Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

alloc/
rc.rs

1//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
2//! Counted'.
3//!
4//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
5//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
6//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
7//! given allocation is destroyed, the value stored in that allocation (often
8//! referred to as "inner value") is also dropped.
9//!
10//! Shared references in Rust disallow mutation by default, and [`Rc`]
11//! is no exception: you cannot generally obtain a mutable reference to
12//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
13//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
14//! inside an `Rc`][mutability].
15//!
16//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
17//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
18//! does not implement [`Send`]. As a result, the Rust compiler
19//! will check *at compile time* that you are not sending [`Rc`]s between
20//! threads. If you need multi-threaded, atomic reference counting, use
21//! [`sync::Arc`][arc].
22//!
23//! The [`downgrade`][downgrade] method can be used to create a non-owning
24//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
25//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
26//! already been dropped. In other words, `Weak` pointers do not keep the value
27//! inside the allocation alive; however, they *do* keep the allocation
28//! (the backing store for the inner value) alive.
29//!
30//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
31//! [`Weak`] is used to break cycles. For example, a tree could have strong
32//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
33//! children back to their parents.
34//!
35//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
36//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
37//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
38//! functions, called using [fully qualified syntax]:
39//!
40//! ```
41//! use std::rc::Rc;
42//!
43//! let my_rc = Rc::new(());
44//! let my_weak = Rc::downgrade(&my_rc);
45//! ```
46//!
47//! `Rc<T>`'s implementations of traits like `Clone` may also be called using
48//! fully qualified syntax. Some people prefer to use fully qualified syntax,
49//! while others prefer using method-call syntax.
50//!
51//! ```
52//! use std::rc::Rc;
53//!
54//! let rc = Rc::new(());
55//! // Method-call syntax
56//! let rc2 = rc.clone();
57//! // Fully qualified syntax
58//! let rc3 = Rc::clone(&rc);
59//! ```
60//!
61//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
62//! already been dropped.
63//!
64//! # Cloning references
65//!
66//! Creating a new reference to the same allocation as an existing reference counted pointer
67//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
68//!
69//! ```
70//! use std::rc::Rc;
71//!
72//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
73//! // The two syntaxes below are equivalent.
74//! let a = foo.clone();
75//! let b = Rc::clone(&foo);
76//! // a and b both point to the same memory location as foo.
77//! ```
78//!
79//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
80//! the meaning of the code. In the example above, this syntax makes it easier to see that
81//! this code is creating a new reference rather than copying the whole content of foo.
82//!
83//! # Examples
84//!
85//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
86//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
87//! unique ownership, because more than one gadget may belong to the same
88//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
89//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
90//!
91//! ```
92//! use std::rc::Rc;
93//!
94//! struct Owner {
95//!     name: String,
96//!     // ...other fields
97//! }
98//!
99//! struct Gadget {
100//!     id: i32,
101//!     owner: Rc<Owner>,
102//!     // ...other fields
103//! }
104//!
105//! fn main() {
106//!     // Create a reference-counted `Owner`.
107//!     let gadget_owner: Rc<Owner> = Rc::new(
108//!         Owner {
109//!             name: "Gadget Man".to_string(),
110//!         }
111//!     );
112//!
113//!     // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
114//!     // gives us a new pointer to the same `Owner` allocation, incrementing
115//!     // the reference count in the process.
116//!     let gadget1 = Gadget {
117//!         id: 1,
118//!         owner: Rc::clone(&gadget_owner),
119//!     };
120//!     let gadget2 = Gadget {
121//!         id: 2,
122//!         owner: Rc::clone(&gadget_owner),
123//!     };
124//!
125//!     // Dispose of our local variable `gadget_owner`.
126//!     drop(gadget_owner);
127//!
128//!     // Despite dropping `gadget_owner`, we're still able to print out the name
129//!     // of the `Owner` of the `Gadget`s. This is because we've only dropped a
130//!     // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
131//!     // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
132//!     // live. The field projection `gadget1.owner.name` works because
133//!     // `Rc<Owner>` automatically dereferences to `Owner`.
134//!     println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
135//!     println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
136//!
137//!     // At the end of the function, `gadget1` and `gadget2` are destroyed, and
138//!     // with them the last counted references to our `Owner`. Gadget Man now
139//!     // gets destroyed as well.
140//! }
141//! ```
142//!
143//! If our requirements change, and we also need to be able to traverse from
144//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
145//! to `Gadget` introduces a cycle. This means that their
146//! reference counts can never reach 0, and the allocation will never be destroyed:
147//! a memory leak. In order to get around this, we can use [`Weak`]
148//! pointers.
149//!
150//! Rust actually makes it somewhat difficult to produce this loop in the first
151//! place. In order to end up with two values that point at each other, one of
152//! them needs to be mutable. This is difficult because [`Rc`] enforces
153//! memory safety by only giving out shared references to the value it wraps,
154//! and these don't allow direct mutation. We need to wrap the part of the
155//! value we wish to mutate in a [`RefCell`], which provides *interior
156//! mutability*: a method to achieve mutability through a shared reference.
157//! [`RefCell`] enforces Rust's borrowing rules at runtime.
158//!
159//! ```
160//! use std::rc::Rc;
161//! use std::rc::Weak;
162//! use std::cell::RefCell;
163//!
164//! struct Owner {
165//!     name: String,
166//!     gadgets: RefCell<Vec<Weak<Gadget>>>,
167//!     // ...other fields
168//! }
169//!
170//! struct Gadget {
171//!     id: i32,
172//!     owner: Rc<Owner>,
173//!     // ...other fields
174//! }
175//!
176//! fn main() {
177//!     // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
178//!     // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
179//!     // a shared reference.
180//!     let gadget_owner: Rc<Owner> = Rc::new(
181//!         Owner {
182//!             name: "Gadget Man".to_string(),
183//!             gadgets: RefCell::new(vec![]),
184//!         }
185//!     );
186//!
187//!     // Create `Gadget`s belonging to `gadget_owner`, as before.
188//!     let gadget1 = Rc::new(
189//!         Gadget {
190//!             id: 1,
191//!             owner: Rc::clone(&gadget_owner),
192//!         }
193//!     );
194//!     let gadget2 = Rc::new(
195//!         Gadget {
196//!             id: 2,
197//!             owner: Rc::clone(&gadget_owner),
198//!         }
199//!     );
200//!
201//!     // Add the `Gadget`s to their `Owner`.
202//!     {
203//!         let mut gadgets = gadget_owner.gadgets.borrow_mut();
204//!         gadgets.push(Rc::downgrade(&gadget1));
205//!         gadgets.push(Rc::downgrade(&gadget2));
206//!
207//!         // `RefCell` dynamic borrow ends here.
208//!     }
209//!
210//!     // Iterate over our `Gadget`s, printing their details out.
211//!     for gadget_weak in gadget_owner.gadgets.borrow().iter() {
212//!
213//!         // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
214//!         // guarantee the allocation still exists, we need to call
215//!         // `upgrade`, which returns an `Option<Rc<Gadget>>`.
216//!         //
217//!         // In this case we know the allocation still exists, so we simply
218//!         // `unwrap` the `Option`. In a more complicated program, you might
219//!         // need graceful error handling for a `None` result.
220//!
221//!         let gadget = gadget_weak.upgrade().unwrap();
222//!         println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
223//!     }
224//!
225//!     // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
226//!     // are destroyed. There are now no strong (`Rc`) pointers to the
227//!     // gadgets, so they are destroyed. This zeroes the reference count on
228//!     // Gadget Man, so he gets destroyed as well.
229//! }
230//! ```
231//!
232//! [clone]: Clone::clone
233//! [`Cell`]: core::cell::Cell
234//! [`RefCell`]: core::cell::RefCell
235//! [arc]: crate::sync::Arc
236//! [`Deref`]: core::ops::Deref
237//! [downgrade]: Rc::downgrade
238//! [upgrade]: Weak::upgrade
239//! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable
240//! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
241
242#![stable(feature = "rust1", since = "1.0.0")]
243
244use core::any::Any;
245use core::cell::{Cell, CloneFromCell};
246#[cfg(not(no_global_oom_handling))]
247use core::clone::CloneToUninit;
248use core::clone::UseCloned;
249use core::cmp::Ordering;
250use core::hash::{Hash, Hasher};
251use core::intrinsics::abort;
252#[cfg(not(no_global_oom_handling))]
253use core::iter;
254use core::marker::{PhantomData, Unsize};
255use core::mem::{self, ManuallyDrop, align_of_val_raw};
256use core::num::NonZeroUsize;
257use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
258use core::panic::{RefUnwindSafe, UnwindSafe};
259#[cfg(not(no_global_oom_handling))]
260use core::pin::Pin;
261use core::pin::PinCoerceUnsized;
262use core::ptr::{self, NonNull, drop_in_place};
263#[cfg(not(no_global_oom_handling))]
264use core::slice::from_raw_parts_mut;
265use core::{borrow, fmt, hint};
266
267#[cfg(not(no_global_oom_handling))]
268use crate::alloc::handle_alloc_error;
269use crate::alloc::{AllocError, Allocator, Global, Layout};
270use crate::borrow::{Cow, ToOwned};
271use crate::boxed::Box;
272#[cfg(not(no_global_oom_handling))]
273use crate::string::String;
274#[cfg(not(no_global_oom_handling))]
275use crate::vec::Vec;
276
277// This is repr(C) to future-proof against possible field-reordering, which
278// would interfere with otherwise safe [into|from]_raw() of transmutable
279// inner types.
