dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 1 | /* |
| 2 | ** 2010 August 28 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** Code for testing all sorts of SQLite interfaces. This code |
| 13 | ** is not included in the SQLite library. |
| 14 | */ |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 15 | |
drh | 883ad04 | 2015-02-19 00:29:11 | [diff] [blame] | 16 | #include "sqlite3.h" |
drh | 064b681 | 2024-07-30 15:49:02 | [diff] [blame] | 17 | #include "tclsqlite.h" |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 18 | |
shaneh | bd2aaf9 | 2010-09-01 02:38:21 | [diff] [blame] | 19 | /* Solely for the UNUSED_PARAMETER() macro. */ |
| 20 | #include "sqliteInt.h" |
| 21 | |
drh | 860e332 | 2011-08-25 18:54:46 | [diff] [blame] | 22 | #ifdef SQLITE_ENABLE_RTREE |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 23 | /* |
| 24 | ** Type used to cache parameter information for the "circle" r-tree geometry |
| 25 | ** callback. |
| 26 | */ |
| 27 | typedef struct Circle Circle; |
| 28 | struct Circle { |
| 29 | struct Box { |
| 30 | double xmin; |
| 31 | double xmax; |
| 32 | double ymin; |
| 33 | double ymax; |
| 34 | } aBox[2]; |
| 35 | double centerx; |
| 36 | double centery; |
| 37 | double radius; |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 38 | double mxArea; |
| 39 | int eScoreType; |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 40 | }; |
| 41 | |
| 42 | /* |
| 43 | ** Destructor function for Circle objects allocated by circle_geom(). |
| 44 | */ |
| 45 | static void circle_del(void *p){ |
| 46 | sqlite3_free(p); |
| 47 | } |
| 48 | |
| 49 | /* |
| 50 | ** Implementation of "circle" r-tree geometry callback. |
| 51 | */ |
| 52 | static int circle_geom( |
| 53 | sqlite3_rtree_geometry *p, |
| 54 | int nCoord, |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 55 | sqlite3_rtree_dbl *aCoord, |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 56 | int *pRes |
| 57 | ){ |
| 58 | int i; /* Iterator variable */ |
| 59 | Circle *pCircle; /* Structure defining circular region */ |
| 60 | double xmin, xmax; /* X dimensions of box being tested */ |
| 61 | double ymin, ymax; /* X dimensions of box being tested */ |
| 62 | |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 63 | xmin = aCoord[0]; |
| 64 | xmax = aCoord[1]; |
| 65 | ymin = aCoord[2]; |
| 66 | ymax = aCoord[3]; |
| 67 | pCircle = (Circle *)p->pUser; |
| 68 | if( pCircle==0 ){ |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 69 | /* If pUser is still 0, then the parameter values have not been tested |
| 70 | ** for correctness or stored into a Circle structure yet. Do this now. */ |
| 71 | |
| 72 | /* This geometry callback is for use with a 2-dimensional r-tree table. |
| 73 | ** Return an error if the table does not have exactly 2 dimensions. */ |
| 74 | if( nCoord!=4 ) return SQLITE_ERROR; |
| 75 | |
| 76 | /* Test that the correct number of parameters (3) have been supplied, |
| 77 | ** and that the parameters are in range (that the radius of the circle |
| 78 | ** radius is greater than zero). */ |
| 79 | if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; |
| 80 | |
| 81 | /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM |
| 82 | ** if the allocation fails. */ |
| 83 | pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); |
| 84 | if( !pCircle ) return SQLITE_NOMEM; |
| 85 | p->xDelUser = circle_del; |
| 86 | |
| 87 | /* Record the center and radius of the circular region. One way that |
| 88 | ** tested bounding boxes that intersect the circular region are detected |
