| u32 szPayload, |
| const void *aPayload |
| ){ |
| if( jsonBlobExpand(pParse, pParse->nBlob+szPayload+9) ) return; |
| jsonBlobAppendNode(pParse, eType, szPayload, aPayload); |
| } |
| |
| |
| /* Append a node type byte together with the payload size and |
| ** possibly also the payload. |
| ** |
| ** If aPayload is not NULL, then it is a pointer to the payload which |
| ** is also appended. If aPayload is NULL, the pParse->aBlob[] array |
| ** is resized (if necessary) so that it is big enough to hold the |
| ** payload, but the payload is not appended and pParse->nBlob is left |
| ** pointing to where the first byte of payload will eventually be. |
| */ |
| static void jsonBlobAppendNode( |
| JsonParse *pParse, /* The JsonParse object under construction */ |
| u8 eType, /* Node type. One of JSONB_* */ |
| u32 szPayload, /* Number of bytes of payload */ |
| const void *aPayload /* The payload. Might be NULL */ |
| ){ |
| u8 *a; |
| if( pParse->nBlob+szPayload+9 > pParse->nBlobAlloc ){ |
| jsonBlobExpandAndAppendNode(pParse,eType,szPayload,aPayload); |
| return; |
| } |
| assert( pParse->aBlob!=0 ); |
| a = &pParse->aBlob[pParse->nBlob]; |
| if( szPayload<=11 ){ |
| a[0] = eType | (szPayload<<4); |
| pParse->nBlob += 1; |
| }else if( szPayload<=0xff ){ |
| a[0] = eType | 0xc0; |
| a[1] = szPayload & 0xff; |
| pParse->nBlob += 2; |
| }else if( szPayload<=0xffff ){ |
| a[0] = eType | 0xd0; |
| a[1] = (szPayload >> 8) & 0xff; |
| a[2] = szPayload & 0xff; |
| pParse->nBlob += 3; |
| }else{ |
| a[0] = eType | 0xe0; |
| a[1] = (szPayload >> 24) & 0xff; |
| a[2] = (szPayload >> 16) & 0xff; |
| a[3] = (szPayload >> 8) & 0xff; |
| a[4] = szPayload & 0xff; |
| pParse->nBlob += 5; |
| } |
| if( aPayload ){ |
| pParse->nBlob += szPayload; |
| memcpy(&pParse->aBlob[pParse->nBlob-szPayload], aPayload, szPayload); |
| } |
| } |
| |
| /* Change the payload size for the node at index i to be szPayload. |
| */ |
| static int jsonBlobChangePayloadSize( |
| JsonParse *pParse, |
| u32 i, |
| u32 szPayload |
| ){ |
| u8 *a; |
| u8 szType; |
| u8 nExtra; |
| u8 nNeeded; |
| int delta; |
| if( pParse->oom ) return 0; |
| a = &pParse->aBlob[i]; |
| szType = a[0]>>4; |
| if( szType<=11 ){ |
| nExtra = 0; |
| }else if( szType==12 ){ |
| nExtra = 1; |
| }else if( szType==13 ){ |
| nExtra = 2; |
| }else if( szType==14 ){ |
| nExtra = 4; |
| }else{ |
| nExtra = 8; |
| } |
| if( szPayload<=11 ){ |
| nNeeded = 0; |
| }else if( szPayload<=0xff ){ |
| nNeeded = 1; |
| }else if( szPayload<=0xffff ){ |
| nNeeded = 2; |
| }else{ |
| nNeeded = 4; |
| } |
| delta = nNeeded - nExtra; |
| if( delta ){ |
| u32 newSize = pParse->nBlob + delta; |
| if( delta>0 ){ |
| if( newSize>pParse->nBlobAlloc && jsonBlobExpand(pParse, newSize) ){ |
| return 0; /* OOM error. Error state recorded in pParse->oom. */ |
| } |
| a = &pParse->aBlob[i]; |
| memmove(&a[1+delta], &a[1], pParse->nBlob - (i+1)); |
| }else{ |
| memmove(&a[1], &a[1-delta], pParse->nBlob - (i+1-delta)); |
| } |
| pParse->nBlob = newSize; |
| } |
| if( nNeeded==0 ){ |
| a[0] = (a[0] & 0x0f) | (szPayload<<4); |
| }else if( nNeeded==1 ){ |
| a[0] = (a[0] & 0x0f) | 0xc0; |
| a[1] = szPayload & 0xff; |
| }else if( nNeeded==2 ){ |
| a[0] = (a[0] & 0x0f) | 0xd0; |
| a[1] = (szPayload >> 8) & 0xff; |
| a[2] = szPayload & 0xff; |
| }else{ |
| a[0] = (a[0] & 0x0f) | 0xe0; |
| a[1] = (szPayload >> 24) & 0xff; |
| a[2] = (szPayload >> 16) & 0xff; |
| a[3] = (szPayload >> 8) & 0xff; |
| a[4] = szPayload & 0xff; |
| } |
| return delta; |
| } |
| |
| /* |
| ** If z[0] is 'u' and is followed by exactly 4 hexadecimal character, |
| ** then set *pOp to JSONB_TEXTJ and return true. If not, do not make |
| ** any changes to *pOp and return false. |
| */ |
| static int jsonIs4HexB(const char *z, int *pOp){ |
| if( z[0]!='u' ) return 0; |
| if( !jsonIs4Hex(&z[1]) ) return 0; |
| *pOp = JSONB_TEXTJ; |
| return 1; |
| } |
| |
| /* |
| ** Check a single element of the JSONB in pParse for validity. |
| ** |
| ** The element to be checked starts at offset i and must end at on the |
| ** last byte before iEnd. |
| ** |
| ** Return 0 if everything is correct. Return the 1-based byte offset of the |
| ** error if a problem is detected. (In other words, if the error is at offset |
| ** 0, return 1). |
| */ |
| static u32 jsonbValidityCheck( |
| const JsonParse *pParse, /* Input JSONB. Only aBlob and nBlob are used */ |
| u32 i, /* Start of element as pParse->aBlob[i] */ |
| u32 iEnd, /* One more than the last byte of the element */ |
| u32 iDepth /* Current nesting depth */ |
| ){ |
| u32 n, sz, j, k; |
| const u8 *z; |
| u8 x; |
| if( iDepth>JSON_MAX_DEPTH ) return i+1; |
| sz = 0; |
| n = jsonbPayloadSize(pParse, i, &sz); |
| if( NEVER(n==0) ) return i+1; /* Checked by caller */ |
| if( NEVER(i+n+sz!=iEnd) ) return i+1; /* Checked by caller */ |
| z = pParse->aBlob; |
| x = z[i] & 0x0f; |
| switch( x ){ |
| case JSONB_NULL: |
| case JSONB_TRUE: |
| case JSONB_FALSE: { |
| return n+sz==1 ? 0 : i+1; |
| } |
| case JSONB_INT: { |
| if( sz<1 ) return i+1; |
| j = i+n; |
| if( z[j]=='-' ){ |
| j++; |
| if( sz<2 ) return i+1; |
| } |
| k = i+n+sz; |
| while( j<k ){ |
| if( sqlite3Isdigit(z[j]) ){ |
| j++; |
| }else{ |
| return j+1; |
| } |
| } |
| return 0; |
| } |
| case JSONB_INT5: { |
| if( sz<3 ) return i+1; |
| j = i+n; |
| if( z[j]=='-' ){ |
| if( sz<4 ) return i+1; |
| j++; |
| } |
| if( z[j]!='0' ) return i+1; |
| if( z[j+1]!='x' && z[j+1]!='X' ) return j+2; |
| j += 2; |
| k = i+n+sz; |
| while( j<k ){ |
| if( sqlite3Isxdigit(z[j]) ){ |
| j++; |
| }else{ |
| return j+1; |
| } |
| } |
| return 0; |
| } |
| case JSONB_FLOAT: |
| case JSONB_FLOAT5: { |
| u8 seen = 0; /* 0: initial. 1: '.' seen 2: 'e' seen */ |
| if( sz<2 ) return i+1; |
| j = i+n; |
| k = j+sz; |
| if( z[j]=='-' ){ |
| j++; |
| if( sz<3 ) return i+1; |
| } |
| if( z[j]=='.' ){ |
| if( x==JSONB_FLOAT ) return j+1; |
| if( !sqlite3Isdigit(z[j+1]) ) return j+1; |
| j += 2; |
| seen = 1; |
| }else if( z[j]=='0' && x==JSONB_FLOAT ){ |
| if( j+3>k ) return j+1; |
| if( z[j+1]!='.' && z[j+1]!='e' && z[j+1]!='E' ) return j+1; |
| j++; |
| } |
| for(; j<k; j++){ |
| if( sqlite3Isdigit(z[j]) ) continue; |
| if( z[j]=='.' ){ |
| if( seen>0 ) return j+1; |
| if( x==JSONB_FLOAT && (j==k-1 || !sqlite3Isdigit(z[j+1])) ){ |
| return j+1; |
| } |
| seen = 1; |
| continue; |
| } |
| if( z[j]=='e' || z[j]=='E' ){ |
| if( seen==2 ) return j+1; |
| if( j==k-1 ) return j+1; |
| if( z[j+1]=='+' || z[j+1]=='-' ){ |
| j++; |
| if( j==k-1 ) return j+1; |
| } |
| seen = 2; |
| continue; |
| } |
| return j+1; |
| } |
| if( seen==0 ) return i+1; |
| return 0; |
| } |
| case JSONB_TEXT: { |
| j = i+n; |
| k = j+sz; |
| while( j<k ){ |
| if( !jsonIsOk[z[j]] && z[j]!='\'' ) return j+1; |
| j++; |
| } |
| return 0; |
| } |
| case JSONB_TEXTJ: |
| case JSONB_TEXT5: { |
| j = i+n; |
| k = j+sz; |
| while( j<k ){ |
| if( !jsonIsOk[z[j]] && z[j]!='\'' ){ |
| if( z[j]=='"' ){ |
| if( x==JSONB_TEXTJ ) return j+1; |
| }else if( z[j]<=0x1f ){ |
| /* Control characters in JSON5 string literals are ok */ |
| if( x==JSONB_TEXTJ ) return j+1; |
| }else if( NEVER(z[j]!='\\') || j+1>=k ){ |
| return j+1; |
| }else if( strchr("\"\\/bfnrt",z[j+1])!=0 ){ |
| j++; |
| }else if( z[j+1]=='u' ){ |
| if( j+5>=k ) return j+1; |
| if( !jsonIs4Hex((const char*)&z[j+2]) ) return j+1; |
| j++; |
| }else if( x!=JSONB_TEXT5 ){ |
| return j+1; |
| }else{ |
| u32 c = 0; |
| u32 szC = jsonUnescapeOneChar((const char*)&z[j], k-j, &c); |
| if( c==JSON_INVALID_CHAR ) return j+1; |
| j += szC - 1; |
| } |
| } |
| j++; |
| } |
| return 0; |
| } |
| case JSONB_TEXTRAW: { |
| return 0; |
| } |
| case JSONB_ARRAY: { |
| u32 sub; |
| j = i+n; |
| k = j+sz; |
| while( j<k ){ |
| sz = 0; |
| n = jsonbPayloadSize(pParse, j, &sz); |
| if( n==0 ) return j+1; |
| if( j+n+sz>k ) return j+1; |
| sub = jsonbValidityCheck(pParse, j, j+n+sz, iDepth+1); |
| if( sub ) return sub; |
| j += n + sz; |
| } |
| assert( j==k ); |
| return 0; |
| } |
| case JSONB_OBJECT: { |
| u32 cnt = 0; |
| u32 sub; |
| j = i+n; |
| k = j+sz; |
| while( j<k ){ |
| sz = 0; |
| n = jsonbPayloadSize(pParse, j, &sz); |
| if( n==0 ) return j+1; |
| if( j+n+sz>k ) return j+1; |
| if( (cnt & 1)==0 ){ |
| x = z[j] & 0x0f; |
| if( x<JSONB_TEXT || x>JSONB_TEXTRAW ) return j+1; |
| } |
| sub = jsonbValidityCheck(pParse, j, j+n+sz, iDepth+1); |
| if( sub ) return sub; |
| cnt++; |
| j += n + sz; |
| } |
| assert( j==k ); |
| if( (cnt & 1)!=0 ) return j+1; |
| return 0; |
| } |
| default: { |
| return i+1; |
| } |
| } |
| } |
| |
| /* |
| ** Translate a single element of JSON text at pParse->zJson[i] into |
| ** its equivalent binary JSONB representation. Append the translation into |
| ** pParse->aBlob[] beginning at pParse->nBlob. The size of |
| ** pParse->aBlob[] is increased as necessary. |
| ** |
| ** Return the index of the first character past the end of the element parsed, |
| ** or one of the following special result codes: |
| ** |
| ** 0 End of input |
| ** -1 Syntax error or OOM |
| ** -2 '}' seen \ |
| ** -3 ']' seen \___ For these returns, pParse->iErr is set to |
| ** -4 ',' seen / the index in zJson[] of the seen character |
| ** -5 ':' seen / |
| */ |
| static int jsonTranslateTextToBlob(JsonParse *pParse, u32 i){ |
| char c; |
| u32 j; |
| u32 iThis, iStart; |
| int x; |
| u8 t; |
| const char *z = pParse->zJson; |
| json_parse_restart: |
| switch( (u8)z[i] ){ |
| case '{': { |
| /* Parse object */ |
| iThis = pParse->nBlob; |
| jsonBlobAppendNode(pParse, JSONB_OBJECT, pParse->nJson-i, 0); |
| if( ++pParse->iDepth > JSON_MAX_DEPTH ){ |
| pParse->iErr = i; |
| return -1; |
| } |
| iStart = pParse->nBlob; |
| for(j=i+1;;j++){ |
| u32 iBlob = pParse->nBlob; |
| x = jsonTranslateTextToBlob(pParse, j); |
| if( x<=0 ){ |
| int op; |
| if( x==(-2) ){ |
| j = pParse->iErr; |
| if( pParse->nBlob!=(u32)iStart ) pParse->hasNonstd = 1; |
| break; |
| } |
| j += json5Whitespace(&z[j]); |
| op = JSONB_TEXT; |
| if( sqlite3JsonId1(z[j]) |
| || (z[j]=='\\' && jsonIs4HexB(&z[j+1], &op)) |
| ){ |
| int k = j+1; |
| while( (sqlite3JsonId2(z[k]) && json5Whitespace(&z[k])==0) |
| || (z[k]=='\\' && jsonIs4HexB(&z[k+1], &op)) |
| ){ |
| k++; |
| } |
| assert( iBlob==pParse->nBlob ); |
| jsonBlobAppendNode(pParse, op, k-j, &z[j]); |
| pParse->hasNonstd = 1; |
| x = k; |
| }else{ |
| if( x!=-1 ) pParse->iErr = j; |
| return -1; |
| } |
| } |
| if( pParse->oom ) return -1; |
| t = pParse->aBlob[iBlob] & 0x0f; |
| if( t<JSONB_TEXT || t>JSONB_TEXTRAW ){ |
| pParse->iErr = j; |
| return -1; |
| } |
| j = x; |
| if( z[j]==':' ){ |
| j++; |
| }else{ |
| if( jsonIsspace(z[j]) ){ |
| /* strspn() is not helpful here */ |
| do{ j++; }while( jsonIsspace(z[j]) ); |
| if( z[j]==':' ){ |
| j++; |
| goto parse_object_value; |
| } |
| } |
| x = jsonTranslateTextToBlob(pParse, j); |
| if( x!=(-5) ){ |
| if( x!=(-1) ) pParse->iErr = j; |
| return -1; |
| } |
| j = pParse->iErr+1; |
| } |
| parse_object_value: |
| x = jsonTranslateTextToBlob(pParse, j); |
| if( x<=0 ){ |
| if( x!=(-1) ) pParse->iErr = j; |
| return -1; |
| } |
| j = x; |
| if( z[j]==',' ){ |
| continue; |
| }else if( z[j]=='}' ){ |
| break; |
| }else{ |
| if( jsonIsspace(z[j]) ){ |
| j += 1 + (u32)strspn(&z[j+1], jsonSpaces); |
| if( z[j]==',' ){ |
| continue; |
| }else if( z[j]=='}' ){ |
| break; |
| } |
| } |
| x = jsonTranslateTextToBlob(pParse, j); |
| if( x==(-4) ){ |
| j = pParse->iErr; |
| continue; |
| } |
| if( x==(-2) ){ |
| j = pParse->iErr; |
| break; |
| } |
| } |
| pParse->iErr = j; |
| return -1; |
| } |
| jsonBlobChangePayloadSize(pParse, iThis, pParse->nBlob - iStart); |
| pParse->iDepth--; |
| return j+1; |
| } |
| case '[': { |
| /* Parse array */ |
| iThis = pParse->nBlob; |
| assert( i<=(u32)pParse->nJson ); |
| jsonBlobAppendNode(pParse, JSONB_ARRAY, pParse->nJson - i, 0); |
| iStart = pParse->nBlob; |
| if( pParse->oom ) return -1; |
| if( ++pParse->iDepth > JSON_MAX_DEPTH ){ |
| pParse->iErr = i; |
| return -1; |
| } |
| for(j=i+1;;j++){ |
| x = jsonTranslateTextToBlob(pParse, j); |
| if( x<=0 ){ |
| if( x==(-3) ){ |
| j = pParse->iErr; |
| if( pParse->nBlob!=iStart ) pParse->hasNonstd = 1; |
| break; |
| } |
| if( x!=(-1) ) pParse->iErr = j; |
| return -1; |
| } |
| j = x; |
| if( z[j]==',' ){ |
| continue; |
| }else if( z[j]==']' ){ |
| break; |
| }else{ |
| if( jsonIsspace(z[j]) ){ |
| j += 1 + (u32)strspn(&z[j+1], jsonSpaces); |
| if( z[j]==',' ){ |
| continue; |
| }else if( z[j]==']' ){ |
| break; |
| } |
| } |
| x = jsonTranslateTextToBlob(pParse, j); |
| if( x==(-4) ){ |
| j = pParse->iErr; |
| continue; |
| } |
| if( x==(-3) ){ |
| j = pParse->iErr; |
| break; |
| } |
| } |
| pParse->iErr = j; |
| return -1; |
| } |
| jsonBlobChangePayloadSize(pParse, iThis, pParse->nBlob - iStart); |
| pParse->iDepth--; |
| return j+1; |
| } |
| case '\'': { |
| u8 opcode; |
| char cDelim; |
| pParse->hasNonstd = 1; |
| opcode = JSONB_TEXT; |
| goto parse_string; |
| case '"': |
| /* Parse string */ |
| opcode = JSONB_TEXT; |
| parse_string: |
| cDelim = z[i]; |
| j = i+1; |
| while( 1 /*exit-by-break*/ ){ |
| if( jsonIsOk[(u8)z[j]] ){ |
| if( !jsonIsOk[(u8)z[j+1]] ){ |
| j += 1; |
| }else if( !jsonIsOk[(u8)z[j+2]] ){ |
| j += 2; |
| }else{ |
| j += 3; |
| continue; |
| } |
| } |
| c = z[j]; |
| if( c==cDelim ){ |
| break; |
| }else if( c=='\\' ){ |
| c = z[++j]; |
| if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f' |
| || c=='n' || c=='r' || c=='t' |
| || (c=='u' && jsonIs4Hex(&z[j+1])) ){ |
| if( opcode==JSONB_TEXT ) opcode = JSONB_TEXTJ; |
| }else if( c=='\'' || c=='v' || c=='\n' |
| #ifdef SQLITE_BUG_COMPATIBLE_20250510 |
| || (c=='0') /* Legacy bug compatible */ |
| #else |
| || (c=='0' && !sqlite3Isdigit(z[j+1])) /* Correct implementation */ |
| #endif |
| || (0xe2==(u8)c && 0x80==(u8)z[j+1] |
| && (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2])) |
| || (c=='x' && jsonIs2Hex(&z[j+1])) ){ |
| opcode = JSONB_TEXT5; |
| pParse->hasNonstd = 1; |
| }else if( c=='\r' ){ |
| if( z[j+1]=='\n' ) j++; |
| opcode = JSONB_TEXT5; |
| pParse->hasNonstd = 1; |
| }else{ |
| pParse->iErr = j; |
| return -1; |
| } |
| }else if( c<=0x1f ){ |
| if( c==0 ){ |
| pParse->iErr = j; |
| return -1; |
| } |
| /* Control characters are not allowed in canonical JSON string |
| ** literals, but are allowed in JSON5 string literals. */ |
| opcode = JSONB_TEXT5; |
| pParse->hasNonstd = 1; |
| }else if( c=='"' ){ |
| opcode = JSONB_TEXT5; |
| } |
| j++; |
| } |
| jsonBlobAppendNode(pParse, opcode, j-1-i, &z[i+1]); |
| return j+1; |
| } |
| case 't': { |
| if( strncmp(z+i,"true",4)==0 && !sqlite3Isalnum(z[i+4]) ){ |
| jsonBlobAppendOneByte(pParse, JSONB_TRUE); |
| return i+4; |
| } |
| pParse->iErr = i; |
| return -1; |
| } |
| case 'f': { |
| if( strncmp(z+i,"false",5)==0 && !sqlite3Isalnum(z[i+5]) ){ |
| jsonBlobAppendOneByte(pParse, JSONB_FALSE); |
| return i+5; |
| } |
| pParse->iErr = i; |
| return -1; |
| } |
| case '+': { |
| u8 seenE; |
| pParse->hasNonstd = 1; |
| t = 0x00; /* Bit 0x01: JSON5. Bit 0x02: FLOAT */ |
| goto parse_number; |
| case '.': |
| if( sqlite3Isdigit(z[i+1]) ){ |
| pParse->hasNonstd = 1; |
| t = 0x03; /* Bit 0x01: JSON5. Bit 0x02: FLOAT */ |
| seenE = 0; |
| goto parse_number_2; |
| } |
| pParse->iErr = i; |
| return -1; |
| case '-': |
| case '0': |
| case '1': |
| case '2': |
| case '3': |
| case '4': |
| case '5': |
| case '6': |
| case '7': |
| case '8': |
| case '9': |
| /* Parse number */ |
| t = 0x00; /* Bit 0x01: JSON5. Bit 0x02: FLOAT */ |
| parse_number: |
| seenE = 0; |
| assert( '-' < '0' ); |
| assert( '+' < '0' ); |
| assert( '.' < '0' ); |
| c = z[i]; |
| |
| if( c<='0' ){ |
| if( c=='0' ){ |
| if( (z[i+1]=='x' || z[i+1]=='X') && sqlite3Isxdigit(z[i+2]) ){ |
| assert( t==0x00 ); |
| pParse->hasNonstd = 1; |
| t = 0x01; |
| for(j=i+3; sqlite3Isxdigit(z[j]); j++){} |
| goto parse_number_finish; |
| }else if( sqlite3Isdigit(z[i+1]) ){ |
| pParse->iErr = i+1; |
| return -1; |
| } |
| }else{ |
| if( !sqlite3Isdigit(z[i+1]) ){ |
| /* JSON5 allows for "+Infinity" and "-Infinity" using exactly |
| ** that case. SQLite also allows these in any case and it allows |