280// repr(align(2)) (forcing alignment to at least 2) is required because usize
281// has 1-byte alignment on AVR.
282#[repr(C, align(2))]
283struct RcInner<T: ?Sized> {
284    strong: Cell<usize>,
285    weak: Cell<usize>,
286    value: T,
287}
288
289/// Calculate layout for `RcInner<T>` using the inner value's layout
290fn rc_inner_layout_for_value_layout(layout: Layout) -> Layout {
291    // Calculate layout using the given value layout.
292    // Previously, layout was calculated on the expression
293    // `&*(ptr as *const RcInner<T>)`, but this created a misaligned
294    // reference (see #54908).
295    Layout::new::<RcInner<()>>().extend(layout).unwrap().0.pad_to_align()
296}
297
298/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
299/// Counted'.
300///
301/// See the [module-level documentation](./index.html) for more details.
302///
303/// The inherent methods of `Rc` are all associated functions, which means
304/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
305/// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`.
306///
307/// [get_mut]: Rc::get_mut
308#[doc(search_unbox)]
309#[rustc_diagnostic_item = "Rc"]
310#[stable(feature = "rust1", since = "1.0.0")]
311#[rustc_insignificant_dtor]
312pub struct Rc<
313    T: ?Sized,
314    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
315> {
316    ptr: NonNull<RcInner<T>>,
317    phantom: PhantomData<RcInner<T>>,
318    alloc: A,
319}
320
321#[stable(feature = "rust1", since = "1.0.0")]
322impl<T: ?Sized, A: Allocator> !Send for Rc<T, A> {}
323
324// Note that this negative impl isn't strictly necessary for correctness,
325// as `Rc` transitively contains a `Cell`, which is itself `!Sync`.
326// However, given how important `Rc`'s `!Sync`-ness is,
327// having an explicit negative impl is nice for documentation purposes
328// and results in nicer error messages.
329#[stable(feature = "rust1", since = "1.0.0")]
330impl<T: ?Sized, A: Allocator> !Sync for Rc<T, A> {}
331
332#[stable(feature = "catch_unwind", since = "1.9.0")]
333impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Rc<T, A> {}
334#[stable(feature = "rc_ref_unwind_safe", since = "1.58.0")]
335impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> RefUnwindSafe for Rc<T, A> {}
336
337#[unstable(feature = "coerce_unsized", issue = "18598")]
338impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Rc<U, A>> for Rc<T, A> {}
339
340#[unstable(feature = "dispatch_from_dyn", issue = "none")]
341impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
342
343// SAFETY: `Rc::clone` doesn't access any `Cell`s which could contain the `Rc` being cloned.
344#[unstable(feature = "cell_get_cloned", issue = "145329")]
345unsafe impl<T: ?Sized> CloneFromCell for Rc<T> {}
346
347impl<T: ?Sized> Rc<T> {
348    #[inline]
349    unsafe fn from_inner(ptr: NonNull<RcInner<T>>) -> Self {
350        unsafe { Self::from_inner_in(ptr, Global) }
351    }
352
353    #[inline]
354    unsafe fn from_ptr(ptr: *mut RcInner<T>) -> Self {
355        unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
356    }
357}
358
359impl<T: ?Sized, A: Allocator> Rc<T, A> {
360    #[inline(always)]
361    fn inner(&self) -> &RcInner<T> {
362        // This unsafety is ok because while this Rc is alive we're guaranteed
363        // that the inner pointer is valid.
364        unsafe { self.ptr.as_ref() }
365    }
366
367    #[inline]
368    fn into_inner_with_allocator(this: Self) -> (NonNull<RcInner<T>>, A) {
369        let this = mem::ManuallyDrop::new(this);
370        (this.ptr, unsafe { ptr::read(&this.alloc) })
371    }
372
373    #[inline]
374    unsafe fn from_inner_in(ptr: NonNull<RcInner<T>>, alloc: A) -> Self {
375        Self { ptr, phantom: PhantomData, alloc }
376    }
377
378    #[inline]
379    unsafe fn from_ptr_in(ptr: *mut RcInner<T>, alloc: A) -> Self {
380        unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
381    }
382
383    // Non-inlined part of `drop`.
384    #[inline(never)]
385    unsafe fn drop_slow(&mut self) {
386        // Reconstruct the "strong weak" pointer and drop it when this
387        // variable goes out of scope. This ensures that the memory is
388        // deallocated even if the destructor of `T` panics.
389        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
390
391        // Destroy the contained object.
392        // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
393        unsafe {
394            ptr::drop_in_place(&mut (*self.ptr.as_ptr()).value);
395        }
396    }
397}
398
399impl<T> Rc<T> {
400    /// Constructs a new `Rc<T>`.
401    ///
402    /// # Examples
403    ///
404    /// ```
405    /// use std::rc::Rc;
406    ///
407    /// let five = Rc::new(5);
408    /// ```
409    #[cfg(not(no_global_oom_handling))]
410    #[stable(feature = "rust1", since = "1.0.0")]
411    pub fn new(value: T) -> Rc<T> {
412        // There is an implicit weak pointer owned by all the strong
413        // pointers, which ensures that the weak destructor never frees
414        // the allocation while the strong destructor is running, even
415        // if the weak pointer is stored inside the strong one.
416        unsafe {
417            Self::from_inner(
418                Box::leak(Box::new(RcInner { strong: Cell::new(1), weak: Cell::new(1), value }))
419                    .into(),
420            )
421        }
422    }
423
424    /// Constructs a new `Rc<T>` while giving you a `Weak<T>` to the allocation,
425    /// to allow you to construct a `T` which holds a weak pointer to itself.
426    ///
427    /// Generally, a structure circularly referencing itself, either directly or
428    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
429    /// Using this function, you get access to the weak pointer during the
430    /// initialization of `T`, before the `Rc<T>` is created, such that you can
431    /// clone and store it inside the `T`.
432    ///
433    /// `new_cyclic` first allocates the managed allocation for the `Rc<T>`,
434    /// then calls your closure, giving it a `Weak<T>` to this allocation,
435    /// and only afterwards completes the construction of the `Rc<T>` by placing
436    /// the `T` returned from your closure into the allocation.
437    ///
438    /// Since the new `Rc<T>` is not fully-constructed until `Rc<T>::new_cyclic`
439    /// returns, calling [`upgrade`] on the weak reference inside your closure will
440    /// fail and result in a `None` value.
441    ///
442    /// # Panics
443    ///
444    /// If `data_fn` panics, the panic is propagated to the caller, and the
445    /// temporary [`Weak<T>`] is dropped normally.
446    ///
447    /// # Examples
448    ///
449    /// ```
450    /// # #![allow(dead_code)]
451    /// use std::rc::{Rc, Weak};
452    ///
453    /// struct Gadget {
454    ///     me: Weak<Gadget>,
455    /// }
456    ///
457    /// impl Gadget {
458    ///     /// Constructs a reference counted Gadget.
459    ///     fn new() -> Rc<Self> {
460    ///         // `me` is a `Weak<Gadget>` pointing at the new allocation of the
461    ///         // `Rc` we're constructing.
462    ///         Rc::new_cyclic(|me| {
463    ///             // Create the actual struct here.
464    ///             Gadget { me: me.clone() }
465    ///         })
466    ///     }
467    ///
468    ///     /// Returns a reference counted pointer to Self.
469    ///     fn me(&self) -> Rc<Self> {
470    ///         self.me.upgrade().unwrap()
471    ///     }
472    /// }
473    /// ```
474    /// [`upgrade`]: Weak::upgrade
475    #[cfg(not(no_global_oom_handling))]
476    #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
477    pub fn new_cyclic<F>(data_fn: F) -> Rc<T>
478    where
479        F: FnOnce(&Weak<T>) -> T,
480    {
481        Self::new_cyclic_in(data_fn, Global)
482    }
483
484    /// Constructs a new `Rc` with uninitialized contents.