drh | 3308b6a | 2010-10-31 22:47:15 | [diff] [blame] | 89 | ** is by testing if each corner of the bounding box lies within radius |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 90 | ** units of the center of the circle. */ |
| 91 | pCircle->centerx = p->aParam[0]; |
| 92 | pCircle->centery = p->aParam[1]; |
| 93 | pCircle->radius = p->aParam[2]; |
| 94 | |
| 95 | /* Define two bounding box regions. The first, aBox[0], extends to |
| 96 | ** infinity in the X dimension. It covers the same range of the Y dimension |
| 97 | ** as the circular region. The second, aBox[1], extends to infinity in |
| 98 | ** the Y dimension and is constrained to the range of the circle in the |
| 99 | ** X dimension. |
| 100 | ** |
| 101 | ** Then imagine each box is split in half along its short axis by a line |
| 102 | ** that intersects the center of the circular region. A bounding box |
| 103 | ** being tested can be said to intersect the circular region if it contains |
| 104 | ** points from each half of either of the two infinite bounding boxes. |
| 105 | */ |
| 106 | pCircle->aBox[0].xmin = pCircle->centerx; |
| 107 | pCircle->aBox[0].xmax = pCircle->centerx; |
| 108 | pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; |
| 109 | pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; |
| 110 | pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; |
| 111 | pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
| 112 | pCircle->aBox[1].ymin = pCircle->centery; |
| 113 | pCircle->aBox[1].ymax = pCircle->centery; |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 114 | pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 115 | } |
| 116 | |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 117 | /* Check if any of the 4 corners of the bounding-box being tested lie |
| 118 | ** inside the circular region. If they do, then the bounding-box does |
| 119 | ** intersect the region of interest. Set the output variable to true and |
| 120 | ** return SQLITE_OK in this case. */ |
| 121 | for(i=0; i<4; i++){ |
| 122 | double x = (i&0x01) ? xmax : xmin; |
| 123 | double y = (i&0x02) ? ymax : ymin; |
| 124 | double d2; |
| 125 | |
| 126 | d2 = (x-pCircle->centerx)*(x-pCircle->centerx); |
| 127 | d2 += (y-pCircle->centery)*(y-pCircle->centery); |
| 128 | if( d2<(pCircle->radius*pCircle->radius) ){ |
| 129 | *pRes = 1; |
| 130 | return SQLITE_OK; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | /* Check if the bounding box covers any other part of the circular region. |
| 135 | ** See comments above for a description of how this test works. If it does |
| 136 | ** cover part of the circular region, set the output variable to true |
| 137 | ** and return SQLITE_OK. */ |
| 138 | for(i=0; i<2; i++){ |
| 139 | if( xmin<=pCircle->aBox[i].xmin |
| 140 | && xmax>=pCircle->aBox[i].xmax |
| 141 | && ymin<=pCircle->aBox[i].ymin |
| 142 | && ymax>=pCircle->aBox[i].ymax |
| 143 | ){ |
| 144 | *pRes = 1; |
| 145 | return SQLITE_OK; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | /* The specified bounding box does not intersect the circular region. Set |
| 150 | ** the output variable to zero and return SQLITE_OK. */ |
| 151 | *pRes = 0; |
| 152 | return SQLITE_OK; |
| 153 | } |
| 154 | |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 155 | /* |
| 156 | ** Implementation of "circle" r-tree geometry callback using the |
| 157 | ** 2nd-generation interface that allows scoring. |
drh | 4f03f41 | 2015-05-20 21:28:32 | [diff] [blame] | 158 | ** |
| 159 | ** Two calling forms: |
| 160 | ** |
| 161 | ** Qcircle(X,Y,Radius,eType) -- All values are doubles |
| 162 | ** Qcircle('x:X y:Y r:R e:ETYPE') -- Single string parameter |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 163 | */ |
| 164 | static int circle_query_func(sqlite3_rtree_query_info *p){ |