| ** "+inf" and "-inf". */ |
| if( (z[i+1]=='I' || z[i+1]=='i') |
| && sqlite3StrNICmp(&z[i+1], "inf",3)==0 |
| ){ |
| pParse->hasNonstd = 1; |
| if( z[i]=='-' ){ |
| jsonBlobAppendNode(pParse, JSONB_FLOAT, 6, "-9e999"); |
| }else{ |
| jsonBlobAppendNode(pParse, JSONB_FLOAT, 5, "9e999"); |
| } |
| return i + (sqlite3StrNICmp(&z[i+4],"inity",5)==0 ? 9 : 4); |
| } |
| if( z[i+1]=='.' ){ |
| pParse->hasNonstd = 1; |
| t |= 0x01; |
| goto parse_number_2; |
| } |
| pParse->iErr = i; |
| return -1; |
| } |
| if( z[i+1]=='0' ){ |
| if( sqlite3Isdigit(z[i+2]) ){ |
| pParse->iErr = i+1; |
| return -1; |
| }else if( (z[i+2]=='x' || z[i+2]=='X') && sqlite3Isxdigit(z[i+3]) ){ |
| pParse->hasNonstd = 1; |
| t |= 0x01; |
| for(j=i+4; sqlite3Isxdigit(z[j]); j++){} |
| goto parse_number_finish; |
| } |
| } |
| } |
| } |
| |
| parse_number_2: |
| for(j=i+1;; j++){ |
| c = z[j]; |
| if( sqlite3Isdigit(c) ) continue; |
| if( c=='.' ){ |
| if( (t & 0x02)!=0 ){ |
| pParse->iErr = j; |
| return -1; |
| } |
| t |= 0x02; |
| continue; |
| } |
| if( c=='e' || c=='E' ){ |
| if( z[j-1]<'0' ){ |
| if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){ |
| pParse->hasNonstd = 1; |
| t |= 0x01; |
| }else{ |
| pParse->iErr = j; |
| return -1; |
| } |
| } |
| if( seenE ){ |
| pParse->iErr = j; |
| return -1; |
| } |
| t |= 0x02; |
| seenE = 1; |
| c = z[j+1]; |
| if( c=='+' || c=='-' ){ |
| j++; |
| c = z[j+1]; |
| } |
| if( c<'0' || c>'9' ){ |
| pParse->iErr = j; |
| return -1; |
| } |
| continue; |
| } |
| break; |
| } |
| if( z[j-1]<'0' ){ |
| if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){ |
| pParse->hasNonstd = 1; |
| t |= 0x01; |
| }else{ |
| pParse->iErr = j; |
| return -1; |
| } |
| } |
| parse_number_finish: |
| assert( JSONB_INT+0x01==JSONB_INT5 ); |
| assert( JSONB_FLOAT+0x01==JSONB_FLOAT5 ); |
| assert( JSONB_INT+0x02==JSONB_FLOAT ); |
| if( z[i]=='+' ) i++; |
| jsonBlobAppendNode(pParse, JSONB_INT+t, j-i, &z[i]); |
| return j; |
| } |
| case '}': { |
| pParse->iErr = i; |
| return -2; /* End of {...} */ |
| } |
| case ']': { |
| pParse->iErr = i; |
| return -3; /* End of [...] */ |
| } |
| case ',': { |
| pParse->iErr = i; |
| return -4; /* List separator */ |
| } |
| case ':': { |
| pParse->iErr = i; |
| return -5; /* Object label/value separator */ |
| } |
| case 0: { |
| return 0; /* End of file */ |
| } |
| case 0x09: |
| case 0x0a: |
| case 0x0d: |
| case 0x20: { |
| i += 1 + (u32)strspn(&z[i+1], jsonSpaces); |
| goto json_parse_restart; |
| } |
| case 0x0b: |
| case 0x0c: |
| case '/': |
| case 0xc2: |
| case 0xe1: |
| case 0xe2: |
| case 0xe3: |
| case 0xef: { |
| j = json5Whitespace(&z[i]); |
| if( j>0 ){ |
| i += j; |
| pParse->hasNonstd = 1; |
| goto json_parse_restart; |
| } |
| pParse->iErr = i; |
| return -1; |
| } |
| case 'n': { |
| if( strncmp(z+i,"null",4)==0 && !sqlite3Isalnum(z[i+4]) ){ |
| jsonBlobAppendOneByte(pParse, JSONB_NULL); |
| return i+4; |
| } |
| /* fall-through into the default case that checks for NaN */ |
| /* no break */ deliberate_fall_through |
| } |
| default: { |
| u32 k; |
| int nn; |
| c = z[i]; |
| for(k=0; k<sizeof(aNanInfName)/sizeof(aNanInfName[0]); k++){ |
| if( c!=aNanInfName[k].c1 && c!=aNanInfName[k].c2 ) continue; |
| nn = aNanInfName[k].n; |
| if( sqlite3StrNICmp(&z[i], aNanInfName[k].zMatch, nn)!=0 ){ |
| continue; |
| } |
| if( sqlite3Isalnum(z[i+nn]) ) continue; |
| if( aNanInfName[k].eType==JSONB_FLOAT ){ |
| jsonBlobAppendNode(pParse, JSONB_FLOAT, 5, "9e999"); |
| }else{ |
| jsonBlobAppendOneByte(pParse, JSONB_NULL); |
| } |
| pParse->hasNonstd = 1; |
| return i + nn; |
| } |
| pParse->iErr = i; |
| return -1; /* Syntax error */ |
| } |
| } /* End switch(z[i]) */ |
| } |
| |
| |
| /* |
| ** Parse a complete JSON string. Return 0 on success or non-zero if there |
| ** are any errors. If an error occurs, free all memory held by pParse, |
| ** but not pParse itself. |
| ** |
| ** pParse must be initialized to an empty parse object prior to calling |
| ** this routine. |
| */ |
| static int jsonConvertTextToBlob( |
| JsonParse *pParse, /* Initialize and fill this JsonParse object */ |
| sqlite3_context *pCtx /* Report errors here */ |
| ){ |
| int i; |
| const char *zJson = pParse->zJson; |
| i = jsonTranslateTextToBlob(pParse, 0); |
| if( pParse->oom ) i = -1; |
| if( i>0 ){ |
| #ifdef SQLITE_DEBUG |
| assert( pParse->iDepth==0 ); |
| if( sqlite3Config.bJsonSelfcheck ){ |
| assert( jsonbValidityCheck(pParse, 0, pParse->nBlob, 0)==0 ); |
| } |
| #endif |
| while( jsonIsspace(zJson[i]) ) i++; |
| if( zJson[i] ){ |
| i += json5Whitespace(&zJson[i]); |
| if( zJson[i] ){ |
| if( pCtx ) sqlite3_result_error(pCtx, "malformed JSON", -1); |
| jsonParseReset(pParse); |
| return 1; |
| } |
| pParse->hasNonstd = 1; |
| } |
| } |
| if( i<=0 ){ |
| if( pCtx!=0 ){ |
| if( pParse->oom ){ |
| sqlite3_result_error_nomem(pCtx); |
| }else{ |
| sqlite3_result_error(pCtx, "malformed JSON", -1); |
| } |
| } |
| jsonParseReset(pParse); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** The input string pStr is a well-formed JSON text string. Convert |
| ** this into the JSONB format and make it the return value of the |
| ** SQL function. |
| */ |
| static void jsonReturnStringAsBlob(JsonString *pStr){ |
| JsonParse px; |
| memset(&px, 0, sizeof(px)); |
| jsonStringTerminate(pStr); |
| if( pStr->eErr ){ |
| sqlite3_result_error_nomem(pStr->pCtx); |
| return; |
| } |
| px.zJson = pStr->zBuf; |
| px.nJson = pStr->nUsed; |
| px.db = sqlite3_context_db_handle(pStr->pCtx); |
| (void)jsonTranslateTextToBlob(&px, 0); |
| if( px.oom ){ |
| sqlite3DbFree(px.db, px.aBlob); |
| sqlite3_result_error_nomem(pStr->pCtx); |
| }else{ |
| assert( px.nBlobAlloc>0 ); |
| assert( !px.bReadOnly ); |
| sqlite3_result_blob(pStr->pCtx, px.aBlob, px.nBlob, SQLITE_DYNAMIC); |
| } |
| } |
| |
| /* The byte at index i is a node type-code. This routine |
| ** determines the payload size for that node and writes that |
| ** payload size in to *pSz. It returns the offset from i to the |
| ** beginning of the payload. Return 0 on error. |
| */ |
| static u32 jsonbPayloadSize(const JsonParse *pParse, u32 i, u32 *pSz){ |
| u8 x; |
| u32 sz; |
| u32 n; |
| assert( i<=pParse->nBlob ); |
| x = pParse->aBlob[i]>>4; |
| if( x<=11 ){ |
| sz = x; |
| n = 1; |
| }else if( x==12 ){ |
| if( i+1>=pParse->nBlob ){ |
| *pSz = 0; |
| return 0; |
| } |
| sz = pParse->aBlob[i+1]; |
| n = 2; |
| }else if( x==13 ){ |
| if( i+2>=pParse->nBlob ){ |
| *pSz = 0; |
| return 0; |
| } |
| sz = (pParse->aBlob[i+1]<<8) + pParse->aBlob[i+2]; |
| n = 3; |
| }else if( x==14 ){ |
| if( i+4>=pParse->nBlob ){ |
| *pSz = 0; |
| return 0; |
| } |
| sz = ((u32)pParse->aBlob[i+1]<<24) + (pParse->aBlob[i+2]<<16) + |
| (pParse->aBlob[i+3]<<8) + pParse->aBlob[i+4]; |
| n = 5; |
| }else{ |
| if( i+8>=pParse->nBlob |
| || pParse->aBlob[i+1]!=0 |
| || pParse->aBlob[i+2]!=0 |
| || pParse->aBlob[i+3]!=0 |
| || pParse->aBlob[i+4]!=0 |
| ){ |
| *pSz = 0; |
| return 0; |
| } |
| sz = ((u32)pParse->aBlob[i+5]<<24) + (pParse->aBlob[i+6]<<16) + |
| (pParse->aBlob[i+7]<<8) + pParse->aBlob[i+8]; |
| n = 9; |
| } |
| if( (i64)i+sz+n > pParse->nBlob |
| && (i64)i+sz+n > pParse->nBlob-pParse->delta |
| ){ |
| *pSz = 0; |
| return 0; |
| } |
| *pSz = sz; |
| return n; |
| } |
| |
| |
| /* |
| ** Translate the binary JSONB representation of JSON beginning at |
| ** pParse->aBlob[i] into a JSON text string. Append the JSON |
| ** text onto the end of pOut. Return the index in pParse->aBlob[] |
| ** of the first byte past the end of the element that is translated. |
| ** |
| ** If an error is detected in the BLOB input, the pOut->eErr flag |
| ** might get set to JSTRING_MALFORMED. But not all BLOB input errors |
| ** are detected. So a malformed JSONB input might either result |
| ** in an error, or in incorrect JSON. |
| ** |
| ** The pOut->eErr JSTRING_OOM flag is set on a OOM. |
| */ |
| static u32 jsonTranslateBlobToText( |
| const JsonParse *pParse, /* the complete parse of the JSON */ |
| u32 i, /* Start rendering at this index */ |
| JsonString *pOut /* Write JSON here */ |
| ){ |
| u32 sz, n, j, iEnd; |
| |
| n = jsonbPayloadSize(pParse, i, &sz); |
| if( n==0 ){ |
| pOut->eErr |= JSTRING_MALFORMED; |
| return pParse->nBlob+1; |
| } |
| switch( pParse->aBlob[i] & 0x0f ){ |
| case JSONB_NULL: { |
| jsonAppendRawNZ(pOut, "null", 4); |
| return i+1; |
| } |
| case JSONB_TRUE: { |
| jsonAppendRawNZ(pOut, "true", 4); |
| return i+1; |
| } |
| case JSONB_FALSE: { |
| jsonAppendRawNZ(pOut, "false", 5); |
| return i+1; |
| } |
| case JSONB_INT: |
| case JSONB_FLOAT: { |
| if( sz==0 ) goto malformed_jsonb; |
| jsonAppendRaw(pOut, (const char*)&pParse->aBlob[i+n], sz); |
| break; |
| } |
| case JSONB_INT5: { /* Integer literal in hexadecimal notation */ |
| u32 k = 2; |
| sqlite3_uint64 u = 0; |
| const char *zIn = (const char*)&pParse->aBlob[i+n]; |
| int bOverflow = 0; |
| if( sz==0 ) goto malformed_jsonb; |
| if( zIn[0]=='-' ){ |
| jsonAppendChar(pOut, '-'); |
| k++; |
| }else if( zIn[0]=='+' ){ |
| k++; |
| } |
| for(; k<sz; k++){ |
| if( !sqlite3Isxdigit(zIn[k]) ){ |
| pOut->eErr |= JSTRING_MALFORMED; |
| break; |
| }else if( (u>>60)!=0 ){ |
| bOverflow = 1; |
| }else{ |
| u = u*16 + sqlite3HexToInt(zIn[k]); |
| } |
| } |
| jsonPrintf(100,pOut,bOverflow?"9.0e999":"%llu", u); |
| break; |
| } |
| case JSONB_FLOAT5: { /* Float literal missing digits beside "." */ |
| u32 k = 0; |
| const char *zIn = (const char*)&pParse->aBlob[i+n]; |
| if( sz==0 ) goto malformed_jsonb; |
| if( zIn[0]=='-' ){ |
| jsonAppendChar(pOut, '-'); |
| k++; |
| } |
| if( zIn[k]=='.' ){ |
| jsonAppendChar(pOut, '0'); |
| } |
| for(; k<sz; k++){ |
| jsonAppendChar(pOut, zIn[k]); |
| if( zIn[k]=='.' && (k+1==sz || !sqlite3Isdigit(zIn[k+1])) ){ |
| jsonAppendChar(pOut, '0'); |
| } |
| } |
| break; |
| } |
| case JSONB_TEXT: |
| case JSONB_TEXTJ: { |
| if( pOut->nUsed+sz+2<=pOut->nAlloc || jsonStringGrow(pOut, sz+2)==0 ){ |
| pOut->zBuf[pOut->nUsed] = '"'; |
| memcpy(pOut->zBuf+pOut->nUsed+1,(const char*)&pParse->aBlob[i+n],sz); |
| pOut->zBuf[pOut->nUsed+sz+1] = '"'; |
| pOut->nUsed += sz+2; |
| } |
| break; |
| } |
| case JSONB_TEXT5: { |
| const char *zIn; |
| u32 k; |
| u32 sz2 = sz; |
| zIn = (const char*)&pParse->aBlob[i+n]; |
| jsonAppendChar(pOut, '"'); |
| while( sz2>0 ){ |
| for(k=0; k<sz2 && (jsonIsOk[(u8)zIn[k]] || zIn[k]=='\''); k++){} |
| if( k>0 ){ |
| jsonAppendRawNZ(pOut, zIn, k); |
| if( k>=sz2 ){ |
| break; |
| } |
| zIn += k; |
| sz2 -= k; |
| } |
| if( zIn[0]=='"' ){ |
| jsonAppendRawNZ(pOut, "\\\"", 2); |
| zIn++; |
| sz2--; |
| continue; |
| } |
| if( zIn[0]<=0x1f ){ |
| if( pOut->nUsed+7>pOut->nAlloc && jsonStringGrow(pOut,7) ) break; |
| jsonAppendControlChar(pOut, zIn[0]); |
| zIn++; |
| sz2--; |
| continue; |
| } |
| assert( zIn[0]=='\\' ); |
| assert( sz2>=1 ); |
| if( sz2<2 ){ |
| pOut->eErr |= JSTRING_MALFORMED; |
| break; |
| } |
| switch( (u8)zIn[1] ){ |
| case '\'': |
| jsonAppendChar(pOut, '\''); |
| break; |
| case 'v': |
| jsonAppendRawNZ(pOut, "\\u0009", 6); |
| break; |
| case 'x': |
| if( sz2<4 ){ |
| pOut->eErr |= JSTRING_MALFORMED; |
| sz2 = 2; |
| break; |
| } |
| jsonAppendRawNZ(pOut, "\\u00", 4); |
| jsonAppendRawNZ(pOut, &zIn[2], 2); |
| zIn += 2; |
| sz2 -= 2; |
| break; |
| case '0': |
| jsonAppendRawNZ(pOut, "\\u0000", 6); |
| break; |
| case '\r': |
| if( sz2>2 && zIn[2]=='\n' ){ |
| zIn++; |
| sz2--; |
| } |
| break; |
| case '\n': |
| break; |
| case 0xe2: |
| /* '\' followed by either U+2028 or U+2029 is ignored as |
| ** whitespace. Not that in UTF8, U+2028 is 0xe2 0x80 0x29. |
| ** U+2029 is the same except for the last byte */ |
| if( sz2<4 |
| || 0x80!=(u8)zIn[2] |
| || (0xa8!=(u8)zIn[3] && 0xa9!=(u8)zIn[3]) |
| ){ |
| pOut->eErr |= JSTRING_MALFORMED; |
| sz2 = 2; |
| break; |
| } |
| zIn += 2; |
| sz2 -= 2; |
| break; |
| default: |
| jsonAppendRawNZ(pOut, zIn, 2); |
| break; |
| } |
| assert( sz2>=2 ); |
| zIn += 2; |
| sz2 -= 2; |
| } |
| jsonAppendChar(pOut, '"'); |
| break; |
| } |
| case JSONB_TEXTRAW: { |
| jsonAppendString(pOut, (const char*)&pParse->aBlob[i+n], sz); |
| break; |
| } |
| case JSONB_ARRAY: { |
| jsonAppendChar(pOut, '['); |
| j = i+n; |
| iEnd = j+sz; |
| while( j<iEnd && pOut->eErr==0 ){ |
| j = jsonTranslateBlobToText(pParse, j, pOut); |
| jsonAppendChar(pOut, ','); |
| } |
| if( j>iEnd ) pOut->eErr |= JSTRING_MALFORMED; |
| if( sz>0 ) jsonStringTrimOneChar(pOut); |
| jsonAppendChar(pOut, ']'); |
| break; |
| } |
| case JSONB_OBJECT: { |
| int x = 0; |
| jsonAppendChar(pOut, '{'); |
| j = i+n; |
| iEnd = j+sz; |
| while( j<iEnd && pOut->eErr==0 ){ |
| j = jsonTranslateBlobToText(pParse, j, pOut); |
| jsonAppendChar(pOut, (x++ & 1) ? ',' : ':'); |
| } |
| if( (x & 1)!=0 || j>iEnd ) pOut->eErr |= JSTRING_MALFORMED; |
| if( sz>0 ) jsonStringTrimOneChar(pOut); |
| jsonAppendChar(pOut, '}'); |
| break; |
| } |
| |
| default: { |
| malformed_jsonb: |
| pOut->eErr |= JSTRING_MALFORMED; |
| break; |
| } |
| } |
| return i+n+sz; |
| } |
| |
| /* Context for recursion of json_pretty() |
| */ |
| typedef struct JsonPretty JsonPretty; |
| struct JsonPretty { |
| JsonParse *pParse; /* The BLOB being rendered */ |
| JsonString *pOut; /* Generate pretty output into this string */ |
| const char *zIndent; /* Use this text for indentation */ |
| u32 szIndent; /* Bytes in zIndent[] */ |
| u32 nIndent; /* Current level of indentation */ |
| }; |
| |
| /* Append indentation to the pretty JSON under construction */ |
| static void jsonPrettyIndent(JsonPretty *pPretty){ |
| u32 jj; |
| for(jj=0; jj<pPretty->nIndent; jj++){ |
| jsonAppendRaw(pPretty->pOut, pPretty->zIndent, pPretty->szIndent); |
| } |
| } |
| |
| /* |
| ** Translate the binary JSONB representation of JSON beginning at |
| ** pParse->aBlob[i] into a JSON text string. Append the JSON |
| ** text onto the end of pOut. Return the index in pParse->aBlob[] |
| ** of the first byte past the end of the element that is translated. |
| ** |
| ** This is a variant of jsonTranslateBlobToText() that "pretty-prints" |
| ** the output. Extra whitespace is inserted to make the JSON easier |
| ** for humans to read. |
| ** |
| ** If an error is detected in the BLOB input, the pOut->eErr flag |
| ** might get set to JSTRING_MALFORMED. But not all BLOB input errors |
| ** are detected. So a malformed JSONB input might either result |
| ** in an error, or in incorrect JSON. |
| ** |
| ** The pOut->eErr JSTRING_OOM flag is set on a OOM. |
| */ |
| static u32 jsonTranslateBlobToPrettyText( |
| JsonPretty *pPretty, /* Pretty-printing context */ |
| u32 i /* Start rendering at this index */ |
| ){ |
| u32 sz, n, j, iEnd; |
| const JsonParse *pParse = pPretty->pParse; |
| JsonString *pOut = pPretty->pOut; |
| n = jsonbPayloadSize(pParse, i, &sz); |
| if( n==0 ){ |
| pOut->eErr |= JSTRING_MALFORMED; |
| return pParse->nBlob+1; |
| } |
| switch( pParse->aBlob[i] & 0x0f ){ |
| case JSONB_ARRAY: { |
| j = i+n; |
| iEnd = j+sz; |
| jsonAppendChar(pOut, '['); |
| if( j<iEnd ){ |
| jsonAppendChar(pOut, '\n'); |
| pPretty->nIndent++; |
| while( pOut->eErr==0 ){ |
| jsonPrettyIndent(pPretty); |
| j = jsonTranslateBlobToPrettyText(pPretty, j); |
| if( j>=iEnd ) break; |
| jsonAppendRawNZ(pOut, ",\n", 2); |
| } |
| jsonAppendChar(pOut, '\n'); |
| pPretty->nIndent--; |
| jsonPrettyIndent(pPretty); |
| } |
| jsonAppendChar(pOut, ']'); |
| i = iEnd; |
| break; |
| } |
| case JSONB_OBJECT: { |
| j = i+n; |
| iEnd = j+sz; |
| jsonAppendChar(pOut, '{'); |
| if( j<iEnd ){ |
| jsonAppendChar(pOut, '\n'); |
| pPretty->nIndent++; |
| while( pOut->eErr==0 ){ |
| jsonPrettyIndent(pPretty); |
| j = jsonTranslateBlobToText(pParse, j, pOut); |
| if( j>iEnd ){ |
| pOut->eErr |= JSTRING_MALFORMED; |
| break; |
| } |
| jsonAppendRawNZ(pOut, ": ", 2); |
| j = jsonTranslateBlobToPrettyText(pPretty, j); |
| if( j>=iEnd ) break; |
| jsonAppendRawNZ(pOut, ",\n", 2); |
| } |
| jsonAppendChar(pOut, '\n'); |
| pPretty->nIndent--; |
| jsonPrettyIndent(pPretty); |
| } |
| jsonAppendChar(pOut, '}'); |
| i = iEnd; |
| break; |
| } |
| default: { |
| i = jsonTranslateBlobToText(pParse, i, pOut); |
| break; |
| } |
| } |
| return i; |