485    ///
486    /// # Examples
487    ///
488    /// ```
489    /// use std::rc::Rc;
490    ///
491    /// let mut five = Rc::<u32>::new_uninit();
492    ///
493    /// // Deferred initialization:
494    /// Rc::get_mut(&mut five).unwrap().write(5);
495    ///
496    /// let five = unsafe { five.assume_init() };
497    ///
498    /// assert_eq!(*five, 5)
499    /// ```
500    #[cfg(not(no_global_oom_handling))]
501    #[stable(feature = "new_uninit", since = "1.82.0")]
502    #[must_use]
503    pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
504        unsafe {
505            Rc::from_ptr(Rc::allocate_for_layout(
506                Layout::new::<T>(),
507                |layout| Global.allocate(layout),
508                <*mut u8>::cast,
509            ))
510        }
511    }
512
513    /// Constructs a new `Rc` with uninitialized contents, with the memory
514    /// being filled with `0` bytes.
515    ///
516    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
517    /// incorrect usage of this method.
518    ///
519    /// # Examples
520    ///
521    /// ```
522    /// use std::rc::Rc;
523    ///
524    /// let zero = Rc::<u32>::new_zeroed();
525    /// let zero = unsafe { zero.assume_init() };
526    ///
527    /// assert_eq!(*zero, 0)
528    /// ```
529    ///
530    /// [zeroed]: mem::MaybeUninit::zeroed
531    #[cfg(not(no_global_oom_handling))]
532    #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
533    #[must_use]
534    pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
535        unsafe {
536            Rc::from_ptr(Rc::allocate_for_layout(
537                Layout::new::<T>(),
538                |layout| Global.allocate_zeroed(layout),
539                <*mut u8>::cast,
540            ))
541        }
542    }
543
544    /// Constructs a new `Rc<T>`, returning an error if the allocation fails
545    ///
546    /// # Examples
547    ///
548    /// ```
549    /// #![feature(allocator_api)]
550    /// use std::rc::Rc;
551    ///
552    /// let five = Rc::try_new(5);
553    /// # Ok::<(), std::alloc::AllocError>(())
554    /// ```
555    #[unstable(feature = "allocator_api", issue = "32838")]
556    pub fn try_new(value: T) -> Result<Rc<T>, AllocError> {
557        // There is an implicit weak pointer owned by all the strong
558        // pointers, which ensures that the weak destructor never frees
559        // the allocation while the strong destructor is running, even
560        // if the weak pointer is stored inside the strong one.
561        unsafe {
562            Ok(Self::from_inner(
563                Box::leak(Box::try_new(RcInner {
564                    strong: Cell::new(1),
565                    weak: Cell::new(1),
566                    value,
567                })?)
568                .into(),
569            ))
570        }
571    }
572
573    /// Constructs a new `Rc` with uninitialized contents, returning an error if the allocation fails
574    ///
575    /// # Examples
576    ///
577    /// ```
578    /// #![feature(allocator_api)]
579    ///
580    /// use std::rc::Rc;
581    ///
582    /// let mut five = Rc::<u32>::try_new_uninit()?;
583    ///
584    /// // Deferred initialization:
585    /// Rc::get_mut(&mut five).unwrap().write(5);
586    ///
587    /// let five = unsafe { five.assume_init() };
588    ///
589    /// assert_eq!(*five, 5);
590    /// # Ok::<(), std::alloc::AllocError>(())
591    /// ```
592    #[unstable(feature = "allocator_api", issue = "32838")]
593    pub fn try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
594        unsafe {
595            Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
596                Layout::new::<T>(),
597                |layout| Global.allocate(layout),
598                <*mut u8>::cast,
599            )?))
600        }
601    }
602
603    /// Constructs a new `Rc` with uninitialized contents, with the memory
604    /// being filled with `0` bytes, returning an error if the allocation fails
605    ///
606    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
607    /// incorrect usage of this method.
608    ///
609    /// # Examples
610    ///
611    /// ```
612    /// #![feature(allocator_api)]
613    ///
614    /// use std::rc::Rc;
615    ///
616    /// let zero = Rc::<u32>::try_new_zeroed()?;
617    /// let zero = unsafe { zero.assume_init() };
618    ///
619    /// assert_eq!(*zero, 0);
620    /// # Ok::<(), std::alloc::AllocError>(())
621    /// ```
622    ///
623    /// [zeroed]: mem::MaybeUninit::zeroed
624    #[unstable(feature = "allocator_api", issue = "32838")]
625    pub fn try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
626        unsafe {
627            Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
628                Layout::new::<T>(),
629                |layout| Global.allocate_zeroed(layout),
630                <*mut u8>::cast,
631            )?))
632        }
633    }
634    /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
635    /// `value` will be pinned in memory and unable to be moved.
636    #[cfg(not(no_global_oom_handling))]
637    #[stable(feature = "pin", since = "1.33.0")]
638    #[must_use]
639    pub fn pin(value: T) -> Pin<Rc<T>> {
640        unsafe { Pin::new_unchecked(Rc::new(value)) }
641    }
642}
643
644impl<T, A: Allocator> Rc<T, A> {
645    /// Constructs a new `Rc` in the provided allocator.
646    ///
647    /// # Examples
648    ///
649    /// ```
650    /// #![feature(allocator_api)]
651    /// use std::rc::Rc;
652    /// use std::alloc::System;
653    ///
654    /// let five = Rc::new_in(5, System);
655    /// ```
656    #[cfg(not(no_global_oom_handling))]
657    #[unstable(feature = "allocator_api", issue = "32838")]
658    #[inline]
659    pub fn new_in(value: T, alloc: A) -> Rc<T, A> {
660        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
661        // That would make code size bigger.
662        match Self::try_new_in(value, alloc) {
663            Ok(m) => m,
664            Err(_) => handle_alloc_error(Layout::new::<RcInner<T>>()),
665        }
666    }
667
668    /// Constructs a new `Rc` with uninitialized contents in the provided allocator.
669    ///
670    /// # Examples
671    ///
672    /// ```
673    /// #![feature(get_mut_unchecked)]
674    /// #![feature(allocator_api)]
675    ///
676    /// use std::rc::Rc;
677    /// use std::alloc::System;
678    ///
679    /// let mut five = Rc::<u32, _>::new_uninit_in(System);
680    ///
681    /// let five = unsafe {
682    ///     // Deferred initialization:
683    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
684    ///
685    ///     five.assume_init()
686    /// };
687    ///
688    /// assert_eq!(*five, 5)
689    /// ```
690    #[cfg(not(no_global_oom_handling))]
691    #[unstable(feature = "allocator_api", issue = "32838")]
692    #[inline]
693    pub fn new_uninit_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
694        unsafe {
695            Rc::from_ptr_in(
696                Rc::allocate_for_layout(
697                    Layout::new::<T>(),
698                    |layout| alloc.allocate(layout),
699                    <*mut u8>::cast,
700                ),
701                alloc,
702            )
703        }
704    }
705
706    /// Constructs a new `Rc` with uninitialized contents, with the memory
707    /// being filled with `0` bytes, in the provided allocator.
708    ///
709    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
710    /// incorrect usage of this method.
711    ///
712    /// # Examples
713    ///
714    /// ```
715    /// #![feature(allocator_api)]
716    ///
717    /// use std::rc::Rc;
718    /// use std::alloc::System;
719    ///
720    /// let zero = Rc::<u32, _>::new_zeroed_in(System);
721    /// let zero = unsafe { zero.assume_init() };
722    ///
723    /// assert_eq!(*zero, 0)
724    /// ```
725    ///
726    /// [zeroed]: mem::MaybeUninit::zeroed
727    #[cfg(not(no_global_oom_handling))]
728    #[unstable(feature = "allocator_api", issue = "32838")]
729    #[inline]
730    pub fn new_zeroed_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
731        unsafe {
732            Rc::from_ptr_in(
733                Rc::allocate_for_layout(
734                    Layout::new::<T>(),
735                    |layout| alloc.allocate_zeroed(layout),
736                    <*mut u8>::cast,
737                ),
738                alloc,
739            )
740        }
741    }
742
743    /// Constructs a new `Rc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
744    /// to allow you to construct a `T` which holds a weak pointer to itself.
745    ///
746    /// Generally, a structure circularly referencing itself, either directly or
747    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
748    /// Using this function, you get access to the weak pointer during the
749    /// initialization of `T`, before the `Rc<T, A>` is created, such that you can
750    /// clone and store it inside the `T`.
751    ///
752    /// `new_cyclic_in` first allocates the managed allocation for the `Rc<T, A>`,
753    /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
754    /// and only afterwards completes the construction of the `Rc<T, A>` by placing
755    /// the `T` returned from your closure into the allocation.
756    ///
757    /// Since the new `Rc<T, A>` is not fully-constructed until `Rc<T, A>::new_cyclic_in`
758    /// returns, calling [`upgrade`] on the weak reference inside your closure will
759    /// fail and result in a `None` value.
760    ///
761    /// # Panics
762    ///
763    /// If `data_fn` panics, the panic is propagated to the caller, and the
764    /// temporary [`Weak<T, A>`] is dropped normally.
765    ///
766    /// # Examples
767    ///
768    /// See [`new_cyclic`].
