alloc/rc.rs
1//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
2//! Counted'.
3//!
4//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
5//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
6//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
7//! given allocation is destroyed, the value stored in that allocation (often
8//! referred to as "inner value") is also dropped.
9//!
10//! Shared references in Rust disallow mutation by default, and [`Rc`]
11//! is no exception: you cannot generally obtain a mutable reference to
12//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
13//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
14//! inside an `Rc`][mutability].
15//!
16//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
17//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
18//! does not implement [`Send`]. As a result, the Rust compiler
19//! will check *at compile time* that you are not sending [`Rc`]s between
20//! threads. If you need multi-threaded, atomic reference counting, use
21//! [`sync::Arc`][arc].
22//!
23//! The [`downgrade`][downgrade] method can be used to create a non-owning
24//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
25//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
26//! already been dropped. In other words, `Weak` pointers do not keep the value
27//! inside the allocation alive; however, they *do* keep the allocation
28//! (the backing store for the inner value) alive.
29//!
30//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
31//! [`Weak`] is used to break cycles. For example, a tree could have strong
32//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
33//! children back to their parents.
34//!
35//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
36//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
37//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
38//! functions, called using [fully qualified syntax]:
39//!
40//! ```
41//! use std::rc::Rc;
42//!
43//! let my_rc = Rc::new(());
44//! let my_weak = Rc::downgrade(&my_rc);
45//! ```
46//!
47//! `Rc<T>`'s implementations of traits like `Clone` may also be called using
48//! fully qualified syntax. Some people prefer to use fully qualified syntax,
49//! while others prefer using method-call syntax.
50//!
51//! ```
52//! use std::rc::Rc;
53//!
54//! let rc = Rc::new(());
55//! // Method-call syntax
56//! let rc2 = rc.clone();
57//! // Fully qualified syntax
58//! let rc3 = Rc::clone(&rc);
59//! ```
60//!
61//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
62//! already been dropped.
63//!
64//! # Cloning references
65//!
66//! Creating a new reference to the same allocation as an existing reference counted pointer
67//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
68//!
69//! ```
70//! use std::rc::Rc;
71//!
72//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
73//! // The two syntaxes below are equivalent.
74//! let a = foo.clone();
75//! let b = Rc::clone(&foo);
76//! // a and b both point to the same memory location as foo.
77//! ```
78//!
79//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
80//! the meaning of the code. In the example above, this syntax makes it easier to see that
81//! this code is creating a new reference rather than copying the whole content of foo.
82//!
83//! # Examples
84//!
85//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
86//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
87//! unique ownership, because more than one gadget may belong to the same
88//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
89//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
90//!
91//! ```
92//! use std::rc::Rc;
93//!
94//! struct Owner {
95//! name: String,
96//! // ...other fields
97//! }
98//!
99//! struct Gadget {
100//! id: i32,
101//! owner: Rc<Owner>,
102//! // ...other fields
103//! }
104//!
105//! fn main() {
106//! // Create a reference-counted `Owner`.
107//! let gadget_owner: Rc<Owner> = Rc::new(
108//! Owner {
109//! name: "Gadget Man".to_string(),
110//! }
111//! );
112//!
113//! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
114//! // gives us a new pointer to the same `Owner` allocation, incrementing
115//! // the reference count in the process.
116//! let gadget1 = Gadget {
117//! id: 1,
118//! owner: Rc::clone(&gadget_owner),
119//! };
120//! let gadget2 = Gadget {
121//! id: 2,
122//! owner: Rc::clone(&gadget_owner),
123//! };
124//!
125//! // Dispose of our local variable `gadget_owner`.
126//! drop(gadget_owner);
127//!
128//! // Despite dropping `gadget_owner`, we're still able to print out the name
129//! // of the `Owner` of the `Gadget`s. This is because we've only dropped a
130//! // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
131//! // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
132//! // live. The field projection `gadget1.owner.name` works because
133//! // `Rc<Owner>` automatically dereferences to `Owner`.
134//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
135//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
136//!
137//! // At the end of the function, `gadget1` and `gadget2` are destroyed, and
138//! // with them the last counted references to our `Owner`. Gadget Man now
139//! // gets destroyed as well.
140//! }
141//! ```
142//!
143//! If our requirements change, and we also need to be able to traverse from
144//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
145//! to `Gadget` introduces a cycle. This means that their
146//! reference counts can never reach 0, and the allocation will never be destroyed:
147//! a memory leak. In order to get around this, we can use [`Weak`]
148//! pointers.
149//!
150//! Rust actually makes it somewhat difficult to produce this loop in the first
151//! place. In order to end up with two values that point at each other, one of
152//! them needs to be mutable. This is difficult because [`Rc`] enforces
153//! memory safety by only giving out shared references to the value it wraps,
154//! and these don't allow direct mutation. We need to wrap the part of the
155//! value we wish to mutate in a [`RefCell`], which provides *interior
156//! mutability*: a method to achieve mutability through a shared reference.
157//! [`RefCell`] enforces Rust's borrowing rules at runtime.
158//!
159//! ```
160//! use std::rc::Rc;
161//! use std::rc::Weak;
162//! use std::cell::RefCell;
163//!
164//! struct Owner {
165//! name: String,
166//! gadgets: RefCell<Vec<Weak<Gadget>>>,
167//! // ...other fields
168//! }
169//!
170//! struct Gadget {
171//! id: i32,
172//! owner: Rc<Owner>,
173//! // ...other fields
174//! }
175//!
176//! fn main() {
177//! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
178//! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
179//! // a shared reference.
180//! let gadget_owner: Rc<Owner> = Rc::new(
181//! Owner {
182//! name: "Gadget Man".to_string(),
183//! gadgets: RefCell::new(vec![]),
184//! }
185//! );
186//!
187//! // Create `Gadget`s belonging to `gadget_owner`, as before.
188//! let gadget1 = Rc::new(
189//! Gadget {
190//! id: 1,
191//! owner: Rc::clone(&gadget_owner),
192//! }
193//! );
194//! let gadget2 = Rc::new(
195//! Gadget {
196//! id: 2,
197//! owner: Rc::clone(&gadget_owner),
198//! }
199//! );
200//!
201//! // Add the `Gadget`s to their `Owner`.
202//! {
203//! let mut gadgets = gadget_owner.gadgets.borrow_mut();
204//! gadgets.push(Rc::downgrade(&gadget1));
205//! gadgets.push(Rc::downgrade(&gadget2));
206//!
207//! // `RefCell` dynamic borrow ends here.
208//! }
209//!
210//! // Iterate over our `Gadget`s, printing their details out.
211//! for gadget_weak in gadget_owner.gadgets.borrow().iter() {
212//!
213//! // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
214//! // guarantee the allocation still exists, we need to call
215//! // `upgrade`, which returns an `Option<Rc<Gadget>>`.
216//! //
217//! // In this case we know the allocation still exists, so we simply
218//! // `unwrap` the `Option`. In a more complicated program, you might
219//! // need graceful error handling for a `None` result.
220//!
221//! let gadget = gadget_weak.upgrade().unwrap();
222//! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
223//! }
224//!
225//! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
226//! // are destroyed. There are now no strong (`Rc`) pointers to the
227//! // gadgets, so they are destroyed. This zeroes the reference count on
228//! // Gadget Man, so he gets destroyed as well.
229//! }
230//! ```
231//!
232//! [clone]: Clone::clone
233//! [`Cell`]: core::cell::Cell
234//! [`RefCell`]: core::cell::RefCell
235//! [arc]: crate::sync::Arc
236//! [`Deref`]: core::ops::Deref
237//! [downgrade]: Rc::downgrade
238//! [upgrade]: Weak::upgrade
239//! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable
240//! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
241
242#![stable(feature = "rust1", since = "1.0.0")]
243
244use core::any::Any;
245use core::cell::{Cell, CloneFromCell};
246#[cfg(not(no_global_oom_handling))]
247use core::clone::CloneToUninit;
248use core::clone::UseCloned;
249use core::cmp::Ordering;
250use core::hash::{Hash, Hasher};
251use core::intrinsics::abort;
252#[cfg(not(no_global_oom_handling))]
253use core::iter;
254use core::marker::{PhantomData, Unsize};
255use core::mem::{self, ManuallyDrop, align_of_val_raw};
256use core::num::NonZeroUsize;
257use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
258#[cfg(not(no_global_oom_handling))]
259use core::ops::{Residual, Try};
260use core::panic::{RefUnwindSafe, UnwindSafe};
261#[cfg(not(no_global_oom_handling))]
262use core::pin::Pin;
263use core::pin::PinCoerceUnsized;
264use core::ptr::{self, NonNull, drop_in_place};
265#[cfg(not(no_global_oom_handling))]
266use core::slice::from_raw_parts_mut;
267use core::{borrow, fmt, hint};
268
269#[cfg(not(no_global_oom_handling))]
270use crate::alloc::handle_alloc_error;
271use crate::alloc::{AllocError, Allocator, Global, Layout};
272use crate::borrow::{Cow, ToOwned};
273use crate::boxed::Box;
274#[cfg(not(no_global_oom_handling))]
275use crate::string::String;
276#[cfg(not(no_global_oom_handling))]
277use crate::vec::Vec;
278
279// This is repr(C) to future-proof against possible field-reordering, which
280// would interfere with otherwise safe [into|from]_raw() of transmutable
281// inner types.
282// repr(align(2)) (forcing alignment to at least 2) is required because usize
283// has 1-byte alignment on AVR.
284#[repr(C, align(2))]
285struct RcInner<T: ?Sized> {
286 strong: Cell<usize>,
287 weak: Cell<usize>,
288 value: T,
289}
290
291/// Calculate layout for `RcInner<T>` using the inner value's layout
292fn rc_inner_layout_for_value_layout(layout: Layout) -> Layout {
293 // Calculate layout using the given value layout.
294 // Previously, layout was calculated on the expression
295 // `&*(ptr as *const RcInner<T>)`, but this created a misaligned
296 // reference (see #54908).
297 Layout::new::<RcInner<()>>().extend(layout).unwrap().0.pad_to_align()
298}
299
300/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
301/// Counted'.
302///
303/// See the [module-level documentation](./index.html) for more details.
304///
305/// The inherent methods of `Rc` are all associated functions, which means
306/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
307/// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`.
308///
309/// [get_mut]: Rc::get_mut
310#[doc(search_unbox)]
311#[rustc_diagnostic_item = "Rc"]
312#[stable(feature = "rust1", since = "1.0.0")]
313#[rustc_insignificant_dtor]
314pub struct Rc<
315 T: ?Sized,
316 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
317> {
318 ptr: NonNull<RcInner<T>>,
319 phantom: PhantomData<RcInner<T>>,
320 alloc: A,
321}
322
323#[stable(feature = "rust1", since = "1.0.0")]
324impl<T: ?Sized, A: Allocator> !Send for Rc<T, A> {}
325
326// Note that this negative impl isn't strictly necessary for correctness,
327// as `Rc` transitively contains a `Cell`, which is itself `!Sync`.
328// However, given how important `Rc`'s `!Sync`-ness is,
329// having an explicit negative impl is nice for documentation purposes
330// and results in nicer error messages.
331#[stable(feature = "rust1", since = "1.0.0")]
332impl<T: ?Sized, A: Allocator> !Sync for Rc<T, A> {}
333
334#[stable(feature = "catch_unwind", since = "1.9.0")]
335impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Rc<T, A> {}
336#[stable(feature = "rc_ref_unwind_safe", since = "1.58.0")]
337impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> RefUnwindSafe for Rc<T, A> {}
338
339#[unstable(feature = "coerce_unsized", issue = "18598")]
340impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Rc<U, A>> for Rc<T, A> {}
341
342#[unstable(feature = "dispatch_from_dyn", issue = "none")]
343impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
344
345// SAFETY: `Rc::clone` doesn't access any `Cell`s which could contain the `Rc` being cloned.
346#[unstable(feature = "cell_get_cloned", issue = "145329")]
347unsafe impl<T: ?Sized> CloneFromCell for Rc<T> {}
348
349impl<T: ?Sized> Rc<T> {
350 #[inline]
351 unsafe fn from_inner(ptr: NonNull<RcInner<T>>) -> Self {
352 unsafe { Self::from_inner_in(ptr, Global) }
353 }
354
355 #[inline]
356 unsafe fn from_ptr(ptr: *mut RcInner<T>) -> Self {
357 unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
358 }
359}
360
361impl<T: ?Sized, A: Allocator> Rc<T, A> {
362 #[inline(always)]
363 fn inner(&self) -> &RcInner<T> {
364 // This unsafety is ok because while this Rc is alive we're guaranteed
365 // that the inner pointer is valid.
366 unsafe { self.ptr.as_ref() }
367 }
368
369 #[inline]
370 fn into_inner_with_allocator(this: Self) -> (NonNull<RcInner<T>>, A) {
371 let this = mem::ManuallyDrop::new(this);
372 (this.ptr, unsafe { ptr::read(&this.alloc) })
373 }
374
375 #[inline]
376 unsafe fn from_inner_in(ptr: NonNull<RcInner<T>>, alloc: A) -> Self {
377 Self { ptr, phantom: PhantomData, alloc }
378 }
379
380 #[inline]
381 unsafe fn from_ptr_in(ptr: *mut RcInner<T>, alloc: A) -> Self {
382 unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
383 }
384
385 // Non-inlined part of `drop`.
386 #[inline(never)]
387 unsafe fn drop_slow(&mut self) {
388 // Reconstruct the "strong weak" pointer and drop it when this
389 // variable goes out of scope. This ensures that the memory is
390 // deallocated even if the destructor of `T` panics.
391 let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
392
393 // Destroy the contained object.
394 // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
395 unsafe {
396 ptr::drop_in_place(&mut (*self.ptr.as_ptr()).value);
397 }
398 }
399}
400
401impl<T> Rc<T> {
402 /// Constructs a new `Rc<T>`.
403 ///
404 /// # Examples
405 ///
406 /// ```
407 /// use std::rc::Rc;
408 ///
409 /// let five = Rc::new(5);
410 /// ```
411 #[cfg(not(no_global_oom_handling))]
412 #[stable(feature = "rust1", since = "1.0.0")]
413 pub fn new(value: T) -> Rc<T> {
414 // There is an implicit weak pointer owned by all the strong
415 // pointers, which ensures that the weak destructor never frees
416 // the allocation while the strong destructor is running, even
417 // if the weak pointer is stored inside the strong one.
418 unsafe {
419 Self::from_inner(
420 Box::leak(Box::new(RcInner { strong: Cell::new(1), weak: Cell::new(1), value }))
421 .into(),
422 )
423 }
424 }
425
426 /// Constructs a new `Rc<T>` while giving you a `Weak<T>` to the allocation,
427 /// to allow you to construct a `T` which holds a weak pointer to itself.
428 ///
429 /// Generally, a structure circularly referencing itself, either directly or
430 /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
431 /// Using this function, you get access to the weak pointer during the
432 /// initialization of `T`, before the `Rc<T>` is created, such that you can
433 /// clone and store it inside the `T`.
434 ///
435 /// `new_cyclic` first allocates the managed allocation for the `Rc<T>`,
436 /// then calls your closure, giving it a `Weak<T>` to this allocation,
437 /// and only afterwards completes the construction of the `Rc<T>` by placing
438 /// the `T` returned from your closure into the allocation.
439 ///
440 /// Since the new `Rc<T>` is not fully-constructed until `Rc<T>::new_cyclic`
441 /// returns, calling [`upgrade`] on the weak reference inside your closure will
442 /// fail and result in a `None` value.
443 ///
444 /// # Panics
445 ///
446 /// If `data_fn` panics, the panic is propagated to the caller, and the
447 /// temporary [`Weak<T>`] is dropped normally.
448 ///
449 /// # Examples
450 ///
451 /// ```
452 /// # #![allow(dead_code)]
453 /// use std::rc::{Rc, Weak};
454 ///
455 /// struct Gadget {
456 /// me: Weak<Gadget>,
457 /// }
458 ///
459 /// impl Gadget {
460 /// /// Constructs a reference counted Gadget.
461 /// fn new() -> Rc<Self> {
462 /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the
463 /// // `Rc` we're constructing.
464 /// Rc::new_cyclic(|me| {
465 /// // Create the actual struct here.
466 /// Gadget { me: me.clone() }
467 /// })
468 /// }
469 ///
470 /// /// Returns a reference counted pointer to Self.
471 /// fn me(&self) -> Rc<Self> {
472 /// self.me.upgrade().unwrap()
473 /// }
474 /// }
475 /// ```
476 /// [`upgrade`]: Weak::upgrade
477 #[cfg(not(no_global_oom_handling))]
478 #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
479 pub fn new_cyclic<F>(data_fn: F) -> Rc<T>
480 where
481 F: FnOnce(&Weak<T>) -> T,
482 {
483 Self::new_cyclic_in(data_fn, Global)
484 }
485
486 /// Constructs a new `Rc` with uninitialized contents.
487 ///
488 /// # Examples
489 ///
490 /// ```
491 /// use std::rc::Rc;
492 ///
493 /// let mut five = Rc::<u32>::new_uninit();
494 ///
495 /// // Deferred initialization:
496 /// Rc::get_mut(&mut five).unwrap().write(5);
497 ///
498 /// let five = unsafe { five.assume_init() };
499 ///
500 /// assert_eq!(*five, 5)
501 /// ```
502 #[cfg(not(no_global_oom_handling))]
503 #[stable(feature = "new_uninit", since = "1.82.0")]
504 #[must_use]
505 pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
506 unsafe {
507 Rc::from_ptr(Rc::allocate_for_layout(
508 Layout::new::<T>(),
509 |layout| Global.allocate(layout),
510 <*mut u8>::cast,
511 ))
512 }
513 }
514
515 /// Constructs a new `Rc` with uninitialized contents, with the memory
516 /// being filled with `0` bytes.
517 ///
518 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
519 /// incorrect usage of this method.
520 ///
521 /// # Examples
522 ///
523 /// ```
524 /// use std::rc::Rc;
525 ///
526 /// let zero = Rc::<u32>::new_zeroed();
527 /// let zero = unsafe { zero.assume_init() };
528 ///
529 /// assert_eq!(*zero, 0)
530 /// ```
531 ///
532 /// [zeroed]: mem::MaybeUninit::zeroed
533 #[cfg(not(no_global_oom_handling))]
534 #[stable(feature = "new_zeroed_alloc", since = "1.92.0")]
535 #[must_use]
536 pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
537 unsafe {
538 Rc::from_ptr(Rc::allocate_for_layout(
539 Layout::new::<T>(),
540 |layout| Global.allocate_zeroed(layout),
541 <*mut u8>::cast,
542 ))
543 }
544 }
545
546 /// Constructs a new `Rc<T>`, returning an error if the allocation fails
547 ///
548 /// # Examples
549 ///
550 /// ```
551 /// #![feature(allocator_api)]
552 /// use std::rc::Rc;
553 ///
554 /// let five = Rc::try_new(5);
555 /// # Ok::<(), std::alloc::AllocError>(())
556 /// ```
557 #[unstable(feature = "allocator_api", issue = "32838")]
558 pub fn try_new(value: T) -> Result<Rc<T>, AllocError> {
559 // There is an implicit weak pointer owned by all the strong
560 // pointers, which ensures that the weak destructor never frees
561 // the allocation while the strong destructor is running, even
562 // if the weak pointer is stored inside the strong one.