| } |
| |
| /* |
| ** Given that a JSONB_ARRAY object starts at offset i, return |
| ** the number of entries in that array. |
| */ |
| static u32 jsonbArrayCount(JsonParse *pParse, u32 iRoot){ |
| u32 n, sz, i, iEnd; |
| u32 k = 0; |
| n = jsonbPayloadSize(pParse, iRoot, &sz); |
| iEnd = iRoot+n+sz; |
| for(i=iRoot+n; n>0 && i<iEnd; i+=sz+n, k++){ |
| n = jsonbPayloadSize(pParse, i, &sz); |
| } |
| return k; |
| } |
| |
| /* |
| ** Edit the payload size of the element at iRoot by the amount in |
| ** pParse->delta. |
| */ |
| static void jsonAfterEditSizeAdjust(JsonParse *pParse, u32 iRoot){ |
| u32 sz = 0; |
| u32 nBlob; |
| assert( pParse->delta!=0 ); |
| assert( pParse->nBlobAlloc >= pParse->nBlob ); |
| nBlob = pParse->nBlob; |
| pParse->nBlob = pParse->nBlobAlloc; |
| (void)jsonbPayloadSize(pParse, iRoot, &sz); |
| pParse->nBlob = nBlob; |
| sz += pParse->delta; |
| pParse->delta += jsonBlobChangePayloadSize(pParse, iRoot, sz); |
| } |
| |
| /* |
| ** If the JSONB at aIns[0..nIns-1] can be expanded (by denormalizing the |
| ** size field) by d bytes, then write the expansion into aOut[] and |
| ** return true. In this way, an overwrite happens without changing the |
| ** size of the JSONB, which reduces memcpy() operations and also make it |
| ** faster and easier to update the B-Tree entry that contains the JSONB |
| ** in the database. |
| ** |
| ** If the expansion of aIns[] by d bytes cannot be (easily) accomplished |
| ** then return false. |
| ** |
| ** The d parameter is guaranteed to be between 1 and 8. |
| ** |
| ** This routine is an optimization. A correct answer is obtained if it |
| ** always leaves the output unchanged and returns false. |
| */ |
| static int jsonBlobOverwrite( |
| u8 *aOut, /* Overwrite here */ |
| const u8 *aIns, /* New content */ |
| u32 nIns, /* Bytes of new content */ |
| u32 d /* Need to expand new content by this much */ |
| ){ |
| u32 szPayload; /* Bytes of payload */ |
| u32 i; /* New header size, after expansion & a loop counter */ |
| u8 szHdr; /* Size of header before expansion */ |
| |
| /* Lookup table for finding the upper 4 bits of the first byte of the |
| ** expanded aIns[], based on the size of the expanded aIns[] header: |
| ** |
| ** 2 3 4 5 6 7 8 9 */ |
| static const u8 aType[] = { 0xc0, 0xd0, 0, 0xe0, 0, 0, 0, 0xf0 }; |
| |
| if( (aIns[0]&0x0f)<=2 ) return 0; /* Cannot enlarge NULL, true, false */ |
| switch( aIns[0]>>4 ){ |
| default: { /* aIns[] header size 1 */ |
| if( ((1<<d)&0x116)==0 ) return 0; /* d must be 1, 2, 4, or 8 */ |
| i = d + 1; /* New hdr sz: 2, 3, 5, or 9 */ |
| szHdr = 1; |
| break; |
| } |
| case 12: { /* aIns[] header size is 2 */ |
| if( ((1<<d)&0x8a)==0) return 0; /* d must be 1, 3, or 7 */ |
| i = d + 2; /* New hdr sz: 2, 5, or 9 */ |
| szHdr = 2; |
| break; |
| } |
| case 13: { /* aIns[] header size is 3 */ |
| if( d!=2 && d!=6 ) return 0; /* d must be 2 or 6 */ |
| i = d + 3; /* New hdr sz: 5 or 9 */ |
| szHdr = 3; |
| break; |
| } |
| case 14: { /* aIns[] header size is 5 */ |
| if( d!=4 ) return 0; /* d must be 4 */ |
| i = 9; /* New hdr sz: 9 */ |
| szHdr = 5; |
| break; |
| } |
| case 15: { /* aIns[] header size is 9 */ |
| return 0; /* No solution */ |
| } |
| } |
| assert( i>=2 && i<=9 && aType[i-2]!=0 ); |
| aOut[0] = (aIns[0] & 0x0f) | aType[i-2]; |
| memcpy(&aOut[i], &aIns[szHdr], nIns-szHdr); |
| szPayload = nIns - szHdr; |
| while( 1/*edit-by-break*/ ){ |
| i--; |
| aOut[i] = szPayload & 0xff; |
| if( i==1 ) break; |
| szPayload >>= 8; |
| } |
| assert( (szPayload>>8)==0 ); |
| return 1; |
| } |
| |
| /* |
| ** Modify the JSONB blob at pParse->aBlob by removing nDel bytes of |
| ** content beginning at iDel, and replacing them with nIns bytes of |
| ** content given by aIns. |
| ** |
| ** nDel may be zero, in which case no bytes are removed. But iDel is |
| ** still important as new bytes will be insert beginning at iDel. |
| ** |
| ** aIns may be zero, in which case space is created to hold nIns bytes |
| ** beginning at iDel, but that space is uninitialized. |
| ** |
| ** Set pParse->oom if an OOM occurs. |
| */ |
| static void jsonBlobEdit( |
| JsonParse *pParse, /* The JSONB to be modified is in pParse->aBlob */ |
| u32 iDel, /* First byte to be removed */ |
| u32 nDel, /* Number of bytes to remove */ |
| const u8 *aIns, /* Content to insert */ |
| u32 nIns /* Bytes of content to insert */ |
| ){ |
| i64 d = (i64)nIns - (i64)nDel; |
| if( d<0 && d>=(-8) && aIns!=0 |
| && jsonBlobOverwrite(&pParse->aBlob[iDel], aIns, nIns, (int)-d) |
| ){ |
| return; |
| } |
| if( d!=0 ){ |
| if( pParse->nBlob + d > pParse->nBlobAlloc ){ |
| jsonBlobExpand(pParse, pParse->nBlob+d); |
| if( pParse->oom ) return; |
| } |
| memmove(&pParse->aBlob[iDel+nIns], |
| &pParse->aBlob[iDel+nDel], |
| pParse->nBlob - (iDel+nDel)); |
| pParse->nBlob += d; |
| pParse->delta += d; |
| } |
| if( nIns && aIns ){ |
| memcpy(&pParse->aBlob[iDel], aIns, nIns); |
| } |
| } |
| |
| /* |
| ** Return the number of escaped newlines to be ignored. |
| ** An escaped newline is a one of the following byte sequences: |
| ** |
| ** 0x5c 0x0a |
| ** 0x5c 0x0d |
| ** 0x5c 0x0d 0x0a |
| ** 0x5c 0xe2 0x80 0xa8 |
| ** 0x5c 0xe2 0x80 0xa9 |
| */ |
| static u32 jsonBytesToBypass(const char *z, u32 n){ |
| u32 i = 0; |
| while( i+1<n ){ |
| if( z[i]!='\\' ) return i; |
| if( z[i+1]=='\n' ){ |
| i += 2; |
| continue; |
| } |
| if( z[i+1]=='\r' ){ |
| if( i+2<n && z[i+2]=='\n' ){ |
| i += 3; |
| }else{ |
| i += 2; |
| } |
| continue; |
| } |
| if( 0xe2==(u8)z[i+1] |
| && i+3<n |
| && 0x80==(u8)z[i+2] |
| && (0xa8==(u8)z[i+3] || 0xa9==(u8)z[i+3]) |
| ){ |
| i += 4; |
| continue; |
| } |
| break; |
| } |
| return i; |
| } |
| |
| /* |
| ** Input z[0..n] defines JSON escape sequence including the leading '\\'. |
| ** Decode that escape sequence into a single character. Write that |
| ** character into *piOut. Return the number of bytes in the escape sequence. |
| ** |
| ** If there is a syntax error of some kind (for example too few characters |
| ** after the '\\' to complete the encoding) then *piOut is set to |
| ** JSON_INVALID_CHAR. |
| */ |
| static u32 jsonUnescapeOneChar(const char *z, u32 n, u32 *piOut){ |
| assert( n>0 ); |
| assert( z[0]=='\\' ); |
| if( n<2 ){ |
| *piOut = JSON_INVALID_CHAR; |
| return n; |
| } |
| switch( (u8)z[1] ){ |
| case 'u': { |
| u32 v, vlo; |
| if( n<6 ){ |
| *piOut = JSON_INVALID_CHAR; |
| return n; |
| } |
| v = jsonHexToInt4(&z[2]); |
| if( (v & 0xfc00)==0xd800 |
| && n>=12 |
| && z[6]=='\\' |
| && z[7]=='u' |
| && ((vlo = jsonHexToInt4(&z[8]))&0xfc00)==0xdc00 |
| ){ |
| *piOut = ((v&0x3ff)<<10) + (vlo&0x3ff) + 0x10000; |
| return 12; |
| }else{ |
| *piOut = v; |
| return 6; |
| } |
| } |
| case 'b': { *piOut = '\b'; return 2; } |
| case 'f': { *piOut = '\f'; return 2; } |
| case 'n': { *piOut = '\n'; return 2; } |
| case 'r': { *piOut = '\r'; return 2; } |
| case 't': { *piOut = '\t'; return 2; } |
| case 'v': { *piOut = '\v'; return 2; } |
| case '0': { |
| /* JSON5 requires that the \0 escape not be followed by a digit. |
| ** But SQLite did not enforce this restriction in versions 3.42.0 |
| ** through 3.49.2. That was a bug. But some applications might have |
| ** come to depend on that bug. Use the SQLITE_BUG_COMPATIBLE_20250510 |
| ** option to restore the old buggy behavior. */ |
| #ifdef SQLITE_BUG_COMPATIBLE_20250510 |
| /* Legacy bug-compatible behavior */ |
| *piOut = 0; |
| #else |
| /* Correct behavior */ |
| *piOut = (n>2 && sqlite3Isdigit(z[2])) ? JSON_INVALID_CHAR : 0; |
| #endif |
| return 2; |
| } |
| case '\'': |
| case '"': |
| case '/': |
| case '\\':{ *piOut = z[1]; return 2; } |
| case 'x': { |
| if( n<4 ){ |
| *piOut = JSON_INVALID_CHAR; |
| return n; |
| } |
| *piOut = (jsonHexToInt(z[2])<<4) | jsonHexToInt(z[3]); |
| return 4; |
| } |
| case 0xe2: |
| case '\r': |
| case '\n': { |
| u32 nSkip = jsonBytesToBypass(z, n); |
| if( nSkip==0 ){ |
| *piOut = JSON_INVALID_CHAR; |
| return n; |
| }else if( nSkip==n ){ |
| *piOut = 0; |
| return n; |
| }else if( z[nSkip]=='\\' ){ |
| return nSkip + jsonUnescapeOneChar(&z[nSkip], n-nSkip, piOut); |
| }else{ |
| int sz = sqlite3Utf8ReadLimited((u8*)&z[nSkip], n-nSkip, piOut); |
| return nSkip + sz; |
| } |
| } |
| default: { |
| *piOut = JSON_INVALID_CHAR; |
| return 2; |
| } |
| } |
| } |
| |
| |
| /* |
| ** Compare two object labels. Return 1 if they are equal and |
| ** 0 if they differ. |
| ** |
| ** In this version, we know that one or the other or both of the |
| ** two comparands contains an escape sequence. |
| */ |
| static SQLITE_NOINLINE int jsonLabelCompareEscaped( |
| const char *zLeft, /* The left label */ |
| u32 nLeft, /* Size of the left label in bytes */ |
| int rawLeft, /* True if zLeft contains no escapes */ |
| const char *zRight, /* The right label */ |
| u32 nRight, /* Size of the right label in bytes */ |
| int rawRight /* True if zRight is escape-free */ |
| ){ |
| u32 cLeft, cRight; |
| assert( rawLeft==0 || rawRight==0 ); |
| while( 1 /*exit-by-return*/ ){ |
| if( nLeft==0 ){ |
| cLeft = 0; |
| }else if( rawLeft || zLeft[0]!='\\' ){ |
| cLeft = ((u8*)zLeft)[0]; |
| if( cLeft>=0xc0 ){ |
| int sz = sqlite3Utf8ReadLimited((u8*)zLeft, nLeft, &cLeft); |
| zLeft += sz; |
| nLeft -= sz; |
| }else{ |
| zLeft++; |
| nLeft--; |
| } |
| }else{ |
| u32 n = jsonUnescapeOneChar(zLeft, nLeft, &cLeft); |
| zLeft += n; |
| assert( n<=nLeft ); |
| nLeft -= n; |
| } |
| if( nRight==0 ){ |
| cRight = 0; |
| }else if( rawRight || zRight[0]!='\\' ){ |
| cRight = ((u8*)zRight)[0]; |
| if( cRight>=0xc0 ){ |
| int sz = sqlite3Utf8ReadLimited((u8*)zRight, nRight, &cRight); |
| zRight += sz; |
| nRight -= sz; |
| }else{ |
| zRight++; |
| nRight--; |
| } |
| }else{ |
| u32 n = jsonUnescapeOneChar(zRight, nRight, &cRight); |
| zRight += n; |
| assert( n<=nRight ); |
| nRight -= n; |
| } |
| if( cLeft!=cRight ) return 0; |
| if( cLeft==0 ) return 1; |
| } |
| } |
| |
| /* |
| ** Compare two object labels. Return 1 if they are equal and |
| ** 0 if they differ. Return -1 if an OOM occurs. |
| */ |
| static int jsonLabelCompare( |
| const char *zLeft, /* The left label */ |
| u32 nLeft, /* Size of the left label in bytes */ |
| int rawLeft, /* True if zLeft contains no escapes */ |
| const char *zRight, /* The right label */ |
| u32 nRight, /* Size of the right label in bytes */ |
| int rawRight /* True if zRight is escape-free */ |
| ){ |
| if( rawLeft && rawRight ){ |
| /* Simpliest case: Neither label contains escapes. A simple |
| ** memcmp() is sufficient. */ |
| if( nLeft!=nRight ) return 0; |
| return memcmp(zLeft, zRight, nLeft)==0; |
| }else{ |
| return jsonLabelCompareEscaped(zLeft, nLeft, rawLeft, |
| zRight, nRight, rawRight); |
| } |
| } |
| |
| /* |
| ** Error returns from jsonLookupStep() |
| */ |
| #define JSON_LOOKUP_ERROR 0xffffffff |
| #define JSON_LOOKUP_NOTFOUND 0xfffffffe |
| #define JSON_LOOKUP_PATHERROR 0xfffffffd |
| #define JSON_LOOKUP_ISERROR(x) ((x)>=JSON_LOOKUP_PATHERROR) |
| |
| /* Forward declaration */ |
| static u32 jsonLookupStep(JsonParse*,u32,const char*,u32); |
| |
| |
| /* This helper routine for jsonLookupStep() populates pIns with |
| ** binary data that is to be inserted into pParse. |
| ** |
| ** In the common case, pIns just points to pParse->aIns and pParse->nIns. |
| ** But if the zPath of the original edit operation includes path elements |
| ** that go deeper, additional substructure must be created. |
| ** |
| ** For example: |
| ** |
| ** json_insert('{}', '$.a.b.c', 123); |
| ** |
| ** The search stops at '$.a' But additional substructure must be |
| ** created for the ".b.c" part of the patch so that the final result |
| ** is: {"a":{"b":{"c"::123}}}. This routine populates pIns with |
| ** the binary equivalent of {"b":{"c":123}} so that it can be inserted. |
| ** |
| ** The caller is responsible for resetting pIns when it has finished |
| ** using the substructure. |
| */ |
| static u32 jsonCreateEditSubstructure( |
| JsonParse *pParse, /* The original JSONB that is being edited */ |
| JsonParse *pIns, /* Populate this with the blob data to insert */ |
| const char *zTail /* Tail of the path that determins substructure */ |
| ){ |
| static const u8 emptyObject[] = { JSONB_ARRAY, JSONB_OBJECT }; |
| int rc; |
| memset(pIns, 0, sizeof(*pIns)); |
| pIns->db = pParse->db; |
| if( zTail[0]==0 ){ |
| /* No substructure. Just insert what is given in pParse. */ |
| pIns->aBlob = pParse->aIns; |
| pIns->nBlob = pParse->nIns; |
| rc = 0; |
| }else{ |
| /* Construct the binary substructure */ |
| pIns->nBlob = 1; |
| pIns->aBlob = (u8*)&emptyObject[zTail[0]=='.']; |
| pIns->eEdit = pParse->eEdit; |
| pIns->nIns = pParse->nIns; |
| pIns->aIns = pParse->aIns; |
| rc = jsonLookupStep(pIns, 0, zTail, 0); |
| pParse->oom |= pIns->oom; |
| } |
| return rc; /* Error code only */ |
| } |
| |
| /* |
| ** Search along zPath to find the Json element specified. Return an |
| ** index into pParse->aBlob[] for the start of that element's value. |
| ** |
| ** If the value found by this routine is the value half of label/value pair |
| ** within an object, then set pPath->iLabel to the start of the corresponding |
| ** label, before returning. |
| ** |
| ** Return one of the JSON_LOOKUP error codes if problems are seen. |
| ** |
| ** This routine will also modify the blob. If pParse->eEdit is one of |
| ** JEDIT_DEL, JEDIT_REPL, JEDIT_INS, or JEDIT_SET, then changes might be |
| ** made to the selected value. If an edit is performed, then the return |
| ** value does not necessarily point to the select element. If an edit |
| ** is performed, the return value is only useful for detecting error |
| ** conditions. |
| */ |
| static u32 jsonLookupStep( |
| JsonParse *pParse, /* The JSON to search */ |
| u32 iRoot, /* Begin the search at this element of aBlob[] */ |
| const char *zPath, /* The path to search */ |
| u32 iLabel /* Label if iRoot is a value of in an object */ |
| ){ |
| u32 i, j, k, nKey, sz, n, iEnd, rc; |
| const char *zKey; |
| u8 x; |
| |
| if( zPath[0]==0 ){ |
| if( pParse->eEdit && jsonBlobMakeEditable(pParse, pParse->nIns) ){ |
| n = jsonbPayloadSize(pParse, iRoot, &sz); |
| sz += n; |
| if( pParse->eEdit==JEDIT_DEL ){ |
| if( iLabel>0 ){ |
| sz += iRoot - iLabel; |
| iRoot = iLabel; |
| } |
| jsonBlobEdit(pParse, iRoot, sz, 0, 0); |
| }else if( pParse->eEdit==JEDIT_INS ){ |
| /* Already exists, so json_insert() is a no-op */ |
| }else{ |
| /* json_set() or json_replace() */ |
| jsonBlobEdit(pParse, iRoot, sz, pParse->aIns, pParse->nIns); |
| } |
| } |
| pParse->iLabel = iLabel; |
| return iRoot; |
| } |
| if( zPath[0]=='.' ){ |
| int rawKey = 1; |
| x = pParse->aBlob[iRoot]; |
| zPath++; |
| if( zPath[0]=='"' ){ |
| zKey = zPath + 1; |
| for(i=1; zPath[i] && zPath[i]!='"'; i++){ |
| if( zPath[i]=='\\' && zPath[i+1]!=0 ) i++; |
| } |
| nKey = i-1; |
| if( zPath[i] ){ |
| i++; |
| }else{ |
| return JSON_LOOKUP_PATHERROR; |
| } |
| testcase( nKey==0 ); |
| rawKey = memchr(zKey, '\\', nKey)==0; |
| }else{ |
| zKey = zPath; |
| for(i=0; zPath[i] && zPath[i]!='.' && zPath[i]!='['; i++){} |
| nKey = i; |
| if( nKey==0 ){ |
| return JSON_LOOKUP_PATHERROR; |
| } |
| } |
| if( (x & 0x0f)!=JSONB_OBJECT ) return JSON_LOOKUP_NOTFOUND; |
| n = jsonbPayloadSize(pParse, iRoot, &sz); |
| j = iRoot + n; /* j is the index of a label */ |
| iEnd = j+sz; |
| while( j<iEnd ){ |
| int rawLabel; |
| const char *zLabel; |
| x = pParse->aBlob[j] & 0x0f; |
| if( x<JSONB_TEXT || x>JSONB_TEXTRAW ) return JSON_LOOKUP_ERROR; |
| n = jsonbPayloadSize(pParse, j, &sz); |
| if( n==0 ) return JSON_LOOKUP_ERROR; |
| k = j+n; /* k is the index of the label text */ |
| if( k+sz>=iEnd ) return JSON_LOOKUP_ERROR; |
| zLabel = (const char*)&pParse->aBlob[k]; |
| rawLabel = x==JSONB_TEXT || x==JSONB_TEXTRAW; |
| if( jsonLabelCompare(zKey, nKey, rawKey, zLabel, sz, rawLabel) ){ |
| u32 v = k+sz; /* v is the index of the value */ |
| if( ((pParse->aBlob[v])&0x0f)>JSONB_OBJECT ) return JSON_LOOKUP_ERROR; |
| n = jsonbPayloadSize(pParse, v, &sz); |
| if( n==0 || v+n+sz>iEnd ) return JSON_LOOKUP_ERROR; |
| assert( j>0 ); |