769    ///
770    /// [`new_cyclic`]: Rc::new_cyclic
771    /// [`upgrade`]: Weak::upgrade
772    #[cfg(not(no_global_oom_handling))]
773    #[unstable(feature = "allocator_api", issue = "32838")]
774    pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Rc<T, A>
775    where
776        F: FnOnce(&Weak<T, A>) -> T,
777    {
778        // Construct the inner in the "uninitialized" state with a single
779        // weak reference.
780        let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
781            RcInner {
782                strong: Cell::new(0),
783                weak: Cell::new(1),
784                value: mem::MaybeUninit::<T>::uninit(),
785            },
786            alloc,
787        ));
788        let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
789        let init_ptr: NonNull<RcInner<T>> = uninit_ptr.cast();
790
791        let weak = Weak { ptr: init_ptr, alloc };
792
793        // It's important we don't give up ownership of the weak pointer, or
794        // else the memory might be freed by the time `data_fn` returns. If
795        // we really wanted to pass ownership, we could create an additional
796        // weak pointer for ourselves, but this would result in additional
797        // updates to the weak reference count which might not be necessary
798        // otherwise.
799        let data = data_fn(&weak);
800
801        let strong = unsafe {
802            let inner = init_ptr.as_ptr();
803            ptr::write(&raw mut (*inner).value, data);
804
805            let prev_value = (*inner).strong.get();
806            debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
807            (*inner).strong.set(1);
808
809            // Strong references should collectively own a shared weak reference,
810            // so don't run the destructor for our old weak reference.
811            // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
812            // and forgetting the weak reference.
813            let alloc = weak.into_raw_with_allocator().1;
814
815            Rc::from_inner_in(init_ptr, alloc)
816        };
817
818        strong
819    }
820
821    /// Constructs a new `Rc<T>` in the provided allocator, returning an error if the allocation
822    /// fails
823    ///
824    /// # Examples
825    ///
826    /// ```
827    /// #![feature(allocator_api)]
828    /// use std::rc::Rc;
829    /// use std::alloc::System;
830    ///
831    /// let five = Rc::try_new_in(5, System);
832    /// # Ok::<(), std::alloc::AllocError>(())
833    /// ```
834    #[unstable(feature = "allocator_api", issue = "32838")]
835    #[inline]
836    pub fn try_new_in(value: T, alloc: A) -> Result<Self, AllocError> {
837        // There is an implicit weak pointer owned by all the strong
838        // pointers, which ensures that the weak destructor never frees
839        // the allocation while the strong destructor is running, even
840        // if the weak pointer is stored inside the strong one.
841        let (ptr, alloc) = Box::into_unique(Box::try_new_in(
842            RcInner { strong: Cell::new(1), weak: Cell::new(1), value },
843            alloc,
844        )?);
845        Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
846    }
847
848    /// Constructs a new `Rc` with uninitialized contents, in the provided allocator, returning an
849    /// error if the allocation fails
850    ///
851    /// # Examples
852    ///
853    /// ```
854    /// #![feature(allocator_api)]
855    /// #![feature(get_mut_unchecked)]
856    ///
857    /// use std::rc::Rc;
858    /// use std::alloc::System;
859    ///
860    /// let mut five = Rc::<u32, _>::try_new_uninit_in(System)?;
861    ///
862    /// let five = unsafe {
863    ///     // Deferred initialization:
864    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
865    ///
866    ///     five.assume_init()
867    /// };
868    ///
869    /// assert_eq!(*five, 5);
870    /// # Ok::<(), std::alloc::AllocError>(())
871    /// ```
872    #[unstable(feature = "allocator_api", issue = "32838")]
873    #[inline]
874    pub fn try_new_uninit_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
875        unsafe {
876            Ok(Rc::from_ptr_in(
877                Rc::try_allocate_for_layout(
878                    Layout::new::<T>(),
879                    |layout| alloc.allocate(layout),
880                    <*mut u8>::cast,
881                )?,
882                alloc,
883            ))
884        }
885    }
886
887    /// Constructs a new `Rc` with uninitialized contents, with the memory
888    /// being filled with `0` bytes, in the provided allocator, returning an error if the allocation
889    /// fails
890    ///
891    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
892    /// incorrect usage of this method.
893    ///
894    /// # Examples
895    ///
896    /// ```
897    /// #![feature(allocator_api)]
898    ///
899    /// use std::rc::Rc;
900    /// use std::alloc::System;
901    ///
902    /// let zero = Rc::<u32, _>::try_new_zeroed_in(System)?;
903    /// let zero = unsafe { zero.assume_init() };
904    ///
905    /// assert_eq!(*zero, 0);
906    /// # Ok::<(), std::alloc::AllocError>(())
907    /// ```
908    ///
909    /// [zeroed]: mem::MaybeUninit::zeroed
910    #[unstable(feature = "allocator_api", issue = "32838")]
911    #[inline]
912    pub fn try_new_zeroed_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
913        unsafe {
914            Ok(Rc::from_ptr_in(
915                Rc::try_allocate_for_layout(
916                    Layout::new::<T>(),
917                    |layout| alloc.allocate_zeroed(layout),
918                    <*mut u8>::cast,
919                )?,
920                alloc,
921            ))
922        }
923    }
924
925    /// Constructs a new `Pin<Rc<T>>` in the provided allocator. If `T` does not implement `Unpin`, then
926    /// `value` will be pinned in memory and unable to be moved.
927    #[cfg(not(no_global_oom_handling))]
928    #[unstable(feature = "allocator_api", issue = "32838")]
929    #[inline]
930    pub fn pin_in(value: T, alloc: A) -> Pin<Self>
931    where
932        A: 'static,
933    {
934        unsafe { Pin::new_unchecked(Rc::new_in(value, alloc)) }
935    }
936
937    /// Returns the inner value, if the `Rc` has exactly one strong reference.
938    ///
939    /// Otherwise, an [`Err`] is returned with the same `Rc` that was
940    /// passed in.
941    ///
942    /// This will succeed even if there are outstanding weak references.
943    ///
944    /// # Examples
945    ///
946    /// ```
947    /// use std::rc::Rc;
948    ///
949    /// let x = Rc::new(3);
950    /// assert_eq!(Rc::try_unwrap(x), Ok(3));
951    ///
952    /// let x = Rc::new(4);
953    /// let _y = Rc::clone(&x);
954    /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
955    /// ```
956    #[inline]
957    #[stable(feature = "rc_unique", since = "1.4.0")]
958    pub fn try_unwrap(this: Self) -> Result<T, Self> {
959        if Rc::strong_count(&this) == 1 {
960            let this = ManuallyDrop::new(this);
961
962            let val: T = unsafe { ptr::read(&**this) }; // copy the contained object
963            let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
964
965            // Indicate to Weaks that they can't be promoted by decrementing
966            // the strong count, and then remove the implicit "strong weak"
967            // pointer while also handling drop logic by just crafting a
968            // fake Weak.
969            this.inner().dec_strong();
970            let _weak = Weak { ptr: this.ptr, alloc };
971            Ok(val)
972        } else {
973            Err(this)
974        }
975    }
976
977    /// Returns the inner value, if the `Rc` has exactly one strong reference.
978    ///
979    /// Otherwise, [`None`] is returned and the `Rc` is dropped.
980    ///
981    /// This will succeed even if there are outstanding weak references.
982    ///
983    /// If `Rc::into_inner` is called on every clone of this `Rc`,
984    /// it is guaranteed that exactly one of the calls returns the inner value.
985    /// This means in particular that the inner value is not dropped.
986    ///
987    /// [`Rc::try_unwrap`] is conceptually similar to `Rc::into_inner`.
988    /// And while they are meant for different use-cases, `Rc::into_inner(this)`
989    /// is in fact equivalent to <code>[Rc::try_unwrap]\(this).[ok][Result::ok]()</code>.
990    /// (Note that the same kind of equivalence does **not** hold true for
991    /// [`Arc`](crate::sync::Arc), due to race conditions that do not apply to `Rc`!)
992    ///
993    /// # Examples
994    ///
995    /// ```
996    /// use std::rc::Rc;
997    ///
998    /// let x = Rc::new(3);
999    /// assert_eq!(Rc::into_inner(x), Some(3));
1000    ///
1001    /// let x = Rc::new(4);
1002    /// let y = Rc::clone(&x);
1003    ///
1004    /// assert_eq!(Rc::into_inner(y), None);
1005    /// assert_eq!(Rc::into_inner(x), Some(4));
1006    /// ```
1007    #[inline]
1008    #[stable(feature = "rc_into_inner", since = "1.70.0")]
1009    pub fn into_inner(this: Self) -> Option<T> {
1010        Rc::try_unwrap(this).ok()
1011    }
1012}
1013
1014impl<T> Rc<[T]> {
1015    /// Constructs a new reference-counted slice with uninitialized contents.