563 unsafe {
564 Ok(Self::from_inner(
565 Box::leak(Box::try_new(RcInner {
566 strong: Cell::new(1),
567 weak: Cell::new(1),
568 value,
569 })?)
570 .into(),
571 ))
572 }
573 }
574
575 /// Constructs a new `Rc` with uninitialized contents, returning an error if the allocation fails
576 ///
577 /// # Examples
578 ///
579 /// ```
580 /// #![feature(allocator_api)]
581 ///
582 /// use std::rc::Rc;
583 ///
584 /// let mut five = Rc::<u32>::try_new_uninit()?;
585 ///
586 /// // Deferred initialization:
587 /// Rc::get_mut(&mut five).unwrap().write(5);
588 ///
589 /// let five = unsafe { five.assume_init() };
590 ///
591 /// assert_eq!(*five, 5);
592 /// # Ok::<(), std::alloc::AllocError>(())
593 /// ```
594 #[unstable(feature = "allocator_api", issue = "32838")]
595 pub fn try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
596 unsafe {
597 Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
598 Layout::new::<T>(),
599 |layout| Global.allocate(layout),
600 <*mut u8>::cast,
601 )?))
602 }
603 }
604
605 /// Constructs a new `Rc` with uninitialized contents, with the memory
606 /// being filled with `0` bytes, returning an error if the allocation fails
607 ///
608 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
609 /// incorrect usage of this method.
610 ///
611 /// # Examples
612 ///
613 /// ```
614 /// #![feature(allocator_api)]
615 ///
616 /// use std::rc::Rc;
617 ///
618 /// let zero = Rc::<u32>::try_new_zeroed()?;
619 /// let zero = unsafe { zero.assume_init() };
620 ///
621 /// assert_eq!(*zero, 0);
622 /// # Ok::<(), std::alloc::AllocError>(())
623 /// ```
624 ///
625 /// [zeroed]: mem::MaybeUninit::zeroed
626 #[unstable(feature = "allocator_api", issue = "32838")]
627 pub fn try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
628 unsafe {
629 Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
630 Layout::new::<T>(),
631 |layout| Global.allocate_zeroed(layout),
632 <*mut u8>::cast,
633 )?))
634 }
635 }
636 /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
637 /// `value` will be pinned in memory and unable to be moved.
638 #[cfg(not(no_global_oom_handling))]
639 #[stable(feature = "pin", since = "1.33.0")]
640 #[must_use]
641 pub fn pin(value: T) -> Pin<Rc<T>> {
642 unsafe { Pin::new_unchecked(Rc::new(value)) }
643 }
644
645 /// Maps the value in an `Rc`, reusing the allocation if possible.
646 ///
647 /// `f` is called on a reference to the value in the `Rc`, and the result is returned, also in
648 /// an `Rc`.
649 ///
650 /// Note: this is an associated function, which means that you have
651 /// to call it as `Rc::map(r, f)` instead of `r.map(f)`. This
652 /// is so that there is no conflict with a method on the inner type.
653 ///
654 /// # Examples
655 ///
656 /// ```
657 /// #![feature(smart_pointer_try_map)]
658 ///
659 /// use std::rc::Rc;
660 ///
661 /// let r = Rc::new(7);
662 /// let new = Rc::map(r, |i| i + 7);
663 /// assert_eq!(*new, 14);
664 /// ```
665 #[cfg(not(no_global_oom_handling))]
666 #[unstable(feature = "smart_pointer_try_map", issue = "144419")]
667 pub fn map<U>(this: Self, f: impl FnOnce(&T) -> U) -> Rc<U> {
668 if size_of::<T>() == size_of::<U>()
669 && align_of::<T>() == align_of::<U>()
670 && Rc::is_unique(&this)
671 {
672 unsafe {
673 let ptr = Rc::into_raw(this);
674 let value = ptr.read();
675 let mut allocation = Rc::from_raw(ptr.cast::<mem::MaybeUninit<U>>());
676
677 Rc::get_mut_unchecked(&mut allocation).write(f(&value));
678 allocation.assume_init()
679 }
680 } else {
681 Rc::new(f(&*this))
682 }
683 }
684
685 /// Attempts to map the value in an `Rc`, reusing the allocation if possible.
686 ///
687 /// `f` is called on a reference to the value in the `Rc`, and if the operation succeeds, the
688 /// result is returned, also in an `Rc`.
689 ///
690 /// Note: this is an associated function, which means that you have
691 /// to call it as `Rc::try_map(r, f)` instead of `r.try_map(f)`. This
692 /// is so that there is no conflict with a method on the inner type.
693 ///
694 /// # Examples
695 ///
696 /// ```
697 /// #![feature(smart_pointer_try_map)]
698 ///
699 /// use std::rc::Rc;
700 ///
701 /// let b = Rc::new(7);
702 /// let new = Rc::try_map(b, |&i| u32::try_from(i)).unwrap();
703 /// assert_eq!(*new, 7);
704 /// ```
705 #[cfg(not(no_global_oom_handling))]
706 #[unstable(feature = "smart_pointer_try_map", issue = "144419")]
707 pub fn try_map<R>(
708 this: Self,
709 f: impl FnOnce(&T) -> R,
710 ) -> <R::Residual as Residual<Rc<R::Output>>>::TryType
711 where
712 R: Try,
713 R::Residual: Residual<Rc<R::Output>>,
714 {
715 if size_of::<T>() == size_of::<R::Output>()
716 && align_of::<T>() == align_of::<R::Output>()
717 && Rc::is_unique(&this)
718 {
719 unsafe {
720 let ptr = Rc::into_raw(this);
721 let value = ptr.read();
722 let mut allocation = Rc::from_raw(ptr.cast::<mem::MaybeUninit<R::Output>>());
723
724 Rc::get_mut_unchecked(&mut allocation).write(f(&value)?);
725 try { allocation.assume_init() }
726 }
727 } else {
728 try { Rc::new(f(&*this)?) }
729 }
730 }
731}
732
733impl<T, A: Allocator> Rc<T, A> {
734 /// Constructs a new `Rc` in the provided allocator.
735 ///
736 /// # Examples
737 ///
738 /// ```
739 /// #![feature(allocator_api)]
740 /// use std::rc::Rc;
741 /// use std::alloc::System;
742 ///
743 /// let five = Rc::new_in(5, System);
744 /// ```
745 #[cfg(not(no_global_oom_handling))]
746 #[unstable(feature = "allocator_api", issue = "32838")]
747 #[inline]
748 pub fn new_in(value: T, alloc: A) -> Rc<T, A> {
749 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
750 // That would make code size bigger.
751 match Self::try_new_in(value, alloc) {
752 Ok(m) => m,
753 Err(_) => handle_alloc_error(Layout::new::<RcInner<T>>()),
754 }
755 }
756
757 /// Constructs a new `Rc` with uninitialized contents in the provided allocator.
758 ///
759 /// # Examples
760 ///
761 /// ```
762 /// #![feature(get_mut_unchecked)]
763 /// #![feature(allocator_api)]
764 ///
765 /// use std::rc::Rc;
766 /// use std::alloc::System;
767 ///
768 /// let mut five = Rc::<u32, _>::new_uninit_in(System);
769 ///
770 /// let five = unsafe {
771 /// // Deferred initialization:
772 /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
773 ///
774 /// five.assume_init()
775 /// };
776 ///
777 /// assert_eq!(*five, 5)
778 /// ```
779 #[cfg(not(no_global_oom_handling))]
780 #[unstable(feature = "allocator_api", issue = "32838")]
781 #[inline]
782 pub fn new_uninit_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
783 unsafe {
784 Rc::from_ptr_in(
785 Rc::allocate_for_layout(
786 Layout::new::<T>(),
787 |layout| alloc.allocate(layout),
788 <*mut u8>::cast,
789 ),
790 alloc,
791 )
792 }
793 }
794
795 /// Constructs a new `Rc` with uninitialized contents, with the memory
796 /// being filled with `0` bytes, in the provided allocator.
797 ///
798 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
799 /// incorrect usage of this method.
800 ///
801 /// # Examples
802 ///
803 /// ```
804 /// #![feature(allocator_api)]
805 ///
806 /// use std::rc::Rc;
807 /// use std::alloc::System;
808 ///
809 /// let zero = Rc::<u32, _>::new_zeroed_in(System);
810 /// let zero = unsafe { zero.assume_init() };
811 ///
812 /// assert_eq!(*zero, 0)
813 /// ```
814 ///
815 /// [zeroed]: mem::MaybeUninit::zeroed
816 #[cfg(not(no_global_oom_handling))]
817 #[unstable(feature = "allocator_api", issue = "32838")]
818 #[inline]
819 pub fn new_zeroed_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
820 unsafe {
821 Rc::from_ptr_in(
822 Rc::allocate_for_layout(
823 Layout::new::<T>(),
824 |layout| alloc.allocate_zeroed(layout),
825 <*mut u8>::cast,
826 ),
827 alloc,
828 )
829 }
830 }
831
832 /// Constructs a new `Rc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
833 /// to allow you to construct a `T` which holds a weak pointer to itself.
834 ///
835 /// Generally, a structure circularly referencing itself, either directly or
836 /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
837 /// Using this function, you get access to the weak pointer during the
838 /// initialization of `T`, before the `Rc<T, A>` is created, such that you can
839 /// clone and store it inside the `T`.
840 ///
841 /// `new_cyclic_in` first allocates the managed allocation for the `Rc<T, A>`,
842 /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
843 /// and only afterwards completes the construction of the `Rc<T, A>` by placing
844 /// the `T` returned from your closure into the allocation.
845 ///
846 /// Since the new `Rc<T, A>` is not fully-constructed until `Rc<T, A>::new_cyclic_in`
847 /// returns, calling [`upgrade`] on the weak reference inside your closure will
848 /// fail and result in a `None` value.
849 ///
850 /// # Panics
851 ///
852 /// If `data_fn` panics, the panic is propagated to the caller, and the
853 /// temporary [`Weak<T, A>`] is dropped normally.
854 ///
855 /// # Examples
856 ///
857 /// See [`new_cyclic`].
858 ///
859 /// [`new_cyclic`]: Rc::new_cyclic
860 /// [`upgrade`]: Weak::upgrade
861 #[cfg(not(no_global_oom_handling))]
862 #[unstable(feature = "allocator_api", issue = "32838")]
863 pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Rc<T, A>
864 where
865 F: FnOnce(&Weak<T, A>) -> T,
866 {
867 // Construct the inner in the "uninitialized" state with a single
868 // weak reference.
869 let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
870 RcInner {
871 strong: Cell::new(0),
872 weak: Cell::new(1),
873 value: mem::MaybeUninit::<T>::uninit(),
874 },
875 alloc,
876 ));
877 let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
878 let init_ptr: NonNull<RcInner<T>> = uninit_ptr.cast();
879
880 let weak = Weak { ptr: init_ptr, alloc };
881
882 // It's important we don't give up ownership of the weak pointer, or
883 // else the memory might be freed by the time `data_fn` returns. If
884 // we really wanted to pass ownership, we could create an additional
885 // weak pointer for ourselves, but this would result in additional
886 // updates to the weak reference count which might not be necessary
887 // otherwise.
888 let data = data_fn(&weak);
889
890 let strong = unsafe {
891 let inner = init_ptr.as_ptr();
892 ptr::write(&raw mut (*inner).value, data);
893
894 let prev_value = (*inner).strong.get();
895 debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
896 (*inner).strong.set(1);
897
898 // Strong references should collectively own a shared weak reference,
899 // so don't run the destructor for our old weak reference.
900 // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
901 // and forgetting the weak reference.
902 let alloc = weak.into_raw_with_allocator().1;
903
904 Rc::from_inner_in(init_ptr, alloc)
905 };
906
907 strong
908 }
909
910 /// Constructs a new `Rc<T>` in the provided allocator, returning an error if the allocation
911 /// fails
912 ///
913 /// # Examples
914 ///
915 /// ```
916 /// #![feature(allocator_api)]
917 /// use std::rc::Rc;
918 /// use std::alloc::System;
919 ///
920 /// let five = Rc::try_new_in(5, System);
921 /// # Ok::<(), std::alloc::AllocError>(())
922 /// ```
923 #[unstable(feature = "allocator_api", issue = "32838")]
924 #[inline]
925 pub fn try_new_in(value: T, alloc: A) -> Result<Self, AllocError> {
926 // There is an implicit weak pointer owned by all the strong
927 // pointers, which ensures that the weak destructor never frees
928 // the allocation while the strong destructor is running, even
929 // if the weak pointer is stored inside the strong one.
930 let (ptr, alloc) = Box::into_unique(Box::try_new_in(
931 RcInner { strong: Cell::new(1), weak: Cell::new(1), value },
932 alloc,
933 )?);
934 Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
935 }
936
937 /// Constructs a new `Rc` with uninitialized contents, in the provided allocator, returning an
938 /// error if the allocation fails
939 ///
940 /// # Examples
941 ///
942 /// ```
943 /// #![feature(allocator_api)]
944 /// #![feature(get_mut_unchecked)]
945 ///
946 /// use std::rc::Rc;
947 /// use std::alloc::System;
948 ///
949 /// let mut five = Rc::<u32, _>::try_new_uninit_in(System)?;
950 ///
951 /// let five = unsafe {
952 /// // Deferred initialization:
953 /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
954 ///
955 /// five.assume_init()
956 /// };
957 ///
958 /// assert_eq!(*five, 5);
959 /// # Ok::<(), std::alloc::AllocError>(())
960 /// ```
961 #[unstable(feature = "allocator_api", issue = "32838")]
962 #[inline]
963 pub fn try_new_uninit_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
964 unsafe {
965 Ok(Rc::from_ptr_in(
966 Rc::try_allocate_for_layout(
967 Layout::new::<T>(),
968 |layout| alloc.allocate(layout),
969 <*mut u8>::cast,
970 )?,
971 alloc,
972 ))
973 }
974 }
975
976 /// Constructs a new `Rc` with uninitialized contents, with the memory
977 /// being filled with `0` bytes, in the provided allocator, returning an error if the allocation
978 /// fails
979 ///
980 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
981 /// incorrect usage of this method.
982 ///
983 /// # Examples
984 ///
985 /// ```
986 /// #![feature(allocator_api)]
987 ///
988 /// use std::rc::Rc;
989 /// use std::alloc::System;
990 ///
991 /// let zero = Rc::<u32, _>::try_new_zeroed_in(System)?;
992 /// let zero = unsafe { zero.assume_init() };
993 ///
994 /// assert_eq!(*zero, 0);
995 /// # Ok::<(), std::alloc::AllocError>(())
996 /// ```
997 ///
998 /// [zeroed]: mem::MaybeUninit::zeroed
999 #[unstable(feature = "allocator_api", issue = "32838")]
1000 #[inline]
1001 pub fn try_new_zeroed_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
1002 unsafe {
1003 Ok(Rc::from_ptr_in(
1004 Rc::try_allocate_for_layout(
1005 Layout::new::<T>(),
1006 |layout| alloc.allocate_zeroed(layout),
1007 <*mut u8>::cast,
1008 )?,
1009 alloc,
1010 ))
1011 }
1012 }
1013
1014 /// Constructs a new `Pin<Rc<T>>` in the provided allocator. If `T` does not implement `Unpin`, then
1015 /// `value` will be pinned in memory and unable to be moved.
1016 #[cfg(not(no_global_oom_handling))]
1017 #[unstable(feature = "allocator_api", issue = "32838")]
1018 #[inline]
1019 pub fn pin_in(value: T, alloc: A) -> Pin<Self>
1020 where
1021 A: 'static,
1022 {
1023 unsafe { Pin::new_unchecked(Rc::new_in(value, alloc)) }
1024 }
1025
1026 /// Returns the inner value, if the `Rc` has exactly one strong reference.
1027 ///
1028 /// Otherwise, an [`Err`] is returned with the same `Rc` that was
1029 /// passed in.
1030 ///
1031 /// This will succeed even if there are outstanding weak references.
1032 ///
1033 /// # Examples
1034 ///
1035 /// ```
1036 /// use std::rc::Rc;
1037 ///
1038 /// let x = Rc::new(3);
1039 /// assert_eq!(Rc::try_unwrap(x), Ok(3));
1040 ///
1041 /// let x = Rc::new(4);
1042 /// let _y = Rc::clone(&x);
1043 /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
1044 /// ```
1045 #[inline]
1046 #[stable(feature = "rc_unique", since = "1.4.0")]
1047 pub fn try_unwrap(this: Self) -> Result<T, Self> {
1048 if Rc::strong_count(&this) == 1 {
1049 let this = ManuallyDrop::new(this);
1050
1051 let val: T = unsafe { ptr::read(&**this) }; // copy the contained object
1052 let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
1053
1054 // Indicate to Weaks that they can't be promoted by decrementing
1055 // the strong count, and then remove the implicit "strong weak"
1056 // pointer while also handling drop logic by just crafting a
1057 // fake Weak.
1058 this.inner().dec_strong();
1059 let _weak = Weak { ptr: this.ptr, alloc };
1060 Ok(val)
1061 } else {
1062 Err(this)
1063 }
1064 }
1065
1066 /// Returns the inner value, if the `Rc` has exactly one strong reference.
1067 ///
1068 /// Otherwise, [`None`] is returned and the `Rc` is dropped.
1069 ///
1070 /// This will succeed even if there are outstanding weak references.
1071 ///
1072 /// If `Rc::into_inner` is called on every clone of this `Rc`,
1073 /// it is guaranteed that exactly one of the calls returns the inner value.
1074 /// This means in particular that the inner value is not dropped.
1075 ///
1076 /// [`Rc::try_unwrap`] is conceptually similar to `Rc::into_inner`.
1077 /// And while they are meant for different use-cases, `Rc::into_inner(this)`
1078 /// is in fact equivalent to <code>[Rc::try_unwrap]\(this).[ok][Result::ok]()</code>.
1079 /// (Note that the same kind of equivalence does **not** hold true for
1080 /// [`Arc`](crate::sync::Arc), due to race conditions that do not apply to `Rc`!)
1081 ///
1082 /// # Examples
1083 ///
1084 /// ```
1085 /// use std::rc::Rc;
1086 ///
1087 /// let x = Rc::new(3);
1088 /// assert_eq!(Rc::into_inner(x), Some(3));
1089 ///
1090 /// let x = Rc::new(4);
1091 /// let y = Rc::clone(&x);
1092 ///
1093 /// assert_eq!(Rc::into_inner(y), None);
1094 /// assert_eq!(Rc::into_inner(x), Some(4));
1095 /// ```
1096 #[inline]
1097 #[stable(feature = "rc_into_inner", since = "1.70.0")]
1098 pub fn into_inner(this: Self) -> Option<T> {
1099 Rc::try_unwrap(this).ok()
1100 }
1101}
1102
1103impl<T> Rc<[T]> {
1104 /// Constructs a new reference-counted slice with uninitialized contents.
1105 ///
1106 /// # Examples
1107 ///
1108 /// ```
1109 /// use std::rc::Rc;
1110 ///
1111 /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
1112 ///
1113 /// // Deferred initialization:
1114 /// let data = Rc::get_mut(&mut values).unwrap();
1115 /// data[0].write(1);
1116 /// data[1].write(2);
1117 /// data[2].write(3);
1118 ///
1119 /// let values = unsafe { values.assume_init() };
1120 ///
1121 /// assert_eq!(*values, [1, 2, 3])
1122 /// ```
1123 #[cfg(not(no_global_oom_handling))]
1124 #[stable(feature = "new_uninit", since = "1.82.0")]
1125 #[must_use]
1126 pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
1127 unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
1128 }
1129
1130 /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
1131 /// filled with `0` bytes.