| rc = jsonLookupStep(pParse, v, &zPath[i], j); |
| if( pParse->delta ) jsonAfterEditSizeAdjust(pParse, iRoot); |
| return rc; |
| } |
| j = k+sz; |
| if( ((pParse->aBlob[j])&0x0f)>JSONB_OBJECT ) return JSON_LOOKUP_ERROR; |
| n = jsonbPayloadSize(pParse, j, &sz); |
| if( n==0 ) return JSON_LOOKUP_ERROR; |
| j += n+sz; |
| } |
| if( j>iEnd ) return JSON_LOOKUP_ERROR; |
| if( pParse->eEdit>=JEDIT_INS ){ |
| u32 nIns; /* Total bytes to insert (label+value) */ |
| JsonParse v; /* BLOB encoding of the value to be inserted */ |
| JsonParse ix; /* Header of the label to be inserted */ |
| testcase( pParse->eEdit==JEDIT_INS ); |
| testcase( pParse->eEdit==JEDIT_SET ); |
| memset(&ix, 0, sizeof(ix)); |
| ix.db = pParse->db; |
| jsonBlobAppendNode(&ix, rawKey?JSONB_TEXTRAW:JSONB_TEXT5, nKey, 0); |
| pParse->oom |= ix.oom; |
| rc = jsonCreateEditSubstructure(pParse, &v, &zPath[i]); |
| if( !JSON_LOOKUP_ISERROR(rc) |
| && jsonBlobMakeEditable(pParse, ix.nBlob+nKey+v.nBlob) |
| ){ |
| assert( !pParse->oom ); |
| nIns = ix.nBlob + nKey + v.nBlob; |
| jsonBlobEdit(pParse, j, 0, 0, nIns); |
| if( !pParse->oom ){ |
| assert( pParse->aBlob!=0 ); /* Because pParse->oom!=0 */ |
| assert( ix.aBlob!=0 ); /* Because pPasre->oom!=0 */ |
| memcpy(&pParse->aBlob[j], ix.aBlob, ix.nBlob); |
| k = j + ix.nBlob; |
| memcpy(&pParse->aBlob[k], zKey, nKey); |
| k += nKey; |
| memcpy(&pParse->aBlob[k], v.aBlob, v.nBlob); |
| if( ALWAYS(pParse->delta) ) jsonAfterEditSizeAdjust(pParse, iRoot); |
| } |
| } |
| jsonParseReset(&v); |
| jsonParseReset(&ix); |
| return rc; |
| } |
| }else if( zPath[0]=='[' ){ |
| x = pParse->aBlob[iRoot] & 0x0f; |
| if( x!=JSONB_ARRAY ) return JSON_LOOKUP_NOTFOUND; |
| n = jsonbPayloadSize(pParse, iRoot, &sz); |
| k = 0; |
| i = 1; |
| while( sqlite3Isdigit(zPath[i]) ){ |
| k = k*10 + zPath[i] - '0'; |
| i++; |
| } |
| if( i<2 || zPath[i]!=']' ){ |
| if( zPath[1]=='#' ){ |
| k = jsonbArrayCount(pParse, iRoot); |
| i = 2; |
| if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){ |
| unsigned int nn = 0; |
| i = 3; |
| do{ |
| nn = nn*10 + zPath[i] - '0'; |
| i++; |
| }while( sqlite3Isdigit(zPath[i]) ); |
| if( nn>k ) return JSON_LOOKUP_NOTFOUND; |
| k -= nn; |
| } |
| if( zPath[i]!=']' ){ |
| return JSON_LOOKUP_PATHERROR; |
| } |
| }else{ |
| return JSON_LOOKUP_PATHERROR; |
| } |
| } |
| j = iRoot+n; |
| iEnd = j+sz; |
| while( j<iEnd ){ |
| if( k==0 ){ |
| rc = jsonLookupStep(pParse, j, &zPath[i+1], 0); |
| if( pParse->delta ) jsonAfterEditSizeAdjust(pParse, iRoot); |
| return rc; |
| } |
| k--; |
| n = jsonbPayloadSize(pParse, j, &sz); |
| if( n==0 ) return JSON_LOOKUP_ERROR; |
| j += n+sz; |
| } |
| if( j>iEnd ) return JSON_LOOKUP_ERROR; |
| if( k>0 ) return JSON_LOOKUP_NOTFOUND; |
| if( pParse->eEdit>=JEDIT_INS ){ |
| JsonParse v; |
| testcase( pParse->eEdit==JEDIT_INS ); |
| testcase( pParse->eEdit==JEDIT_SET ); |
| rc = jsonCreateEditSubstructure(pParse, &v, &zPath[i+1]); |
| if( !JSON_LOOKUP_ISERROR(rc) |
| && jsonBlobMakeEditable(pParse, v.nBlob) |
| ){ |
| assert( !pParse->oom ); |
| jsonBlobEdit(pParse, j, 0, v.aBlob, v.nBlob); |
| } |
| jsonParseReset(&v); |
| if( pParse->delta ) jsonAfterEditSizeAdjust(pParse, iRoot); |
| return rc; |
| } |
| }else{ |
| return JSON_LOOKUP_PATHERROR; |
| } |
| return JSON_LOOKUP_NOTFOUND; |
| } |
| |
| /* |
| ** Convert a JSON BLOB into text and make that text the return value |
| ** of an SQL function. |
| */ |
| static void jsonReturnTextJsonFromBlob( |
| sqlite3_context *ctx, |
| const u8 *aBlob, |
| u32 nBlob |
| ){ |
| JsonParse x; |
| JsonString s; |
| |
| if( NEVER(aBlob==0) ) return; |
| memset(&x, 0, sizeof(x)); |
| x.aBlob = (u8*)aBlob; |
| x.nBlob = nBlob; |
| jsonStringInit(&s, ctx); |
| jsonTranslateBlobToText(&x, 0, &s); |
| jsonReturnString(&s, 0, 0); |
| } |
| |
| |
| /* |
| ** Return the value of the BLOB node at index i. |
| ** |
| ** If the value is a primitive, return it as an SQL value. |
| ** If the value is an array or object, return it as either |
| ** JSON text or the BLOB encoding, depending on the JSON_B flag |
| ** on the userdata. |
| */ |
| static void jsonReturnFromBlob( |
| JsonParse *pParse, /* Complete JSON parse tree */ |
| u32 i, /* Index of the node */ |
| sqlite3_context *pCtx, /* Return value for this function */ |
| int textOnly /* return text JSON. Disregard user-data */ |
| ){ |
| u32 n, sz; |
| int rc; |
| sqlite3 *db = sqlite3_context_db_handle(pCtx); |
| |
| n = jsonbPayloadSize(pParse, i, &sz); |
| if( n==0 ){ |
| sqlite3_result_error(pCtx, "malformed JSON", -1); |
| return; |
| } |
| switch( pParse->aBlob[i] & 0x0f ){ |
| case JSONB_NULL: { |
| if( sz ) goto returnfromblob_malformed; |
| sqlite3_result_null(pCtx); |
| break; |
| } |
| case JSONB_TRUE: { |
| if( sz ) goto returnfromblob_malformed; |
| sqlite3_result_int(pCtx, 1); |
| break; |
| } |
| case JSONB_FALSE: { |
| if( sz ) goto returnfromblob_malformed; |
| sqlite3_result_int(pCtx, 0); |
| break; |
| } |
| case JSONB_INT5: |
| case JSONB_INT: { |
| sqlite3_int64 iRes = 0; |
| char *z; |
| int bNeg = 0; |
| char x; |
| if( sz==0 ) goto returnfromblob_malformed; |
| x = (char)pParse->aBlob[i+n]; |
| if( x=='-' ){ |
| if( sz<2 ) goto returnfromblob_malformed; |
| n++; |
| sz--; |
| bNeg = 1; |
| } |
| z = sqlite3DbStrNDup(db, (const char*)&pParse->aBlob[i+n], (int)sz); |
| if( z==0 ) goto returnfromblob_oom; |
| rc = sqlite3DecOrHexToI64(z, &iRes); |
| sqlite3DbFree(db, z); |
| if( rc==0 ){ |
| sqlite3_result_int64(pCtx, bNeg ? -iRes : iRes); |
| }else if( rc==3 && bNeg ){ |
| sqlite3_result_int64(pCtx, SMALLEST_INT64); |
| }else if( rc==1 ){ |
| goto returnfromblob_malformed; |
| }else{ |
| if( bNeg ){ n--; sz++; } |
| goto to_double; |
| } |
| break; |
| } |
| case JSONB_FLOAT5: |
| case JSONB_FLOAT: { |
| double r; |
| char *z; |
| if( sz==0 ) goto returnfromblob_malformed; |
| to_double: |
| z = sqlite3DbStrNDup(db, (const char*)&pParse->aBlob[i+n], (int)sz); |
| if( z==0 ) goto returnfromblob_oom; |
| rc = sqlite3AtoF(z, &r, sqlite3Strlen30(z), SQLITE_UTF8); |
| sqlite3DbFree(db, z); |
| if( rc<=0 ) goto returnfromblob_malformed; |
| sqlite3_result_double(pCtx, r); |
| break; |
| } |
| case JSONB_TEXTRAW: |
| case JSONB_TEXT: { |
| sqlite3_result_text(pCtx, (char*)&pParse->aBlob[i+n], sz, |
| SQLITE_TRANSIENT); |
| break; |
| } |
| case JSONB_TEXT5: |
| case JSONB_TEXTJ: { |
| /* Translate JSON formatted string into raw text */ |
| u32 iIn, iOut; |
| const char *z; |
| char *zOut; |
| u32 nOut = sz; |
| z = (const char*)&pParse->aBlob[i+n]; |
| zOut = sqlite3DbMallocRaw(db, ((u64)nOut)+1); |
| if( zOut==0 ) goto returnfromblob_oom; |
| for(iIn=iOut=0; iIn<sz; iIn++){ |
| char c = z[iIn]; |
| if( c=='\\' ){ |
| u32 v; |
| u32 szEscape = jsonUnescapeOneChar(&z[iIn], sz-iIn, &v); |
| if( v<=0x7f ){ |
| zOut[iOut++] = (char)v; |
| }else if( v<=0x7ff ){ |
| assert( szEscape>=2 ); |
| zOut[iOut++] = (char)(0xc0 | (v>>6)); |
| zOut[iOut++] = 0x80 | (v&0x3f); |
| }else if( v<0x10000 ){ |
| assert( szEscape>=3 ); |
| zOut[iOut++] = 0xe0 | (v>>12); |
| zOut[iOut++] = 0x80 | ((v>>6)&0x3f); |
| zOut[iOut++] = 0x80 | (v&0x3f); |
| }else if( v==JSON_INVALID_CHAR ){ |
| /* Silently ignore illegal unicode */ |
| }else{ |
| assert( szEscape>=4 ); |
| zOut[iOut++] = 0xf0 | (v>>18); |
| zOut[iOut++] = 0x80 | ((v>>12)&0x3f); |
| zOut[iOut++] = 0x80 | ((v>>6)&0x3f); |
| zOut[iOut++] = 0x80 | (v&0x3f); |
| } |
| iIn += szEscape - 1; |
| }else{ |
| zOut[iOut++] = c; |
| } |
| } /* end for() */ |
| assert( iOut<=nOut ); |
| zOut[iOut] = 0; |
| sqlite3_result_text(pCtx, zOut, iOut, SQLITE_DYNAMIC); |
| break; |
| } |
| case JSONB_ARRAY: |
| case JSONB_OBJECT: { |
| int flags = textOnly ? 0 : SQLITE_PTR_TO_INT(sqlite3_user_data(pCtx)); |
| if( flags & JSON_BLOB ){ |
| sqlite3_result_blob(pCtx, &pParse->aBlob[i], sz+n, SQLITE_TRANSIENT); |
| }else{ |
| jsonReturnTextJsonFromBlob(pCtx, &pParse->aBlob[i], sz+n); |
| } |
| break; |
| } |
| default: { |
| goto returnfromblob_malformed; |
| } |
| } |
| return; |
| |
| returnfromblob_oom: |
| sqlite3_result_error_nomem(pCtx); |
| return; |
| |
| returnfromblob_malformed: |
| sqlite3_result_error(pCtx, "malformed JSON", -1); |
| return; |
| } |
| |
| /* |
| ** pArg is a function argument that might be an SQL value or a JSON |
| ** value. Figure out what it is and encode it as a JSONB blob. |
| ** Return the results in pParse. |
| ** |
| ** pParse is uninitialized upon entry. This routine will handle the |
| ** initialization of pParse. The result will be contained in |
| ** pParse->aBlob and pParse->nBlob. pParse->aBlob might be dynamically |
| ** allocated (if pParse->nBlobAlloc is greater than zero) in which case |
| ** the caller is responsible for freeing the space allocated to pParse->aBlob |
| ** when it has finished with it. Or pParse->aBlob might be a static string |
| ** or a value obtained from sqlite3_value_blob(pArg). |
| ** |
| ** If the argument is a BLOB that is clearly not a JSONB, then this |
| ** function might set an error message in ctx and return non-zero. |
| ** It might also set an error message and return non-zero on an OOM error. |
| */ |
| static int jsonFunctionArgToBlob( |
| sqlite3_context *ctx, |
| sqlite3_value *pArg, |
| JsonParse *pParse |
| ){ |
| int eType = sqlite3_value_type(pArg); |
| static u8 aNull[] = { 0x00 }; |
| memset(pParse, 0, sizeof(pParse[0])); |
| pParse->db = sqlite3_context_db_handle(ctx); |
| switch( eType ){ |
| default: { |
| pParse->aBlob = aNull; |
| pParse->nBlob = 1; |
| return 0; |
| } |
| case SQLITE_BLOB: { |
| if( !jsonArgIsJsonb(pArg, pParse) ){ |
| sqlite3_result_error(ctx, "JSON cannot hold BLOB values", -1); |
| return 1; |
| } |
| break; |
| } |
| case SQLITE_TEXT: { |
| const char *zJson = (const char*)sqlite3_value_text(pArg); |
| int nJson = sqlite3_value_bytes(pArg); |
| if( zJson==0 ) return 1; |
| if( sqlite3_value_subtype(pArg)==JSON_SUBTYPE ){ |
| pParse->zJson = (char*)zJson; |
| pParse->nJson = nJson; |
| if( jsonConvertTextToBlob(pParse, ctx) ){ |
| sqlite3_result_error(ctx, "malformed JSON", -1); |
| sqlite3DbFree(pParse->db, pParse->aBlob); |
| memset(pParse, 0, sizeof(pParse[0])); |
| return 1; |
| } |
| }else{ |
| jsonBlobAppendNode(pParse, JSONB_TEXTRAW, nJson, zJson); |
| } |
| break; |
| } |
| case SQLITE_FLOAT: { |
| double r = sqlite3_value_double(pArg); |
| if( NEVER(sqlite3IsNaN(r)) ){ |
| jsonBlobAppendNode(pParse, JSONB_NULL, 0, 0); |
| }else{ |
| int n = sqlite3_value_bytes(pArg); |
| const char *z = (const char*)sqlite3_value_text(pArg); |
| if( z==0 ) return 1; |
| if( z[0]=='I' ){ |
| jsonBlobAppendNode(pParse, JSONB_FLOAT, 5, "9e999"); |
| }else if( z[0]=='-' && z[1]=='I' ){ |
| jsonBlobAppendNode(pParse, JSONB_FLOAT, 6, "-9e999"); |
| }else{ |
| jsonBlobAppendNode(pParse, JSONB_FLOAT, n, z); |
| } |
| } |
| break; |
| } |
| case SQLITE_INTEGER: { |
| int n = sqlite3_value_bytes(pArg); |
| const char *z = (const char*)sqlite3_value_text(pArg); |
| if( z==0 ) return 1; |
| jsonBlobAppendNode(pParse, JSONB_INT, n, z); |
| break; |
| } |
| } |
| if( pParse->oom ){ |
| sqlite3_result_error_nomem(ctx); |
| return 1; |
| }else{ |
| return 0; |
| } |
| } |
| |
| /* |
| ** Generate a bad path error. |
| ** |
| ** If ctx is not NULL then push the error message into ctx and return NULL. |
| ** If ctx is NULL, then return the text of the error message. |
| */ |
| static char *jsonBadPathError( |
| sqlite3_context *ctx, /* The function call containing the error */ |
| const char *zPath /* The path with the problem */ |
| ){ |
| char *zMsg = sqlite3_mprintf("bad JSON path: %Q", zPath); |
| if( ctx==0 ) return zMsg; |
| if( zMsg ){ |
| sqlite3_result_error(ctx, zMsg, -1); |
| sqlite3_free(zMsg); |
| }else{ |
| sqlite3_result_error_nomem(ctx); |
| } |
| return 0; |
| } |
| |
| /* argv[0] is a BLOB that seems likely to be a JSONB. Subsequent |
| ** arguments come in pairs where each pair contains a JSON path and |
| ** content to insert or set at that patch. Do the updates |
| ** and return the result. |
| ** |
| ** The specific operation is determined by eEdit, which can be one |
| ** of JEDIT_INS, JEDIT_REPL, or JEDIT_SET. |
| */ |
| static void jsonInsertIntoBlob( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv, |
| int eEdit /* JEDIT_INS, JEDIT_REPL, or JEDIT_SET */ |
| ){ |
| int i; |
| u32 rc = 0; |
| const char *zPath = 0; |
| int flgs; |
| JsonParse *p; |
| JsonParse ax; |
| |
| assert( (argc&1)==1 ); |
| flgs = argc==1 ? 0 : JSON_EDITABLE; |
| p = jsonParseFuncArg(ctx, argv[0], flgs); |
| if( p==0 ) return; |
| for(i=1; i<argc-1; i+=2){ |
| if( sqlite3_value_type(argv[i])==SQLITE_NULL ) continue; |
| zPath = (const char*)sqlite3_value_text(argv[i]); |
| if( zPath==0 ){ |
| sqlite3_result_error_nomem(ctx); |
| jsonParseFree(p); |
| return; |
| } |
| if( zPath[0]!='$' ) goto jsonInsertIntoBlob_patherror; |
| if( jsonFunctionArgToBlob(ctx, argv[i+1], &ax) ){ |
| jsonParseReset(&ax); |
| jsonParseFree(p); |
| return; |
| } |
| if( zPath[1]==0 ){ |
| if( eEdit==JEDIT_REPL || eEdit==JEDIT_SET ){ |
| jsonBlobEdit(p, 0, p->nBlob, ax.aBlob, ax.nBlob); |
| } |
| rc = 0; |
| }else{ |
| p->eEdit = eEdit; |
| p->nIns = ax.nBlob; |
| p->aIns = ax.aBlob; |
| p->delta = 0; |
| rc = jsonLookupStep(p, 0, zPath+1, 0); |
| } |
| jsonParseReset(&ax); |
| if( rc==JSON_LOOKUP_NOTFOUND ) continue; |
| if( JSON_LOOKUP_ISERROR(rc) ) goto jsonInsertIntoBlob_patherror; |
| } |
| jsonReturnParse(ctx, p); |
| jsonParseFree(p); |
| return; |
| |
| jsonInsertIntoBlob_patherror: |
| jsonParseFree(p); |
| if( rc==JSON_LOOKUP_ERROR ){ |
| sqlite3_result_error(ctx, "malformed JSON", -1); |
| }else{ |
| jsonBadPathError(ctx, zPath); |
| } |
| return; |
| } |
| |
| /* |
| ** If pArg is a blob that seems like a JSONB blob, then initialize |
| ** p to point to that JSONB and return TRUE. If pArg does not seem like |
| ** a JSONB blob, then return FALSE. |
| ** |
| ** For small BLOBs (having no more than 7 bytes of payload) a full |
| ** validity check is done. So for small BLOBs this routine only returns |
| ** true if the value is guaranteed to be a valid JSONB. For larger BLOBs |
| ** (8 byte or more of payload) only the size of the outermost element is |
| ** checked to verify that the BLOB is superficially valid JSONB. |
| ** |
| ** A full JSONB validation is done on smaller BLOBs because those BLOBs might |
| ** also be text JSON that has been incorrectly cast into a BLOB. |
| ** (See tag-20240123-a and https://sqlite.org/forum/forumpost/012136abd5) |
| ** If the BLOB is 9 bytes are larger, then it is not possible for the |
| ** superficial size check done here to pass if the input is really text |
| ** JSON so we do not need to look deeper in that case. |
| ** |
| ** Why we only need to do full JSONB validation for smaller BLOBs: |
| ** |
| ** The first byte of valid JSON text must be one of: '{', '[', '"', ' ', '\n', |
| ** '\r', '\t', '-', or a digit '0' through '9'. Of these, only a subset |
| ** can also be the first byte of JSONB: '{', '[', and digits '3' |
| ** through '9'. In every one of those cases, the payload size is 7 bytes |
| ** or less. So if we do full JSONB validation for every BLOB where the |
| ** payload is less than 7 bytes, we will never get a false positive for |
| ** JSONB on an input that is really text JSON. |
| */ |
| static int jsonArgIsJsonb(sqlite3_value *pArg, JsonParse *p){ |
| u32 n, sz = 0; |
| u8 c; |
| if( sqlite3_value_type(pArg)!=SQLITE_BLOB ) return 0; |
| p->aBlob = (u8*)sqlite3_value_blob(pArg); |
| p->nBlob = (u32)sqlite3_value_bytes(pArg); |
| if( p->nBlob>0 |
| && ALWAYS(p->aBlob!=0) |
| && ((c = p->aBlob[0]) & 0x0f)<=JSONB_OBJECT |
| && (n = jsonbPayloadSize(p, 0, &sz))>0 |
| && sz+n==p->nBlob |
| && ((c & 0x0f)>JSONB_FALSE || sz==0) |
| && (sz>7 |
| || (c!=0x7b && c!=0x5b && !sqlite3Isdigit(c)) |
| || jsonbValidityCheck(p, 0, p->nBlob, 1)==0) |
| ){ |
| return 1; |
| } |
| p->aBlob = 0; |
| p->nBlob = 0; |
| return 0; |
| } |
| |
| /* |
| ** Generate a JsonParse object, containing valid JSONB in aBlob and nBlob, |
| ** from the SQL function argument pArg. Return a pointer to the new |
| ** JsonParse object. |
| ** |