1016    ///
1017    /// # Examples
1018    ///
1019    /// ```
1020    /// use std::rc::Rc;
1021    ///
1022    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
1023    ///
1024    /// // Deferred initialization:
1025    /// let data = Rc::get_mut(&mut values).unwrap();
1026    /// data[0].write(1);
1027    /// data[1].write(2);
1028    /// data[2].write(3);
1029    ///
1030    /// let values = unsafe { values.assume_init() };
1031    ///
1032    /// assert_eq!(*values, [1, 2, 3])
1033    /// ```
1034    #[cfg(not(no_global_oom_handling))]
1035    #[stable(feature = "new_uninit", since = "1.82.0")]
1036    #[must_use]
1037    pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
1038        unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
1039    }
1040
1041    /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
1042    /// filled with `0` bytes.
1043    ///
1044    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1045    /// incorrect usage of this method.
1046    ///
1047    /// # Examples
1048    ///
1049    /// ```
1050    /// use std::rc::Rc;
1051    ///
1052    /// let values = Rc::<[u32]>::new_zeroed_slice(3);
1053    /// let values = unsafe { values.assume_init() };
1054    ///
1055    /// assert_eq!(*values, [0, 0, 0])
1056    /// ```
1057    ///
1058    /// [zeroed]: mem::MaybeUninit::zeroed
1059    #[cfg(not(no_global_oom_handling))]
1060    #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
1061    #[must_use]
1062    pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
1063        unsafe {
1064            Rc::from_ptr(Rc::allocate_for_layout(
1065                Layout::array::<T>(len).unwrap(),
1066                |layout| Global.allocate_zeroed(layout),
1067                |mem| {
1068                    ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1069                        as *mut RcInner<[mem::MaybeUninit<T>]>
1070                },
1071            ))
1072        }
1073    }
1074
1075    /// Converts the reference-counted slice into a reference-counted array.
1076    ///
1077    /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1078    ///
1079    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1080    #[unstable(feature = "slice_as_array", issue = "133508")]
1081    #[inline]
1082    #[must_use]
1083    pub fn into_array<const N: usize>(self) -> Option<Rc<[T; N]>> {
1084        if self.len() == N {
1085            let ptr = Self::into_raw(self) as *const [T; N];
1086
1087            // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1088            let me = unsafe { Rc::from_raw(ptr) };
1089            Some(me)
1090        } else {
1091            None
1092        }
1093    }
1094}
1095
1096impl<T, A: Allocator> Rc<[T], A> {
1097    /// Constructs a new reference-counted slice with uninitialized contents.
1098    ///
1099    /// # Examples
1100    ///
1101    /// ```
1102    /// #![feature(get_mut_unchecked)]
1103    /// #![feature(allocator_api)]
1104    ///
1105    /// use std::rc::Rc;
1106    /// use std::alloc::System;
1107    ///
1108    /// let mut values = Rc::<[u32], _>::new_uninit_slice_in(3, System);
1109    ///
1110    /// let values = unsafe {
1111    ///     // Deferred initialization:
1112    ///     Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1113    ///     Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1114    ///     Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1115    ///
1116    ///     values.assume_init()
1117    /// };
1118    ///
1119    /// assert_eq!(*values, [1, 2, 3])
1120    /// ```
1121    #[cfg(not(no_global_oom_handling))]
1122    #[unstable(feature = "allocator_api", issue = "32838")]
1123    #[inline]
1124    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
1125        unsafe { Rc::from_ptr_in(Rc::allocate_for_slice_in(len, &alloc), alloc) }
1126    }
1127
1128    /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
1129    /// filled with `0` bytes.
1130    ///
1131    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1132    /// incorrect usage of this method.
1133    ///
1134    /// # Examples
1135    ///
1136    /// ```
1137    /// #![feature(allocator_api)]
1138    ///
1139    /// use std::rc::Rc;
1140    /// use std::alloc::System;
1141    ///
1142    /// let values = Rc::<[u32], _>::new_zeroed_slice_in(3, System);
1143    /// let values = unsafe { values.assume_init() };
1144    ///
1145    /// assert_eq!(*values, [0, 0, 0])
1146    /// ```
1147    ///
1148    /// [zeroed]: mem::MaybeUninit::zeroed
1149    #[cfg(not(no_global_oom_handling))]
1150    #[unstable(feature = "allocator_api", issue = "32838")]
1151    #[inline]
1152    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
1153        unsafe {
1154            Rc::from_ptr_in(
1155                Rc::allocate_for_layout(
1156                    Layout::array::<T>(len).unwrap(),
1157                    |layout| alloc.allocate_zeroed(layout),
1158                    |mem| {
1159                        ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1160                            as *mut RcInner<[mem::MaybeUninit<T>]>
1161                    },
1162                ),
1163                alloc,
1164            )
1165        }
1166    }
1167}
1168
1169impl<T, A: Allocator> Rc<mem::MaybeUninit<T>, A> {
1170    /// Converts to `Rc<T>`.
1171    ///
1172    /// # Safety
1173    ///
1174    /// As with [`MaybeUninit::assume_init`],
1175    /// it is up to the caller to guarantee that the inner value
1176    /// really is in an initialized state.
1177    /// Calling this when the content is not yet fully initialized
1178    /// causes immediate undefined behavior.
1179    ///
1180    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1181    ///
1182    /// # Examples
1183    ///
1184    /// ```
1185    /// use std::rc::Rc;
1186    ///
1187    /// let mut five = Rc::<u32>::new_uninit();
1188    ///
1189    /// // Deferred initialization:
1190    /// Rc::get_mut(&mut five).unwrap().write(5);
1191    ///
1192    /// let five = unsafe { five.assume_init() };
1193    ///
1194    /// assert_eq!(*five, 5)
1195    /// ```
1196    #[stable(feature = "new_uninit", since = "1.82.0")]
1197    #[inline]
1198    pub unsafe fn assume_init(self) -> Rc<T, A> {
1199        let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1200        unsafe { Rc::from_inner_in(ptr.cast(), alloc) }
1201    }
1202}
1203
1204impl<T, A: Allocator> Rc<[mem::MaybeUninit<T>], A> {
1205    /// Converts to `Rc<[T]>`.
1206    ///
1207    /// # Safety
1208    ///
1209    /// As with [`MaybeUninit::assume_init`],
1210    /// it is up to the caller to guarantee that the inner value
1211    /// really is in an initialized state.
1212    /// Calling this when the content is not yet fully initialized
1213    /// causes immediate undefined behavior.
1214    ///
1215    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1216    ///
1217    /// # Examples
1218    ///
1219    /// ```
1220    /// use std::rc::Rc;
1221    ///
1222    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
1223    ///
1224    /// // Deferred initialization:
1225    /// let data = Rc::get_mut(&mut values).unwrap();
1226    /// data[0].write(1);
1227    /// data[1].write(2);
1228    /// data[2].write(3);
1229    ///
1230    /// let values = unsafe { values.assume_init() };
1231    ///
1232    /// assert_eq!(*values, [1, 2, 3])
1233    /// ```
1234    #[stable(feature = "new_uninit", since = "1.82.0")]
1235    #[inline]
1236    pub unsafe fn assume_init(self) -> Rc<[T], A> {
1237        let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1238        unsafe { Rc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1239    }
1240}
1241
1242impl<T: ?Sized> Rc<T> {
1243    /// Constructs an `Rc<T>` from a raw pointer.
1244    ///
1245    /// The raw pointer must have been previously returned by a call to
1246    /// [`Rc<U>::into_raw`][into_raw] with the following requirements:
1247    ///
1248    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1249    ///   is trivially true if `U` is `T`.
1250    /// * If `U` is unsized, its data pointer must have the same size and
1251    ///   alignment as `T`. This is trivially true if `Rc<U>` was constructed
1252    ///   through `Rc<T>` and then converted to `Rc<U>` through an [unsized
1253    ///   coercion].
1254    ///
1255    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1256    /// and alignment, this is basically like transmuting references of
1257    /// different types. See [`mem::transmute`][transmute] for more information
1258    /// on what restrictions apply in this case.
1259    ///
1260    /// The raw pointer must point to a block of memory allocated by the global allocator
1261    ///
1262    /// The user of `from_raw` has to make sure a specific value of `T` is only
1263    /// dropped once.
1264    ///
1265    /// This function is unsafe because improper use may lead to memory unsafety,
1266    /// even if the returned `Rc<T>` is never accessed.
1267    ///
1268    /// [into_raw]: Rc::into_raw
1269    /// [transmute]: core::mem::transmute
1270    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1271    ///
1272    /// # Examples
1273    ///
1274    /// ```
1275    /// use std::rc::Rc;
1276    ///
1277    /// let x = Rc::new("hello".to_owned());
1278    /// let x_ptr = Rc::into_raw(x);
1279    ///
1280    /// unsafe {
1281    ///     // Convert back to an `Rc` to prevent leak.