1132 ///
1133 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1134 /// incorrect usage of this method.
1135 ///
1136 /// # Examples
1137 ///
1138 /// ```
1139 /// use std::rc::Rc;
1140 ///
1141 /// let values = Rc::<[u32]>::new_zeroed_slice(3);
1142 /// let values = unsafe { values.assume_init() };
1143 ///
1144 /// assert_eq!(*values, [0, 0, 0])
1145 /// ```
1146 ///
1147 /// [zeroed]: mem::MaybeUninit::zeroed
1148 #[cfg(not(no_global_oom_handling))]
1149 #[stable(feature = "new_zeroed_alloc", since = "1.92.0")]
1150 #[must_use]
1151 pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
1152 unsafe {
1153 Rc::from_ptr(Rc::allocate_for_layout(
1154 Layout::array::<T>(len).unwrap(),
1155 |layout| Global.allocate_zeroed(layout),
1156 |mem| {
1157 ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1158 as *mut RcInner<[mem::MaybeUninit<T>]>
1159 },
1160 ))
1161 }
1162 }
1163
1164 /// Converts the reference-counted slice into a reference-counted array.
1165 ///
1166 /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1167 ///
1168 /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1169 #[unstable(feature = "slice_as_array", issue = "133508")]
1170 #[inline]
1171 #[must_use]
1172 pub fn into_array<const N: usize>(self) -> Option<Rc<[T; N]>> {
1173 if self.len() == N {
1174 let ptr = Self::into_raw(self) as *const [T; N];
1175
1176 // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1177 let me = unsafe { Rc::from_raw(ptr) };
1178 Some(me)
1179 } else {
1180 None
1181 }
1182 }
1183}
1184
1185impl<T, A: Allocator> Rc<[T], A> {
1186 /// Constructs a new reference-counted slice with uninitialized contents.
1187 ///
1188 /// # Examples
1189 ///
1190 /// ```
1191 /// #![feature(get_mut_unchecked)]
1192 /// #![feature(allocator_api)]
1193 ///
1194 /// use std::rc::Rc;
1195 /// use std::alloc::System;
1196 ///
1197 /// let mut values = Rc::<[u32], _>::new_uninit_slice_in(3, System);
1198 ///
1199 /// let values = unsafe {
1200 /// // Deferred initialization:
1201 /// Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1202 /// Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1203 /// Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1204 ///
1205 /// values.assume_init()
1206 /// };
1207 ///
1208 /// assert_eq!(*values, [1, 2, 3])
1209 /// ```
1210 #[cfg(not(no_global_oom_handling))]
1211 #[unstable(feature = "allocator_api", issue = "32838")]
1212 #[inline]
1213 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
1214 unsafe { Rc::from_ptr_in(Rc::allocate_for_slice_in(len, &alloc), alloc) }
1215 }
1216
1217 /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
1218 /// filled with `0` bytes.
1219 ///
1220 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1221 /// incorrect usage of this method.
1222 ///
1223 /// # Examples
1224 ///
1225 /// ```
1226 /// #![feature(allocator_api)]
1227 ///
1228 /// use std::rc::Rc;
1229 /// use std::alloc::System;
1230 ///
1231 /// let values = Rc::<[u32], _>::new_zeroed_slice_in(3, System);
1232 /// let values = unsafe { values.assume_init() };
1233 ///
1234 /// assert_eq!(*values, [0, 0, 0])
1235 /// ```
1236 ///
1237 /// [zeroed]: mem::MaybeUninit::zeroed
1238 #[cfg(not(no_global_oom_handling))]
1239 #[unstable(feature = "allocator_api", issue = "32838")]
1240 #[inline]
1241 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
1242 unsafe {
1243 Rc::from_ptr_in(
1244 Rc::allocate_for_layout(
1245 Layout::array::<T>(len).unwrap(),
1246 |layout| alloc.allocate_zeroed(layout),
1247 |mem| {
1248 ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1249 as *mut RcInner<[mem::MaybeUninit<T>]>
1250 },
1251 ),
1252 alloc,
1253 )
1254 }
1255 }
1256}
1257
1258impl<T, A: Allocator> Rc<mem::MaybeUninit<T>, A> {
1259 /// Converts to `Rc<T>`.
1260 ///
1261 /// # Safety
1262 ///
1263 /// As with [`MaybeUninit::assume_init`],
1264 /// it is up to the caller to guarantee that the inner value
1265 /// really is in an initialized state.
1266 /// Calling this when the content is not yet fully initialized
1267 /// causes immediate undefined behavior.
1268 ///
1269 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1270 ///
1271 /// # Examples
1272 ///
1273 /// ```
1274 /// use std::rc::Rc;
1275 ///
1276 /// let mut five = Rc::<u32>::new_uninit();
1277 ///
1278 /// // Deferred initialization:
1279 /// Rc::get_mut(&mut five).unwrap().write(5);
1280 ///
1281 /// let five = unsafe { five.assume_init() };
1282 ///
1283 /// assert_eq!(*five, 5)
1284 /// ```
1285 #[stable(feature = "new_uninit", since = "1.82.0")]
1286 #[inline]
1287 pub unsafe fn assume_init(self) -> Rc<T, A> {
1288 let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1289 unsafe { Rc::from_inner_in(ptr.cast(), alloc) }
1290 }
1291}
1292
1293impl<T, A: Allocator> Rc<[mem::MaybeUninit<T>], A> {
1294 /// Converts to `Rc<[T]>`.
1295 ///
1296 /// # Safety
1297 ///
1298 /// As with [`MaybeUninit::assume_init`],
1299 /// it is up to the caller to guarantee that the inner value
1300 /// really is in an initialized state.
1301 /// Calling this when the content is not yet fully initialized
1302 /// causes immediate undefined behavior.
1303 ///
1304 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1305 ///
1306 /// # Examples
1307 ///
1308 /// ```
1309 /// use std::rc::Rc;
1310 ///
1311 /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
1312 ///
1313 /// // Deferred initialization:
1314 /// let data = Rc::get_mut(&mut values).unwrap();
1315 /// data[0].write(1);
1316 /// data[1].write(2);
1317 /// data[2].write(3);
1318 ///
1319 /// let values = unsafe { values.assume_init() };
1320 ///
1321 /// assert_eq!(*values, [1, 2, 3])
1322 /// ```
1323 #[stable(feature = "new_uninit", since = "1.82.0")]
1324 #[inline]
1325 pub unsafe fn assume_init(self) -> Rc<[T], A> {
1326 let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1327 unsafe { Rc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1328 }
1329}
1330
1331impl<T: ?Sized> Rc<T> {
1332 /// Constructs an `Rc<T>` from a raw pointer.
1333 ///
1334 /// The raw pointer must have been previously returned by a call to
1335 /// [`Rc<U>::into_raw`][into_raw] with the following requirements:
1336 ///
1337 /// * If `U` is sized, it must have the same size and alignment as `T`. This
1338 /// is trivially true if `U` is `T`.
1339 /// * If `U` is unsized, its data pointer must have the same size and
1340 /// alignment as `T`. This is trivially true if `Rc<U>` was constructed
1341 /// through `Rc<T>` and then converted to `Rc<U>` through an [unsized
1342 /// coercion].
1343 ///
1344 /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1345 /// and alignment, this is basically like transmuting references of
1346 /// different types. See [`mem::transmute`][transmute] for more information
1347 /// on what restrictions apply in this case.
1348 ///
1349 /// The raw pointer must point to a block of memory allocated by the global allocator
1350 ///
1351 /// The user of `from_raw` has to make sure a specific value of `T` is only
1352 /// dropped once.
1353 ///
1354 /// This function is unsafe because improper use may lead to memory unsafety,
1355 /// even if the returned `Rc<T>` is never accessed.
1356 ///
1357 /// [into_raw]: Rc::into_raw
1358 /// [transmute]: core::mem::transmute
1359 /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1360 ///
1361 /// # Examples
1362 ///
1363 /// ```
1364 /// use std::rc::Rc;
1365 ///
1366 /// let x = Rc::new("hello".to_owned());
1367 /// let x_ptr = Rc::into_raw(x);
1368 ///
1369 /// unsafe {
1370 /// // Convert back to an `Rc` to prevent leak.
1371 /// let x = Rc::from_raw(x_ptr);
1372 /// assert_eq!(&*x, "hello");
1373 ///
1374 /// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
1375 /// }
1376 ///
1377 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1378 /// ```
1379 ///
1380 /// Convert a slice back into its original array:
1381 ///
1382 /// ```
1383 /// use std::rc::Rc;
1384 ///
1385 /// let x: Rc<[u32]> = Rc::new([1, 2, 3]);
1386 /// let x_ptr: *const [u32] = Rc::into_raw(x);
1387 ///
1388 /// unsafe {
1389 /// let x: Rc<[u32; 3]> = Rc::from_raw(x_ptr.cast::<[u32; 3]>());
1390 /// assert_eq!(&*x, &[1, 2, 3]);
1391 /// }
1392 /// ```
1393 #[inline]
1394 #[stable(feature = "rc_raw", since = "1.17.0")]
1395 pub unsafe fn from_raw(ptr: *const T) -> Self {
1396 unsafe { Self::from_raw_in(ptr, Global) }
1397 }
1398
1399 /// Consumes the `Rc`, returning the wrapped pointer.
1400 ///
1401 /// To avoid a memory leak the pointer must be converted back to an `Rc` using
1402 /// [`Rc::from_raw`].
1403 ///
1404 /// # Examples
1405 ///
1406 /// ```
1407 /// use std::rc::Rc;
1408 ///
1409 /// let x = Rc::new("hello".to_owned());
1410 /// let x_ptr = Rc::into_raw(x);
1411 /// assert_eq!(unsafe { &*x_ptr }, "hello");
1412 /// # // Prevent leaks for Miri.
1413 /// # drop(unsafe { Rc::from_raw(x_ptr) });
1414 /// ```
1415 #[must_use = "losing the pointer will leak memory"]
1416 #[stable(feature = "rc_raw", since = "1.17.0")]
1417 #[rustc_never_returns_null_ptr]
1418 pub fn into_raw(this: Self) -> *const T {
1419 let this = ManuallyDrop::new(this);
1420 Self::as_ptr(&*this)
1421 }
1422
1423 /// Increments the strong reference count on the `Rc<T>` associated with the
1424 /// provided pointer by one.
1425 ///
1426 /// # Safety
1427 ///
1428 /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the
1429 /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1430 /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1431 /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1432 /// allocated by the global allocator.
1433 ///
1434 /// [from_raw_in]: Rc::from_raw_in
1435 ///
1436 /// # Examples
1437 ///
1438 /// ```
1439 /// use std::rc::Rc;
1440 ///
1441 /// let five = Rc::new(5);
1442 ///
1443 /// unsafe {
1444 /// let ptr = Rc::into_raw(five);
1445 /// Rc::increment_strong_count(ptr);
1446 ///
1447 /// let five = Rc::from_raw(ptr);
1448 /// assert_eq!(2, Rc::strong_count(&five));
1449 /// # // Prevent leaks for Miri.
1450 /// # Rc::decrement_strong_count(ptr);
1451 /// }
1452 /// ```
1453 #[inline]
1454 #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
1455 pub unsafe fn increment_strong_count(ptr: *const T) {
1456 unsafe { Self::increment_strong_count_in(ptr, Global) }
1457 }
1458
1459 /// Decrements the strong reference count on the `Rc<T>` associated with the
1460 /// provided pointer by one.
1461 ///
1462 /// # Safety
1463 ///
1464 /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the
1465 /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1466 /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1467 /// least 1) when invoking this method, and `ptr` must point to a block of memory
1468 /// allocated by the global allocator. This method can be used to release the final `Rc` and
1469 /// backing storage, but **should not** be called after the final `Rc` has been released.
1470 ///
1471 /// [from_raw_in]: Rc::from_raw_in
1472 ///
1473 /// # Examples
1474 ///
1475 /// ```
1476 /// use std::rc::Rc;
1477 ///
1478 /// let five = Rc::new(5);
1479 ///
1480 /// unsafe {
1481 /// let ptr = Rc::into_raw(five);
1482 /// Rc::increment_strong_count(ptr);
1483 ///
1484 /// let five = Rc::from_raw(ptr);
1485 /// assert_eq!(2, Rc::strong_count(&five));
1486 /// Rc::decrement_strong_count(ptr);
1487 /// assert_eq!(1, Rc::strong_count(&five));
1488 /// }
1489 /// ```
1490 #[inline]
1491 #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
1492 pub unsafe fn decrement_strong_count(ptr: *const T) {
1493 unsafe { Self::decrement_strong_count_in(ptr, Global) }
1494 }
1495}
1496
1497impl<T: ?Sized, A: Allocator> Rc<T, A> {
1498 /// Returns a reference to the underlying allocator.
1499 ///
1500 /// Note: this is an associated function, which means that you have
1501 /// to call it as `Rc::allocator(&r)` instead of `r.allocator()`. This
1502 /// is so that there is no conflict with a method on the inner type.
1503 #[inline]
1504 #[unstable(feature = "allocator_api", issue = "32838")]
1505 pub fn allocator(this: &Self) -> &A {
1506 &this.alloc
1507 }
1508
1509 /// Consumes the `Rc`, returning the wrapped pointer and allocator.
1510 ///
1511 /// To avoid a memory leak the pointer must be converted back to an `Rc` using
1512 /// [`Rc::from_raw_in`].
1513 ///
1514 /// # Examples
1515 ///
1516 /// ```
1517 /// #![feature(allocator_api)]
1518 /// use std::rc::Rc;
1519 /// use std::alloc::System;
1520 ///
1521 /// let x = Rc::new_in("hello".to_owned(), System);
1522 /// let (ptr, alloc) = Rc::into_raw_with_allocator(x);
1523 /// assert_eq!(unsafe { &*ptr }, "hello");
1524 /// let x = unsafe { Rc::from_raw_in(ptr, alloc) };
1525 /// assert_eq!(&*x, "hello");
1526 /// ```
1527 #[must_use = "losing the pointer will leak memory"]
1528 #[unstable(feature = "allocator_api", issue = "32838")]
1529 pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1530 let this = mem::ManuallyDrop::new(this);
1531 let ptr = Self::as_ptr(&this);
1532 // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1533 let alloc = unsafe { ptr::read(&this.alloc) };
1534 (ptr, alloc)
1535 }
1536
1537 /// Provides a raw pointer to the data.
1538 ///
1539 /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
1540 /// for as long as there are strong counts in the `Rc`.
1541 ///
1542 /// # Examples
1543 ///
1544 /// ```
1545 /// use std::rc::Rc;
1546 ///
1547 /// let x = Rc::new(0);
1548 /// let y = Rc::clone(&x);
1549 /// let x_ptr = Rc::as_ptr(&x);
1550 /// assert_eq!(x_ptr, Rc::as_ptr(&y));
1551 /// assert_eq!(unsafe { *x_ptr }, 0);
1552 /// ```
1553 #[stable(feature = "weak_into_raw", since = "1.45.0")]
1554 #[rustc_never_returns_null_ptr]
1555 pub fn as_ptr(this: &Self) -> *const T {
1556 let ptr: *mut RcInner<T> = NonNull::as_ptr(this.ptr);
1557
1558 // SAFETY: This cannot go through Deref::deref or Rc::inner because
1559 // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1560 // write through the pointer after the Rc is recovered through `from_raw`.
1561 unsafe { &raw mut (*ptr).value }
1562 }
1563
1564 /// Constructs an `Rc<T, A>` from a raw pointer in the provided allocator.
1565 ///
1566 /// The raw pointer must have been previously returned by a call to [`Rc<U,
1567 /// A>::into_raw`][into_raw] with the following requirements:
1568 ///
1569 /// * If `U` is sized, it must have the same size and alignment as `T`. This
1570 /// is trivially true if `U` is `T`.
1571 /// * If `U` is unsized, its data pointer must have the same size and
1572 /// alignment as `T`. This is trivially true if `Rc<U>` was constructed
1573 /// through `Rc<T>` and then converted to `Rc<U>` through an [unsized
1574 /// coercion].
1575 ///
1576 /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1577 /// and alignment, this is basically like transmuting references of
1578 /// different types. See [`mem::transmute`][transmute] for more information
1579 /// on what restrictions apply in this case.
1580 ///
1581 /// The raw pointer must point to a block of memory allocated by `alloc`
1582 ///
1583 /// The user of `from_raw` has to make sure a specific value of `T` is only
1584 /// dropped once.
1585 ///
1586 /// This function is unsafe because improper use may lead to memory unsafety,
1587 /// even if the returned `Rc<T>` is never accessed.
1588 ///
1589 /// [into_raw]: Rc::into_raw
1590 /// [transmute]: core::mem::transmute
1591 /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1592 ///
1593 /// # Examples
1594 ///
1595 /// ```
1596 /// #![feature(allocator_api)]
1597 ///
1598 /// use std::rc::Rc;
1599 /// use std::alloc::System;
1600 ///
1601 /// let x = Rc::new_in("hello".to_owned(), System);
1602 /// let (x_ptr, _alloc) = Rc::into_raw_with_allocator(x);
1603 ///
1604 /// unsafe {
1605 /// // Convert back to an `Rc` to prevent leak.
1606 /// let x = Rc::from_raw_in(x_ptr, System);
1607 /// assert_eq!(&*x, "hello");
1608 ///
1609 /// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
1610 /// }
1611 ///
1612 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1613 /// ```
1614 ///
1615 /// Convert a slice back into its original array:
1616 ///
1617 /// ```
1618 /// #![feature(allocator_api)]
1619 ///
1620 /// use std::rc::Rc;
1621 /// use std::alloc::System;
1622 ///
1623 /// let x: Rc<[u32], _> = Rc::new_in([1, 2, 3], System);
1624 /// let x_ptr: *const [u32] = Rc::into_raw_with_allocator(x).0;
1625 ///
1626 /// unsafe {
1627 /// let x: Rc<[u32; 3], _> = Rc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1628 /// assert_eq!(&*x, &[1, 2, 3]);
1629 /// }
1630 /// ```
1631 #[unstable(feature = "allocator_api", issue = "32838")]
1632 pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1633 let offset = unsafe { data_offset(ptr) };
1634
1635 // Reverse the offset to find the original RcInner.
1636 let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcInner<T> };
1637
1638 unsafe { Self::from_ptr_in(rc_ptr, alloc) }
1639 }
1640
1641 /// Creates a new [`Weak`] pointer to this allocation.
1642 ///
1643 /// # Examples
1644 ///
1645 /// ```
1646 /// use std::rc::Rc;
1647 ///
1648 /// let five = Rc::new(5);
1649 ///
1650 /// let weak_five = Rc::downgrade(&five);
1651 /// ```
1652 #[must_use = "this returns a new `Weak` pointer, \
1653 without modifying the original `Rc`"]
1654 #[stable(feature = "rc_weak", since = "1.4.0")]
1655 pub fn downgrade(this: &Self) -> Weak<T, A>
1656 where
1657 A: Clone,
1658 {
1659 this.inner().inc_weak();
1660 // Make sure we do not create a dangling Weak
1661 debug_assert!(!is_dangling(this.ptr.as_ptr()));
1662 Weak { ptr: this.ptr, alloc: this.alloc.clone() }
1663 }
1664
1665 /// Gets the number of [`Weak`] pointers to this allocation.