| 165 | int i; /* Iterator variable */ |
| 166 | Circle *pCircle; /* Structure defining circular region */ |
| 167 | double xmin, xmax; /* X dimensions of box being tested */ |
| 168 | double ymin, ymax; /* X dimensions of box being tested */ |
| 169 | int nWithin = 0; /* Number of corners inside the circle */ |
| 170 | |
| 171 | xmin = p->aCoord[0]; |
| 172 | xmax = p->aCoord[1]; |
| 173 | ymin = p->aCoord[2]; |
| 174 | ymax = p->aCoord[3]; |
| 175 | pCircle = (Circle *)p->pUser; |
| 176 | if( pCircle==0 ){ |
| 177 | /* If pUser is still 0, then the parameter values have not been tested |
| 178 | ** for correctness or stored into a Circle structure yet. Do this now. */ |
| 179 | |
| 180 | /* This geometry callback is for use with a 2-dimensional r-tree table. |
| 181 | ** Return an error if the table does not have exactly 2 dimensions. */ |
| 182 | if( p->nCoord!=4 ) return SQLITE_ERROR; |
| 183 | |
drh | 4f03f41 | 2015-05-20 21:28:32 | [diff] [blame] | 184 | /* Test that the correct number of parameters (1 or 4) have been supplied. |
| 185 | */ |
| 186 | if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR; |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 187 | |
| 188 | /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM |
| 189 | ** if the allocation fails. */ |
| 190 | pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); |
| 191 | if( !pCircle ) return SQLITE_NOMEM; |
| 192 | p->xDelUser = circle_del; |
| 193 | |
| 194 | /* Record the center and radius of the circular region. One way that |
| 195 | ** tested bounding boxes that intersect the circular region are detected |
| 196 | ** is by testing if each corner of the bounding box lies within radius |
| 197 | ** units of the center of the circle. */ |
drh | 4f03f41 | 2015-05-20 21:28:32 | [diff] [blame] | 198 | if( p->nParam==4 ){ |
| 199 | pCircle->centerx = p->aParam[0]; |
| 200 | pCircle->centery = p->aParam[1]; |
| 201 | pCircle->radius = p->aParam[2]; |
| 202 | pCircle->eScoreType = (int)p->aParam[3]; |
| 203 | }else{ |
| 204 | const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]); |
| 205 | pCircle->centerx = 0.0; |
| 206 | pCircle->centery = 0.0; |
| 207 | pCircle->radius = 0.0; |
| 208 | pCircle->eScoreType = 0; |
| 209 | while( z && z[0] ){ |
| 210 | if( z[0]=='r' && z[1]==':' ){ |
| 211 | pCircle->radius = atof(&z[2]); |
| 212 | }else if( z[0]=='x' && z[1]==':' ){ |
| 213 | pCircle->centerx = atof(&z[2]); |
| 214 | }else if( z[0]=='y' && z[1]==':' ){ |
| 215 | pCircle->centery = atof(&z[2]); |
| 216 | }else if( z[0]=='e' && z[1]==':' ){ |
| 217 | pCircle->eScoreType = (int)atof(&z[2]); |
| 218 | }else if( z[0]==' ' ){ |
| 219 | z++; |
| 220 | continue; |
| 221 | } |
| 222 | while( z[0]!=0 && z[0]!=' ' ) z++; |
| 223 | while( z[0]==' ' ) z++; |
| 224 | } |
| 225 | } |
| 226 | if( pCircle->radius<0.0 ){ |
| 227 | sqlite3_free(pCircle); |
| 228 | return SQLITE_NOMEM; |
| 229 | } |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 230 | |
| 231 | /* Define two bounding box regions. The first, aBox[0], extends to |
| 232 | ** infinity in the X dimension. It covers the same range of the Y dimension |
| 233 | ** as the circular region. The second, aBox[1], extends to infinity in |
| 234 | ** the Y dimension and is constrained to the range of the circle in the |
| 235 | ** X dimension. |
| 236 | ** |
| 237 | ** Then imagine each box is split in half along its short axis by a line |
| 238 | ** that intersects the center of the circular region. A bounding box |
| 239 | ** being tested can be said to intersect the circular region if it contains |
| 240 | ** points from each half of either of the two infinite bounding boxes. |