1282    ///     let x = Rc::from_raw(x_ptr);
1283    ///     assert_eq!(&*x, "hello");
1284    ///
1285    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
1286    /// }
1287    ///
1288    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1289    /// ```
1290    ///
1291    /// Convert a slice back into its original array:
1292    ///
1293    /// ```
1294    /// use std::rc::Rc;
1295    ///
1296    /// let x: Rc<[u32]> = Rc::new([1, 2, 3]);
1297    /// let x_ptr: *const [u32] = Rc::into_raw(x);
1298    ///
1299    /// unsafe {
1300    ///     let x: Rc<[u32; 3]> = Rc::from_raw(x_ptr.cast::<[u32; 3]>());
1301    ///     assert_eq!(&*x, &[1, 2, 3]);
1302    /// }
1303    /// ```
1304    #[inline]
1305    #[stable(feature = "rc_raw", since = "1.17.0")]
1306    pub unsafe fn from_raw(ptr: *const T) -> Self {
1307        unsafe { Self::from_raw_in(ptr, Global) }
1308    }
1309
1310    /// Consumes the `Rc`, returning the wrapped pointer.
1311    ///
1312    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
1313    /// [`Rc::from_raw`].
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// use std::rc::Rc;
1319    ///
1320    /// let x = Rc::new("hello".to_owned());
1321    /// let x_ptr = Rc::into_raw(x);
1322    /// assert_eq!(unsafe { &*x_ptr }, "hello");
1323    /// # // Prevent leaks for Miri.
1324    /// # drop(unsafe { Rc::from_raw(x_ptr) });
1325    /// ```
1326    #[must_use = "losing the pointer will leak memory"]
1327    #[stable(feature = "rc_raw", since = "1.17.0")]
1328    #[rustc_never_returns_null_ptr]
1329    pub fn into_raw(this: Self) -> *const T {
1330        let this = ManuallyDrop::new(this);
1331        Self::as_ptr(&*this)
1332    }
1333
1334    /// Increments the strong reference count on the `Rc<T>` associated with the
1335    /// provided pointer by one.
1336    ///
1337    /// # Safety
1338    ///
1339    /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the
1340    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1341    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1342    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1343    /// allocated by the global allocator.
1344    ///
1345    /// [from_raw_in]: Rc::from_raw_in
1346    ///
1347    /// # Examples
1348    ///
1349    /// ```
1350    /// use std::rc::Rc;
1351    ///
1352    /// let five = Rc::new(5);
1353    ///
1354    /// unsafe {
1355    ///     let ptr = Rc::into_raw(five);
1356    ///     Rc::increment_strong_count(ptr);
1357    ///
1358    ///     let five = Rc::from_raw(ptr);
1359    ///     assert_eq!(2, Rc::strong_count(&five));
1360    /// #   // Prevent leaks for Miri.
1361    /// #   Rc::decrement_strong_count(ptr);
1362    /// }
1363    /// ```
1364    #[inline]
1365    #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
1366    pub unsafe fn increment_strong_count(ptr: *const T) {
1367        unsafe { Self::increment_strong_count_in(ptr, Global) }
1368    }
1369
1370    /// Decrements the strong reference count on the `Rc<T>` associated with the
1371    /// provided pointer by one.
1372    ///
1373    /// # Safety
1374    ///
1375    /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the
1376    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1377    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1378    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1379    /// allocated by the global allocator. This method can be used to release the final `Rc` and
1380    /// backing storage, but **should not** be called after the final `Rc` has been released.
1381    ///
1382    /// [from_raw_in]: Rc::from_raw_in
1383    ///
1384    /// # Examples
1385    ///
1386    /// ```
1387    /// use std::rc::Rc;
1388    ///
1389    /// let five = Rc::new(5);
1390    ///
1391    /// unsafe {
1392    ///     let ptr = Rc::into_raw(five);
1393    ///     Rc::increment_strong_count(ptr);
1394    ///
1395    ///     let five = Rc::from_raw(ptr);
1396    ///     assert_eq!(2, Rc::strong_count(&five));
1397    ///     Rc::decrement_strong_count(ptr);
1398    ///     assert_eq!(1, Rc::strong_count(&five));
1399    /// }
1400    /// ```
1401    #[inline]
1402    #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
1403    pub unsafe fn decrement_strong_count(ptr: *const T) {
1404        unsafe { Self::decrement_strong_count_in(ptr, Global) }
1405    }
1406}
1407
1408impl<T: ?Sized, A: Allocator> Rc<T, A> {
1409    /// Returns a reference to the underlying allocator.
1410    ///
1411    /// Note: this is an associated function, which means that you have
1412    /// to call it as `Rc::allocator(&r)` instead of `r.allocator()`. This
1413    /// is so that there is no conflict with a method on the inner type.
1414    #[inline]
1415    #[unstable(feature = "allocator_api", issue = "32838")]
1416    pub fn allocator(this: &Self) -> &A {
1417        &this.alloc
1418    }
1419
1420    /// Consumes the `Rc`, returning the wrapped pointer and allocator.
1421    ///
1422    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
1423    /// [`Rc::from_raw_in`].
1424    ///
1425    /// # Examples
1426    ///
1427    /// ```
1428    /// #![feature(allocator_api)]
1429    /// use std::rc::Rc;
1430    /// use std::alloc::System;
1431    ///
1432    /// let x = Rc::new_in("hello".to_owned(), System);
1433    /// let (ptr, alloc) = Rc::into_raw_with_allocator(x);
1434    /// assert_eq!(unsafe { &*ptr }, "hello");
1435    /// let x = unsafe { Rc::from_raw_in(ptr, alloc) };
1436    /// assert_eq!(&*x, "hello");
1437    /// ```
1438    #[must_use = "losing the pointer will leak memory"]
1439    #[unstable(feature = "allocator_api", issue = "32838")]
1440    pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1441        let this = mem::ManuallyDrop::new(this);
1442        let ptr = Self::as_ptr(&this);
1443        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1444        let alloc = unsafe { ptr::read(&this.alloc) };
1445        (ptr, alloc)
1446    }
1447
1448    /// Provides a raw pointer to the data.
1449    ///
1450    /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
1451    /// for as long as there are strong counts in the `Rc`.
1452    ///
1453    /// # Examples
1454    ///
1455    /// ```
1456    /// use std::rc::Rc;
1457    ///
1458    /// let x = Rc::new(0);
1459    /// let y = Rc::clone(&x);
1460    /// let x_ptr = Rc::as_ptr(&x);
1461    /// assert_eq!(x_ptr, Rc::as_ptr(&y));
1462    /// assert_eq!(unsafe { *x_ptr }, 0);
1463    /// ```
1464    #[stable(feature = "weak_into_raw", since = "1.45.0")]
1465    #[rustc_never_returns_null_ptr]
1466    pub fn as_ptr(this: &Self) -> *const T {
1467        let ptr: *mut RcInner<T> = NonNull::as_ptr(this.ptr);
1468
1469        // SAFETY: This cannot go through Deref::deref or Rc::inner because
1470        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1471        // write through the pointer after the Rc is recovered through `from_raw`.
1472        unsafe { &raw mut (*ptr).value }
1473    }
1474
1475    /// Constructs an `Rc<T, A>` from a raw pointer in the provided allocator.
1476    ///
1477    /// The raw pointer must have been previously returned by a call to [`Rc<U,
1478    /// A>::into_raw`][into_raw] with the following requirements:
1479    ///
1480    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1481    ///   is trivially true if `U` is `T`.
1482    /// * If `U` is unsized, its data pointer must have the same size and
1483    ///   alignment as `T`. This is trivially true if `Rc<U>` was constructed
1484    ///   through `Rc<T>` and then converted to `Rc<U>` through an [unsized
1485    ///   coercion].
1486    ///
1487    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1488    /// and alignment, this is basically like transmuting references of
1489    /// different types. See [`mem::transmute`][transmute] for more information
1490    /// on what restrictions apply in this case.
1491    ///
1492    /// The raw pointer must point to a block of memory allocated by `alloc`
1493    ///
1494    /// The user of `from_raw` has to make sure a specific value of `T` is only
1495    /// dropped once.
1496    ///
1497    /// This function is unsafe because improper use may lead to memory unsafety,
1498    /// even if the returned `Rc<T>` is never accessed.
1499    ///
1500    /// [into_raw]: Rc::into_raw
1501    /// [transmute]: core::mem::transmute
1502    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1503    ///
1504    /// # Examples
1505    ///
1506    /// ```
1507    /// #![feature(allocator_api)]
1508    ///
1509    /// use std::rc::Rc;
1510    /// use std::alloc::System;
1511    ///
1512    /// let x = Rc::new_in("hello".to_owned(), System);
1513    /// let (x_ptr, _alloc) = Rc::into_raw_with_allocator(x);
1514    ///
1515    /// unsafe {
1516    ///     // Convert back to an `Rc` to prevent leak.