| ** Ownership of the new JsonParse object is passed to the caller. The |
| ** caller should invoke jsonParseFree() on the return value when it |
| ** has finished using it. |
| ** |
| ** If any errors are detected, an appropriate error messages is set |
| ** using sqlite3_result_error() or the equivalent and this routine |
| ** returns NULL. This routine also returns NULL if the pArg argument |
| ** is an SQL NULL value, but no error message is set in that case. This |
| ** is so that SQL functions that are given NULL arguments will return |
| ** a NULL value. |
| */ |
| static JsonParse *jsonParseFuncArg( |
| sqlite3_context *ctx, |
| sqlite3_value *pArg, |
| u32 flgs |
| ){ |
| int eType; /* Datatype of pArg */ |
| JsonParse *p = 0; /* Value to be returned */ |
| JsonParse *pFromCache = 0; /* Value taken from cache */ |
| sqlite3 *db; /* The database connection */ |
| |
| assert( ctx!=0 ); |
| eType = sqlite3_value_type(pArg); |
| if( eType==SQLITE_NULL ){ |
| return 0; |
| } |
| pFromCache = jsonCacheSearch(ctx, pArg); |
| if( pFromCache ){ |
| pFromCache->nJPRef++; |
| if( (flgs & JSON_EDITABLE)==0 ){ |
| return pFromCache; |
| } |
| } |
| db = sqlite3_context_db_handle(ctx); |
| rebuild_from_cache: |
| p = sqlite3DbMallocZero(db, sizeof(*p)); |
| if( p==0 ) goto json_pfa_oom; |
| memset(p, 0, sizeof(*p)); |
| p->db = db; |
| p->nJPRef = 1; |
| if( pFromCache!=0 ){ |
| u32 nBlob = pFromCache->nBlob; |
| p->aBlob = sqlite3DbMallocRaw(db, nBlob); |
| if( p->aBlob==0 ) goto json_pfa_oom; |
| memcpy(p->aBlob, pFromCache->aBlob, nBlob); |
| p->nBlobAlloc = p->nBlob = nBlob; |
| p->hasNonstd = pFromCache->hasNonstd; |
| jsonParseFree(pFromCache); |
| return p; |
| } |
| if( eType==SQLITE_BLOB ){ |
| if( jsonArgIsJsonb(pArg,p) ){ |
| if( (flgs & JSON_EDITABLE)!=0 && jsonBlobMakeEditable(p, 0)==0 ){ |
| goto json_pfa_oom; |
| } |
| return p; |
| } |
| /* If the blob is not valid JSONB, fall through into trying to cast |
| ** the blob into text which is then interpreted as JSON. (tag-20240123-a) |
| ** |
| ** This goes against all historical documentation about how the SQLite |
| ** JSON functions were suppose to work. From the beginning, blob was |
| ** reserved for expansion and a blob value should have raised an error. |
| ** But it did not, due to a bug. And many applications came to depend |
| ** upon this buggy behavior, especially when using the CLI and reading |
| ** JSON text using readfile(), which returns a blob. For this reason |
| ** we will continue to support the bug moving forward. |
| ** See for example https://sqlite.org/forum/forumpost/012136abd5292b8d |
| */ |
| } |
| p->zJson = (char*)sqlite3_value_text(pArg); |
| p->nJson = sqlite3_value_bytes(pArg); |
| if( db->mallocFailed ) goto json_pfa_oom; |
| if( p->nJson==0 ) goto json_pfa_malformed; |
| assert( p->zJson!=0 ); |
| if( jsonConvertTextToBlob(p, (flgs & JSON_KEEPERROR) ? 0 : ctx) ){ |
| if( flgs & JSON_KEEPERROR ){ |
| p->nErr = 1; |
| return p; |
| }else{ |
| jsonParseFree(p); |
| return 0; |
| } |
| }else{ |
| int isRCStr = sqlite3ValueIsOfClass(pArg, sqlite3RCStrUnref); |
| int rc; |
| if( !isRCStr ){ |
| char *zNew = sqlite3RCStrNew( p->nJson ); |
| if( zNew==0 ) goto json_pfa_oom; |
| memcpy(zNew, p->zJson, p->nJson); |
| p->zJson = zNew; |
| p->zJson[p->nJson] = 0; |
| }else{ |
| sqlite3RCStrRef(p->zJson); |
| } |
| p->bJsonIsRCStr = 1; |
| rc = jsonCacheInsert(ctx, p); |
| if( rc==SQLITE_NOMEM ) goto json_pfa_oom; |
| if( flgs & JSON_EDITABLE ){ |
| pFromCache = p; |
| p = 0; |
| goto rebuild_from_cache; |
| } |
| } |
| return p; |
| |
| json_pfa_malformed: |
| if( flgs & JSON_KEEPERROR ){ |
| p->nErr = 1; |
| return p; |
| }else{ |
| jsonParseFree(p); |
| sqlite3_result_error(ctx, "malformed JSON", -1); |
| return 0; |
| } |
| |
| json_pfa_oom: |
| jsonParseFree(pFromCache); |
| jsonParseFree(p); |
| sqlite3_result_error_nomem(ctx); |
| return 0; |
| } |
| |
| /* |
| ** Make the return value of a JSON function either the raw JSONB blob |
| ** or make it JSON text, depending on whether the JSON_BLOB flag is |
| ** set on the function. |
| */ |
| static void jsonReturnParse( |
| sqlite3_context *ctx, |
| JsonParse *p |
| ){ |
| int flgs; |
| if( p->oom ){ |
| sqlite3_result_error_nomem(ctx); |
| return; |
| } |
| flgs = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); |
| if( flgs & JSON_BLOB ){ |
| if( p->nBlobAlloc>0 && !p->bReadOnly ){ |
| sqlite3_result_blob(ctx, p->aBlob, p->nBlob, SQLITE_DYNAMIC); |
| p->nBlobAlloc = 0; |
| }else{ |
| sqlite3_result_blob(ctx, p->aBlob, p->nBlob, SQLITE_TRANSIENT); |
| } |
| }else{ |
| JsonString s; |
| jsonStringInit(&s, ctx); |
| p->delta = 0; |
| jsonTranslateBlobToText(p, 0, &s); |
| jsonReturnString(&s, p, ctx); |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| } |
| } |
| |
| /**************************************************************************** |
| ** SQL functions used for testing and debugging |
| ****************************************************************************/ |
| |
| #if SQLITE_DEBUG |
| /* |
| ** Decode JSONB bytes in aBlob[] starting at iStart through but not |
| ** including iEnd. Indent the |
| ** content by nIndent spaces. |
| */ |
| static void jsonDebugPrintBlob( |
| JsonParse *pParse, /* JSON content */ |
| u32 iStart, /* Start rendering here */ |
| u32 iEnd, /* Do not render this byte or any byte after this one */ |
| int nIndent, /* Indent by this many spaces */ |
| sqlite3_str *pOut /* Generate output into this sqlite3_str object */ |
| ){ |
| while( iStart<iEnd ){ |
| u32 i, n, nn, sz = 0; |
| int showContent = 1; |
| u8 x = pParse->aBlob[iStart] & 0x0f; |
| u32 savedNBlob = pParse->nBlob; |
| sqlite3_str_appendf(pOut, "%5d:%*s", iStart, nIndent, ""); |
| if( pParse->nBlobAlloc>pParse->nBlob ){ |
| pParse->nBlob = pParse->nBlobAlloc; |
| } |
| nn = n = jsonbPayloadSize(pParse, iStart, &sz); |
| if( nn==0 ) nn = 1; |
| if( sz>0 && x<JSONB_ARRAY ){ |
| nn += sz; |
| } |
| for(i=0; i<nn; i++){ |
| sqlite3_str_appendf(pOut, " %02x", pParse->aBlob[iStart+i]); |
| } |
| if( n==0 ){ |
| sqlite3_str_appendf(pOut, " ERROR invalid node size\n"); |
| iStart = n==0 ? iStart+1 : iEnd; |
| continue; |
| } |
| pParse->nBlob = savedNBlob; |
| if( iStart+n+sz>iEnd ){ |
| iEnd = iStart+n+sz; |
| if( iEnd>pParse->nBlob ){ |
| if( pParse->nBlobAlloc>0 && iEnd>pParse->nBlobAlloc ){ |
| iEnd = pParse->nBlobAlloc; |
| }else{ |
| iEnd = pParse->nBlob; |
| } |
| } |
| } |
| sqlite3_str_appendall(pOut," <-- "); |
| switch( x ){ |
| case JSONB_NULL: sqlite3_str_appendall(pOut,"null"); break; |
| case JSONB_TRUE: sqlite3_str_appendall(pOut,"true"); break; |
| case JSONB_FALSE: sqlite3_str_appendall(pOut,"false"); break; |
| case JSONB_INT: sqlite3_str_appendall(pOut,"int"); break; |
| case JSONB_INT5: sqlite3_str_appendall(pOut,"int5"); break; |
| case JSONB_FLOAT: sqlite3_str_appendall(pOut,"float"); break; |
| case JSONB_FLOAT5: sqlite3_str_appendall(pOut,"float5"); break; |
| case JSONB_TEXT: sqlite3_str_appendall(pOut,"text"); break; |
| case JSONB_TEXTJ: sqlite3_str_appendall(pOut,"textj"); break; |
| case JSONB_TEXT5: sqlite3_str_appendall(pOut,"text5"); break; |
| case JSONB_TEXTRAW: sqlite3_str_appendall(pOut,"textraw"); break; |
| case JSONB_ARRAY: { |
| sqlite3_str_appendf(pOut,"array, %u bytes\n", sz); |
| jsonDebugPrintBlob(pParse, iStart+n, iStart+n+sz, nIndent+2, pOut); |
| showContent = 0; |
| break; |
| } |
| case JSONB_OBJECT: { |
| sqlite3_str_appendf(pOut, "object, %u bytes\n", sz); |
| jsonDebugPrintBlob(pParse, iStart+n, iStart+n+sz, nIndent+2, pOut); |
| showContent = 0; |
| break; |
| } |
| default: { |
| sqlite3_str_appendall(pOut, "ERROR: unknown node type\n"); |
| showContent = 0; |
| break; |
| } |
| } |
| if( showContent ){ |
| if( sz==0 && x<=JSONB_FALSE ){ |
| sqlite3_str_append(pOut, "\n", 1); |
| }else{ |
| u32 j; |
| sqlite3_str_appendall(pOut, ": \""); |
| for(j=iStart+n; j<iStart+n+sz; j++){ |
| u8 c = pParse->aBlob[j]; |
| if( c<0x20 || c>=0x7f ) c = '.'; |
| sqlite3_str_append(pOut, (char*)&c, 1); |
| } |
| sqlite3_str_append(pOut, "\"\n", 2); |
| } |
| } |
| iStart += n + sz; |
| } |
| } |
| static void jsonShowParse(JsonParse *pParse){ |
| sqlite3_str out; |
| char zBuf[1000]; |
| if( pParse==0 ){ |
| printf("NULL pointer\n"); |
| return; |
| }else{ |
| printf("nBlobAlloc = %u\n", pParse->nBlobAlloc); |
| printf("nBlob = %u\n", pParse->nBlob); |
| printf("delta = %d\n", pParse->delta); |
| if( pParse->nBlob==0 ) return; |
| printf("content (bytes 0..%u):\n", pParse->nBlob-1); |
| } |
| sqlite3StrAccumInit(&out, 0, zBuf, sizeof(zBuf), 1000000); |
| jsonDebugPrintBlob(pParse, 0, pParse->nBlob, 0, &out); |
| printf("%s", sqlite3_str_value(&out)); |
| sqlite3_str_reset(&out); |
| } |
| #endif /* SQLITE_DEBUG */ |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** SQL function: json_parse(JSON) |
| ** |
| ** Parse JSON using jsonParseFuncArg(). Return text that is a |
| ** human-readable dump of the binary JSONB for the input parameter. |
| */ |
| static void jsonParseFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonParse *p; /* The parse */ |
| sqlite3_str out; |
| |
| assert( argc>=1 ); |
| sqlite3StrAccumInit(&out, 0, 0, 0, 1000000); |
| p = jsonParseFuncArg(ctx, argv[0], 0); |
| if( p==0 ) return; |
| if( argc==1 ){ |
| jsonDebugPrintBlob(p, 0, p->nBlob, 0, &out); |
| sqlite3_result_text64(ctx,out.zText,out.nChar,SQLITE_TRANSIENT,SQLITE_UTF8); |
| }else{ |
| jsonShowParse(p); |
| } |
| jsonParseFree(p); |
| sqlite3_str_reset(&out); |
| } |
| #endif /* SQLITE_DEBUG */ |
| |
| /**************************************************************************** |
| ** Scalar SQL function implementations |
| ****************************************************************************/ |
| |
| /* |
| ** Implementation of the json_quote(VALUE) function. Return a JSON value |
| ** corresponding to the SQL value input. Mostly this means putting |
| ** double-quotes around strings and returning the unquoted string "null" |
| ** when given a NULL input. |
| */ |
| static void jsonQuoteFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonString jx; |
| UNUSED_PARAMETER(argc); |
| |
| jsonStringInit(&jx, ctx); |
| jsonAppendSqlValue(&jx, argv[0]); |
| jsonReturnString(&jx, 0, 0); |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| } |
| |
| /* |
| ** Implementation of the json_array(VALUE,...) function. Return a JSON |
| ** array that contains all values given in arguments. Or if any argument |
| ** is a BLOB, throw an error. |
| */ |
| static void jsonArrayFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| int i; |
| JsonString jx; |
| |
| jsonStringInit(&jx, ctx); |
| jsonAppendChar(&jx, '['); |
| for(i=0; i<argc; i++){ |
| jsonAppendSeparator(&jx); |
| jsonAppendSqlValue(&jx, argv[i]); |
| } |
| jsonAppendChar(&jx, ']'); |
| jsonReturnString(&jx, 0, 0); |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| } |
| |
| /* |
| ** json_array_length(JSON) |
| ** json_array_length(JSON, PATH) |
| ** |
| ** Return the number of elements in the top-level JSON array. |
| ** Return 0 if the input is not a well-formed JSON array. |
| */ |
| static void jsonArrayLengthFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonParse *p; /* The parse */ |
| sqlite3_int64 cnt = 0; |
| u32 i; |
| u8 eErr = 0; |
| |
| p = jsonParseFuncArg(ctx, argv[0], 0); |
| if( p==0 ) return; |
| if( argc==2 ){ |
| const char *zPath = (const char*)sqlite3_value_text(argv[1]); |
| if( zPath==0 ){ |
| jsonParseFree(p); |
| return; |
| } |
| i = jsonLookupStep(p, 0, zPath[0]=='$' ? zPath+1 : "@", 0); |
| if( JSON_LOOKUP_ISERROR(i) ){ |
| if( i==JSON_LOOKUP_NOTFOUND ){ |
| /* no-op */ |
| }else if( i==JSON_LOOKUP_PATHERROR ){ |
| jsonBadPathError(ctx, zPath); |
| }else{ |
| sqlite3_result_error(ctx, "malformed JSON", -1); |
| } |
| eErr = 1; |
| i = 0; |
| } |
| }else{ |
| i = 0; |
| } |
| if( (p->aBlob[i] & 0x0f)==JSONB_ARRAY ){ |
| cnt = jsonbArrayCount(p, i); |
| } |
| if( !eErr ) sqlite3_result_int64(ctx, cnt); |
| jsonParseFree(p); |
| } |
| |
| /* True if the string is all alphanumerics and underscores */ |
| static int jsonAllAlphanum(const char *z, int n){ |
| int i; |
| for(i=0; i<n && (sqlite3Isalnum(z[i]) || z[i]=='_'); i++){} |
| return i==n; |
| } |
| |
| /* |
| ** json_extract(JSON, PATH, ...) |
| ** "->"(JSON,PATH) |
| ** "->>"(JSON,PATH) |
| ** |
| ** Return the element described by PATH. Return NULL if that PATH element |
| ** is not found. |
| ** |
| ** If JSON_JSON is set or if more that one PATH argument is supplied then |
| ** always return a JSON representation of the result. If JSON_SQL is set, |
| ** then always return an SQL representation of the result. If neither flag |
| ** is present and argc==2, then return JSON for objects and arrays and SQL |
| ** for all other values. |
| ** |
| ** When multiple PATH arguments are supplied, the result is a JSON array |
| ** containing the result of each PATH. |
| ** |
| ** Abbreviated JSON path expressions are allows if JSON_ABPATH, for |
| ** compatibility with PG. |
| */ |
| static void jsonExtractFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonParse *p = 0; /* The parse */ |
| int flags; /* Flags associated with the function */ |
| int i; /* Loop counter */ |
| JsonString jx; /* String for array result */ |
| |
| if( argc<2 ) return; |
| p = jsonParseFuncArg(ctx, argv[0], 0); |
| if( p==0 ) return; |
| flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); |
| jsonStringInit(&jx, ctx); |
| if( argc>2 ){ |
| jsonAppendChar(&jx, '['); |
| } |
| for(i=1; i<argc; i++){ |
| /* With a single PATH argument */ |
| const char *zPath = (const char*)sqlite3_value_text(argv[i]); |
| int nPath; |
| u32 j; |
| if( zPath==0 ) goto json_extract_error; |
| nPath = sqlite3Strlen30(zPath); |
| if( zPath[0]=='$' ){ |
| j = jsonLookupStep(p, 0, zPath+1, 0); |
| }else if( (flags & JSON_ABPATH) ){ |
| /* The -> and ->> operators accept abbreviated PATH arguments. This |
| ** is mostly for compatibility with PostgreSQL, but also for |
| ** convenience. |
| ** |
| ** NUMBER ==> $[NUMBER] // PG compatible |
| ** LABEL ==> $.LABEL // PG compatible |
| ** [NUMBER] ==> $[NUMBER] // Not PG. Purely for convenience |
| ** |
| ** Updated 2024-05-27: If the NUMBER is negative, then PG counts from |
| ** the right of the array. Hence for negative NUMBER: |
| ** |
| ** NUMBER ==> $[#NUMBER] // PG compatible |
| */ |
| jsonStringInit(&jx, ctx); |
| if( sqlite3_value_type(argv[i])==SQLITE_INTEGER ){ |
| jsonAppendRawNZ(&jx, "[", 1); |
| if( zPath[0]=='-' ) jsonAppendRawNZ(&jx,"#",1); |
| jsonAppendRaw(&jx, zPath, nPath); |
| jsonAppendRawNZ(&jx, "]", 2); |
| }else if( jsonAllAlphanum(zPath, nPath) ){ |
| jsonAppendRawNZ(&jx, ".", 1); |
| jsonAppendRaw(&jx, zPath, nPath); |
| }else if( zPath[0]=='[' && nPath>=3 && zPath[nPath-1]==']' ){ |
| jsonAppendRaw(&jx, zPath, nPath); |
| }else{ |
| jsonAppendRawNZ(&jx, ".\"", 2); |
| jsonAppendRaw(&jx, zPath, nPath); |
| jsonAppendRawNZ(&jx, "\"", 1); |
| } |
| jsonStringTerminate(&jx); |
| j = jsonLookupStep(p, 0, jx.zBuf, 0); |
| jsonStringReset(&jx); |
| }else{ |
| jsonBadPathError(ctx, zPath); |
| goto json_extract_error; |
| } |
| if( j<p->nBlob ){ |
| if( argc==2 ){ |
| if( flags & JSON_JSON ){ |
| jsonStringInit(&jx, ctx); |
| jsonTranslateBlobToText(p, j, &jx); |
| jsonReturnString(&jx, 0, 0); |
| jsonStringReset(&jx); |
| assert( (flags & JSON_BLOB)==0 ); |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| }else{ |
| jsonReturnFromBlob(p, j, ctx, 0); |
| if( (flags & (JSON_SQL|JSON_BLOB))==0 |
| && (p->aBlob[j]&0x0f)>=JSONB_ARRAY |
| ){ |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| } |
| } |
| }else{ |
| jsonAppendSeparator(&jx); |
| jsonTranslateBlobToText(p, j, &jx); |
| } |
| }else if( j==JSON_LOOKUP_NOTFOUND ){ |
| if( argc==2 ){ |
| goto json_extract_error; /* Return NULL if not found */ |
| }else{ |
| jsonAppendSeparator(&jx); |
| jsonAppendRawNZ(&jx, "null", 4); |
| } |
| }else if( j==JSON_LOOKUP_ERROR ){ |
| sqlite3_result_error(ctx, "malformed JSON", -1); |
| goto json_extract_error; |
| }else{ |
| jsonBadPathError(ctx, zPath); |
| goto json_extract_error; |