| 241 | */ |
| 242 | pCircle->aBox[0].xmin = pCircle->centerx; |
| 243 | pCircle->aBox[0].xmax = pCircle->centerx; |
| 244 | pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; |
| 245 | pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; |
| 246 | pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; |
| 247 | pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
| 248 | pCircle->aBox[1].ymin = pCircle->centery; |
| 249 | pCircle->aBox[1].ymax = pCircle->centery; |
| 250 | pCircle->mxArea = 200.0*200.0; |
| 251 | } |
| 252 | |
| 253 | /* Check if any of the 4 corners of the bounding-box being tested lie |
| 254 | ** inside the circular region. If they do, then the bounding-box does |
| 255 | ** intersect the region of interest. Set the output variable to true and |
| 256 | ** return SQLITE_OK in this case. */ |
| 257 | for(i=0; i<4; i++){ |
| 258 | double x = (i&0x01) ? xmax : xmin; |
| 259 | double y = (i&0x02) ? ymax : ymin; |
| 260 | double d2; |
| 261 | |
| 262 | d2 = (x-pCircle->centerx)*(x-pCircle->centerx); |
| 263 | d2 += (y-pCircle->centery)*(y-pCircle->centery); |
| 264 | if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; |
| 265 | } |
| 266 | |
| 267 | /* Check if the bounding box covers any other part of the circular region. |
| 268 | ** See comments above for a description of how this test works. If it does |
| 269 | ** cover part of the circular region, set the output variable to true |
| 270 | ** and return SQLITE_OK. */ |
| 271 | if( nWithin==0 ){ |
| 272 | for(i=0; i<2; i++){ |
| 273 | if( xmin<=pCircle->aBox[i].xmin |
| 274 | && xmax>=pCircle->aBox[i].xmax |
| 275 | && ymin<=pCircle->aBox[i].ymin |
| 276 | && ymax>=pCircle->aBox[i].ymax |
| 277 | ){ |
| 278 | nWithin = 1; |
| 279 | break; |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | if( pCircle->eScoreType==1 ){ |
| 285 | /* Depth first search */ |
| 286 | p->rScore = p->iLevel; |
| 287 | }else if( pCircle->eScoreType==2 ){ |
| 288 | /* Breadth first search */ |
| 289 | p->rScore = 100 - p->iLevel; |
| 290 | }else if( pCircle->eScoreType==3 ){ |
| 291 | /* Depth-first search, except sort the leaf nodes by area with |
| 292 | ** the largest area first */ |
| 293 | if( p->iLevel==1 ){ |
| 294 | p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; |
| 295 | if( p->rScore<0.01 ) p->rScore = 0.01; |
| 296 | }else{ |
| 297 | p->rScore = 0.0; |
| 298 | } |
| 299 | }else if( pCircle->eScoreType==4 ){ |
| 300 | /* Depth-first search, except exclude odd rowids */ |
| 301 | p->rScore = p->iLevel; |
| 302 | if( p->iRowid&1 ) nWithin = 0; |
| 303 | }else{ |
| 304 | /* Breadth-first search, except exclude odd rowids */ |
| 305 | p->rScore = 100 - p->iLevel; |
| 306 | if( p->iRowid&1 ) nWithin = 0; |
| 307 | } |
| 308 | if( nWithin==0 ){ |
| 309 | p->eWithin = NOT_WITHIN; |
| 310 | }else if( nWithin>=4 ){ |
| 311 | p->eWithin = FULLY_WITHIN; |
| 312 | }else{ |
| 313 | p->eWithin = PARTLY_WITHIN; |
| 314 | } |
| 315 | return SQLITE_OK; |
| 316 | } |
| 317 | /* |
| 318 | ** Implementation of "breadthfirstsearch" r-tree geometry callback using the |
| 319 | ** 2nd-generation interface that allows scoring. |
| 320 | ** |
| 321 | ** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... |
| 322 | ** |
| 323 | ** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. |
| 324 | */ |
| 325 | static int bfs_query_func(sqlite3_rtree_query_info *p){ |
| 326 | double x0,x1,y0,y1; /* Dimensions of box being tested */ |
| 327 | double bx0,bx1,by0,by1; /* Boundary of the query function */ |
| 328 | |
| 329 | if( p->nParam!=4 ) return SQLITE_ERROR; |
| 330 | x0 = p->aCoord[0]; |
| 331 | x1 = p->aCoord[1]; |