1517    ///     let x = Rc::from_raw_in(x_ptr, System);
1518    ///     assert_eq!(&*x, "hello");
1519    ///
1520    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
1521    /// }
1522    ///
1523    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1524    /// ```
1525    ///
1526    /// Convert a slice back into its original array:
1527    ///
1528    /// ```
1529    /// #![feature(allocator_api)]
1530    ///
1531    /// use std::rc::Rc;
1532    /// use std::alloc::System;
1533    ///
1534    /// let x: Rc<[u32], _> = Rc::new_in([1, 2, 3], System);
1535    /// let x_ptr: *const [u32] = Rc::into_raw_with_allocator(x).0;
1536    ///
1537    /// unsafe {
1538    ///     let x: Rc<[u32; 3], _> = Rc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1539    ///     assert_eq!(&*x, &[1, 2, 3]);
1540    /// }
1541    /// ```
1542    #[unstable(feature = "allocator_api", issue = "32838")]
1543    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1544        let offset = unsafe { data_offset(ptr) };
1545
1546        // Reverse the offset to find the original RcInner.
1547        let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcInner<T> };
1548
1549        unsafe { Self::from_ptr_in(rc_ptr, alloc) }
1550    }
1551
1552    /// Creates a new [`Weak`] pointer to this allocation.
1553    ///
1554    /// # Examples
1555    ///
1556    /// ```
1557    /// use std::rc::Rc;
1558    ///
1559    /// let five = Rc::new(5);
1560    ///
1561    /// let weak_five = Rc::downgrade(&five);
1562    /// ```
1563    #[must_use = "this returns a new `Weak` pointer, \
1564                  without modifying the original `Rc`"]
1565    #[stable(feature = "rc_weak", since = "1.4.0")]
1566    pub fn downgrade(this: &Self) -> Weak<T, A>
1567    where
1568        A: Clone,
1569    {
1570        this.inner().inc_weak();
1571        // Make sure we do not create a dangling Weak
1572        debug_assert!(!is_dangling(this.ptr.as_ptr()));
1573        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
1574    }
1575
1576    /// Gets the number of [`Weak`] pointers to this allocation.
1577    ///
1578    /// # Examples
1579    ///
1580    /// ```
1581    /// use std::rc::Rc;
1582    ///
1583    /// let five = Rc::new(5);
1584    /// let _weak_five = Rc::downgrade(&five);
1585    ///
1586    /// assert_eq!(1, Rc::weak_count(&five));
1587    /// ```
1588    #[inline]
1589    #[stable(feature = "rc_counts", since = "1.15.0")]
1590    pub fn weak_count(this: &Self) -> usize {
1591        this.inner().weak() - 1
1592    }
1593
1594    /// Gets the number of strong (`Rc`) pointers to this allocation.
1595    ///
1596    /// # Examples
1597    ///
1598    /// ```
1599    /// use std::rc::Rc;
1600    ///
1601    /// let five = Rc::new(5);
1602    /// let _also_five = Rc::clone(&five);
1603    ///
1604    /// assert_eq!(2, Rc::strong_count(&five));
1605    /// ```
1606    #[inline]
1607    #[stable(feature = "rc_counts", since = "1.15.0")]
1608    pub fn strong_count(this: &Self) -> usize {
1609        this.inner().strong()
1610    }
1611
1612    /// Increments the strong reference count on the `Rc<T>` associated with the
1613    /// provided pointer by one.
1614    ///
1615    /// # Safety
1616    ///
1617    /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the
1618    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1619    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1620    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1621    /// allocated by `alloc`.
1622    ///
1623    /// [from_raw_in]: Rc::from_raw_in
1624    ///
1625    /// # Examples
1626    ///
1627    /// ```
1628    /// #![feature(allocator_api)]
1629    ///
1630    /// use std::rc::Rc;
1631    /// use std::alloc::System;
1632    ///
1633    /// let five = Rc::new_in(5, System);
1634    ///
1635    /// unsafe {
1636    ///     let (ptr, _alloc) = Rc::into_raw_with_allocator(five);
1637    ///     Rc::increment_strong_count_in(ptr, System);
1638    ///
1639    ///     let five = Rc::from_raw_in(ptr, System);
1640    ///     assert_eq!(2, Rc::strong_count(&five));
1641    /// #   // Prevent leaks for Miri.
1642    /// #   Rc::decrement_strong_count_in(ptr, System);
1643    /// }
1644    /// ```
1645    #[inline]
1646    #[unstable(feature = "allocator_api", issue = "32838")]
1647    pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1648    where
1649        A: Clone,
1650    {
1651        // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop
1652        let rc = unsafe { mem::ManuallyDrop::new(Rc::<T, A>::from_raw_in(ptr, alloc)) };
1653        // Now increase refcount, but don't drop new refcount either
1654        let _rc_clone: mem::ManuallyDrop<_> = rc.clone();
1655    }
1656
1657    /// Decrements the strong reference count on the `Rc<T>` associated with the
1658    /// provided pointer by one.
1659    ///
1660    /// # Safety
1661    ///
1662    /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the
1663    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1664    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1665    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1666    /// allocated by `alloc`. This method can be used to release the final `Rc` and
1667    /// backing storage, but **should not** be called after the final `Rc` has been released.
1668    ///
1669    /// [from_raw_in]: Rc::from_raw_in
1670    ///
1671    /// # Examples
1672    ///
1673    /// ```
1674    /// #![feature(allocator_api)]
1675    ///
1676    /// use std::rc::Rc;
1677    /// use std::alloc::System;
1678    ///
1679    /// let five = Rc::new_in(5, System);
1680    ///
1681    /// unsafe {
1682    ///     let (ptr, _alloc) = Rc::into_raw_with_allocator(five);
1683    ///     Rc::increment_strong_count_in(ptr, System);
1684    ///
1685    ///     let five = Rc::from_raw_in(ptr, System);
1686    ///     assert_eq!(2, Rc::strong_count(&five));
1687    ///     Rc::decrement_strong_count_in(ptr, System);
1688    ///     assert_eq!(1, Rc::strong_count(&five));
1689    /// }
1690    /// ```
1691    #[inline]
1692    #[unstable(feature = "allocator_api", issue = "32838")]
1693    pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1694        unsafe { drop(Rc::from_raw_in(ptr, alloc)) };
1695    }
1696
1697    /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to
1698    /// this allocation.
1699    #[inline]
1700    fn is_unique(this: &Self) -> bool {
1701        Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
1702    }
1703
1704    /// Returns a mutable reference into the given `Rc`, if there are
1705    /// no other `Rc` or [`Weak`] pointers to the same allocation.
1706    ///
1707    /// Returns [`None`] otherwise, because it is not safe to
1708    /// mutate a shared value.
1709    ///
1710    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
1711    /// the inner value when there are other `Rc` pointers.
1712    ///
1713    /// [make_mut]: Rc::make_mut
1714    /// [clone]: Clone::clone
1715    ///
1716    /// # Examples
1717    ///
1718    /// ```
1719    /// use std::rc::Rc;
1720    ///
1721    /// let mut x = Rc::new(3);
1722    /// *Rc::get_mut(&mut x).unwrap() = 4;
1723    /// assert_eq!(*x, 4);
1724    ///
1725    /// let _y = Rc::clone(&x);
1726    /// assert!(Rc::get_mut(&mut x).is_none());
1727    /// ```
1728    #[inline]
1729    #[stable(feature = "rc_unique", since = "1.4.0")]
1730    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
1731        if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
1732    }
1733
1734    /// Returns a mutable reference into the given `Rc`,
1735    /// without any check.
1736    ///
1737    /// See also [`get_mut`], which is safe and does appropriate checks.
1738    ///
1739    /// [`get_mut`]: Rc::get_mut
1740    ///
1741    /// # Safety
1742    ///
1743    /// If any other `Rc` or [`Weak`] pointers to the same allocation exist, then
1744    /// they must not be dereferenced or have active borrows for the duration
1745    /// of the returned borrow, and their inner type must be exactly the same as the
1746    /// inner type of this Rc (including lifetimes). This is trivially the case if no
1747    /// such pointers exist, for example immediately after `Rc::new`.
1748    ///
1749    /// # Examples
1750    ///
1751    /// ```
1752    /// #![feature(get_mut_unchecked)]
1753    ///
1754    /// use std::rc::Rc;
1755    ///
1756    /// let mut x = Rc::new(String::new());
1757    /// unsafe {
1758    ///     Rc::get_mut_unchecked(&mut x).push_str("foo")
1759    /// }
1760    /// assert_eq!(*x, "foo");
1761    /// ```
1762    /// Other `Rc` pointers to the same allocation must be to the same type.