| } |
| } |
| if( argc>2 ){ |
| jsonAppendChar(&jx, ']'); |
| jsonReturnString(&jx, 0, 0); |
| if( (flags & JSON_BLOB)==0 ){ |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| } |
| } |
| json_extract_error: |
| jsonStringReset(&jx); |
| jsonParseFree(p); |
| return; |
| } |
| |
| /* |
| ** Return codes for jsonMergePatch() |
| */ |
| #define JSON_MERGE_OK 0 /* Success */ |
| #define JSON_MERGE_BADTARGET 1 /* Malformed TARGET blob */ |
| #define JSON_MERGE_BADPATCH 2 /* Malformed PATCH blob */ |
| #define JSON_MERGE_OOM 3 /* Out-of-memory condition */ |
| |
| /* |
| ** RFC-7396 MergePatch for two JSONB blobs. |
| ** |
| ** pTarget is the target. pPatch is the patch. The target is updated |
| ** in place. The patch is read-only. |
| ** |
| ** The original RFC-7396 algorithm is this: |
| ** |
| ** define MergePatch(Target, Patch): |
| ** if Patch is an Object: |
| ** if Target is not an Object: |
| ** Target = {} # Ignore the contents and set it to an empty Object |
| ** for each Name/Value pair in Patch: |
| ** if Value is null: |
| ** if Name exists in Target: |
| ** remove the Name/Value pair from Target |
| ** else: |
| ** Target[Name] = MergePatch(Target[Name], Value) |
| ** return Target |
| ** else: |
| ** return Patch |
| ** |
| ** Here is an equivalent algorithm restructured to show the actual |
| ** implementation: |
| ** |
| ** 01 define MergePatch(Target, Patch): |
| ** 02 if Patch is not an Object: |
| ** 03 return Patch |
| ** 04 else: // if Patch is an Object |
| ** 05 if Target is not an Object: |
| ** 06 Target = {} |
| ** 07 for each Name/Value pair in Patch: |
| ** 08 if Name exists in Target: |
| ** 09 if Value is null: |
| ** 10 remove the Name/Value pair from Target |
| ** 11 else |
| ** 12 Target[name] = MergePatch(Target[Name], Value) |
| ** 13 else if Value is not NULL: |
| ** 14 if Value is not an Object: |
| ** 15 Target[name] = Value |
| ** 16 else: |
| ** 17 Target[name] = MergePatch('{}',value) |
| ** 18 return Target |
| ** | |
| ** ^---- Line numbers referenced in comments in the implementation |
| */ |
| static int jsonMergePatch( |
| JsonParse *pTarget, /* The JSON parser that contains the TARGET */ |
| u32 iTarget, /* Index of TARGET in pTarget->aBlob[] */ |
| const JsonParse *pPatch, /* The PATCH */ |
| u32 iPatch /* Index of PATCH in pPatch->aBlob[] */ |
| ){ |
| u8 x; /* Type of a single node */ |
| u32 n, sz=0; /* Return values from jsonbPayloadSize() */ |
| u32 iTCursor; /* Cursor position while scanning the target object */ |
| u32 iTStart; /* First label in the target object */ |
| u32 iTEndBE; /* Original first byte past end of target, before edit */ |
| u32 iTEnd; /* Current first byte past end of target */ |
| u8 eTLabel; /* Node type of the target label */ |
| u32 iTLabel = 0; /* Index of the label */ |
| u32 nTLabel = 0; /* Header size in bytes for the target label */ |
| u32 szTLabel = 0; /* Size of the target label payload */ |
| u32 iTValue = 0; /* Index of the target value */ |
| u32 nTValue = 0; /* Header size of the target value */ |
| u32 szTValue = 0; /* Payload size for the target value */ |
| |
| u32 iPCursor; /* Cursor position while scanning the patch */ |
| u32 iPEnd; /* First byte past the end of the patch */ |
| u8 ePLabel; /* Node type of the patch label */ |
| u32 iPLabel; /* Start of patch label */ |
| u32 nPLabel; /* Size of header on the patch label */ |
| u32 szPLabel; /* Payload size of the patch label */ |
| u32 iPValue; /* Start of patch value */ |
| u32 nPValue; /* Header size for the patch value */ |
| u32 szPValue; /* Payload size of the patch value */ |
| |
| assert( iTarget>=0 && iTarget<pTarget->nBlob ); |
| assert( iPatch>=0 && iPatch<pPatch->nBlob ); |
| x = pPatch->aBlob[iPatch] & 0x0f; |
| if( x!=JSONB_OBJECT ){ /* Algorithm line 02 */ |
| u32 szPatch; /* Total size of the patch, header+payload */ |
| u32 szTarget; /* Total size of the target, header+payload */ |
| n = jsonbPayloadSize(pPatch, iPatch, &sz); |
| szPatch = n+sz; |
| sz = 0; |
| n = jsonbPayloadSize(pTarget, iTarget, &sz); |
| szTarget = n+sz; |
| jsonBlobEdit(pTarget, iTarget, szTarget, pPatch->aBlob+iPatch, szPatch); |
| return pTarget->oom ? JSON_MERGE_OOM : JSON_MERGE_OK; /* Line 03 */ |
| } |
| x = pTarget->aBlob[iTarget] & 0x0f; |
| if( x!=JSONB_OBJECT ){ /* Algorithm line 05 */ |
| n = jsonbPayloadSize(pTarget, iTarget, &sz); |
| jsonBlobEdit(pTarget, iTarget+n, sz, 0, 0); |
| x = pTarget->aBlob[iTarget]; |
| pTarget->aBlob[iTarget] = (x & 0xf0) | JSONB_OBJECT; |
| } |
| n = jsonbPayloadSize(pPatch, iPatch, &sz); |
| if( NEVER(n==0) ) return JSON_MERGE_BADPATCH; |
| iPCursor = iPatch+n; |
| iPEnd = iPCursor+sz; |
| n = jsonbPayloadSize(pTarget, iTarget, &sz); |
| if( NEVER(n==0) ) return JSON_MERGE_BADTARGET; |
| iTStart = iTarget+n; |
| iTEndBE = iTStart+sz; |
| |
| while( iPCursor<iPEnd ){ /* Algorithm line 07 */ |
| iPLabel = iPCursor; |
| ePLabel = pPatch->aBlob[iPCursor] & 0x0f; |
| if( ePLabel<JSONB_TEXT || ePLabel>JSONB_TEXTRAW ){ |
| return JSON_MERGE_BADPATCH; |
| } |
| nPLabel = jsonbPayloadSize(pPatch, iPCursor, &szPLabel); |
| if( nPLabel==0 ) return JSON_MERGE_BADPATCH; |
| iPValue = iPCursor + nPLabel + szPLabel; |
| if( iPValue>=iPEnd ) return JSON_MERGE_BADPATCH; |
| nPValue = jsonbPayloadSize(pPatch, iPValue, &szPValue); |
| if( nPValue==0 ) return JSON_MERGE_BADPATCH; |
| iPCursor = iPValue + nPValue + szPValue; |
| if( iPCursor>iPEnd ) return JSON_MERGE_BADPATCH; |
| |
| iTCursor = iTStart; |
| iTEnd = iTEndBE + pTarget->delta; |
| while( iTCursor<iTEnd ){ |
| int isEqual; /* true if the patch and target labels match */ |
| iTLabel = iTCursor; |
| eTLabel = pTarget->aBlob[iTCursor] & 0x0f; |
| if( eTLabel<JSONB_TEXT || eTLabel>JSONB_TEXTRAW ){ |
| return JSON_MERGE_BADTARGET; |
| } |
| nTLabel = jsonbPayloadSize(pTarget, iTCursor, &szTLabel); |
| if( nTLabel==0 ) return JSON_MERGE_BADTARGET; |
| iTValue = iTLabel + nTLabel + szTLabel; |
| if( iTValue>=iTEnd ) return JSON_MERGE_BADTARGET; |
| nTValue = jsonbPayloadSize(pTarget, iTValue, &szTValue); |
| if( nTValue==0 ) return JSON_MERGE_BADTARGET; |
| if( iTValue + nTValue + szTValue > iTEnd ) return JSON_MERGE_BADTARGET; |
| isEqual = jsonLabelCompare( |
| (const char*)&pPatch->aBlob[iPLabel+nPLabel], |
| szPLabel, |
| (ePLabel==JSONB_TEXT || ePLabel==JSONB_TEXTRAW), |
| (const char*)&pTarget->aBlob[iTLabel+nTLabel], |
| szTLabel, |
| (eTLabel==JSONB_TEXT || eTLabel==JSONB_TEXTRAW)); |
| if( isEqual ) break; |
| iTCursor = iTValue + nTValue + szTValue; |
| } |
| x = pPatch->aBlob[iPValue] & 0x0f; |
| if( iTCursor<iTEnd ){ |
| /* A match was found. Algorithm line 08 */ |
| if( x==0 ){ |
| /* Patch value is NULL. Algorithm line 09 */ |
| jsonBlobEdit(pTarget, iTLabel, nTLabel+szTLabel+nTValue+szTValue, 0,0); |
| /* vvvvvv----- No OOM on a delete-only edit */ |
| if( NEVER(pTarget->oom) ) return JSON_MERGE_OOM; |
| }else{ |
| /* Algorithm line 12 */ |
| int rc, savedDelta = pTarget->delta; |
| pTarget->delta = 0; |
| rc = jsonMergePatch(pTarget, iTValue, pPatch, iPValue); |
| if( rc ) return rc; |
| pTarget->delta += savedDelta; |
| } |
| }else if( x>0 ){ /* Algorithm line 13 */ |
| /* No match and patch value is not NULL */ |
| u32 szNew = szPLabel+nPLabel; |
| if( (pPatch->aBlob[iPValue] & 0x0f)!=JSONB_OBJECT ){ /* Line 14 */ |
| jsonBlobEdit(pTarget, iTEnd, 0, 0, szPValue+nPValue+szNew); |
| if( pTarget->oom ) return JSON_MERGE_OOM; |
| memcpy(&pTarget->aBlob[iTEnd], &pPatch->aBlob[iPLabel], szNew); |
| memcpy(&pTarget->aBlob[iTEnd+szNew], |
| &pPatch->aBlob[iPValue], szPValue+nPValue); |
| }else{ |
| int rc, savedDelta; |
| jsonBlobEdit(pTarget, iTEnd, 0, 0, szNew+1); |
| if( pTarget->oom ) return JSON_MERGE_OOM; |
| memcpy(&pTarget->aBlob[iTEnd], &pPatch->aBlob[iPLabel], szNew); |
| pTarget->aBlob[iTEnd+szNew] = 0x00; |
| savedDelta = pTarget->delta; |
| pTarget->delta = 0; |
| rc = jsonMergePatch(pTarget, iTEnd+szNew,pPatch,iPValue); |
| if( rc ) return rc; |
| pTarget->delta += savedDelta; |
| } |
| } |
| } |
| if( pTarget->delta ) jsonAfterEditSizeAdjust(pTarget, iTarget); |
| return pTarget->oom ? JSON_MERGE_OOM : JSON_MERGE_OK; |
| } |
| |
| |
| /* |
| ** Implementation of the json_mergepatch(JSON1,JSON2) function. Return a JSON |
| ** object that is the result of running the RFC 7396 MergePatch() algorithm |
| ** on the two arguments. |
| */ |
| static void jsonPatchFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonParse *pTarget; /* The TARGET */ |
| JsonParse *pPatch; /* The PATCH */ |
| int rc; /* Result code */ |
| |
| UNUSED_PARAMETER(argc); |
| assert( argc==2 ); |
| pTarget = jsonParseFuncArg(ctx, argv[0], JSON_EDITABLE); |
| if( pTarget==0 ) return; |
| pPatch = jsonParseFuncArg(ctx, argv[1], 0); |
| if( pPatch ){ |
| rc = jsonMergePatch(pTarget, 0, pPatch, 0); |
| if( rc==JSON_MERGE_OK ){ |
| jsonReturnParse(ctx, pTarget); |
| }else if( rc==JSON_MERGE_OOM ){ |
| sqlite3_result_error_nomem(ctx); |
| }else{ |
| sqlite3_result_error(ctx, "malformed JSON", -1); |
| } |
| jsonParseFree(pPatch); |
| } |
| jsonParseFree(pTarget); |
| } |
| |
| |
| /* |
| ** Implementation of the json_object(NAME,VALUE,...) function. Return a JSON |
| ** object that contains all name/value given in arguments. Or if any name |
| ** is not a string or if any value is a BLOB, throw an error. |
| */ |
| static void jsonObjectFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| int i; |
| JsonString jx; |
| const char *z; |
| u32 n; |
| |
| if( argc&1 ){ |
| sqlite3_result_error(ctx, "json_object() requires an even number " |
| "of arguments", -1); |
| return; |
| } |
| jsonStringInit(&jx, ctx); |
| jsonAppendChar(&jx, '{'); |
| for(i=0; i<argc; i+=2){ |
| if( sqlite3_value_type(argv[i])!=SQLITE_TEXT ){ |
| sqlite3_result_error(ctx, "json_object() labels must be TEXT", -1); |
| jsonStringReset(&jx); |
| return; |
| } |
| jsonAppendSeparator(&jx); |
| z = (const char*)sqlite3_value_text(argv[i]); |
| n = sqlite3_value_bytes(argv[i]); |
| jsonAppendString(&jx, z, n); |
| jsonAppendChar(&jx, ':'); |
| jsonAppendSqlValue(&jx, argv[i+1]); |
| } |
| jsonAppendChar(&jx, '}'); |
| jsonReturnString(&jx, 0, 0); |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| } |
| |
| |
| /* |
| ** json_remove(JSON, PATH, ...) |
| ** |
| ** Remove the named elements from JSON and return the result. malformed |
| ** JSON or PATH arguments result in an error. |
| */ |
| static void jsonRemoveFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonParse *p; /* The parse */ |
| const char *zPath = 0; /* Path of element to be removed */ |
| int i; /* Loop counter */ |
| u32 rc; /* Subroutine return code */ |
| |
| if( argc<1 ) return; |
| p = jsonParseFuncArg(ctx, argv[0], argc>1 ? JSON_EDITABLE : 0); |
| if( p==0 ) return; |
| for(i=1; i<argc; i++){ |
| zPath = (const char*)sqlite3_value_text(argv[i]); |
| if( zPath==0 ){ |
| goto json_remove_done; |
| } |
| if( zPath[0]!='$' ){ |
| goto json_remove_patherror; |
| } |
| if( zPath[1]==0 ){ |
| /* json_remove(j,'$') returns NULL */ |
| goto json_remove_done; |
| } |
| p->eEdit = JEDIT_DEL; |
| p->delta = 0; |
| rc = jsonLookupStep(p, 0, zPath+1, 0); |
| if( JSON_LOOKUP_ISERROR(rc) ){ |
| if( rc==JSON_LOOKUP_NOTFOUND ){ |
| continue; /* No-op */ |
| }else if( rc==JSON_LOOKUP_PATHERROR ){ |
| jsonBadPathError(ctx, zPath); |
| }else{ |
| sqlite3_result_error(ctx, "malformed JSON", -1); |
| } |
| goto json_remove_done; |
| } |
| } |
| jsonReturnParse(ctx, p); |
| jsonParseFree(p); |
| return; |
| |
| json_remove_patherror: |
| jsonBadPathError(ctx, zPath); |
| |
| json_remove_done: |
| jsonParseFree(p); |
| return; |
| } |
| |
| /* |
| ** json_replace(JSON, PATH, VALUE, ...) |
| ** |
| ** Replace the value at PATH with VALUE. If PATH does not already exist, |
| ** this routine is a no-op. If JSON or PATH is malformed, throw an error. |
| */ |
| static void jsonReplaceFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| if( argc<1 ) return; |
| if( (argc&1)==0 ) { |
| jsonWrongNumArgs(ctx, "replace"); |
| return; |
| } |
| jsonInsertIntoBlob(ctx, argc, argv, JEDIT_REPL); |
| } |
| |
| |
| /* |
| ** json_set(JSON, PATH, VALUE, ...) |
| ** |
| ** Set the value at PATH to VALUE. Create the PATH if it does not already |
| ** exist. Overwrite existing values that do exist. |
| ** If JSON or PATH is malformed, throw an error. |
| ** |
| ** json_insert(JSON, PATH, VALUE, ...) |
| ** |
| ** Create PATH and initialize it to VALUE. If PATH already exists, this |
| ** routine is a no-op. If JSON or PATH is malformed, throw an error. |
| */ |
| static void jsonSetFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| |
| int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); |
| int bIsSet = (flags&JSON_ISSET)!=0; |
| |
| if( argc<1 ) return; |
| if( (argc&1)==0 ) { |
| jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert"); |
| return; |
| } |
| jsonInsertIntoBlob(ctx, argc, argv, bIsSet ? JEDIT_SET : JEDIT_INS); |
| } |
| |
| /* |
| ** json_type(JSON) |
| ** json_type(JSON, PATH) |
| ** |
| ** Return the top-level "type" of a JSON string. json_type() raises an |
| ** error if either the JSON or PATH inputs are not well-formed. |
| */ |
| static void jsonTypeFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonParse *p; /* The parse */ |
| const char *zPath = 0; |
| u32 i; |
| |
| p = jsonParseFuncArg(ctx, argv[0], 0); |
| if( p==0 ) return; |
| if( argc==2 ){ |
| zPath = (const char*)sqlite3_value_text(argv[1]); |
| if( zPath==0 ) goto json_type_done; |
| if( zPath[0]!='$' ){ |
| jsonBadPathError(ctx, zPath); |
| goto json_type_done; |
| } |
| i = jsonLookupStep(p, 0, zPath+1, 0); |
| if( JSON_LOOKUP_ISERROR(i) ){ |
| if( i==JSON_LOOKUP_NOTFOUND ){ |
| /* no-op */ |
| }else if( i==JSON_LOOKUP_PATHERROR ){ |
| jsonBadPathError(ctx, zPath); |
| }else{ |
| sqlite3_result_error(ctx, "malformed JSON", -1); |
| } |
| goto json_type_done; |
| } |
| }else{ |
| i = 0; |
| } |
| sqlite3_result_text(ctx, jsonbType[p->aBlob[i]&0x0f], -1, SQLITE_STATIC); |
| json_type_done: |
| jsonParseFree(p); |
| } |
| |
| /* |
| ** json_pretty(JSON) |
| ** json_pretty(JSON, INDENT) |
| ** |
| ** Return text that is a pretty-printed rendering of the input JSON. |
| ** If the argument is not valid JSON, return NULL. |
| ** |
| ** The INDENT argument is text that is used for indentation. If omitted, |
| ** it defaults to four spaces (the same as PostgreSQL). |
| */ |
| static void jsonPrettyFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonString s; /* The output string */ |
| JsonPretty x; /* Pretty printing context */ |
| |
| memset(&x, 0, sizeof(x)); |
| x.pParse = jsonParseFuncArg(ctx, argv[0], 0); |
| if( x.pParse==0 ) return; |
| x.pOut = &s; |
| jsonStringInit(&s, ctx); |
| if( argc==1 || (x.zIndent = (const char*)sqlite3_value_text(argv[1]))==0 ){ |
| x.zIndent = " "; |
| x.szIndent = 4; |
| }else{ |
| x.szIndent = (u32)strlen(x.zIndent); |
| } |
| jsonTranslateBlobToPrettyText(&x, 0); |
| jsonReturnString(&s, 0, 0); |
| jsonParseFree(x.pParse); |
| } |
| |
| /* |
| ** json_valid(JSON) |
| ** json_valid(JSON, FLAGS) |
| ** |
| ** Check the JSON argument to see if it is well-formed. The FLAGS argument |
| ** encodes the various constraints on what is meant by "well-formed": |
| ** |
| ** 0x01 Canonical RFC-8259 JSON text |
| ** 0x02 JSON text with optional JSON-5 extensions |
| ** 0x04 Superficially appears to be JSONB |
| ** 0x08 Strictly well-formed JSONB |
| ** |
| ** If the FLAGS argument is omitted, it defaults to 1. Useful values for |
| ** FLAGS include: |
| ** |
| ** 1 Strict canonical JSON text |
| ** 2 JSON text perhaps with JSON-5 extensions |
| ** 4 Superficially appears to be JSONB |
| ** 5 Canonical JSON text or superficial JSONB |
| ** 6 JSON-5 text or superficial JSONB |
| ** 8 Strict JSONB |
| ** 9 Canonical JSON text or strict JSONB |
| ** 10 JSON-5 text or strict JSONB |
| ** |
| ** Other flag combinations are redundant. For example, every canonical |
| ** JSON text is also well-formed JSON-5 text, so FLAG values 2 and 3 |
| ** are the same. Similarly, any input that passes a strict JSONB validation |