1666 ///
1667 /// # Examples
1668 ///
1669 /// ```
1670 /// use std::rc::Rc;
1671 ///
1672 /// let five = Rc::new(5);
1673 /// let _weak_five = Rc::downgrade(&five);
1674 ///
1675 /// assert_eq!(1, Rc::weak_count(&five));
1676 /// ```
1677 #[inline]
1678 #[stable(feature = "rc_counts", since = "1.15.0")]
1679 pub fn weak_count(this: &Self) -> usize {
1680 this.inner().weak() - 1
1681 }
1682
1683 /// Gets the number of strong (`Rc`) pointers to this allocation.
1684 ///
1685 /// # Examples
1686 ///
1687 /// ```
1688 /// use std::rc::Rc;
1689 ///
1690 /// let five = Rc::new(5);
1691 /// let _also_five = Rc::clone(&five);
1692 ///
1693 /// assert_eq!(2, Rc::strong_count(&five));
1694 /// ```
1695 #[inline]
1696 #[stable(feature = "rc_counts", since = "1.15.0")]
1697 pub fn strong_count(this: &Self) -> usize {
1698 this.inner().strong()
1699 }
1700
1701 /// Increments the strong reference count on the `Rc<T>` associated with the
1702 /// provided pointer by one.
1703 ///
1704 /// # Safety
1705 ///
1706 /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the
1707 /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1708 /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1709 /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1710 /// allocated by `alloc`.
1711 ///
1712 /// [from_raw_in]: Rc::from_raw_in
1713 ///
1714 /// # Examples
1715 ///
1716 /// ```
1717 /// #![feature(allocator_api)]
1718 ///
1719 /// use std::rc::Rc;
1720 /// use std::alloc::System;
1721 ///
1722 /// let five = Rc::new_in(5, System);
1723 ///
1724 /// unsafe {
1725 /// let (ptr, _alloc) = Rc::into_raw_with_allocator(five);
1726 /// Rc::increment_strong_count_in(ptr, System);
1727 ///
1728 /// let five = Rc::from_raw_in(ptr, System);
1729 /// assert_eq!(2, Rc::strong_count(&five));
1730 /// # // Prevent leaks for Miri.
1731 /// # Rc::decrement_strong_count_in(ptr, System);
1732 /// }
1733 /// ```
1734 #[inline]
1735 #[unstable(feature = "allocator_api", issue = "32838")]
1736 pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1737 where
1738 A: Clone,
1739 {
1740 // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop
1741 let rc = unsafe { mem::ManuallyDrop::new(Rc::<T, A>::from_raw_in(ptr, alloc)) };
1742 // Now increase refcount, but don't drop new refcount either
1743 let _rc_clone: mem::ManuallyDrop<_> = rc.clone();
1744 }
1745
1746 /// Decrements the strong reference count on the `Rc<T>` associated with the
1747 /// provided pointer by one.
1748 ///
1749 /// # Safety
1750 ///
1751 /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the
1752 /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1753 /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1754 /// least 1) when invoking this method, and `ptr` must point to a block of memory
1755 /// allocated by `alloc`. This method can be used to release the final `Rc` and
1756 /// backing storage, but **should not** be called after the final `Rc` has been released.
1757 ///
1758 /// [from_raw_in]: Rc::from_raw_in
1759 ///
1760 /// # Examples
1761 ///
1762 /// ```
1763 /// #![feature(allocator_api)]
1764 ///
1765 /// use std::rc::Rc;
1766 /// use std::alloc::System;
1767 ///
1768 /// let five = Rc::new_in(5, System);
1769 ///
1770 /// unsafe {
1771 /// let (ptr, _alloc) = Rc::into_raw_with_allocator(five);
1772 /// Rc::increment_strong_count_in(ptr, System);
1773 ///
1774 /// let five = Rc::from_raw_in(ptr, System);
1775 /// assert_eq!(2, Rc::strong_count(&five));
1776 /// Rc::decrement_strong_count_in(ptr, System);
1777 /// assert_eq!(1, Rc::strong_count(&five));
1778 /// }
1779 /// ```
1780 #[inline]
1781 #[unstable(feature = "allocator_api", issue = "32838")]
1782 pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1783 unsafe { drop(Rc::from_raw_in(ptr, alloc)) };
1784 }
1785
1786 /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to
1787 /// this allocation.
1788 #[inline]
1789 fn is_unique(this: &Self) -> bool {
1790 Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
1791 }
1792
1793 /// Returns a mutable reference into the given `Rc`, if there are
1794 /// no other `Rc` or [`Weak`] pointers to the same allocation.
1795 ///
1796 /// Returns [`None`] otherwise, because it is not safe to
1797 /// mutate a shared value.
1798 ///
1799 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
1800 /// the inner value when there are other `Rc` pointers.
1801 ///
1802 /// [make_mut]: Rc::make_mut
1803 /// [clone]: Clone::clone
1804 ///
1805 /// # Examples
1806 ///
1807 /// ```
1808 /// use std::rc::Rc;
1809 ///
1810 /// let mut x = Rc::new(3);
1811 /// *Rc::get_mut(&mut x).unwrap() = 4;
1812 /// assert_eq!(*x, 4);
1813 ///
1814 /// let _y = Rc::clone(&x);
1815 /// assert!(Rc::get_mut(&mut x).is_none());
1816 /// ```
1817 #[inline]
1818 #[stable(feature = "rc_unique", since = "1.4.0")]
1819 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
1820 if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
1821 }
1822
1823 /// Returns a mutable reference into the given `Rc`,
1824 /// without any check.
1825 ///
1826 /// See also [`get_mut`], which is safe and does appropriate checks.
1827 ///
1828 /// [`get_mut`]: Rc::get_mut
1829 ///
1830 /// # Safety
1831 ///
1832 /// If any other `Rc` or [`Weak`] pointers to the same allocation exist, then
1833 /// they must not be dereferenced or have active borrows for the duration
1834 /// of the returned borrow, and their inner type must be exactly the same as the
1835 /// inner type of this Rc (including lifetimes). This is trivially the case if no
1836 /// such pointers exist, for example immediately after `Rc::new`.
1837 ///
1838 /// # Examples
1839 ///
1840 /// ```
1841 /// #![feature(get_mut_unchecked)]
1842 ///
1843 /// use std::rc::Rc;
1844 ///
1845 /// let mut x = Rc::new(String::new());
1846 /// unsafe {
1847 /// Rc::get_mut_unchecked(&mut x).push_str("foo")
1848 /// }
1849 /// assert_eq!(*x, "foo");
1850 /// ```
1851 /// Other `Rc` pointers to the same allocation must be to the same type.
1852 /// ```no_run
1853 /// #![feature(get_mut_unchecked)]
1854 ///
1855 /// use std::rc::Rc;
1856 ///
1857 /// let x: Rc<str> = Rc::from("Hello, world!");
1858 /// let mut y: Rc<[u8]> = x.clone().into();
1859 /// unsafe {
1860 /// // this is Undefined Behavior, because x's inner type is str, not [u8]
1861 /// Rc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
1862 /// }
1863 /// println!("{}", &*x); // Invalid UTF-8 in a str
1864 /// ```
1865 /// Other `Rc` pointers to the same allocation must be to the exact same type, including lifetimes.
1866 /// ```no_run
1867 /// #![feature(get_mut_unchecked)]
1868 ///
1869 /// use std::rc::Rc;
1870 ///
1871 /// let x: Rc<&str> = Rc::new("Hello, world!");
1872 /// {
1873 /// let s = String::from("Oh, no!");
1874 /// let mut y: Rc<&str> = x.clone();
1875 /// unsafe {
1876 /// // this is Undefined Behavior, because x's inner type
1877 /// // is &'long str, not &'short str
1878 /// *Rc::get_mut_unchecked(&mut y) = &s;
1879 /// }
1880 /// }
1881 /// println!("{}", &*x); // Use-after-free
1882 /// ```
1883 #[inline]
1884 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
1885 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
1886 // We are careful to *not* create a reference covering the "count" fields, as
1887 // this would conflict with accesses to the reference counts (e.g. by `Weak`).
1888 unsafe { &mut (*this.ptr.as_ptr()).value }
1889 }
1890
1891 #[inline]
1892 #[stable(feature = "ptr_eq", since = "1.17.0")]
1893 /// Returns `true` if the two `Rc`s point to the same allocation in a vein similar to
1894 /// [`ptr::eq`]. This function ignores the metadata of `dyn Trait` pointers.
1895 ///
1896 /// # Examples
1897 ///
1898 /// ```
1899 /// use std::rc::Rc;
1900 ///
1901 /// let five = Rc::new(5);
1902 /// let same_five = Rc::clone(&five);
1903 /// let other_five = Rc::new(5);
1904 ///
1905 /// assert!(Rc::ptr_eq(&five, &same_five));
1906 /// assert!(!Rc::ptr_eq(&five, &other_five));
1907 /// ```
1908 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1909 ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
1910 }
1911}
1912
1913#[cfg(not(no_global_oom_handling))]
1914impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Rc<T, A> {
1915 /// Makes a mutable reference into the given `Rc`.
1916 ///
1917 /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
1918 /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
1919 /// referred to as clone-on-write.
1920 ///
1921 /// However, if there are no other `Rc` pointers to this allocation, but some [`Weak`]
1922 /// pointers, then the [`Weak`] pointers will be disassociated and the inner value will not
1923 /// be cloned.
1924 ///
1925 /// See also [`get_mut`], which will fail rather than cloning the inner value
1926 /// or disassociating [`Weak`] pointers.
1927 ///
1928 /// [`clone`]: Clone::clone
1929 /// [`get_mut`]: Rc::get_mut
1930 ///
1931 /// # Examples
1932 ///
1933 /// ```
1934 /// use std::rc::Rc;
1935 ///
1936 /// let mut data = Rc::new(5);
1937 ///
1938 /// *Rc::make_mut(&mut data) += 1; // Won't clone anything
1939 /// let mut other_data = Rc::clone(&data); // Won't clone inner data
1940 /// *Rc::make_mut(&mut data) += 1; // Clones inner data
1941 /// *Rc::make_mut(&mut data) += 1; // Won't clone anything
1942 /// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything
1943 ///
1944 /// // Now `data` and `other_data` point to different allocations.
1945 /// assert_eq!(*data, 8);
1946 /// assert_eq!(*other_data, 12);
1947 /// ```
1948 ///
1949 /// [`Weak`] pointers will be disassociated:
1950 ///
1951 /// ```
1952 /// use std::rc::Rc;
1953 ///
1954 /// let mut data = Rc::new(75);
1955 /// let weak = Rc::downgrade(&data);
1956 ///
1957 /// assert!(75 == *data);
1958 /// assert!(75 == *weak.upgrade().unwrap());
1959 ///
1960 /// *Rc::make_mut(&mut data) += 1;
1961 ///
1962 /// assert!(76 == *data);
1963 /// assert!(weak.upgrade().is_none());
1964 /// ```
1965 #[inline]
1966 #[stable(feature = "rc_unique", since = "1.4.0")]
1967 pub fn make_mut(this: &mut Self) -> &mut T {
1968 let size_of_val = size_of_val::<T>(&**this);
1969
1970 if Rc::strong_count(this) != 1 {
1971 // Gotta clone the data, there are other Rcs.
1972
1973 let this_data_ref: &T = &**this;
1974 // `in_progress` drops the allocation if we panic before finishing initializing it.
1975 let mut in_progress: UniqueRcUninit<T, A> =
1976 UniqueRcUninit::new(this_data_ref, this.alloc.clone());
1977
1978 // Initialize with clone of this.
1979 let initialized_clone = unsafe {
1980 // Clone. If the clone panics, `in_progress` will be dropped and clean up.
1981 this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
1982 // Cast type of pointer, now that it is initialized.
1983 in_progress.into_rc()
1984 };
1985
1986 // Replace `this` with newly constructed Rc.
1987 *this = initialized_clone;
1988 } else if Rc::weak_count(this) != 0 {
1989 // Can just steal the data, all that's left is Weaks
1990
1991 // We don't need panic-protection like the above branch does, but we might as well
1992 // use the same mechanism.
1993 let mut in_progress: UniqueRcUninit<T, A> =
1994 UniqueRcUninit::new(&**this, this.alloc.clone());
1995 unsafe {
1996 // Initialize `in_progress` with move of **this.
1997 // We have to express this in terms of bytes because `T: ?Sized`; there is no
1998 // operation that just copies a value based on its `size_of_val()`.
1999 ptr::copy_nonoverlapping(
2000 ptr::from_ref(&**this).cast::<u8>(),
2001 in_progress.data_ptr().cast::<u8>(),
2002 size_of_val,
2003 );
2004
2005 this.inner().dec_strong();
2006 // Remove implicit strong-weak ref (no need to craft a fake
2007 // Weak here -- we know other Weaks can clean up for us)
2008 this.inner().dec_weak();
2009 // Replace `this` with newly constructed Rc that has the moved data.
2010 ptr::write(this, in_progress.into_rc());
2011 }
2012 }
2013 // This unsafety is ok because we're guaranteed that the pointer
2014 // returned is the *only* pointer that will ever be returned to T. Our
2015 // reference count is guaranteed to be 1 at this point, and we required
2016 // the `Rc<T>` itself to be `mut`, so we're returning the only possible
2017 // reference to the allocation.
2018 unsafe { &mut this.ptr.as_mut().value }
2019 }
2020}
2021
2022impl<T: Clone, A: Allocator> Rc<T, A> {
2023 /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
2024 /// clone.
2025 ///
2026 /// Assuming `rc_t` is of type `Rc<T>`, this function is functionally equivalent to
2027 /// `(*rc_t).clone()`, but will avoid cloning the inner value where possible.
2028 ///
2029 /// # Examples
2030 ///
2031 /// ```
2032 /// # use std::{ptr, rc::Rc};
2033 /// let inner = String::from("test");
2034 /// let ptr = inner.as_ptr();
2035 ///
2036 /// let rc = Rc::new(inner);
2037 /// let inner = Rc::unwrap_or_clone(rc);
2038 /// // The inner value was not cloned
2039 /// assert!(ptr::eq(ptr, inner.as_ptr()));
2040 ///
2041 /// let rc = Rc::new(inner);
2042 /// let rc2 = rc.clone();
2043 /// let inner = Rc::unwrap_or_clone(rc);
2044 /// // Because there were 2 references, we had to clone the inner value.
2045 /// assert!(!ptr::eq(ptr, inner.as_ptr()));
2046 /// // `rc2` is the last reference, so when we unwrap it we get back
2047 /// // the original `String`.
2048 /// let inner = Rc::unwrap_or_clone(rc2);
2049 /// assert!(ptr::eq(ptr, inner.as_ptr()));
2050 /// ```
2051 #[inline]
2052 #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
2053 pub fn unwrap_or_clone(this: Self) -> T {
2054 Rc::try_unwrap(this).unwrap_or_else(|rc| (*rc).clone())
2055 }
2056}
2057
2058impl<A: Allocator> Rc<dyn Any, A> {
2059 /// Attempts to downcast the `Rc<dyn Any>` to a concrete type.
2060 ///
2061 /// # Examples
2062 ///
2063 /// ```
2064 /// use std::any::Any;
2065 /// use std::rc::Rc;
2066 ///
2067 /// fn print_if_string(value: Rc<dyn Any>) {
2068 /// if let Ok(string) = value.downcast::<String>() {
2069 /// println!("String ({}): {}", string.len(), string);
2070 /// }
2071 /// }
2072 ///
2073 /// let my_string = "Hello World".to_string();
2074 /// print_if_string(Rc::new(my_string));
2075 /// print_if_string(Rc::new(0i8));
2076 /// ```
2077 #[inline]
2078 #[stable(feature = "rc_downcast", since = "1.29.0")]
2079 pub fn downcast<T: Any>(self) -> Result<Rc<T, A>, Self> {
2080 if (*self).is::<T>() {
2081 unsafe {
2082 let (ptr, alloc) = Rc::into_inner_with_allocator(self);
2083 Ok(Rc::from_inner_in(ptr.cast(), alloc))
2084 }
2085 } else {
2086 Err(self)
2087 }
2088 }
2089
2090 /// Downcasts the `Rc<dyn Any>` to a concrete type.
2091 ///
2092 /// For a safe alternative see [`downcast`].
2093 ///
2094 /// # Examples
2095 ///
2096 /// ```
2097 /// #![feature(downcast_unchecked)]
2098 ///
2099 /// use std::any::Any;
2100 /// use std::rc::Rc;
2101 ///
2102 /// let x: Rc<dyn Any> = Rc::new(1_usize);
2103 ///
2104 /// unsafe {
2105 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2106 /// }
2107 /// ```
2108 ///
2109 /// # Safety
2110 ///
2111 /// The contained value must be of type `T`. Calling this method
2112 /// with the incorrect type is *undefined behavior*.
2113 ///
2114 ///
2115 /// [`downcast`]: Self::downcast
2116 #[inline]
2117 #[unstable(feature = "downcast_unchecked", issue = "90850")]
2118 pub unsafe fn downcast_unchecked<T: Any>(self) -> Rc<T, A> {
2119 unsafe {
2120 let (ptr, alloc) = Rc::into_inner_with_allocator(self);
2121 Rc::from_inner_in(ptr.cast(), alloc)
2122 }
2123 }
2124}
2125
2126impl<T: ?Sized> Rc<T> {
2127 /// Allocates an `RcInner<T>` with sufficient space for
2128 /// a possibly-unsized inner value where the value has the layout provided.
2129 ///
2130 /// The function `mem_to_rc_inner` is called with the data pointer
2131 /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
2132 #[cfg(not(no_global_oom_handling))]
2133 unsafe fn allocate_for_layout(
2134 value_layout: Layout,
2135 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2136 mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
2137 ) -> *mut RcInner<T> {
2138 let layout = rc_inner_layout_for_value_layout(value_layout);
2139 unsafe {
2140 Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rc_inner)
2141 .unwrap_or_else(|_| handle_alloc_error(layout))
2142 }
2143 }
2144
2145 /// Allocates an `RcInner<T>` with sufficient space for
2146 /// a possibly-unsized inner value where the value has the layout provided,
2147 /// returning an error if allocation fails.
2148 ///
2149 /// The function `mem_to_rc_inner` is called with the data pointer
2150 /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
2151 #[inline]
2152 unsafe fn try_allocate_for_layout(
2153 value_layout: Layout,
2154 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2155 mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
2156 ) -> Result<*mut RcInner<T>, AllocError> {
2157 let layout = rc_inner_layout_for_value_layout(value_layout);
2158
2159 // Allocate for the layout.
2160 let ptr = allocate(layout)?;
2161
2162 // Initialize the RcInner
2163 let inner = mem_to_rc_inner(ptr.as_non_null_ptr().as_ptr());
2164 unsafe {
2165 debug_assert_eq!(Layout::for_value_raw(inner), layout);
2166
2167 (&raw mut (*inner).strong).write(Cell::new(1));
2168 (&raw mut (*inner).weak).write(Cell::new(1));
2169 }
2170
2171 Ok(inner)
2172 }
2173}
2174
2175impl<T: ?Sized, A: Allocator> Rc<T, A> {
2176 /// Allocates an `RcInner<T>` with sufficient space for an unsized inner value
2177 #[cfg(not(no_global_oom_handling))]
2178 unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut RcInner<T> {
2179 // Allocate for the `RcInner<T>` using the given value.