| 332 | y0 = p->aCoord[2]; |
| 333 | y1 = p->aCoord[3]; |
| 334 | bx0 = p->aParam[0]; |
| 335 | bx1 = p->aParam[1]; |
| 336 | by0 = p->aParam[2]; |
| 337 | by1 = p->aParam[3]; |
| 338 | p->rScore = 100 - p->iLevel; |
| 339 | if( p->eParentWithin==FULLY_WITHIN ){ |
| 340 | p->eWithin = FULLY_WITHIN; |
| 341 | }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ |
| 342 | p->eWithin = FULLY_WITHIN; |
| 343 | }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ |
| 344 | p->eWithin = PARTLY_WITHIN; |
| 345 | }else{ |
| 346 | p->eWithin = NOT_WITHIN; |
| 347 | } |
| 348 | return SQLITE_OK; |
| 349 | } |
| 350 | |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 351 | /* END of implementation of "circle" geometry callback. |
| 352 | ************************************************************************** |
| 353 | *************************************************************************/ |
| 354 | |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 355 | #include <assert.h> |
drh | 064b681 | 2024-07-30 15:49:02 | [diff] [blame] | 356 | #include "tclsqlite.h" |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 357 | |
| 358 | typedef struct Cube Cube; |
| 359 | struct Cube { |
| 360 | double x; |
| 361 | double y; |
| 362 | double z; |
| 363 | double width; |
| 364 | double height; |
| 365 | double depth; |
| 366 | }; |
| 367 | |
| 368 | static void cube_context_free(void *p){ |
| 369 | sqlite3_free(p); |
| 370 | } |
| 371 | |
dan | 7bddb75 | 2010-08-30 15:43:45 | [diff] [blame] | 372 | /* |
| 373 | ** The context pointer registered along with the 'cube' callback is |
| 374 | ** always ((void *)&gHere). This is just to facilitate testing, it is not |
| 375 | ** actually used for anything. |
| 376 | */ |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 377 | static int gHere = 42; |
| 378 | |
| 379 | /* |
| 380 | ** Implementation of a simple r-tree geom callback to test for intersection |
| 381 | ** of r-tree rows with a "cube" shape. Cubes are defined by six scalar |
| 382 | ** coordinates as follows: |
| 383 | ** |
| 384 | ** cube(x, y, z, width, height, depth) |
| 385 | ** |
| 386 | ** The width, height and depth parameters must all be greater than zero. |
| 387 | */ |
| 388 | static int cube_geom( |
dan | c223b8f | 2010-08-30 18:39:49 | [diff] [blame] | 389 | sqlite3_rtree_geometry *p, |
drh | f439fbd | 2012-04-02 21:35:42 | [diff] [blame] | 390 | int nCoord, |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 391 | sqlite3_rtree_dbl *aCoord, |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 392 | int *piRes |
| 393 | ){ |
| 394 | Cube *pCube = (Cube *)p->pUser; |
| 395 | |
| 396 | assert( p->pContext==(void *)&gHere ); |
| 397 | |
| 398 | if( pCube==0 ){ |
| 399 | if( p->nParam!=6 || nCoord!=6 |
| 400 | || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 |
| 401 | ){ |
| 402 | return SQLITE_ERROR; |
| 403 | } |
| 404 | pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); |
| 405 | if( !pCube ){ |
| 406 | return SQLITE_NOMEM; |
| 407 | } |
| 408 | pCube->x = p->aParam[0]; |
| 409 | pCube->y = p->aParam[1]; |
| 410 | pCube->z = p->aParam[2]; |
| 411 | pCube->width = p->aParam[3]; |
| 412 | pCube->height = p->aParam[4]; |
| 413 | pCube->depth = p->aParam[5]; |
| 414 | |
| 415 | p->pUser = (void *)pCube; |
| 416 | p->xDelUser = cube_context_free; |
| 417 | } |
| 418 | |
| 419 | assert( nCoord==6 ); |
| 420 | *piRes = 0; |
| 421 | if( aCoord[0]<=(pCube->x+pCube->width) |
| 422 | && aCoord[1]>=pCube->x |
| 423 | && aCoord[2]<=(pCube->y+pCube->height) |
| 424 | && aCoord[3]>=pCube->y |
| 425 | && aCoord[4]<=(pCube->z+pCube->depth) |
| 426 | && aCoord[5]>=pCube->z |
| 427 | ){ |