| ** will also pass the superficial validation so 12 through 15 are the same |
| ** as 8 through 11 respectively. |
| ** |
| ** This routine runs in linear time to validate text and when doing strict |
| ** JSONB validation. Superficial JSONB validation is constant time, |
| ** assuming the BLOB is already in memory. The performance advantage |
| ** of superficial JSONB validation is why that option is provided. |
| ** Application developers can choose to do fast superficial validation or |
| ** slower strict validation, according to their specific needs. |
| ** |
| ** Only the lower four bits of the FLAGS argument are currently used. |
| ** Higher bits are reserved for future expansion. To facilitate |
| ** compatibility, the current implementation raises an error if any bit |
| ** in FLAGS is set other than the lower four bits. |
| ** |
| ** The original circa 2015 implementation of the JSON routines in |
| ** SQLite only supported canonical RFC-8259 JSON text and the json_valid() |
| ** function only accepted one argument. That is why the default value |
| ** for the FLAGS argument is 1, since FLAGS=1 causes this routine to only |
| ** recognize canonical RFC-8259 JSON text as valid. The extra FLAGS |
| ** argument was added when the JSON routines were extended to support |
| ** JSON5-like extensions and binary JSONB stored in BLOBs. |
| ** |
| ** Return Values: |
| ** |
| ** * Raise an error if FLAGS is outside the range of 1 to 15. |
| ** * Return NULL if the input is NULL |
| ** * Return 1 if the input is well-formed. |
| ** * Return 0 if the input is not well-formed. |
| */ |
| static void jsonValidFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonParse *p; /* The parse */ |
| u8 flags = 1; |
| u8 res = 0; |
| if( argc==2 ){ |
| i64 f = sqlite3_value_int64(argv[1]); |
| if( f<1 || f>15 ){ |
| sqlite3_result_error(ctx, "FLAGS parameter to json_valid() must be" |
| " between 1 and 15", -1); |
| return; |
| } |
| flags = f & 0x0f; |
| } |
| switch( sqlite3_value_type(argv[0]) ){ |
| case SQLITE_NULL: { |
| #ifdef SQLITE_LEGACY_JSON_VALID |
| /* Incorrect legacy behavior was to return FALSE for a NULL input */ |
| sqlite3_result_int(ctx, 0); |
| #endif |
| return; |
| } |
| case SQLITE_BLOB: { |
| JsonParse py; |
| memset(&py, 0, sizeof(py)); |
| if( jsonArgIsJsonb(argv[0], &py) ){ |
| if( flags & 0x04 ){ |
| /* Superficial checking only - accomplished by the |
| ** jsonArgIsJsonb() call above. */ |
| res = 1; |
| }else if( flags & 0x08 ){ |
| /* Strict checking. Check by translating BLOB->TEXT->BLOB. If |
| ** no errors occur, call that a "strict check". */ |
| res = 0==jsonbValidityCheck(&py, 0, py.nBlob, 1); |
| } |
| break; |
| } |
| /* Fall through into interpreting the input as text. See note |
| ** above at tag-20240123-a. */ |
| /* no break */ deliberate_fall_through |
| } |
| default: { |
| JsonParse px; |
| if( (flags & 0x3)==0 ) break; |
| memset(&px, 0, sizeof(px)); |
| |
| p = jsonParseFuncArg(ctx, argv[0], JSON_KEEPERROR); |
| if( p ){ |
| if( p->oom ){ |
| sqlite3_result_error_nomem(ctx); |
| }else if( p->nErr ){ |
| /* no-op */ |
| }else if( (flags & 0x02)!=0 || p->hasNonstd==0 ){ |
| res = 1; |
| } |
| jsonParseFree(p); |
| }else{ |
| sqlite3_result_error_nomem(ctx); |
| } |
| break; |
| } |
| } |
| sqlite3_result_int(ctx, res); |
| } |
| |
| /* |
| ** json_error_position(JSON) |
| ** |
| ** If the argument is NULL, return NULL |
| ** |
| ** If the argument is BLOB, do a full validity check and return non-zero |
| ** if the check fails. The return value is the approximate 1-based offset |
| ** to the byte of the element that contains the first error. |
| ** |
| ** Otherwise interpret the argument is TEXT (even if it is numeric) and |
| ** return the 1-based character position for where the parser first recognized |
| ** that the input was not valid JSON, or return 0 if the input text looks |
| ** ok. JSON-5 extensions are accepted. |
| */ |
| static void jsonErrorFunc( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| i64 iErrPos = 0; /* Error position to be returned */ |
| JsonParse s; |
| |
| assert( argc==1 ); |
| UNUSED_PARAMETER(argc); |
| memset(&s, 0, sizeof(s)); |
| s.db = sqlite3_context_db_handle(ctx); |
| if( jsonArgIsJsonb(argv[0], &s) ){ |
| iErrPos = (i64)jsonbValidityCheck(&s, 0, s.nBlob, 1); |
| }else{ |
| s.zJson = (char*)sqlite3_value_text(argv[0]); |
| if( s.zJson==0 ) return; /* NULL input or OOM */ |
| s.nJson = sqlite3_value_bytes(argv[0]); |
| if( jsonConvertTextToBlob(&s,0) ){ |
| if( s.oom ){ |
| iErrPos = -1; |
| }else{ |
| /* Convert byte-offset s.iErr into a character offset */ |
| u32 k; |
| assert( s.zJson!=0 ); /* Because s.oom is false */ |
| for(k=0; k<s.iErr && ALWAYS(s.zJson[k]); k++){ |
| if( (s.zJson[k] & 0xc0)!=0x80 ) iErrPos++; |
| } |
| iErrPos++; |
| } |
| } |
| } |
| jsonParseReset(&s); |
| if( iErrPos<0 ){ |
| sqlite3_result_error_nomem(ctx); |
| }else{ |
| sqlite3_result_int64(ctx, iErrPos); |
| } |
| } |
| |
| /**************************************************************************** |
| ** Aggregate SQL function implementations |
| ****************************************************************************/ |
| /* |
| ** json_group_array(VALUE) |
| ** |
| ** Return a JSON array composed of all values in the aggregate. |
| */ |
| static void jsonArrayStep( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonString *pStr; |
| UNUSED_PARAMETER(argc); |
| pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr)); |
| if( pStr ){ |
| if( pStr->zBuf==0 ){ |
| jsonStringInit(pStr, ctx); |
| jsonAppendChar(pStr, '['); |
| }else if( pStr->nUsed>1 ){ |
| jsonAppendChar(pStr, ','); |
| } |
| pStr->pCtx = ctx; |
| jsonAppendSqlValue(pStr, argv[0]); |
| } |
| } |
| static void jsonArrayCompute(sqlite3_context *ctx, int isFinal){ |
| JsonString *pStr; |
| pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); |
| if( pStr ){ |
| int flags; |
| pStr->pCtx = ctx; |
| jsonAppendChar(pStr, ']'); |
| flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); |
| if( pStr->eErr ){ |
| jsonReturnString(pStr, 0, 0); |
| return; |
| }else if( flags & JSON_BLOB ){ |
| jsonReturnStringAsBlob(pStr); |
| if( isFinal ){ |
| if( !pStr->bStatic ) sqlite3RCStrUnref(pStr->zBuf); |
| }else{ |
| jsonStringTrimOneChar(pStr); |
| } |
| return; |
| }else if( isFinal ){ |
| sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, |
| pStr->bStatic ? SQLITE_TRANSIENT : |
| sqlite3RCStrUnref); |
| pStr->bStatic = 1; |
| }else{ |
| sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); |
| jsonStringTrimOneChar(pStr); |
| } |
| }else{ |
| sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC); |
| } |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| } |
| static void jsonArrayValue(sqlite3_context *ctx){ |
| jsonArrayCompute(ctx, 0); |
| } |
| static void jsonArrayFinal(sqlite3_context *ctx){ |
| jsonArrayCompute(ctx, 1); |
| } |
| |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| /* |
| ** This method works for both json_group_array() and json_group_object(). |
| ** It works by removing the first element of the group by searching forward |
| ** to the first comma (",") that is not within a string and deleting all |
| ** text through that comma. |
| */ |
| static void jsonGroupInverse( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| unsigned int i; |
| int inStr = 0; |
| int nNest = 0; |
| char *z; |
| char c; |
| JsonString *pStr; |
| UNUSED_PARAMETER(argc); |
| UNUSED_PARAMETER(argv); |
| pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); |
| #ifdef NEVER |
| /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will |
| ** always have been called to initialize it */ |
| if( NEVER(!pStr) ) return; |
| #endif |
| z = pStr->zBuf; |
| for(i=1; i<pStr->nUsed && ((c = z[i])!=',' || inStr || nNest); i++){ |
| if( c=='"' ){ |
| inStr = !inStr; |
| }else if( c=='\\' ){ |
| i++; |
| }else if( !inStr ){ |
| if( c=='{' || c=='[' ) nNest++; |
| if( c=='}' || c==']' ) nNest--; |
| } |
| } |
| if( i<pStr->nUsed ){ |
| pStr->nUsed -= i; |
| memmove(&z[1], &z[i+1], (size_t)pStr->nUsed-1); |
| z[pStr->nUsed] = 0; |
| }else{ |
| pStr->nUsed = 1; |
| } |
| } |
| #else |
| # define jsonGroupInverse 0 |
| #endif |
| |
| |
| /* |
| ** json_group_obj(NAME,VALUE) |
| ** |
| ** Return a JSON object composed of all names and values in the aggregate. |
| */ |
| static void jsonObjectStep( |
| sqlite3_context *ctx, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| JsonString *pStr; |
| const char *z; |
| u32 n; |
| UNUSED_PARAMETER(argc); |
| pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr)); |
| if( pStr ){ |
| z = (const char*)sqlite3_value_text(argv[0]); |
| n = sqlite3Strlen30(z); |
| if( pStr->zBuf==0 ){ |
| jsonStringInit(pStr, ctx); |
| jsonAppendChar(pStr, '{'); |
| }else if( pStr->nUsed>1 && z!=0 ){ |
| jsonAppendChar(pStr, ','); |
| } |
| pStr->pCtx = ctx; |
| if( z!=0 ){ |
| jsonAppendString(pStr, z, n); |
| jsonAppendChar(pStr, ':'); |
| jsonAppendSqlValue(pStr, argv[1]); |
| } |
| } |
| } |
| static void jsonObjectCompute(sqlite3_context *ctx, int isFinal){ |
| JsonString *pStr; |
| pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); |
| if( pStr ){ |
| int flags; |
| jsonAppendChar(pStr, '}'); |
| pStr->pCtx = ctx; |
| flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); |
| if( pStr->eErr ){ |
| jsonReturnString(pStr, 0, 0); |
| return; |
| }else if( flags & JSON_BLOB ){ |
| jsonReturnStringAsBlob(pStr); |
| if( isFinal ){ |
| if( !pStr->bStatic ) sqlite3RCStrUnref(pStr->zBuf); |
| }else{ |
| jsonStringTrimOneChar(pStr); |
| } |
| return; |
| }else if( isFinal ){ |
| sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, |
| pStr->bStatic ? SQLITE_TRANSIENT : |
| sqlite3RCStrUnref); |
| pStr->bStatic = 1; |
| }else{ |
| sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); |
| jsonStringTrimOneChar(pStr); |
| } |
| }else{ |
| sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC); |
| } |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| } |
| static void jsonObjectValue(sqlite3_context *ctx){ |
| jsonObjectCompute(ctx, 0); |
| } |
| static void jsonObjectFinal(sqlite3_context *ctx){ |
| jsonObjectCompute(ctx, 1); |
| } |
| |
| |
| |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| /**************************************************************************** |
| ** The json_each virtual table |
| ****************************************************************************/ |
| typedef struct JsonParent JsonParent; |
| struct JsonParent { |
| u32 iHead; /* Start of object or array */ |
| u32 iValue; /* Start of the value */ |
| u32 iEnd; /* First byte past the end */ |
| u32 nPath; /* Length of path */ |
| i64 iKey; /* Key for JSONB_ARRAY */ |
| }; |
| |
| typedef struct JsonEachCursor JsonEachCursor; |
| struct JsonEachCursor { |
| sqlite3_vtab_cursor base; /* Base class - must be first */ |
| u32 iRowid; /* The rowid */ |
| u32 i; /* Index in sParse.aBlob[] of current row */ |
| u32 iEnd; /* EOF when i equals or exceeds this value */ |
| u32 nRoot; /* Size of the root path in bytes */ |
| u8 eType; /* Type of the container for element i */ |
| u8 bRecursive; /* True for json_tree(). False for json_each() */ |
| u32 nParent; /* Current nesting depth */ |
| u32 nParentAlloc; /* Space allocated for aParent[] */ |
| JsonParent *aParent; /* Parent elements of i */ |
| sqlite3 *db; /* Database connection */ |
| JsonString path; /* Current path */ |
| JsonParse sParse; /* Parse of the input JSON */ |
| }; |
| typedef struct JsonEachConnection JsonEachConnection; |
| struct JsonEachConnection { |
| sqlite3_vtab base; /* Base class - must be first */ |
| sqlite3 *db; /* Database connection */ |
| }; |
| |
| |
| /* Constructor for the json_each virtual table */ |
| static int jsonEachConnect( |
| sqlite3 *db, |
| void *pAux, |
| int argc, const char *const*argv, |
| sqlite3_vtab **ppVtab, |
| char **pzErr |
| ){ |
| JsonEachConnection *pNew; |
| int rc; |
| |
| /* Column numbers */ |
| #define JEACH_KEY 0 |
| #define JEACH_VALUE 1 |
| #define JEACH_TYPE 2 |
| #define JEACH_ATOM 3 |
| #define JEACH_ID 4 |
| #define JEACH_PARENT 5 |
| #define JEACH_FULLKEY 6 |
| #define JEACH_PATH 7 |
| /* The xBestIndex method assumes that the JSON and ROOT columns are |
| ** the last two columns in the table. Should this ever changes, be |
| ** sure to update the xBestIndex method. */ |
| #define JEACH_JSON 8 |
| #define JEACH_ROOT 9 |
| |
| UNUSED_PARAMETER(pzErr); |
| UNUSED_PARAMETER(argv); |
| UNUSED_PARAMETER(argc); |
| UNUSED_PARAMETER(pAux); |
| rc = sqlite3_declare_vtab(db, |
| "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path," |
| "json HIDDEN,root HIDDEN)"); |
| if( rc==SQLITE_OK ){ |
| pNew = (JsonEachConnection*)sqlite3DbMallocZero(db, sizeof(*pNew)); |
| *ppVtab = (sqlite3_vtab*)pNew; |
| if( pNew==0 ) return SQLITE_NOMEM; |
| sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); |
| pNew->db = db; |
| } |
| return rc; |
| } |
| |
| /* destructor for json_each virtual table */ |
| static int jsonEachDisconnect(sqlite3_vtab *pVtab){ |
| JsonEachConnection *p = (JsonEachConnection*)pVtab; |
| sqlite3DbFree(p->db, pVtab); |
| return SQLITE_OK; |
| } |
| |
| /* constructor for a JsonEachCursor object for json_each(). */ |
| static int jsonEachOpenEach(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ |
| JsonEachConnection *pVtab = (JsonEachConnection*)p; |
| JsonEachCursor *pCur; |
| |
| UNUSED_PARAMETER(p); |
| pCur = sqlite3DbMallocZero(pVtab->db, sizeof(*pCur)); |
| if( pCur==0 ) return SQLITE_NOMEM; |
| pCur->db = pVtab->db; |
| jsonStringZero(&pCur->path); |
| *ppCursor = &pCur->base; |
| return SQLITE_OK; |
| } |
| |
| /* constructor for a JsonEachCursor object for json_tree(). */ |
| static int jsonEachOpenTree(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ |
| int rc = jsonEachOpenEach(p, ppCursor); |
| if( rc==SQLITE_OK ){ |
| JsonEachCursor *pCur = (JsonEachCursor*)*ppCursor; |
| pCur->bRecursive = 1; |
| } |
| return rc; |
| } |
| |
| /* Reset a JsonEachCursor back to its original state. Free any memory |
| ** held. */ |
| static void jsonEachCursorReset(JsonEachCursor *p){ |
| jsonParseReset(&p->sParse); |
| jsonStringReset(&p->path); |
| sqlite3DbFree(p->db, p->aParent); |
| p->iRowid = 0; |
| p->i = 0; |
| p->aParent = 0; |
| p->nParent = 0; |
| p->nParentAlloc = 0; |
| p->iEnd = 0; |
| p->eType = 0; |
| } |
| |
| /* Destructor for a jsonEachCursor object */ |
| static int jsonEachClose(sqlite3_vtab_cursor *cur){ |
| JsonEachCursor *p = (JsonEachCursor*)cur; |
| jsonEachCursorReset(p); |
| |
| sqlite3DbFree(p->db, cur); |
| return SQLITE_OK; |
| } |
| |
| /* Return TRUE if the jsonEachCursor object has been advanced off the end |
| ** of the JSON object */ |
| static int jsonEachEof(sqlite3_vtab_cursor *cur){ |
| JsonEachCursor *p = (JsonEachCursor*)cur; |
| return p->i >= p->iEnd; |
| } |
| |
| /* |
| ** If the cursor is currently pointing at the label of a object entry, |
| ** then return the index of the value. For all other cases, return the |
| ** current pointer position, which is the value. |
| */ |
| static int jsonSkipLabel(JsonEachCursor *p){ |
| if( p->eType==JSONB_OBJECT ){ |
| u32 sz = 0; |
| u32 n = jsonbPayloadSize(&p->sParse, p->i, &sz); |
| return p->i + n + sz; |
| }else{ |
| return p->i; |
| } |
| } |
| |
| /* |
| ** Append the path name for the current element. |
| */ |
| static void jsonAppendPathName(JsonEachCursor *p){ |
| assert( p->nParent>0 ); |
| assert( p->eType==JSONB_ARRAY || p->eType==JSONB_OBJECT ); |
| if( p->eType==JSONB_ARRAY ){ |
| jsonPrintf(30, &p->path, "[%lld]", p->aParent[p->nParent-1].iKey); |
| }else{ |
| u32 n, sz = 0, k, i; |
| const char *z; |
| int needQuote = 0; |
| n = jsonbPayloadSize(&p->sParse, p->i, &sz); |
| k = p->i + n; |
| z = (const char*)&p->sParse.aBlob[k]; |
| if( sz==0 || !sqlite3Isalpha(z[0]) ){ |
| needQuote = 1; |
| }else{ |
| for(i=0; i<sz; i++){ |
| if( !sqlite3Isalnum(z[i]) ){ |
| needQuote = 1; |
| break; |
| } |
| } |
| } |
| if( needQuote ){ |
| jsonPrintf(sz+4,&p->path,".\"%.*s\"", sz, z); |
| }else{ |
| jsonPrintf(sz+2,&p->path,".%.*s", sz, z); |