2180 unsafe {
2181 Rc::<T>::allocate_for_layout(
2182 Layout::for_value_raw(ptr),
2183 |layout| alloc.allocate(layout),
2184 |mem| mem.with_metadata_of(ptr as *const RcInner<T>),
2185 )
2186 }
2187 }
2188
2189 #[cfg(not(no_global_oom_handling))]
2190 fn from_box_in(src: Box<T, A>) -> Rc<T, A> {
2191 unsafe {
2192 let value_size = size_of_val(&*src);
2193 let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2194
2195 // Copy value as bytes
2196 ptr::copy_nonoverlapping(
2197 (&raw const *src) as *const u8,
2198 (&raw mut (*ptr).value) as *mut u8,
2199 value_size,
2200 );
2201
2202 // Free the allocation without dropping its contents
2203 let (bptr, alloc) = Box::into_raw_with_allocator(src);
2204 let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2205 drop(src);
2206
2207 Self::from_ptr_in(ptr, alloc)
2208 }
2209 }
2210}
2211
2212impl<T> Rc<[T]> {
2213 /// Allocates an `RcInner<[T]>` with the given length.
2214 #[cfg(not(no_global_oom_handling))]
2215 unsafe fn allocate_for_slice(len: usize) -> *mut RcInner<[T]> {
2216 unsafe {
2217 Self::allocate_for_layout(
2218 Layout::array::<T>(len).unwrap(),
2219 |layout| Global.allocate(layout),
2220 |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
2221 )
2222 }
2223 }
2224
2225 /// Copy elements from slice into newly allocated `Rc<[T]>`
2226 ///
2227 /// Unsafe because the caller must either take ownership or bind `T: Copy`
2228 #[cfg(not(no_global_oom_handling))]
2229 unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
2230 unsafe {
2231 let ptr = Self::allocate_for_slice(v.len());
2232 ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).value) as *mut T, v.len());
2233 Self::from_ptr(ptr)
2234 }
2235 }
2236
2237 /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
2238 ///
2239 /// Behavior is undefined should the size be wrong.
2240 #[cfg(not(no_global_oom_handling))]
2241 unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Rc<[T]> {
2242 // Panic guard while cloning T elements.
2243 // In the event of a panic, elements that have been written
2244 // into the new RcInner will be dropped, then the memory freed.
2245 struct Guard<T> {
2246 mem: NonNull<u8>,
2247 elems: *mut T,
2248 layout: Layout,
2249 n_elems: usize,
2250 }
2251
2252 impl<T> Drop for Guard<T> {
2253 fn drop(&mut self) {
2254 unsafe {
2255 let slice = from_raw_parts_mut(self.elems, self.n_elems);
2256 ptr::drop_in_place(slice);
2257
2258 Global.deallocate(self.mem, self.layout);
2259 }
2260 }
2261 }
2262
2263 unsafe {
2264 let ptr = Self::allocate_for_slice(len);
2265
2266 let mem = ptr as *mut _ as *mut u8;
2267 let layout = Layout::for_value_raw(ptr);
2268
2269 // Pointer to first element
2270 let elems = (&raw mut (*ptr).value) as *mut T;
2271
2272 let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2273
2274 for (i, item) in iter.enumerate() {
2275 ptr::write(elems.add(i), item);
2276 guard.n_elems += 1;
2277 }
2278
2279 // All clear. Forget the guard so it doesn't free the new RcInner.
2280 mem::forget(guard);
2281
2282 Self::from_ptr(ptr)
2283 }
2284 }
2285}
2286
2287impl<T, A: Allocator> Rc<[T], A> {
2288 /// Allocates an `RcInner<[T]>` with the given length.
2289 #[inline]
2290 #[cfg(not(no_global_oom_handling))]
2291 unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut RcInner<[T]> {
2292 unsafe {
2293 Rc::<[T]>::allocate_for_layout(
2294 Layout::array::<T>(len).unwrap(),
2295 |layout| alloc.allocate(layout),
2296 |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
2297 )
2298 }
2299 }
2300}
2301
2302#[cfg(not(no_global_oom_handling))]
2303/// Specialization trait used for `From<&[T]>`.
2304trait RcFromSlice<T> {
2305 fn from_slice(slice: &[T]) -> Self;
2306}
2307
2308#[cfg(not(no_global_oom_handling))]
2309impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
2310 #[inline]
2311 default fn from_slice(v: &[T]) -> Self {
2312 unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2313 }
2314}
2315
2316#[cfg(not(no_global_oom_handling))]
2317impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
2318 #[inline]
2319 fn from_slice(v: &[T]) -> Self {
2320 unsafe { Rc::copy_from_slice(v) }
2321 }
2322}
2323
2324#[stable(feature = "rust1", since = "1.0.0")]
2325impl<T: ?Sized, A: Allocator> Deref for Rc<T, A> {
2326 type Target = T;
2327
2328 #[inline(always)]
2329 fn deref(&self) -> &T {
2330 &self.inner().value
2331 }
2332}
2333
2334#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2335unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Rc<T, A> {}
2336
2337//#[unstable(feature = "unique_rc_arc", issue = "112566")]
2338#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2339unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for UniqueRc<T, A> {}
2340
2341#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2342unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2343
2344#[unstable(feature = "deref_pure_trait", issue = "87121")]
2345unsafe impl<T: ?Sized, A: Allocator> DerefPure for Rc<T, A> {}
2346
2347//#[unstable(feature = "unique_rc_arc", issue = "112566")]
2348#[unstable(feature = "deref_pure_trait", issue = "87121")]
2349unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueRc<T, A> {}
2350
2351#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2352impl<T: ?Sized> LegacyReceiver for Rc<T> {}
2353
2354#[stable(feature = "rust1", since = "1.0.0")]
2355unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Rc<T, A> {
2356 /// Drops the `Rc`.
2357 ///
2358 /// This will decrement the strong reference count. If the strong reference
2359 /// count reaches zero then the only other references (if any) are
2360 /// [`Weak`], so we `drop` the inner value.
2361 ///
2362 /// # Examples
2363 ///
2364 /// ```
2365 /// use std::rc::Rc;
2366 ///
2367 /// struct Foo;
2368 ///
2369 /// impl Drop for Foo {
2370 /// fn drop(&mut self) {
2371 /// println!("dropped!");
2372 /// }
2373 /// }
2374 ///
2375 /// let foo = Rc::new(Foo);
2376 /// let foo2 = Rc::clone(&foo);
2377 ///
2378 /// drop(foo); // Doesn't print anything
2379 /// drop(foo2); // Prints "dropped!"
2380 /// ```
2381 #[inline]
2382 fn drop(&mut self) {
2383 unsafe {
2384 self.inner().dec_strong();
2385 if self.inner().strong() == 0 {
2386 self.drop_slow();
2387 }
2388 }
2389 }
2390}
2391
2392#[stable(feature = "rust1", since = "1.0.0")]
2393impl<T: ?Sized, A: Allocator + Clone> Clone for Rc<T, A> {
2394 /// Makes a clone of the `Rc` pointer.
2395 ///
2396 /// This creates another pointer to the same allocation, increasing the
2397 /// strong reference count.
2398 ///
2399 /// # Examples
2400 ///
2401 /// ```
2402 /// use std::rc::Rc;
2403 ///
2404 /// let five = Rc::new(5);
2405 ///
2406 /// let _ = Rc::clone(&five);
2407 /// ```
2408 #[inline]
2409 fn clone(&self) -> Self {
2410 unsafe {
2411 self.inner().inc_strong();
2412 Self::from_inner_in(self.ptr, self.alloc.clone())
2413 }
2414 }
2415}
2416
2417#[unstable(feature = "ergonomic_clones", issue = "132290")]
2418impl<T: ?Sized, A: Allocator + Clone> UseCloned for Rc<T, A> {}
2419
2420#[cfg(not(no_global_oom_handling))]
2421#[stable(feature = "rust1", since = "1.0.0")]
2422impl<T: Default> Default for Rc<T> {
2423 /// Creates a new `Rc<T>`, with the `Default` value for `T`.
2424 ///
2425 /// # Examples
2426 ///
2427 /// ```
2428 /// use std::rc::Rc;
2429 ///
2430 /// let x: Rc<i32> = Default::default();
2431 /// assert_eq!(*x, 0);
2432 /// ```
2433 #[inline]
2434 fn default() -> Self {
2435 unsafe {
2436 Self::from_inner(
2437 Box::leak(Box::write(
2438 Box::new_uninit(),
2439 RcInner { strong: Cell::new(1), weak: Cell::new(1), value: T::default() },
2440 ))
2441 .into(),
2442 )
2443 }
2444 }
2445}
2446
2447#[cfg(not(no_global_oom_handling))]
2448#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
2449impl Default for Rc<str> {
2450 /// Creates an empty `str` inside an `Rc`.
2451 ///
2452 /// This may or may not share an allocation with other Rcs on the same thread.
2453 #[inline]
2454 fn default() -> Self {
2455 let rc = Rc::<[u8]>::default();
2456 // `[u8]` has the same layout as `str`.
2457 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
2458 }
2459}
2460
2461#[cfg(not(no_global_oom_handling))]
2462#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
2463impl<T> Default for Rc<[T]> {
2464 /// Creates an empty `[T]` inside an `Rc`.
2465 ///
2466 /// This may or may not share an allocation with other Rcs on the same thread.
2467 #[inline]
2468 fn default() -> Self {
2469 let arr: [T; 0] = [];
2470 Rc::from(arr)
2471 }
2472}
2473
2474#[cfg(not(no_global_oom_handling))]
2475#[stable(feature = "pin_default_impls", since = "1.91.0")]
2476impl<T> Default for Pin<Rc<T>>
2477where
2478 T: ?Sized,
2479 Rc<T>: Default,
2480{
2481 #[inline]
2482 fn default() -> Self {
2483 unsafe { Pin::new_unchecked(Rc::<T>::default()) }
2484 }
2485}
2486
2487#[stable(feature = "rust1", since = "1.0.0")]
2488trait RcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
2489 fn eq(&self, other: &Rc<T, A>) -> bool;
2490 fn ne(&self, other: &Rc<T, A>) -> bool;
2491}
2492
2493#[stable(feature = "rust1", since = "1.0.0")]
2494impl<T: ?Sized + PartialEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
2495 #[inline]
2496 default fn eq(&self, other: &Rc<T, A>) -> bool {
2497 **self == **other
2498 }
2499
2500 #[inline]
2501 default fn ne(&self, other: &Rc<T, A>) -> bool {
2502 **self != **other
2503 }
2504}
2505
2506// Hack to allow specializing on `Eq` even though `Eq` has a method.
2507#[rustc_unsafe_specialization_marker]
2508pub(crate) trait MarkerEq: PartialEq<Self> {}
2509
2510impl<T: Eq> MarkerEq for T {}
2511
2512/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
2513/// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
2514/// store large values, that are slow to clone, but also heavy to check for equality, causing this
2515/// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
2516/// the same value, than two `&T`s.
2517///
2518/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
2519#[stable(feature = "rust1", since = "1.0.0")]
2520impl<T: ?Sized + MarkerEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
2521 #[inline]
2522 fn eq(&self, other: &Rc<T, A>) -> bool {
2523 Rc::ptr_eq(self, other) || **self == **other
2524 }
2525
2526 #[inline]
2527 fn ne(&self, other: &Rc<T, A>) -> bool {
2528 !Rc::ptr_eq(self, other) && **self != **other
2529 }
2530}
2531
2532#[stable(feature = "rust1", since = "1.0.0")]
2533impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Rc<T, A> {
2534 /// Equality for two `Rc`s.
2535 ///
2536 /// Two `Rc`s are equal if their inner values are equal, even if they are
2537 /// stored in different allocation.
2538 ///
2539 /// If `T` also implements `Eq` (implying reflexivity of equality),
2540 /// two `Rc`s that point to the same allocation are
2541 /// always equal.
2542 ///
2543 /// # Examples
2544 ///
2545 /// ```
2546 /// use std::rc::Rc;
2547 ///
2548 /// let five = Rc::new(5);
2549 ///
2550 /// assert!(five == Rc::new(5));
2551 /// ```
2552 #[inline]
2553 fn eq(&self, other: &Rc<T, A>) -> bool {
2554 RcEqIdent::eq(self, other)
2555 }
2556
2557 /// Inequality for two `Rc`s.
2558 ///
2559 /// Two `Rc`s are not equal if their inner values are not equal.
2560 ///
2561 /// If `T` also implements `Eq` (implying reflexivity of equality),
2562 /// two `Rc`s that point to the same allocation are
2563 /// always equal.
2564 ///
2565 /// # Examples
2566 ///
2567 /// ```
2568 /// use std::rc::Rc;
2569 ///
2570 /// let five = Rc::new(5);
2571 ///
2572 /// assert!(five != Rc::new(6));
2573 /// ```
2574 #[inline]
2575 fn ne(&self, other: &Rc<T, A>) -> bool {
2576 RcEqIdent::ne(self, other)
2577 }
2578}
2579
2580#[stable(feature = "rust1", since = "1.0.0")]
2581impl<T: ?Sized + Eq, A: Allocator> Eq for Rc<T, A> {}
2582
2583#[stable(feature = "rust1", since = "1.0.0")]
2584impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Rc<T, A> {
2585 /// Partial comparison for two `Rc`s.
2586 ///
2587 /// The two are compared by calling `partial_cmp()` on their inner values.
2588 ///
2589 /// # Examples
2590 ///
2591 /// ```
2592 /// use std::rc::Rc;
2593 /// use std::cmp::Ordering;
2594 ///
2595 /// let five = Rc::new(5);
2596 ///
2597 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
2598 /// ```
2599 #[inline(always)]
2600 fn partial_cmp(&self, other: &Rc<T, A>) -> Option<Ordering> {
2601 (**self).partial_cmp(&**other)
2602 }
2603
2604 /// Less-than comparison for two `Rc`s.
2605 ///
2606 /// The two are compared by calling `<` on their inner values.
2607 ///
2608 /// # Examples
2609 ///
2610 /// ```
2611 /// use std::rc::Rc;
2612 ///
2613 /// let five = Rc::new(5);
2614 ///
2615 /// assert!(five < Rc::new(6));
2616 /// ```
2617 #[inline(always)]
2618 fn lt(&self, other: &Rc<T, A>) -> bool {
2619 **self < **other
2620 }
2621
2622 /// 'Less than or equal to' comparison for two `Rc`s.
2623 ///
2624 /// The two are compared by calling `<=` on their inner values.
2625 ///
2626 /// # Examples
2627 ///
2628 /// ```
2629 /// use std::rc::Rc;
2630 ///
2631 /// let five = Rc::new(5);
2632 ///
2633 /// assert!(five <= Rc::new(5));
2634 /// ```
2635 #[inline(always)]
2636 fn le(&self, other: &Rc<T, A>) -> bool {
2637 **self <= **other
2638 }
2639
2640 /// Greater-than comparison for two `Rc`s.
2641 ///
2642 /// The two are compared by calling `>` on their inner values.
2643 ///
2644 /// # Examples
2645 ///
2646 /// ```
2647 /// use std::rc::Rc;
2648 ///
2649 /// let five = Rc::new(5);
2650 ///
2651 /// assert!(five > Rc::new(4));
2652 /// ```
2653 #[inline(always)]
2654 fn gt(&self, other: &Rc<T, A>) -> bool {
2655 **self > **other
2656 }
2657
2658 /// 'Greater than or equal to' comparison for two `Rc`s.
2659 ///
2660 /// The two are compared by calling `>=` on their inner values.
2661 ///
2662 /// # Examples
2663 ///
2664 /// ```
2665 /// use std::rc::Rc;
2666 ///
2667 /// let five = Rc::new(5);
2668 ///
2669 /// assert!(five >= Rc::new(5));
2670 /// ```
2671 #[inline(always)]
2672 fn ge(&self, other: &Rc<T, A>) -> bool {
2673 **self >= **other
2674 }
2675}
2676
2677#[stable(feature = "rust1", since = "1.0.0")]
2678impl<T: ?Sized + Ord, A: Allocator> Ord for Rc<T, A> {
2679 /// Comparison for two `Rc`s.
2680 ///
2681 /// The two are compared by calling `cmp()` on their inner values.
2682 ///
2683 /// # Examples
2684 ///
2685 /// ```
2686 /// use std::rc::Rc;
2687 /// use std::cmp::Ordering;
2688 ///
2689 /// let five = Rc::new(5);
2690 ///
2691 /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
2692 /// ```
2693 #[inline]
2694 fn cmp(&self, other: &Rc<T, A>) -> Ordering {
2695 (**self).cmp(&**other)
2696 }
2697}
2698
2699#[stable(feature = "rust1", since = "1.0.0")]
2700impl<T: ?Sized + Hash, A: Allocator> Hash for Rc<T, A> {
2701 fn hash<H: Hasher>(&self, state: &mut H) {
2702 (**self).hash(state);
2703 }
2704}
2705
2706#[stable(feature = "rust1", since = "1.0.0")]
2707impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Rc<T, A> {
2708 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2709 fmt::Display::fmt(&**self, f)
2710 }
2711}
2712
2713#[stable(feature = "rust1", since = "1.0.0")]
2714impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Rc<T, A> {
2715 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2716 fmt::Debug::fmt(&**self, f)
2717 }
2718}
2719
2720#[stable(feature = "rust1", since = "1.0.0")]
2721impl<T: ?Sized, A: Allocator> fmt::Pointer for Rc<T, A> {
2722 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2723 fmt::Pointer::fmt(&(&raw const **self), f)
2724 }
2725}
2726
2727#[cfg(not(no_global_oom_handling))]
2728#[stable(feature = "from_for_ptrs", since = "1.6.0")]
2729impl<T> From<T> for Rc<T> {
2730 /// Converts a generic type `T` into an `Rc<T>`
2731 ///
2732 /// The conversion allocates on the heap and moves `t`
2733 /// from the stack into it.
2734 ///
2735 /// # Example
2736 /// ```rust
2737 /// # use std::rc::Rc;
2738 /// let x = 5;
2739 /// let rc = Rc::new(5);
2740 ///
2741 /// assert_eq!(Rc::from(x), rc);
2742 /// ```
2743 fn from(t: T) -> Self {
2744 Rc::new(t)
2745 }
2746}
2747
2748#[cfg(not(no_global_oom_handling))]
2749#[stable(feature = "shared_from_array", since = "1.74.0")]
2750impl<T, const N: usize> From<[T; N]> for Rc<[T]> {
2751 /// Converts a [`[T; N]`](prim@array) into an `Rc<[T]>`.
2752 ///
2753 /// The conversion moves the array into a newly allocated `Rc`.