| 428 | *piRes = 1; |
| 429 | } |
| 430 | |
| 431 | return SQLITE_OK; |
| 432 | } |
drh | 860e332 | 2011-08-25 18:54:46 | [diff] [blame] | 433 | #endif /* SQLITE_ENABLE_RTREE */ |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 434 | |
mistachkin | 7617e4a | 2016-07-28 17:11:20 | [diff] [blame] | 435 | static int SQLITE_TCLAPI register_cube_geom( |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 436 | void * clientData, |
| 437 | Tcl_Interp *interp, |
| 438 | int objc, |
| 439 | Tcl_Obj *CONST objv[] |
| 440 | ){ |
shaneh | bd2aaf9 | 2010-09-01 02:38:21 | [diff] [blame] | 441 | #ifndef SQLITE_ENABLE_RTREE |
| 442 | UNUSED_PARAMETER(clientData); |
| 443 | UNUSED_PARAMETER(interp); |
| 444 | UNUSED_PARAMETER(objc); |
| 445 | UNUSED_PARAMETER(objv); |
| 446 | #else |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 447 | extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
mistachkin | e84d8d3 | 2013-04-29 03:09:10 | [diff] [blame] | 448 | extern const char *sqlite3ErrName(int); |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 449 | sqlite3 *db; |
dan | 7bddb75 | 2010-08-30 15:43:45 | [diff] [blame] | 450 | int rc; |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 451 | |
| 452 | if( objc!=2 ){ |
| 453 | Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
| 454 | return TCL_ERROR; |
| 455 | } |
| 456 | if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
dan | 7bddb75 | 2010-08-30 15:43:45 | [diff] [blame] | 457 | rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); |
mistachkin | e84d8d3 | 2013-04-29 03:09:10 | [diff] [blame] | 458 | Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 459 | #endif |
| 460 | return TCL_OK; |
| 461 | } |
| 462 | |
mistachkin | 7617e4a | 2016-07-28 17:11:20 | [diff] [blame] | 463 | static int SQLITE_TCLAPI register_circle_geom( |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 464 | void * clientData, |
| 465 | Tcl_Interp *interp, |
| 466 | int objc, |
| 467 | Tcl_Obj *CONST objv[] |
| 468 | ){ |
shaneh | bd2aaf9 | 2010-09-01 02:38:21 | [diff] [blame] | 469 | #ifndef SQLITE_ENABLE_RTREE |
| 470 | UNUSED_PARAMETER(clientData); |
| 471 | UNUSED_PARAMETER(interp); |
| 472 | UNUSED_PARAMETER(objc); |
| 473 | UNUSED_PARAMETER(objv); |
| 474 | #else |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 475 | extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
mistachkin | e84d8d3 | 2013-04-29 03:09:10 | [diff] [blame] | 476 | extern const char *sqlite3ErrName(int); |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 477 | sqlite3 *db; |
| 478 | int rc; |
| 479 | |
| 480 | if( objc!=2 ){ |
| 481 | Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
| 482 | return TCL_ERROR; |
| 483 | } |
| 484 | if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
| 485 | rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); |
drh | 65e6b0d | 2014-04-28 17:56:19 | [diff] [blame] | 486 | if( rc==SQLITE_OK ){ |
| 487 | rc = sqlite3_rtree_query_callback(db, "Qcircle", |
| 488 | circle_query_func, 0, 0); |
| 489 | } |
| 490 | if( rc==SQLITE_OK ){ |
| 491 | rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", |
| 492 | bfs_query_func, 0, 0); |
| 493 | } |
mistachkin | e84d8d3 | 2013-04-29 03:09:10 | [diff] [blame] | 494 | Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 495 | #endif |
| 496 | return TCL_OK; |
| 497 | } |
| 498 | |
| 499 | int Sqlitetestrtree_Init(Tcl_Interp *interp){ |
| 500 | Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); |
dan | 18ec96b | 2010-08-31 15:02:00 | [diff] [blame] | 501 | Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); |
dan | 9508daa | 2010-08-28 18:58:00 | [diff] [blame] | 502 | return TCL_OK; |
| 503 | } |