| } |
| } |
| } |
| |
| /* Advance the cursor to the next element for json_tree() */ |
| static int jsonEachNext(sqlite3_vtab_cursor *cur){ |
| JsonEachCursor *p = (JsonEachCursor*)cur; |
| int rc = SQLITE_OK; |
| if( p->bRecursive ){ |
| u8 x; |
| u8 levelChange = 0; |
| u32 n, sz = 0; |
| u32 i = jsonSkipLabel(p); |
| x = p->sParse.aBlob[i] & 0x0f; |
| n = jsonbPayloadSize(&p->sParse, i, &sz); |
| if( x==JSONB_OBJECT || x==JSONB_ARRAY ){ |
| JsonParent *pParent; |
| if( p->nParent>=p->nParentAlloc ){ |
| JsonParent *pNew; |
| u64 nNew; |
| nNew = p->nParentAlloc*2 + 3; |
| pNew = sqlite3DbRealloc(p->db, p->aParent, sizeof(JsonParent)*nNew); |
| if( pNew==0 ) return SQLITE_NOMEM; |
| p->nParentAlloc = (u32)nNew; |
| p->aParent = pNew; |
| } |
| levelChange = 1; |
| pParent = &p->aParent[p->nParent]; |
| pParent->iHead = p->i; |
| pParent->iValue = i; |
| pParent->iEnd = i + n + sz; |
| pParent->iKey = -1; |
| pParent->nPath = (u32)p->path.nUsed; |
| if( p->eType && p->nParent ){ |
| jsonAppendPathName(p); |
| if( p->path.eErr ) rc = SQLITE_NOMEM; |
| } |
| p->nParent++; |
| p->i = i + n; |
| }else{ |
| p->i = i + n + sz; |
| } |
| while( p->nParent>0 && p->i >= p->aParent[p->nParent-1].iEnd ){ |
| p->nParent--; |
| p->path.nUsed = p->aParent[p->nParent].nPath; |
| levelChange = 1; |
| } |
| if( levelChange ){ |
| if( p->nParent>0 ){ |
| JsonParent *pParent = &p->aParent[p->nParent-1]; |
| u32 iVal = pParent->iValue; |
| p->eType = p->sParse.aBlob[iVal] & 0x0f; |
| }else{ |
| p->eType = 0; |
| } |
| } |
| }else{ |
| u32 n, sz = 0; |
| u32 i = jsonSkipLabel(p); |
| n = jsonbPayloadSize(&p->sParse, i, &sz); |
| p->i = i + n + sz; |
| } |
| if( p->eType==JSONB_ARRAY && p->nParent ){ |
| p->aParent[p->nParent-1].iKey++; |
| } |
| p->iRowid++; |
| return rc; |
| } |
| |
| /* Length of the path for rowid==0 in bRecursive mode. |
| */ |
| static int jsonEachPathLength(JsonEachCursor *p){ |
| u32 n = p->path.nUsed; |
| char *z = p->path.zBuf; |
| if( p->iRowid==0 && p->bRecursive && n>=2 ){ |
| while( n>1 ){ |
| n--; |
| if( z[n]=='[' || z[n]=='.' ){ |
| u32 x, sz = 0; |
| char cSaved = z[n]; |
| z[n] = 0; |
| assert( p->sParse.eEdit==0 ); |
| x = jsonLookupStep(&p->sParse, 0, z+1, 0); |
| z[n] = cSaved; |
| if( JSON_LOOKUP_ISERROR(x) ) continue; |
| if( x + jsonbPayloadSize(&p->sParse, x, &sz) == p->i ) break; |
| } |
| } |
| } |
| return n; |
| } |
| |
| /* Return the value of a column */ |
| static int jsonEachColumn( |
| sqlite3_vtab_cursor *cur, /* The cursor */ |
| sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ |
| int iColumn /* Which column to return */ |
| ){ |
| JsonEachCursor *p = (JsonEachCursor*)cur; |
| switch( iColumn ){ |
| case JEACH_KEY: { |
| if( p->nParent==0 ){ |
| u32 n, j; |
| if( p->nRoot==1 ) break; |
| j = jsonEachPathLength(p); |
| n = p->nRoot - j; |
| if( n==0 ){ |
| break; |
| }else if( p->path.zBuf[j]=='[' ){ |
| i64 x; |
| sqlite3Atoi64(&p->path.zBuf[j+1], &x, n-1, SQLITE_UTF8); |
| sqlite3_result_int64(ctx, x); |
| }else if( p->path.zBuf[j+1]=='"' ){ |
| sqlite3_result_text(ctx, &p->path.zBuf[j+2], n-3, SQLITE_TRANSIENT); |
| }else{ |
| sqlite3_result_text(ctx, &p->path.zBuf[j+1], n-1, SQLITE_TRANSIENT); |
| } |
| break; |
| } |
| if( p->eType==JSONB_OBJECT ){ |
| jsonReturnFromBlob(&p->sParse, p->i, ctx, 1); |
| }else{ |
| assert( p->eType==JSONB_ARRAY ); |
| sqlite3_result_int64(ctx, p->aParent[p->nParent-1].iKey); |
| } |
| break; |
| } |
| case JEACH_VALUE: { |
| u32 i = jsonSkipLabel(p); |
| jsonReturnFromBlob(&p->sParse, i, ctx, 1); |
| if( (p->sParse.aBlob[i] & 0x0f)>=JSONB_ARRAY ){ |
| sqlite3_result_subtype(ctx, JSON_SUBTYPE); |
| } |
| break; |
| } |
| case JEACH_TYPE: { |
| u32 i = jsonSkipLabel(p); |
| u8 eType = p->sParse.aBlob[i] & 0x0f; |
| sqlite3_result_text(ctx, jsonbType[eType], -1, SQLITE_STATIC); |
| break; |
| } |
| case JEACH_ATOM: { |
| u32 i = jsonSkipLabel(p); |
| if( (p->sParse.aBlob[i] & 0x0f)<JSONB_ARRAY ){ |
| jsonReturnFromBlob(&p->sParse, i, ctx, 1); |
| } |
| break; |
| } |
| case JEACH_ID: { |
| sqlite3_result_int64(ctx, (sqlite3_int64)p->i); |
| break; |
| } |
| case JEACH_PARENT: { |
| if( p->nParent>0 && p->bRecursive ){ |
| sqlite3_result_int64(ctx, p->aParent[p->nParent-1].iHead); |
| } |
| break; |
| } |
| case JEACH_FULLKEY: { |
| u64 nBase = p->path.nUsed; |
| if( p->nParent ) jsonAppendPathName(p); |
| sqlite3_result_text64(ctx, p->path.zBuf, p->path.nUsed, |
| SQLITE_TRANSIENT, SQLITE_UTF8); |
| p->path.nUsed = nBase; |
| break; |
| } |
| case JEACH_PATH: { |
| u32 n = jsonEachPathLength(p); |
| sqlite3_result_text64(ctx, p->path.zBuf, n, |
| SQLITE_TRANSIENT, SQLITE_UTF8); |
| break; |
| } |
| default: { |
| sqlite3_result_text(ctx, p->path.zBuf, p->nRoot, SQLITE_STATIC); |
| break; |
| } |
| case JEACH_JSON: { |
| if( p->sParse.zJson==0 ){ |
| sqlite3_result_blob(ctx, p->sParse.aBlob, p->sParse.nBlob, |
| SQLITE_TRANSIENT); |
| }else{ |
| sqlite3_result_text(ctx, p->sParse.zJson, -1, SQLITE_TRANSIENT); |
| } |
| break; |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* Return the current rowid value */ |
| static int jsonEachRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ |
| JsonEachCursor *p = (JsonEachCursor*)cur; |
| *pRowid = p->iRowid; |
| return SQLITE_OK; |
| } |
| |
| /* The query strategy is to look for an equality constraint on the json |
| ** column. Without such a constraint, the table cannot operate. idxNum is |
| ** 1 if the constraint is found, 3 if the constraint and zRoot are found, |
| ** and 0 otherwise. |
| */ |
| static int jsonEachBestIndex( |
| sqlite3_vtab *tab, |
| sqlite3_index_info *pIdxInfo |
| ){ |
| int i; /* Loop counter or computed array index */ |
| int aIdx[2]; /* Index of constraints for JSON and ROOT */ |
| int unusableMask = 0; /* Mask of unusable JSON and ROOT constraints */ |
| int idxMask = 0; /* Mask of usable == constraints JSON and ROOT */ |
| const struct sqlite3_index_constraint *pConstraint; |
| |
| /* This implementation assumes that JSON and ROOT are the last two |
| ** columns in the table */ |
| assert( JEACH_ROOT == JEACH_JSON+1 ); |
| UNUSED_PARAMETER(tab); |
| aIdx[0] = aIdx[1] = -1; |
| pConstraint = pIdxInfo->aConstraint; |
| for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
| int iCol; |
| int iMask; |
| if( pConstraint->iColumn < JEACH_JSON ) continue; |
| iCol = pConstraint->iColumn - JEACH_JSON; |
| assert( iCol==0 || iCol==1 ); |
| testcase( iCol==0 ); |
| iMask = 1 << iCol; |
| if( pConstraint->usable==0 ){ |
| unusableMask |= iMask; |
| }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| aIdx[iCol] = i; |
| idxMask |= iMask; |
| } |
| } |
| if( pIdxInfo->nOrderBy>0 |
| && pIdxInfo->aOrderBy[0].iColumn<0 |
| && pIdxInfo->aOrderBy[0].desc==0 |
| ){ |
| pIdxInfo->orderByConsumed = 1; |
| } |
| |
| if( (unusableMask & ~idxMask)!=0 ){ |
| /* If there are any unusable constraints on JSON or ROOT, then reject |
| ** this entire plan */ |
| return SQLITE_CONSTRAINT; |
| } |
| if( aIdx[0]<0 ){ |
| /* No JSON input. Leave estimatedCost at the huge value that it was |
| ** initialized to to discourage the query planner from selecting this |
| ** plan. */ |
| pIdxInfo->idxNum = 0; |
| }else{ |
| pIdxInfo->estimatedCost = 1.0; |
| i = aIdx[0]; |
| pIdxInfo->aConstraintUsage[i].argvIndex = 1; |
| pIdxInfo->aConstraintUsage[i].omit = 1; |
| if( aIdx[1]<0 ){ |
| pIdxInfo->idxNum = 1; /* Only JSON supplied. Plan 1 */ |
| }else{ |
| i = aIdx[1]; |
| pIdxInfo->aConstraintUsage[i].argvIndex = 2; |
| pIdxInfo->aConstraintUsage[i].omit = 1; |
| pIdxInfo->idxNum = 3; /* Both JSON and ROOT are supplied. Plan 3 */ |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* Start a search on a new JSON string */ |
| static int jsonEachFilter( |
| sqlite3_vtab_cursor *cur, |
| int idxNum, const char *idxStr, |
| int argc, sqlite3_value **argv |
| ){ |
| JsonEachCursor *p = (JsonEachCursor*)cur; |
| const char *zRoot = 0; |
| u32 i, n, sz; |
| |
| UNUSED_PARAMETER(idxStr); |
| UNUSED_PARAMETER(argc); |
| jsonEachCursorReset(p); |
| if( idxNum==0 ) return SQLITE_OK; |
| memset(&p->sParse, 0, sizeof(p->sParse)); |
| p->sParse.nJPRef = 1; |
| p->sParse.db = p->db; |
| if( jsonArgIsJsonb(argv[0], &p->sParse) ){ |
| /* We have JSONB */ |
| }else{ |
| p->sParse.zJson = (char*)sqlite3_value_text(argv[0]); |
| p->sParse.nJson = sqlite3_value_bytes(argv[0]); |
| if( p->sParse.zJson==0 ){ |
| p->i = p->iEnd = 0; |
| return SQLITE_OK; |
| } |
| if( jsonConvertTextToBlob(&p->sParse, 0) ){ |
| if( p->sParse.oom ){ |
| return SQLITE_NOMEM; |
| } |
| goto json_each_malformed_input; |
| } |
| } |
| if( idxNum==3 ){ |
| zRoot = (const char*)sqlite3_value_text(argv[1]); |
| if( zRoot==0 ) return SQLITE_OK; |
| if( zRoot[0]!='$' ){ |
| sqlite3_free(cur->pVtab->zErrMsg); |
| cur->pVtab->zErrMsg = jsonBadPathError(0, zRoot); |
| jsonEachCursorReset(p); |
| return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM; |
| } |
| p->nRoot = sqlite3Strlen30(zRoot); |
| if( zRoot[1]==0 ){ |
| i = p->i = 0; |
| p->eType = 0; |
| }else{ |
| i = jsonLookupStep(&p->sParse, 0, zRoot+1, 0); |
| if( JSON_LOOKUP_ISERROR(i) ){ |
| if( i==JSON_LOOKUP_NOTFOUND ){ |
| p->i = 0; |
| p->eType = 0; |
| p->iEnd = 0; |
| return SQLITE_OK; |
| } |
| sqlite3_free(cur->pVtab->zErrMsg); |
| cur->pVtab->zErrMsg = jsonBadPathError(0, zRoot); |
| jsonEachCursorReset(p); |
| return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM; |
| } |
| if( p->sParse.iLabel ){ |
| p->i = p->sParse.iLabel; |
| p->eType = JSONB_OBJECT; |
| }else{ |
| p->i = i; |
| p->eType = JSONB_ARRAY; |
| } |
| } |
| jsonAppendRaw(&p->path, zRoot, p->nRoot); |
| }else{ |
| i = p->i = 0; |
| p->eType = 0; |
| p->nRoot = 1; |
| jsonAppendRaw(&p->path, "$", 1); |
| } |
| p->nParent = 0; |
| n = jsonbPayloadSize(&p->sParse, i, &sz); |
| p->iEnd = i+n+sz; |
| if( (p->sParse.aBlob[i] & 0x0f)>=JSONB_ARRAY && !p->bRecursive ){ |
| p->i = i + n; |
| p->eType = p->sParse.aBlob[i] & 0x0f; |
| p->aParent = sqlite3DbMallocZero(p->db, sizeof(JsonParent)); |
| if( p->aParent==0 ) return SQLITE_NOMEM; |
| p->nParent = 1; |
| p->nParentAlloc = 1; |
| p->aParent[0].iKey = 0; |
| p->aParent[0].iEnd = p->iEnd; |
| p->aParent[0].iHead = p->i; |
| p->aParent[0].iValue = i; |
| } |
| return SQLITE_OK; |
| |
| json_each_malformed_input: |
| sqlite3_free(cur->pVtab->zErrMsg); |
| cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON"); |
| jsonEachCursorReset(p); |
| return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM; |
| } |
| |
| /* The methods of the json_each virtual table */ |
| static sqlite3_module jsonEachModule = { |
| 0, /* iVersion */ |
| 0, /* xCreate */ |
| jsonEachConnect, /* xConnect */ |
| jsonEachBestIndex, /* xBestIndex */ |
| jsonEachDisconnect, /* xDisconnect */ |
| 0, /* xDestroy */ |
| jsonEachOpenEach, /* xOpen - open a cursor */ |
| jsonEachClose, /* xClose - close a cursor */ |
| jsonEachFilter, /* xFilter - configure scan constraints */ |
| jsonEachNext, /* xNext - advance a cursor */ |
| jsonEachEof, /* xEof - check for end of scan */ |
| jsonEachColumn, /* xColumn - read data */ |
| jsonEachRowid, /* xRowid - read data */ |
| 0, /* xUpdate */ |
| 0, /* xBegin */ |
| 0, /* xSync */ |
| 0, /* xCommit */ |
| 0, /* xRollback */ |
| 0, /* xFindMethod */ |
| 0, /* xRename */ |
| 0, /* xSavepoint */ |
| 0, /* xRelease */ |
| 0, /* xRollbackTo */ |
| 0, /* xShadowName */ |
| 0 /* xIntegrity */ |
| }; |
| |
| /* The methods of the json_tree virtual table. */ |
| static sqlite3_module jsonTreeModule = { |
| 0, /* iVersion */ |
| 0, /* xCreate */ |
| jsonEachConnect, /* xConnect */ |
| jsonEachBestIndex, /* xBestIndex */ |
| jsonEachDisconnect, /* xDisconnect */ |
| 0, /* xDestroy */ |
| jsonEachOpenTree, /* xOpen - open a cursor */ |
| jsonEachClose, /* xClose - close a cursor */ |
| jsonEachFilter, /* xFilter - configure scan constraints */ |
| jsonEachNext, /* xNext - advance a cursor */ |
| jsonEachEof, /* xEof - check for end of scan */ |
| jsonEachColumn, /* xColumn - read data */ |
| jsonEachRowid, /* xRowid - read data */ |
| 0, /* xUpdate */ |
| 0, /* xBegin */ |
| 0, /* xSync */ |
| 0, /* xCommit */ |
| 0, /* xRollback */ |
| 0, /* xFindMethod */ |
| 0, /* xRename */ |
| 0, /* xSavepoint */ |
| 0, /* xRelease */ |
| 0, /* xRollbackTo */ |
| 0, /* xShadowName */ |
| 0 /* xIntegrity */ |
| }; |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| #endif /* !defined(SQLITE_OMIT_JSON) */ |
| |
| /* |
| ** Register JSON functions. |
| */ |
| void sqlite3RegisterJsonFunctions(void){ |
| #ifndef SQLITE_OMIT_JSON |
| static FuncDef aJsonFunc[] = { |
| /* sqlite3_result_subtype() ----, ,--- sqlite3_value_subtype() */ |
| /* | | */ |
| /* Uses cache ------, | | ,---- Returns JSONB */ |
| /* | | | | */ |
| /* Number of arguments ---, | | | | ,--- Flags */ |
| /* | | | | | | */ |
| JFUNCTION(json, 1,1,1, 0,0,0, jsonRemoveFunc), |
| JFUNCTION(jsonb, 1,1,0, 0,1,0, jsonRemoveFunc), |
| JFUNCTION(json_array, -1,0,1, 1,0,0, jsonArrayFunc), |
| JFUNCTION(jsonb_array, -1,0,1, 1,1,0, jsonArrayFunc), |
| JFUNCTION(json_array_length, 1,1,0, 0,0,0, jsonArrayLengthFunc), |
| JFUNCTION(json_array_length, 2,1,0, 0,0,0, jsonArrayLengthFunc), |
| JFUNCTION(json_error_position,1,1,0, 0,0,0, jsonErrorFunc), |
| JFUNCTION(json_extract, -1,1,1, 0,0,0, jsonExtractFunc), |
| JFUNCTION(jsonb_extract, -1,1,0, 0,1,0, jsonExtractFunc), |
| JFUNCTION(->, 2,1,1, 0,0,JSON_JSON, jsonExtractFunc), |
| JFUNCTION(->>, 2,1,0, 0,0,JSON_SQL, jsonExtractFunc), |
| JFUNCTION(json_insert, -1,1,1, 1,0,0, jsonSetFunc), |
| JFUNCTION(jsonb_insert, -1,1,0, 1,1,0, jsonSetFunc), |
| JFUNCTION(json_object, -1,0,1, 1,0,0, jsonObjectFunc), |
| JFUNCTION(jsonb_object, -1,0,1, 1,1,0, jsonObjectFunc), |
| JFUNCTION(json_patch, 2,1,1, 0,0,0, jsonPatchFunc), |
| JFUNCTION(jsonb_patch, 2,1,0, 0,1,0, jsonPatchFunc), |
| JFUNCTION(json_pretty, 1,1,0, 0,0,0, jsonPrettyFunc), |
| JFUNCTION(json_pretty, 2,1,0, 0,0,0, jsonPrettyFunc), |
| JFUNCTION(json_quote, 1,0,1, 1,0,0, jsonQuoteFunc), |
| JFUNCTION(json_remove, -1,1,1, 0,0,0, jsonRemoveFunc), |
| JFUNCTION(jsonb_remove, -1,1,0, 0,1,0, jsonRemoveFunc), |
| JFUNCTION(json_replace, -1,1,1, 1,0,0, jsonReplaceFunc), |
| JFUNCTION(jsonb_replace, -1,1,0, 1,1,0, jsonReplaceFunc), |
| JFUNCTION(json_set, -1,1,1, 1,0,JSON_ISSET, jsonSetFunc), |
| JFUNCTION(jsonb_set, -1,1,0, 1,1,JSON_ISSET, jsonSetFunc), |
| JFUNCTION(json_type, 1,1,0, 0,0,0, jsonTypeFunc), |
| JFUNCTION(json_type, 2,1,0, 0,0,0, jsonTypeFunc), |
| JFUNCTION(json_valid, 1,1,0, 0,0,0, jsonValidFunc), |
| JFUNCTION(json_valid, 2,1,0, 0,0,0, jsonValidFunc), |
| #if SQLITE_DEBUG |
| JFUNCTION(json_parse, 1,1,0, 0,0,0, jsonParseFunc), |
| #endif |
| WAGGREGATE(json_group_array, 1, 0, 0, |
| jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse, |
| SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8| |
| SQLITE_DETERMINISTIC), |
| WAGGREGATE(jsonb_group_array, 1, JSON_BLOB, 0, |
| jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse, |
| SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC), |
| WAGGREGATE(json_group_object, 2, 0, 0, |
| jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse, |
| SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC), |
| WAGGREGATE(jsonb_group_object,2, JSON_BLOB, 0, |
| jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse, |
| SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8| |
| SQLITE_DETERMINISTIC) |
| }; |
| sqlite3InsertBuiltinFuncs(aJsonFunc, ArraySize(aJsonFunc)); |
| #endif |
| } |
| |
| #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) |
| /* |
| ** Register the JSON table-valued functions |
| */ |
| int sqlite3JsonTableFunctions(sqlite3 *db){ |
| int rc = SQLITE_OK; |
| static const struct { |
| const char *zName; |
| sqlite3_module *pModule; |
| } aMod[] = { |
| { "json_each", &jsonEachModule }, |
| { "json_tree", &jsonTreeModule }, |
| }; |
| unsigned int i; |
| for(i=0; i<sizeof(aMod)/sizeof(aMod[0]) && rc==SQLITE_OK; i++){ |
| rc = sqlite3_create_module(db, aMod[i].zName, aMod[i].pModule, 0); |
| } |
| return rc; |
| } |
| #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) */ |