2754 ///
2755 /// # Example
2756 ///
2757 /// ```
2758 /// # use std::rc::Rc;
2759 /// let original: [i32; 3] = [1, 2, 3];
2760 /// let shared: Rc<[i32]> = Rc::from(original);
2761 /// assert_eq!(&[1, 2, 3], &shared[..]);
2762 /// ```
2763 #[inline]
2764 fn from(v: [T; N]) -> Rc<[T]> {
2765 Rc::<[T; N]>::from(v)
2766 }
2767}
2768
2769#[cfg(not(no_global_oom_handling))]
2770#[stable(feature = "shared_from_slice", since = "1.21.0")]
2771impl<T: Clone> From<&[T]> for Rc<[T]> {
2772 /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
2773 ///
2774 /// # Example
2775 ///
2776 /// ```
2777 /// # use std::rc::Rc;
2778 /// let original: &[i32] = &[1, 2, 3];
2779 /// let shared: Rc<[i32]> = Rc::from(original);
2780 /// assert_eq!(&[1, 2, 3], &shared[..]);
2781 /// ```
2782 #[inline]
2783 fn from(v: &[T]) -> Rc<[T]> {
2784 <Self as RcFromSlice<T>>::from_slice(v)
2785 }
2786}
2787
2788#[cfg(not(no_global_oom_handling))]
2789#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2790impl<T: Clone> From<&mut [T]> for Rc<[T]> {
2791 /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
2792 ///
2793 /// # Example
2794 ///
2795 /// ```
2796 /// # use std::rc::Rc;
2797 /// let mut original = [1, 2, 3];
2798 /// let original: &mut [i32] = &mut original;
2799 /// let shared: Rc<[i32]> = Rc::from(original);
2800 /// assert_eq!(&[1, 2, 3], &shared[..]);
2801 /// ```
2802 #[inline]
2803 fn from(v: &mut [T]) -> Rc<[T]> {
2804 Rc::from(&*v)
2805 }
2806}
2807
2808#[cfg(not(no_global_oom_handling))]
2809#[stable(feature = "shared_from_slice", since = "1.21.0")]
2810impl From<&str> for Rc<str> {
2811 /// Allocates a reference-counted string slice and copies `v` into it.
2812 ///
2813 /// # Example
2814 ///
2815 /// ```
2816 /// # use std::rc::Rc;
2817 /// let shared: Rc<str> = Rc::from("statue");
2818 /// assert_eq!("statue", &shared[..]);
2819 /// ```
2820 #[inline]
2821 fn from(v: &str) -> Rc<str> {
2822 let rc = Rc::<[u8]>::from(v.as_bytes());
2823 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
2824 }
2825}
2826
2827#[cfg(not(no_global_oom_handling))]
2828#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2829impl From<&mut str> for Rc<str> {
2830 /// Allocates a reference-counted string slice and copies `v` into it.
2831 ///
2832 /// # Example
2833 ///
2834 /// ```
2835 /// # use std::rc::Rc;
2836 /// let mut original = String::from("statue");
2837 /// let original: &mut str = &mut original;
2838 /// let shared: Rc<str> = Rc::from(original);
2839 /// assert_eq!("statue", &shared[..]);
2840 /// ```
2841 #[inline]
2842 fn from(v: &mut str) -> Rc<str> {
2843 Rc::from(&*v)
2844 }
2845}
2846
2847#[cfg(not(no_global_oom_handling))]
2848#[stable(feature = "shared_from_slice", since = "1.21.0")]
2849impl From<String> for Rc<str> {
2850 /// Allocates a reference-counted string slice and copies `v` into it.
2851 ///
2852 /// # Example
2853 ///
2854 /// ```
2855 /// # use std::rc::Rc;
2856 /// let original: String = "statue".to_owned();
2857 /// let shared: Rc<str> = Rc::from(original);
2858 /// assert_eq!("statue", &shared[..]);
2859 /// ```
2860 #[inline]
2861 fn from(v: String) -> Rc<str> {
2862 Rc::from(&v[..])
2863 }
2864}
2865
2866#[cfg(not(no_global_oom_handling))]
2867#[stable(feature = "shared_from_slice", since = "1.21.0")]
2868impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Rc<T, A> {
2869 /// Move a boxed object to a new, reference counted, allocation.
2870 ///
2871 /// # Example
2872 ///
2873 /// ```
2874 /// # use std::rc::Rc;
2875 /// let original: Box<i32> = Box::new(1);
2876 /// let shared: Rc<i32> = Rc::from(original);
2877 /// assert_eq!(1, *shared);
2878 /// ```
2879 #[inline]
2880 fn from(v: Box<T, A>) -> Rc<T, A> {
2881 Rc::from_box_in(v)
2882 }
2883}
2884
2885#[cfg(not(no_global_oom_handling))]
2886#[stable(feature = "shared_from_slice", since = "1.21.0")]
2887impl<T, A: Allocator> From<Vec<T, A>> for Rc<[T], A> {
2888 /// Allocates a reference-counted slice and moves `v`'s items into it.
2889 ///
2890 /// # Example
2891 ///
2892 /// ```
2893 /// # use std::rc::Rc;
2894 /// let unique: Vec<i32> = vec![1, 2, 3];
2895 /// let shared: Rc<[i32]> = Rc::from(unique);
2896 /// assert_eq!(&[1, 2, 3], &shared[..]);
2897 /// ```
2898 #[inline]
2899 fn from(v: Vec<T, A>) -> Rc<[T], A> {
2900 unsafe {
2901 let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
2902
2903 let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
2904 ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).value) as *mut T, len);
2905
2906 // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
2907 // without dropping its contents or the allocator
2908 let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
2909
2910 Self::from_ptr_in(rc_ptr, alloc)
2911 }
2912 }
2913}
2914
2915#[stable(feature = "shared_from_cow", since = "1.45.0")]
2916impl<'a, B> From<Cow<'a, B>> for Rc<B>
2917where
2918 B: ToOwned + ?Sized,
2919 Rc<B>: From<&'a B> + From<B::Owned>,
2920{
2921 /// Creates a reference-counted pointer from a clone-on-write pointer by
2922 /// copying its content.
2923 ///
2924 /// # Example
2925 ///
2926 /// ```rust
2927 /// # use std::rc::Rc;
2928 /// # use std::borrow::Cow;
2929 /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
2930 /// let shared: Rc<str> = Rc::from(cow);
2931 /// assert_eq!("eggplant", &shared[..]);
2932 /// ```
2933 #[inline]
2934 fn from(cow: Cow<'a, B>) -> Rc<B> {
2935 match cow {
2936 Cow::Borrowed(s) => Rc::from(s),
2937 Cow::Owned(s) => Rc::from(s),
2938 }
2939 }
2940}
2941
2942#[stable(feature = "shared_from_str", since = "1.62.0")]
2943impl From<Rc<str>> for Rc<[u8]> {
2944 /// Converts a reference-counted string slice into a byte slice.
2945 ///
2946 /// # Example
2947 ///
2948 /// ```
2949 /// # use std::rc::Rc;
2950 /// let string: Rc<str> = Rc::from("eggplant");
2951 /// let bytes: Rc<[u8]> = Rc::from(string);
2952 /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
2953 /// ```
2954 #[inline]
2955 fn from(rc: Rc<str>) -> Self {
2956 // SAFETY: `str` has the same layout as `[u8]`.
2957 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const [u8]) }
2958 }
2959}
2960
2961#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
2962impl<T, A: Allocator, const N: usize> TryFrom<Rc<[T], A>> for Rc<[T; N], A> {
2963 type Error = Rc<[T], A>;
2964
2965 fn try_from(boxed_slice: Rc<[T], A>) -> Result<Self, Self::Error> {
2966 if boxed_slice.len() == N {
2967 let (ptr, alloc) = Rc::into_inner_with_allocator(boxed_slice);
2968 Ok(unsafe { Rc::from_inner_in(ptr.cast(), alloc) })
2969 } else {
2970 Err(boxed_slice)
2971 }
2972 }
2973}
2974
2975#[cfg(not(no_global_oom_handling))]
2976#[stable(feature = "shared_from_iter", since = "1.37.0")]
2977impl<T> FromIterator<T> for Rc<[T]> {
2978 /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
2979 ///
2980 /// # Performance characteristics
2981 ///
2982 /// ## The general case
2983 ///
2984 /// In the general case, collecting into `Rc<[T]>` is done by first
2985 /// collecting into a `Vec<T>`. That is, when writing the following:
2986 ///
2987 /// ```rust
2988 /// # use std::rc::Rc;
2989 /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
2990 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2991 /// ```
2992 ///
2993 /// this behaves as if we wrote:
2994 ///
2995 /// ```rust
2996 /// # use std::rc::Rc;
2997 /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
2998 /// .collect::<Vec<_>>() // The first set of allocations happens here.
2999 /// .into(); // A second allocation for `Rc<[T]>` happens here.
3000 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3001 /// ```
3002 ///
3003 /// This will allocate as many times as needed for constructing the `Vec<T>`
3004 /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
3005 ///
3006 /// ## Iterators of known length
3007 ///
3008 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
3009 /// a single allocation will be made for the `Rc<[T]>`. For example:
3010 ///
3011 /// ```rust
3012 /// # use std::rc::Rc;
3013 /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
3014 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
3015 /// ```
3016 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
3017 ToRcSlice::to_rc_slice(iter.into_iter())
3018 }
3019}
3020
3021/// Specialization trait used for collecting into `Rc<[T]>`.
3022#[cfg(not(no_global_oom_handling))]
3023trait ToRcSlice<T>: Iterator<Item = T> + Sized {
3024 fn to_rc_slice(self) -> Rc<[T]>;
3025}
3026
3027#[cfg(not(no_global_oom_handling))]
3028impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I {
3029 default fn to_rc_slice(self) -> Rc<[T]> {
3030 self.collect::<Vec<T>>().into()
3031 }
3032}
3033
3034#[cfg(not(no_global_oom_handling))]
3035impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I {
3036 fn to_rc_slice(self) -> Rc<[T]> {
3037 // This is the case for a `TrustedLen` iterator.
3038 let (low, high) = self.size_hint();
3039 if let Some(high) = high {
3040 debug_assert_eq!(
3041 low,
3042 high,
3043 "TrustedLen iterator's size hint is not exact: {:?}",
3044 (low, high)
3045 );
3046
3047 unsafe {
3048 // SAFETY: We need to ensure that the iterator has an exact length and we have.
3049 Rc::from_iter_exact(self, low)
3050 }
3051 } else {
3052 // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
3053 // length exceeding `usize::MAX`.
3054 // The default implementation would collect into a vec which would panic.
3055 // Thus we panic here immediately without invoking `Vec` code.
3056 panic!("capacity overflow");
3057 }
3058 }
3059}
3060
3061/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
3062/// managed allocation.
3063///
3064/// The allocation is accessed by calling [`upgrade`] on the `Weak`
3065/// pointer, which returns an <code>[Option]<[Rc]\<T>></code>.
3066///
3067/// Since a `Weak` reference does not count towards ownership, it will not
3068/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
3069/// guarantees about the value still being present. Thus it may return [`None`]
3070/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
3071/// itself (the backing store) from being deallocated.
3072///
3073/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
3074/// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
3075/// prevent circular references between [`Rc`] pointers, since mutual owning references
3076/// would never allow either [`Rc`] to be dropped. For example, a tree could
3077/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
3078/// pointers from children back to their parents.
3079///
3080/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
3081///
3082/// [`upgrade`]: Weak::upgrade
3083#[stable(feature = "rc_weak", since = "1.4.0")]
3084#[rustc_diagnostic_item = "RcWeak"]
3085pub struct Weak<
3086 T: ?Sized,
3087 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
3088> {
3089 // This is a `NonNull` to allow optimizing the size of this type in enums,
3090 // but it is not necessarily a valid pointer.
3091 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
3092 // to allocate space on the heap. That's not a value a real pointer
3093 // will ever have because RcInner has alignment at least 2.
3094 ptr: NonNull<RcInner<T>>,
3095 alloc: A,
3096}
3097
3098#[stable(feature = "rc_weak", since = "1.4.0")]
3099impl<T: ?Sized, A: Allocator> !Send for Weak<T, A> {}
3100#[stable(feature = "rc_weak", since = "1.4.0")]
3101impl<T: ?Sized, A: Allocator> !Sync for Weak<T, A> {}
3102
3103#[unstable(feature = "coerce_unsized", issue = "18598")]
3104impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
3105
3106#[unstable(feature = "dispatch_from_dyn", issue = "none")]
3107impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
3108
3109// SAFETY: `Weak::clone` doesn't access any `Cell`s which could contain the `Weak` being cloned.
3110#[unstable(feature = "cell_get_cloned", issue = "145329")]
3111unsafe impl<T: ?Sized> CloneFromCell for Weak<T> {}
3112
3113impl<T> Weak<T> {
3114 /// Constructs a new `Weak<T>`, without allocating any memory.
3115 /// Calling [`upgrade`] on the return value always gives [`None`].
3116 ///
3117 /// [`upgrade`]: Weak::upgrade
3118 ///
3119 /// # Examples
3120 ///
3121 /// ```
3122 /// use std::rc::Weak;
3123 ///
3124 /// let empty: Weak<i64> = Weak::new();
3125 /// assert!(empty.upgrade().is_none());
3126 /// ```
3127 #[inline]
3128 #[stable(feature = "downgraded_weak", since = "1.10.0")]
3129 #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
3130 #[must_use]
3131 pub const fn new() -> Weak<T> {
3132 Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
3133 }
3134}
3135
3136impl<T, A: Allocator> Weak<T, A> {
3137 /// Constructs a new `Weak<T>`, without allocating any memory, technically in the provided
3138 /// allocator.
3139 /// Calling [`upgrade`] on the return value always gives [`None`].
3140 ///
3141 /// [`upgrade`]: Weak::upgrade
3142 ///
3143 /// # Examples
3144 ///
3145 /// ```
3146 /// use std::rc::Weak;
3147 ///
3148 /// let empty: Weak<i64> = Weak::new();
3149 /// assert!(empty.upgrade().is_none());
3150 /// ```
3151 #[inline]
3152 #[unstable(feature = "allocator_api", issue = "32838")]
3153 pub fn new_in(alloc: A) -> Weak<T, A> {
3154 Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
3155 }
3156}
3157
3158pub(crate) fn is_dangling<T: ?Sized>(ptr: *const T) -> bool {
3159 (ptr.cast::<()>()).addr() == usize::MAX
3160}
3161
3162/// Helper type to allow accessing the reference counts without
3163/// making any assertions about the data field.
3164struct WeakInner<'a> {
3165 weak: &'a Cell<usize>,
3166 strong: &'a Cell<usize>,
3167}
3168
3169impl<T: ?Sized> Weak<T> {
3170 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
3171 ///
3172 /// This can be used to safely get a strong reference (by calling [`upgrade`]
3173 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
3174 ///
3175 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
3176 /// as these don't own anything; the method still works on them).
3177 ///
3178 /// # Safety
3179 ///
3180 /// The pointer must have originated from the [`into_raw`] and must still own its potential
3181 /// weak reference, and `ptr` must point to a block of memory allocated by the global allocator.
3182 ///
3183 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3184 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3185 /// count is not modified by this operation) and therefore it must be paired with a previous
3186 /// call to [`into_raw`].
3187 ///
3188 /// # Examples
3189 ///
3190 /// ```
3191 /// use std::rc::{Rc, Weak};
3192 ///
3193 /// let strong = Rc::new("hello".to_owned());
3194 ///
3195 /// let raw_1 = Rc::downgrade(&strong).into_raw();
3196 /// let raw_2 = Rc::downgrade(&strong).into_raw();
3197 ///
3198 /// assert_eq!(2, Rc::weak_count(&strong));
3199 ///
3200 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3201 /// assert_eq!(1, Rc::weak_count(&strong));
3202 ///
3203 /// drop(strong);
3204 ///
3205 /// // Decrement the last weak count.
3206 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3207 /// ```
3208 ///
3209 /// [`into_raw`]: Weak::into_raw
3210 /// [`upgrade`]: Weak::upgrade
3211 /// [`new`]: Weak::new
3212 #[inline]
3213 #[stable(feature = "weak_into_raw", since = "1.45.0")]
3214 pub unsafe fn from_raw(ptr: *const T) -> Self {
3215 unsafe { Self::from_raw_in(ptr, Global) }
3216 }
3217
3218 /// Consumes the `Weak<T>` and turns it into a raw pointer.
3219 ///
3220 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
3221 /// one weak reference (the weak count is not modified by this operation). It can be turned
3222 /// back into the `Weak<T>` with [`from_raw`].
3223 ///
3224 /// The same restrictions of accessing the target of the pointer as with
3225 /// [`as_ptr`] apply.
3226 ///
3227 /// # Examples
3228 ///
3229 /// ```
3230 /// use std::rc::{Rc, Weak};
3231 ///
3232 /// let strong = Rc::new("hello".to_owned());
3233 /// let weak = Rc::downgrade(&strong);
3234 /// let raw = weak.into_raw();
3235 ///
3236 /// assert_eq!(1, Rc::weak_count(&strong));
3237 /// assert_eq!("hello", unsafe { &*raw });
3238 ///
3239 /// drop(unsafe { Weak::from_raw(raw) });
3240 /// assert_eq!(0, Rc::weak_count(&strong));
3241 /// ```
3242 ///
3243 /// [`from_raw`]: Weak::from_raw
3244 /// [`as_ptr`]: Weak::as_ptr
3245 #[must_use = "losing the pointer will leak memory"]
3246 #[stable(feature = "weak_into_raw", since = "1.45.0")]
3247 pub fn into_raw(self) -> *const T {
3248 mem::ManuallyDrop::new(self).as_ptr()
3249 }
3250}
3251
3252impl<T: ?Sized, A: Allocator> Weak<T, A> {
3253 /// Returns a reference to the underlying allocator.
3254 #[inline]
3255 #[unstable(feature = "allocator_api", issue = "32838")]
3256 pub fn allocator(&self) -> &A {
3257 &self.alloc
3258 }
3259
3260 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
3261 ///
3262 /// The pointer is valid only if there are some strong references. The pointer may be dangling,
3263 /// unaligned or even [`null`] otherwise.
3264 ///
3265 /// # Examples
3266 ///
3267 /// ```
3268 /// use std::rc::Rc;
3269 /// use std::ptr;
3270 ///
3271 /// let strong = Rc::new("hello".to_owned());
3272 /// let weak = Rc::downgrade(&strong);
3273 /// // Both point to the same object
3274 /// assert!(ptr::eq(&*strong, weak.as_ptr()));
3275 /// // The strong here keeps it alive, so we can still access the object.
3276 /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
3277 ///
3278 /// drop(strong);
3279 /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
3280 /// // undefined behavior.
3281 /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
3282 /// ```
3283 ///
3284 /// [`null`]: ptr::null
3285 #[must_use]
3286 #[stable(feature = "rc_as_ptr", since = "1.45.0")]
3287 pub fn as_ptr(&self) -> *const T {
3288 let ptr: *mut RcInner<T> = NonNull::as_ptr(self.ptr);
3289
3290 if is_dangling(ptr) {
3291 // If the pointer is dangling, we return the sentinel directly. This cannot be
3292 // a valid payload address, as the payload is at least as aligned as RcInner (usize).
3293 ptr as *const T
3294 } else {
3295 // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
3296 // The payload may be dropped at this point, and we have to maintain provenance,
3297 // so use raw pointer manipulation.
3298 unsafe { &raw mut (*ptr).value }
3299 }
3300 }
3301
3302 /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
3303 ///
3304 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
3305 /// one weak reference (the weak count is not modified by this operation). It can be turned
3306 /// back into the `Weak<T>` with [`from_raw_in`].
3307 ///
3308 /// The same restrictions of accessing the target of the pointer as with
3309 /// [`as_ptr`] apply.
3310 ///
3311 /// # Examples
3312 ///
3313 /// ```
3314 /// #![feature(allocator_api)]
3315 /// use std::rc::{Rc, Weak};
3316 /// use std::alloc::System;
3317 ///
3318 /// let strong = Rc::new_in("hello".to_owned(), System);
3319 /// let weak = Rc::downgrade(&strong);
3320 /// let (raw, alloc) = weak.into_raw_with_allocator();
3321 ///
3322 /// assert_eq!(1, Rc::weak_count(&strong));
3323 /// assert_eq!("hello", unsafe { &*raw });
3324 ///
3325 /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
3326 /// assert_eq!(0, Rc::weak_count(&strong));
3327 /// ```
3328 ///
3329 /// [`from_raw_in`]: Weak::from_raw_in
3330 /// [`as_ptr`]: Weak::as_ptr
3331 #[must_use = "losing the pointer will leak memory"]
3332 #[inline]
3333 #[unstable(feature = "allocator_api", issue = "32838")]
3334 pub fn into_raw_with_allocator(self) -> (*const T, A) {
3335 let this = mem::ManuallyDrop::new(self);
3336 let result = this.as_ptr();
3337 // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
3338 let alloc = unsafe { ptr::read(&this.alloc) };
3339 (result, alloc)
3340 }
3341
3342 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
3343 ///
3344 /// This can be used to safely get a strong reference (by calling [`upgrade`]
3345 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
3346 ///
3347 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
3348 /// as these don't own anything; the method still works on them).
3349 ///
3350 /// # Safety
3351 ///
3352 /// The pointer must have originated from the [`into_raw`] and must still own its potential
3353 /// weak reference, and `ptr` must point to a block of memory allocated by `alloc`.
3354 ///
3355 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3356 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3357 /// count is not modified by this operation) and therefore it must be paired with a previous
3358 /// call to [`into_raw`].
3359 ///
3360 /// # Examples
3361 ///
3362 /// ```
3363 /// use std::rc::{Rc, Weak};
3364 ///
3365 /// let strong = Rc::new("hello".to_owned());
3366 ///
3367 /// let raw_1 = Rc::downgrade(&strong).into_raw();
3368 /// let raw_2 = Rc::downgrade(&strong).into_raw();
3369 ///
3370 /// assert_eq!(2, Rc::weak_count(&strong));
3371 ///
3372 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3373 /// assert_eq!(1, Rc::weak_count(&strong));
3374 ///
3375 /// drop(strong);
3376 ///
3377 /// // Decrement the last weak count.
3378 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3379 /// ```
3380 ///
3381 /// [`into_raw`]: Weak::into_raw
3382 /// [`upgrade`]: Weak::upgrade
3383 /// [`new`]: Weak::new
3384 #[inline]
3385 #[unstable(feature = "allocator_api", issue = "32838")]
3386 pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3387 // See Weak::as_ptr for context on how the input pointer is derived.
3388
3389 let ptr = if is_dangling(ptr) {
3390 // This is a dangling Weak.
3391 ptr as *mut RcInner<T>
3392 } else {
3393 // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3394 // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3395 let offset = unsafe { data_offset(ptr) };
3396 // Thus, we reverse the offset to get the whole RcInner.
3397 // SAFETY: the pointer originated from a Weak, so this offset is safe.
3398 unsafe { ptr.byte_sub(offset) as *mut RcInner<T> }
3399 };
3400
3401 // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3402 Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3403 }
3404
3405 /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
3406 /// dropping of the inner value if successful.
3407 ///
3408 /// Returns [`None`] if the inner value has since been dropped.
3409 ///
3410 /// # Examples
3411 ///
3412 /// ```
3413 /// use std::rc::Rc;
3414 ///
3415 /// let five = Rc::new(5);
3416 ///
3417 /// let weak_five = Rc::downgrade(&five);
3418 ///
3419 /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
3420 /// assert!(strong_five.is_some());
3421 ///
3422 /// // Destroy all strong pointers.
3423 /// drop(strong_five);
3424 /// drop(five);
3425 ///
3426 /// assert!(weak_five.upgrade().is_none());
3427 /// ```
3428 #[must_use = "this returns a new `Rc`, \
3429 without modifying the original weak pointer"]
3430 #[stable(feature = "rc_weak", since = "1.4.0")]
3431 pub fn upgrade(&self) -> Option<Rc<T, A>>
3432 where
3433 A: Clone,
3434 {
3435 let inner = self.inner()?;
3436
3437 if inner.strong() == 0 {
3438 None
3439 } else {
3440 unsafe {
3441 inner.inc_strong();
3442 Some(Rc::from_inner_in(self.ptr, self.alloc.clone()))
3443 }
3444 }
3445 }
3446
3447 /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
3448 ///
3449 /// If `self` was created using [`Weak::new`], this will return 0.
3450 #[must_use]
3451 #[stable(feature = "weak_counts", since = "1.41.0")]
3452 pub fn strong_count(&self) -> usize {
3453 if let Some(inner) = self.inner() { inner.strong() } else { 0 }
3454 }
3455
3456 /// Gets the number of `Weak` pointers pointing to this allocation.
3457 ///
3458 /// If no strong pointers remain, this will return zero.
3459 #[must_use]
3460 #[stable(feature = "weak_counts", since = "1.41.0")]
3461 pub fn weak_count(&self) -> usize {
3462 if let Some(inner) = self.inner() {
3463 if inner.strong() > 0 {
3464 inner.weak() - 1 // subtract the implicit weak ptr
3465 } else {
3466 0
3467 }
3468 } else {
3469 0
3470 }
3471 }
3472
3473 /// Returns `None` when the pointer is dangling and there is no allocated `RcInner`,
3474 /// (i.e., when this `Weak` was created by `Weak::new`).
3475 #[inline]
3476 fn inner(&self) -> Option<WeakInner<'_>> {
3477 if is_dangling(self.ptr.as_ptr()) {
3478 None
3479 } else {
3480 // We are careful to *not* create a reference covering the "data" field, as
3481 // the field may be mutated concurrently (for example, if the last `Rc`
3482 // is dropped, the data field will be dropped in-place).
3483 Some(unsafe {
3484 let ptr = self.ptr.as_ptr();
3485 WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
3486 })
3487 }
3488 }
3489
3490 /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3491 /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3492 /// this function ignores the metadata of `dyn Trait` pointers.
3493 ///
3494 /// # Notes
3495 ///
3496 /// Since this compares pointers it means that `Weak::new()` will equal each
3497 /// other, even though they don't point to any allocation.
3498 ///
3499 /// # Examples
3500 ///
3501 /// ```
3502 /// use std::rc::Rc;
3503 ///
3504 /// let first_rc = Rc::new(5);
3505 /// let first = Rc::downgrade(&first_rc);
3506 /// let second = Rc::downgrade(&first_rc);
3507 ///
3508 /// assert!(first.ptr_eq(&second));
3509 ///
3510 /// let third_rc = Rc::new(5);
3511 /// let third = Rc::downgrade(&third_rc);
3512 ///
3513 /// assert!(!first.ptr_eq(&third));
3514 /// ```
3515 ///
3516 /// Comparing `Weak::new`.
3517 ///
3518 /// ```
3519 /// use std::rc::{Rc, Weak};
3520 ///
3521 /// let first = Weak::new();
3522 /// let second = Weak::new();
3523 /// assert!(first.ptr_eq(&second));
3524 ///
3525 /// let third_rc = Rc::new(());
3526 /// let third = Rc::downgrade(&third_rc);
3527 /// assert!(!first.ptr_eq(&third));
3528 /// ```
3529 #[inline]
3530 #[must_use]
3531 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3532 pub fn ptr_eq(&self, other: &Self) -> bool {
3533 ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3534 }
3535}
3536
3537#[stable(feature = "rc_weak", since = "1.4.0")]
3538unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3539 /// Drops the `Weak` pointer.
3540 ///
3541 /// # Examples
3542 ///
3543 /// ```
3544 /// use std::rc::{Rc, Weak};
3545 ///
3546 /// struct Foo;
3547 ///
3548 /// impl Drop for Foo {
3549 /// fn drop(&mut self) {
3550 /// println!("dropped!");
3551 /// }
3552 /// }
3553 ///
3554 /// let foo = Rc::new(Foo);
3555 /// let weak_foo = Rc::downgrade(&foo);
3556 /// let other_weak_foo = Weak::clone(&weak_foo);
3557 ///
3558 /// drop(weak_foo); // Doesn't print anything
3559 /// drop(foo); // Prints "dropped!"
3560 ///
3561 /// assert!(other_weak_foo.upgrade().is_none());
3562 /// ```
3563 fn drop(&mut self) {
3564 let inner = if let Some(inner) = self.inner() { inner } else { return };
3565
3566 inner.dec_weak();
3567 // the weak count starts at 1, and will only go to zero if all
3568 // the strong pointers have disappeared.
3569 if inner.weak() == 0 {
3570 unsafe {
3571 self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
3572 }
3573 }
3574 }
3575}
3576
3577#[stable(feature = "rc_weak", since = "1.4.0")]
3578impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3579 /// Makes a clone of the `Weak` pointer that points to the same allocation.
3580 ///
3581 /// # Examples
3582 ///
3583 /// ```
3584 /// use std::rc::{Rc, Weak};
3585 ///
3586 /// let weak_five = Rc::downgrade(&Rc::new(5));
3587 ///
3588 /// let _ = Weak::clone(&weak_five);
3589 /// ```
3590 #[inline]
3591 fn clone(&self) -> Weak<T, A> {
3592 if let Some(inner) = self.inner() {
3593 inner.inc_weak()
3594 }
3595 Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3596 }
3597}
3598
3599#[unstable(feature = "ergonomic_clones", issue = "132290")]
3600impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3601
3602#[stable(feature = "rc_weak", since = "1.4.0")]
3603impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
3604 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3605 write!(f, "(Weak)")
3606 }
3607}
3608
3609#[stable(feature = "downgraded_weak", since = "1.10.0")]
3610impl<T> Default for Weak<T> {
3611 /// Constructs a new `Weak<T>`, without allocating any memory.
3612 /// Calling [`upgrade`] on the return value always gives [`None`].
3613 ///
3614 /// [`upgrade`]: Weak::upgrade
3615 ///
3616 /// # Examples
3617 ///
3618 /// ```
3619 /// use std::rc::Weak;
3620 ///
3621 /// let empty: Weak<i64> = Default::default();
3622 /// assert!(empty.upgrade().is_none());
3623 /// ```
3624 fn default() -> Weak<T> {
3625 Weak::new()
3626 }
3627}
3628
3629// NOTE: If you mem::forget Rcs (or Weaks), drop is skipped and the ref-count
3630// is not decremented, meaning the ref-count can overflow, and then you can
3631// free the allocation while outstanding Rcs (or Weaks) exist, which would be
3632// unsound. We abort because this is such a degenerate scenario that we don't
3633// care about what happens -- no real program should ever experience this.
3634//
3635// This should have negligible overhead since you don't actually need to
3636// clone these much in Rust thanks to ownership and move-semantics.
3637
3638#[doc(hidden)]
3639trait RcInnerPtr {
3640 fn weak_ref(&self) -> &Cell<usize>;
3641 fn strong_ref(&self) -> &Cell<usize>;
3642
3643 #[inline]
3644 fn strong(&self) -> usize {
3645 self.strong_ref().get()
3646 }
3647
3648 #[inline]
3649 fn inc_strong(&self) {
3650 let strong = self.strong();
3651
3652 // We insert an `assume` here to hint LLVM at an otherwise
3653 // missed optimization.
3654 // SAFETY: The reference count will never be zero when this is
3655 // called.
3656 unsafe {
3657 hint::assert_unchecked(strong != 0);
3658 }
3659
3660 let strong = strong.wrapping_add(1);
3661 self.strong_ref().set(strong);
3662
3663 // We want to abort on overflow instead of dropping the value.
3664 // Checking for overflow after the store instead of before
3665 // allows for slightly better code generation.
3666 if core::intrinsics::unlikely(strong == 0) {
3667 abort();
3668 }
3669 }
3670
3671 #[inline]
3672 fn dec_strong(&self) {
3673 self.strong_ref().set(self.strong() - 1);
3674 }
3675
3676 #[inline]
3677 fn weak(&self) -> usize {
3678 self.weak_ref().get()
3679 }
3680
3681 #[inline]
3682 fn inc_weak(&self) {
3683 let weak = self.weak();
3684
3685 // We insert an `assume` here to hint LLVM at an otherwise
3686 // missed optimization.
3687 // SAFETY: The reference count will never be zero when this is
3688 // called.
3689 unsafe {
3690 hint::assert_unchecked(weak != 0);
3691 }
3692
3693 let weak = weak.wrapping_add(1);
3694 self.weak_ref().set(weak);
3695
3696 // We want to abort on overflow instead of dropping the value.
3697 // Checking for overflow after the store instead of before
3698 // allows for slightly better code generation.
3699 if core::intrinsics::unlikely(weak == 0) {
3700 abort();
3701 }
3702 }
3703
3704 #[inline]
3705 fn dec_weak(&self) {
3706 self.weak_ref().set(self.weak() - 1);
3707 }
3708}
3709
3710impl<T: ?Sized> RcInnerPtr for RcInner<T> {
3711 #[inline(always)]
3712 fn weak_ref(&self) -> &Cell<usize> {
3713 &self.weak
3714 }
3715
3716 #[inline(always)]
3717 fn strong_ref(&self) -> &Cell<usize> {
3718 &self.strong
3719 }
3720}
3721
3722impl<'a> RcInnerPtr for WeakInner<'a> {
3723 #[inline(always)]
3724 fn weak_ref(&self) -> &Cell<usize> {
3725 self.weak
3726 }
3727
3728 #[inline(always)]
3729 fn strong_ref(&self) -> &Cell<usize> {
3730 self.strong
3731 }
3732}
3733
3734#[stable(feature = "rust1", since = "1.0.0")]
3735impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Rc<T, A> {
3736 fn borrow(&self) -> &T {
3737 &**self
3738 }
3739}
3740
3741#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
3742impl<T: ?Sized, A: Allocator> AsRef<T> for Rc<T, A> {
3743 fn as_ref(&self) -> &T {
3744 &**self
3745 }
3746}
3747
3748#[stable(feature = "pin", since = "1.33.0")]
3749impl<T: ?Sized, A: Allocator> Unpin for Rc<T, A> {}
3750
3751/// Gets the offset within an `RcInner` for the payload behind a pointer.
3752///
3753/// # Safety
3754///
3755/// The pointer must point to (and have valid metadata for) a previously
3756/// valid instance of T, but the T is allowed to be dropped.
3757unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
3758 // Align the unsized value to the end of the RcInner.
3759 // Because RcInner is repr(C), it will always be the last field in memory.
3760 // SAFETY: since the only unsized types possible are slices, trait objects,
3761 // and extern types, the input safety requirement is currently enough to
3762 // satisfy the requirements of align_of_val_raw; this is an implementation
3763 // detail of the language that must not be relied upon outside of std.
3764 unsafe { data_offset_align(align_of_val_raw(ptr)) }
3765}
3766
3767#[inline]
3768fn data_offset_align(align: usize) -> usize {
3769 let layout = Layout::new::<RcInner<()>>();
3770 layout.size() + layout.padding_needed_for(align)
3771}
3772
3773/// A uniquely owned [`Rc`].
3774///
3775/// This represents an `Rc` that is known to be uniquely owned -- that is, have exactly one strong
3776/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
3777/// references will fail unless the `UniqueRc` they point to has been converted into a regular `Rc`.
3778///
3779/// Because they are uniquely owned, the contents of a `UniqueRc` can be freely mutated. A common
3780/// use case is to have an object be mutable during its initialization phase but then have it become
3781/// immutable and converted to a normal `Rc`.
3782///
3783/// This can be used as a flexible way to create cyclic data structures, as in the example below.
3784///
3785/// ```
3786/// #![feature(unique_rc_arc)]
3787/// use std::rc::{Rc, Weak, UniqueRc};
3788///
3789/// struct Gadget {
3790/// #[allow(dead_code)]
3791/// me: Weak<Gadget>,
3792/// }
3793///
3794/// fn create_gadget() -> Option<Rc<Gadget>> {
3795/// let mut rc = UniqueRc::new(Gadget {
3796/// me: Weak::new(),
3797/// });
3798/// rc.me = UniqueRc::downgrade(&rc);
3799/// Some(UniqueRc::into_rc(rc))
3800/// }
3801///
3802/// create_gadget().unwrap();
3803/// ```
3804///
3805/// An advantage of using `UniqueRc` over [`Rc::new_cyclic`] to build cyclic data structures is that
3806/// [`Rc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
3807/// previous example, `UniqueRc` allows for more flexibility in the construction of cyclic data,
3808/// including fallible or async constructors.
3809#[unstable(feature = "unique_rc_arc", issue = "112566")]
3810pub struct UniqueRc<
3811 T: ?Sized,
3812 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
3813> {
3814 ptr: NonNull<RcInner<T>>,
3815 // Define the ownership of `RcInner<T>` for drop-check
3816 _marker: PhantomData<RcInner<T>>,
3817 // Invariance is necessary for soundness: once other `Weak`
3818 // references exist, we already have a form of shared mutability!
3819 _marker2: PhantomData<*mut T>,
3820 alloc: A,
3821}
3822
3823// Not necessary for correctness since `UniqueRc` contains `NonNull`,
3824// but having an explicit negative impl is nice for documentation purposes
3825// and results in nicer error messages.
3826#[unstable(feature = "unique_rc_arc", issue = "112566")]
3827impl<T: ?Sized, A: Allocator> !Send for UniqueRc<T, A> {}
3828
3829// Not necessary for correctness since `UniqueRc` contains `NonNull`,
3830// but having an explicit negative impl is nice for documentation purposes
3831// and results in nicer error messages.
3832#[unstable(feature = "unique_rc_arc", issue = "112566")]
3833impl<T: ?Sized, A: Allocator> !Sync for UniqueRc<T, A> {}
3834
3835#[unstable(feature = "unique_rc_arc", issue = "112566")]
3836impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueRc<U, A>>
3837 for UniqueRc<T, A>
3838{
3839}
3840
3841//#[unstable(feature = "unique_rc_arc", issue = "112566")]
3842#[unstable(feature = "dispatch_from_dyn", issue = "none")]
3843impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueRc<U>> for UniqueRc<T> {}
3844
3845#[unstable(feature = "unique_rc_arc", issue = "112566")]
3846impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueRc<T, A> {
3847 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3848 fmt::Display::fmt(&**self, f)
3849 }
3850}
3851
3852#[unstable(feature = "unique_rc_arc", issue = "112566")]
3853impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueRc<T, A> {
3854 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3855 fmt::Debug::fmt(&**self, f)
3856 }
3857}
3858
3859#[unstable(feature = "unique_rc_arc", issue = "112566")]
3860impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueRc<T, A> {
3861 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3862 fmt::Pointer::fmt(&(&raw const **self), f)
3863 }
3864}
3865
3866#[unstable(feature = "unique_rc_arc", issue = "112566")]
3867impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueRc<T, A> {
3868 fn borrow(&self) -> &T {
3869 &**self
3870 }
3871}
3872
3873#[unstable(feature = "unique_rc_arc", issue = "112566")]
3874impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueRc<T, A> {
3875 fn borrow_mut(&mut self) -> &mut T {
3876 &mut **self
3877 }
3878}
3879
3880#[unstable(feature = "unique_rc_arc", issue = "112566")]
3881impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueRc<T, A> {
3882 fn as_ref(&self) -> &T {
3883 &**self
3884 }
3885}
3886
3887#[unstable(feature = "unique_rc_arc", issue = "112566")]
3888impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueRc<T, A> {
3889 fn as_mut(&mut self) -> &mut T {
3890 &mut **self
3891 }
3892}
3893
3894#[unstable(feature = "unique_rc_arc", issue = "112566")]
3895impl<T: ?Sized, A: Allocator> Unpin for UniqueRc<T, A> {}
3896
3897#[unstable(feature = "unique_rc_arc", issue = "112566")]
3898impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueRc<T, A> {
3899 /// Equality for two `UniqueRc`s.
3900 ///
3901 /// Two `UniqueRc`s are equal if their inner values are equal.
3902 ///
3903 /// # Examples
3904 ///
3905 /// ```
3906 /// #![feature(unique_rc_arc)]
3907 /// use std::rc::UniqueRc;
3908 ///
3909 /// let five = UniqueRc::new(5);
3910 ///
3911 /// assert!(five == UniqueRc::new(5));
3912 /// ```
3913 #[inline]
3914 fn eq(&self, other: &Self) -> bool {
3915 PartialEq::eq(&**self, &**other)
3916 }
3917
3918 /// Inequality for two `UniqueRc`s.
3919 ///
3920 /// Two `UniqueRc`s are not equal if their inner values are not equal.
3921 ///
3922 /// # Examples
3923 ///
3924 /// ```
3925 /// #![feature(unique_rc_arc)]
3926 /// use std::rc::UniqueRc;
3927 ///
3928 /// let five = UniqueRc::new(5);
3929 ///
3930 /// assert!(five != UniqueRc::new(6));
3931 /// ```
3932 #[inline]
3933 fn ne(&self, other: &Self) -> bool {
3934 PartialEq::ne(&**self, &**other)
3935 }
3936}
3937
3938#[unstable(feature = "unique_rc_arc", issue = "112566")]
3939impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueRc<T, A> {
3940 /// Partial comparison for two `UniqueRc`s.
3941 ///
3942 /// The two are compared by calling `partial_cmp()` on their inner values.
3943 ///
3944 /// # Examples
3945 ///
3946 /// ```
3947 /// #![feature(unique_rc_arc)]
3948 /// use std::rc::UniqueRc;
3949 /// use std::cmp::Ordering;
3950 ///
3951 /// let five = UniqueRc::new(5);
3952 ///
3953 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueRc::new(6)));
3954 /// ```
3955 #[inline(always)]
3956 fn partial_cmp(&self, other: &UniqueRc<T, A>) -> Option<Ordering> {
3957 (**self).partial_cmp(&**other)
3958 }
3959
3960 /// Less-than comparison for two `UniqueRc`s.
3961 ///
3962 /// The two are compared by calling `<` on their inner values.
3963 ///
3964 /// # Examples
3965 ///
3966 /// ```
3967 /// #![feature(unique_rc_arc)]
3968 /// use std::rc::UniqueRc;
3969 ///
3970 /// let five = UniqueRc::new(5);
3971 ///
3972 /// assert!(five < UniqueRc::new(6));
3973 /// ```
3974 #[inline(always)]
3975 fn lt(&self, other: &UniqueRc<T, A>) -> bool {
3976 **self < **other
3977 }
3978
3979 /// 'Less than or equal to' comparison for two `UniqueRc`s.
3980 ///
3981 /// The two are compared by calling `<=` on their inner values.
3982 ///
3983 /// # Examples
3984 ///
3985 /// ```
3986 /// #![feature(unique_rc_arc)]
3987 /// use std::rc::UniqueRc;
3988 ///
3989 /// let five = UniqueRc::new(5);
3990 ///
3991 /// assert!(five <= UniqueRc::new(5));
3992 /// ```
3993 #[inline(always)]
3994 fn le(&self, other: &UniqueRc<T, A>) -> bool {
3995 **self <= **other
3996 }
3997
3998 /// Greater-than comparison for two `UniqueRc`s.
3999 ///
4000 /// The two are compared by calling `>` on their inner values.
4001 ///
4002 /// # Examples
4003 ///
4004 /// ```
4005 /// #![feature(unique_rc_arc)]
4006 /// use std::rc::UniqueRc;
4007 ///
4008 /// let five = UniqueRc::new(5);
4009 ///
4010 /// assert!(five > UniqueRc::new(4));
4011 /// ```
4012 #[inline(always)]
4013 fn gt(&self, other: &UniqueRc<T, A>) -> bool {
4014 **self > **other
4015 }
4016
4017 /// 'Greater than or equal to' comparison for two `UniqueRc`s.
4018 ///
4019 /// The two are compared by calling `>=` on their inner values.
4020 ///
4021 /// # Examples
4022 ///
4023 /// ```
4024 /// #![feature(unique_rc_arc)]
4025 /// use std::rc::UniqueRc;
4026 ///
4027 /// let five = UniqueRc::new(5);
4028 ///
4029 /// assert!(five >= UniqueRc::new(5));
4030 /// ```
4031 #[inline(always)]
4032 fn ge(&self, other: &UniqueRc<T, A>) -> bool {
4033 **self >= **other
4034 }
4035}
4036
4037#[unstable(feature = "unique_rc_arc", issue = "112566")]
4038impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueRc<T, A> {
4039 /// Comparison for two `UniqueRc`s.
4040 ///
4041 /// The two are compared by calling `cmp()` on their inner values.
4042 ///
4043 /// # Examples
4044 ///
4045 /// ```
4046 /// #![feature(unique_rc_arc)]
4047 /// use std::rc::UniqueRc;
4048 /// use std::cmp::Ordering;
4049 ///
4050 /// let five = UniqueRc::new(5);
4051 ///
4052 /// assert_eq!(Ordering::Less, five.cmp(&UniqueRc::new(6)));
4053 /// ```
4054 #[inline]
4055 fn cmp(&self, other: &UniqueRc<T, A>) -> Ordering {
4056 (**self).cmp(&**other)
4057 }
4058}
4059
4060#[unstable(feature = "unique_rc_arc", issue = "112566")]
4061impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueRc<T, A> {}
4062
4063#[unstable(feature = "unique_rc_arc", issue = "112566")]
4064impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueRc<T, A> {
4065 fn hash<H: Hasher>(&self, state: &mut H) {
4066 (**self).hash(state);
4067 }
4068}
4069
4070// Depends on A = Global
4071impl<T> UniqueRc<T> {
4072 /// Creates a new `UniqueRc`.
4073 ///
4074 /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
4075 /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
4076 /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
4077 /// point to the new [`Rc`].
4078 #[cfg(not(no_global_oom_handling))]
4079 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4080 pub fn new(value: T) -> Self {
4081 Self::new_in(value, Global)
4082 }
4083
4084 /// Maps the value in a `UniqueRc`, reusing the allocation if possible.
4085 ///
4086 /// `f` is called on a reference to the value in the `UniqueRc`, and the result is returned,
4087 /// also in a `UniqueRc`.
4088 ///
4089 /// Note: this is an associated function, which means that you have
4090 /// to call it as `UniqueRc::map(u, f)` instead of `u.map(f)`. This
4091 /// is so that there is no conflict with a method on the inner type.
4092 ///
4093 /// # Examples
4094 ///
4095 /// ```
4096 /// #![feature(smart_pointer_try_map)]
4097 /// #![feature(unique_rc_arc)]
4098 ///
4099 /// use std::rc::UniqueRc;
4100 ///
4101 /// let r = UniqueRc::new(7);
4102 /// let new = UniqueRc::map(r, |i| i + 7);
4103 /// assert_eq!(*new, 14);
4104 /// ```
4105 #[cfg(not(no_global_oom_handling))]
4106 #[unstable(feature = "smart_pointer_try_map", issue = "144419")]
4107 pub fn map<U>(this: Self, f: impl FnOnce(T) -> U) -> UniqueRc<U> {
4108 if size_of::<T>() == size_of::<U>()
4109 && align_of::<T>() == align_of::<U>()
4110 && UniqueRc::weak_count(&this) == 0
4111 {
4112 unsafe {
4113 let ptr = UniqueRc::into_raw(this);
4114 let value = ptr.read();
4115 let mut allocation = UniqueRc::from_raw(ptr.cast::<mem::MaybeUninit<U>>());
4116
4117 allocation.write(f(value));
4118 allocation.assume_init()
4119 }
4120 } else {
4121 UniqueRc::new(f(UniqueRc::unwrap(this)))
4122 }
4123 }
4124
4125 /// Attempts to map the value in a `UniqueRc`, reusing the allocation if possible.
4126 ///
4127 /// `f` is called on a reference to the value in the `UniqueRc`, and if the operation succeeds,
4128 /// the result is returned, also in a `UniqueRc`.
4129 ///
4130 /// Note: this is an associated function, which means that you have
4131 /// to call it as `UniqueRc::try_map(u, f)` instead of `u.try_map(f)`. This
4132 /// is so that there is no conflict with a method on the inner type.
4133 ///
4134 /// # Examples
4135 ///
4136 /// ```
4137 /// #![feature(smart_pointer_try_map)]
4138 /// #![feature(unique_rc_arc)]
4139 ///
4140 /// use std::rc::UniqueRc;
4141 ///
4142 /// let b = UniqueRc::new(7);
4143 /// let new = UniqueRc::try_map(b, u32::try_from).unwrap();
4144 /// assert_eq!(*new, 7);
4145 /// ```
4146 #[cfg(not(no_global_oom_handling))]
4147 #[unstable(feature = "smart_pointer_try_map", issue = "144419")]
4148 pub fn try_map<R>(
4149 this: Self,
4150 f: impl FnOnce(T) -> R,
4151 ) -> <R::Residual as Residual<UniqueRc<R::Output>>>::TryType
4152 where
4153 R: Try,
4154 R::Residual: Residual<UniqueRc<R::Output>>,
4155 {
4156 if size_of::<T>() == size_of::<R::Output>()
4157 && align_of::<T>() == align_of::<R::Output>()
4158 && UniqueRc::weak_count(&this) == 0
4159 {
4160 unsafe {
4161 let ptr = UniqueRc::into_raw(this);
4162 let value = ptr.read();
4163 let mut allocation = UniqueRc::from_raw(ptr.cast::<mem::MaybeUninit<R::Output>>());
4164
4165 allocation.write(f(value)?);
4166 try { allocation.assume_init() }
4167 }
4168 } else {
4169 try { UniqueRc::new(f(UniqueRc::unwrap(this))?) }
4170 }
4171 }
4172
4173 #[cfg(not(no_global_oom_handling))]
4174 fn unwrap(this: Self) -> T {
4175 let this = ManuallyDrop::new(this);
4176 let val: T = unsafe { ptr::read(&**this) };
4177
4178 let _weak = Weak { ptr: this.ptr, alloc: Global };
4179
4180 val
4181 }
4182}
4183
4184impl<T: ?Sized> UniqueRc<T> {
4185 #[cfg(not(no_global_oom_handling))]
4186 unsafe fn from_raw(ptr: *const T) -> Self {
4187 let offset = unsafe { data_offset(ptr) };
4188
4189 // Reverse the offset to find the original RcInner.
4190 let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcInner<T> };
4191
4192 Self {
4193 ptr: unsafe { NonNull::new_unchecked(rc_ptr) },
4194 _marker: PhantomData,
4195 _marker2: PhantomData,
4196 alloc: Global,
4197 }
4198 }
4199
4200 #[cfg(not(no_global_oom_handling))]
4201 fn into_raw(this: Self) -> *const T {
4202 let this = ManuallyDrop::new(this);
4203 Self::as_ptr(&*this)
4204 }
4205}
4206
4207impl<T, A: Allocator> UniqueRc<T, A> {
4208 /// Creates a new `UniqueRc` in the provided allocator.
4209 ///
4210 /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
4211 /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
4212 /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
4213 /// point to the new [`Rc`].
4214 #[cfg(not(no_global_oom_handling))]
4215 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4216 pub fn new_in(value: T, alloc: A) -> Self {
4217 let (ptr, alloc) = Box::into_unique(Box::new_in(
4218 RcInner {
4219 strong: Cell::new(0),
4220 // keep one weak reference so if all the weak pointers that are created are dropped
4221 // the UniqueRc still stays valid.
4222 weak: Cell::new(1),
4223 value,
4224 },
4225 alloc,
4226 ));
4227 Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4228 }
4229}
4230
4231impl<T: ?Sized, A: Allocator> UniqueRc<T, A> {
4232 /// Converts the `UniqueRc` into a regular [`Rc`].
4233 ///
4234 /// This consumes the `UniqueRc` and returns a regular [`Rc`] that contains the `value` that
4235 /// is passed to `into_rc`.
4236 ///
4237 /// Any weak references created before this method is called can now be upgraded to strong
4238 /// references.
4239 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4240 pub fn into_rc(this: Self) -> Rc<T, A> {
4241 let mut this = ManuallyDrop::new(this);
4242
4243 // Move the allocator out.
4244 // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4245 // a `ManuallyDrop`.
4246 let alloc: A = unsafe { ptr::read(&this.alloc) };
4247
4248 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4249 unsafe {
4250 // Convert our weak reference into a strong reference
4251 this.ptr.as_mut().strong.set(1);
4252 Rc::from_inner_in(this.ptr, alloc)
4253 }
4254 }
4255
4256 #[cfg(not(no_global_oom_handling))]
4257 fn weak_count(this: &Self) -> usize {
4258 this.inner().weak() - 1
4259 }
4260
4261 #[cfg(not(no_global_oom_handling))]
4262 fn inner(&self) -> &RcInner<T> {
4263 // SAFETY: while this UniqueRc is alive we're guaranteed that the inner pointer is valid.
4264 unsafe { self.ptr.as_ref() }
4265 }
4266
4267 #[cfg(not(no_global_oom_handling))]
4268 fn as_ptr(this: &Self) -> *const T {
4269 let ptr: *mut RcInner<T> = NonNull::as_ptr(this.ptr);
4270
4271 // SAFETY: This cannot go through Deref::deref or UniqueRc::inner because
4272 // this is required to retain raw/mut provenance such that e.g. `get_mut` can
4273 // write through the pointer after the Rc is recovered through `from_raw`.
4274 unsafe { &raw mut (*ptr).value }
4275 }
4276
4277 #[inline]
4278 #[cfg(not(no_global_oom_handling))]
4279 fn into_inner_with_allocator(this: Self) -> (NonNull<RcInner<T>>, A) {
4280 let this = mem::ManuallyDrop::new(this);
4281 (this.ptr, unsafe { ptr::read(&this.alloc) })
4282 }
4283
4284 #[inline]
4285 #[cfg(not(no_global_oom_handling))]
4286 unsafe fn from_inner_in(ptr: NonNull<RcInner<T>>, alloc: A) -> Self {
4287 Self { ptr, _marker: PhantomData, _marker2: PhantomData, alloc }
4288 }
4289}
4290
4291impl<T: ?Sized, A: Allocator + Clone> UniqueRc<T, A> {
4292 /// Creates a new weak reference to the `UniqueRc`.
4293 ///
4294 /// Attempting to upgrade this weak reference will fail before the `UniqueRc` has been converted
4295 /// to a [`Rc`] using [`UniqueRc::into_rc`].
4296 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4297 pub fn downgrade(this: &Self) -> Weak<T, A> {
4298 // SAFETY: This pointer was allocated at creation time and we guarantee that we only have
4299 // one strong reference before converting to a regular Rc.
4300 unsafe {
4301 this.ptr.as_ref().inc_weak();
4302 }
4303 Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4304 }
4305}
4306
4307#[cfg(not(no_global_oom_handling))]
4308impl<T, A: Allocator> UniqueRc<mem::MaybeUninit<T>, A> {
4309 unsafe fn assume_init(self) -> UniqueRc<T, A> {
4310 let (ptr, alloc) = UniqueRc::into_inner_with_allocator(self);
4311 unsafe { UniqueRc::from_inner_in(ptr.cast(), alloc) }
4312 }
4313}
4314
4315#[unstable(feature = "unique_rc_arc", issue = "112566")]
4316impl<T: ?Sized, A: Allocator> Deref for UniqueRc<T, A> {
4317 type Target = T;
4318
4319 fn deref(&self) -> &T {
4320 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4321 unsafe { &self.ptr.as_ref().value }
4322 }
4323}
4324
4325#[unstable(feature = "unique_rc_arc", issue = "112566")]
4326impl<T: ?Sized, A: Allocator> DerefMut for UniqueRc<T, A> {
4327 fn deref_mut(&mut self) -> &mut T {
4328 // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4329 // have unique ownership and therefore it's safe to make a mutable reference because
4330 // `UniqueRc` owns the only strong reference to itself.
4331 unsafe { &mut (*self.ptr.as_ptr()).value }
4332 }
4333}
4334
4335#[unstable(feature = "unique_rc_arc", issue = "112566")]
4336unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueRc<T, A> {
4337 fn drop(&mut self) {
4338 unsafe {
4339 // destroy the contained object
4340 drop_in_place(DerefMut::deref_mut(self));
4341
4342 // remove the implicit "strong weak" pointer now that we've destroyed the contents.
4343 self.ptr.as_ref().dec_weak();
4344
4345 if self.ptr.as_ref().weak() == 0 {
4346 self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
4347 }
4348 }
4349 }
4350}
4351
4352/// A unique owning pointer to a [`RcInner`] **that does not imply the contents are initialized,**
4353/// but will deallocate it (without dropping the value) when dropped.
4354///
4355/// This is a helper for [`Rc::make_mut()`] to ensure correct cleanup on panic.
4356/// It is nearly a duplicate of `UniqueRc<MaybeUninit<T>, A>` except that it allows `T: !Sized`,
4357/// which `MaybeUninit` does not.
4358#[cfg(not(no_global_oom_handling))]
4359struct UniqueRcUninit<T: ?Sized, A: Allocator> {
4360 ptr: NonNull<RcInner<T>>,
4361 layout_for_value: Layout,
4362 alloc: Option<A>,
4363}
4364
4365#[cfg(not(no_global_oom_handling))]
4366impl<T: ?Sized, A: Allocator> UniqueRcUninit<T, A> {
4367 /// Allocates a RcInner with layout suitable to contain `for_value` or a clone of it.
4368 fn new(for_value: &T, alloc: A) -> UniqueRcUninit<T, A> {
4369 let layout = Layout::for_value(for_value);
4370 let ptr = unsafe {
4371 Rc::allocate_for_layout(
4372 layout,
4373 |layout_for_rc_inner| alloc.allocate(layout_for_rc_inner),
4374 |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const RcInner<T>),
4375 )
4376 };
4377 Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4378 }
4379
4380 /// Returns the pointer to be written into to initialize the [`Rc`].
4381 fn data_ptr(&mut self) -> *mut T {
4382 let offset = data_offset_align(self.layout_for_value.align());
4383 unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4384 }
4385
4386 /// Upgrade this into a normal [`Rc`].
4387 ///
4388 /// # Safety
4389 ///
4390 /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4391 unsafe fn into_rc(self) -> Rc<T, A> {
4392 let mut this = ManuallyDrop::new(self);
4393 let ptr = this.ptr;
4394 let alloc = this.alloc.take().unwrap();
4395
4396 // SAFETY: The pointer is valid as per `UniqueRcUninit::new`, and the caller is responsible
4397 // for having initialized the data.
4398 unsafe { Rc::from_ptr_in(ptr.as_ptr(), alloc) }
4399 }
4400}
4401
4402#[cfg(not(no_global_oom_handling))]
4403impl<T: ?Sized, A: Allocator> Drop for UniqueRcUninit<T, A> {
4404 fn drop(&mut self) {
4405 // SAFETY:
4406 // * new() produced a pointer safe to deallocate.
4407 // * We own the pointer unless into_rc() was called, which forgets us.
4408 unsafe {
4409 self.alloc.take().unwrap().deallocate(
4410 self.ptr.cast(),
4411 rc_inner_layout_for_value_layout(self.layout_for_value),
4412 );
4413 }
4414 }
4415}