1763    /// ```no_run
1764    /// #![feature(get_mut_unchecked)]
1765    ///
1766    /// use std::rc::Rc;
1767    ///
1768    /// let x: Rc<str> = Rc::from("Hello, world!");
1769    /// let mut y: Rc<[u8]> = x.clone().into();
1770    /// unsafe {
1771    ///     // this is Undefined Behavior, because x's inner type is str, not [u8]
1772    ///     Rc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
1773    /// }
1774    /// println!("{}", &*x); // Invalid UTF-8 in a str
1775    /// ```
1776    /// Other `Rc` pointers to the same allocation must be to the exact same type, including lifetimes.
1777    /// ```no_run
1778    /// #![feature(get_mut_unchecked)]
1779    ///
1780    /// use std::rc::Rc;
1781    ///
1782    /// let x: Rc<&str> = Rc::new("Hello, world!");
1783    /// {
1784    ///     let s = String::from("Oh, no!");
1785    ///     let mut y: Rc<&str> = x.clone();
1786    ///     unsafe {
1787    ///         // this is Undefined Behavior, because x's inner type
1788    ///         // is &'long str, not &'short str
1789    ///         *Rc::get_mut_unchecked(&mut y) = &s;
1790    ///     }
1791    /// }
1792    /// println!("{}", &*x); // Use-after-free
1793    /// ```
1794    #[inline]
1795    #[unstable(feature = "get_mut_unchecked", issue = "63292")]
1796    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
1797        // We are careful to *not* create a reference covering the "count" fields, as
1798        // this would conflict with accesses to the reference counts (e.g. by `Weak`).
1799        unsafe { &mut (*this.ptr.as_ptr()).value }
1800    }
1801
1802    #[inline]
1803    #[stable(feature = "ptr_eq", since = "1.17.0")]
1804    /// Returns `true` if the two `Rc`s point to the same allocation in a vein similar to
1805    /// [`ptr::eq`]. This function ignores the metadata of  `dyn Trait` pointers.
1806    ///
1807    /// # Examples
1808    ///
1809    /// ```
1810    /// use std::rc::Rc;
1811    ///
1812    /// let five = Rc::new(5);
1813    /// let same_five = Rc::clone(&five);
1814    /// let other_five = Rc::new(5);
1815    ///
1816    /// assert!(Rc::ptr_eq(&five, &same_five));
1817    /// assert!(!Rc::ptr_eq(&five, &other_five));
1818    /// ```
1819    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1820        ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
1821    }
1822}
1823
1824#[cfg(not(no_global_oom_handling))]
1825impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Rc<T, A> {
1826    /// Makes a mutable reference into the given `Rc`.
1827    ///
1828    /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
1829    /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
1830    /// referred to as clone-on-write.
1831    ///
1832    /// However, if there are no other `Rc` pointers to this allocation, but some [`Weak`]
1833    /// pointers, then the [`Weak`] pointers will be disassociated and the inner value will not
1834    /// be cloned.
1835    ///
1836    /// See also [`get_mut`], which will fail rather than cloning the inner value
1837    /// or disassociating [`Weak`] pointers.
1838    ///
1839    /// [`clone`]: Clone::clone
1840    /// [`get_mut`]: Rc::get_mut
1841    ///
1842    /// # Examples
1843    ///
1844    /// ```
1845    /// use std::rc::Rc;
1846    ///
1847    /// let mut data = Rc::new(5);
1848    ///
1849    /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
1850    /// let mut other_data = Rc::clone(&data); // Won't clone inner data
1851    /// *Rc::make_mut(&mut data) += 1;         // Clones inner data
1852    /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
1853    /// *Rc::make_mut(&mut other_data) *= 2;   // Won't clone anything
1854    ///
1855    /// // Now `data` and `other_data` point to different allocations.
1856    /// assert_eq!(*data, 8);
1857    /// assert_eq!(*other_data, 12);
1858    /// ```
1859    ///
1860    /// [`Weak`] pointers will be disassociated:
1861    ///
1862    /// ```
1863    /// use std::rc::Rc;
1864    ///
1865    /// let mut data = Rc::new(75);
1866    /// let weak = Rc::downgrade(&data);
1867    ///
1868    /// assert!(75 == *data);
1869    /// assert!(75 == *weak.upgrade().unwrap());
1870    ///
1871    /// *Rc::make_mut(&mut data) += 1;
1872    ///
1873    /// assert!(76 == *data);
1874    /// assert!(weak.upgrade().is_none());
1875    /// ```
1876    #[inline]
1877    #[stable(feature = "rc_unique", since = "1.4.0")]
1878    pub fn make_mut(this: &mut Self) -> &mut T {
1879        let size_of_val = size_of_val::<T>(&**this);
1880
1881        if Rc::strong_count(this) != 1 {
1882            // Gotta clone the data, there are other Rcs.
1883
1884            let this_data_ref: &T = &**this;
1885            // `in_progress` drops the allocation if we panic before finishing initializing it.
1886            let mut in_progress: UniqueRcUninit<T, A> =
1887                UniqueRcUninit::new(this_data_ref, this.alloc.clone());
1888
1889            // Initialize with clone of this.
1890            let initialized_clone = unsafe {
1891                // Clone. If the clone panics, `in_progress` will be dropped and clean up.
1892                this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
1893                // Cast type of pointer, now that it is initialized.
1894                in_progress.into_rc()
1895            };
1896
1897            // Replace `this` with newly constructed Rc.
1898            *this = initialized_clone;
1899        } else if Rc::weak_count(this) != 0 {
1900            // Can just steal the data, all that's left is Weaks
1901
1902            // We don't need panic-protection like the above branch does, but we might as well
1903            // use the same mechanism.
1904            let mut in_progress: UniqueRcUninit<T, A> =
1905                UniqueRcUninit::new(&**this, this.alloc.clone());
1906            unsafe {
1907                // Initialize `in_progress` with move of **this.
1908                // We have to express this in terms of bytes because `T: ?Sized`; there is no
1909                // operation that just copies a value based on its `size_of_val()`.
1910                ptr::copy_nonoverlapping(
1911                    ptr::from_ref(&**this).cast::<u8>(),
1912                    in_progress.data_ptr().cast::<u8>(),
1913                    size_of_val,
1914                );
1915
1916                this.inner().dec_strong();
1917                // Remove implicit strong-weak ref (no need to craft a fake
1918                // Weak here -- we know other Weaks can clean up for us)
1919                this.inner().dec_weak();
1920                // Replace `this` with newly constructed Rc that has the moved data.
1921                ptr::write(this, in_progress.into_rc());
1922            }
1923        }
1924        // This unsafety is ok because we're guaranteed that the pointer
1925        // returned is the *only* pointer that will ever be returned to T. Our
1926        // reference count is guaranteed to be 1 at this point, and we required
1927        // the `Rc<T>` itself to be `mut`, so we're returning the only possible
1928        // reference to the allocation.
1929        unsafe { &mut this.ptr.as_mut().value }
1930    }
1931}
1932
1933impl<T: Clone, A: Allocator> Rc<T, A> {
1934    /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
1935    /// clone.
1936    ///
1937    /// Assuming `rc_t` is of type `Rc<T>`, this function is functionally equivalent to
1938    /// `(*rc_t).clone()`, but will avoid cloning the inner value where possible.
1939    ///
1940    /// # Examples
1941    ///
1942    /// ```
1943    /// # use std::{ptr, rc::Rc};
1944    /// let inner = String::from("test");
1945    /// let ptr = inner.as_ptr();
1946    ///
1947    /// let rc = Rc::new(inner);
1948    /// let inner = Rc::unwrap_or_clone(rc);
1949    /// // The inner value was not cloned
1950    /// assert!(ptr::eq(ptr, inner.as_ptr()));
1951    ///
1952    /// let rc = Rc::new(inner);
1953    /// let rc2 = rc.clone();
1954    /// let inner = Rc::unwrap_or_clone(rc);
1955    /// // Because there were 2 references, we had to clone the inner value.
1956    /// assert!(!ptr::eq(ptr, inner.as_ptr()));
1957    /// // `rc2` is the last reference, so when we unwrap it we get back
1958    /// // the original `String`.
1959    /// let inner = Rc::unwrap_or_clone(rc2);
1960    /// assert!(ptr::eq(ptr, inner.as_ptr()));
1961    /// ```
1962    #[inline]
1963    #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
1964    pub fn unwrap_or_clone(this: Self) -> T {
1965        Rc::try_unwrap(this).unwrap_or_else(|rc| (*rc).clone())
1966    }
1967}
1968
1969impl<A: Allocator> Rc<dyn Any, A> {
1970    /// Attempts to downcast the `Rc<dyn Any>` to a concrete type.
1971    ///
1972    /// # Examples
1973    ///
1974    /// ```
1975    /// use std::any::Any;
1976    /// use std::rc::Rc;
1977    ///
1978    /// fn print_if_string(value: Rc<dyn Any>) {
1979    ///     if let Ok(string) = value.downcast::<String>() {
1980    ///         println!("String ({}): {}", string.len(), string);
1981    ///     }
1982    /// }
1983    ///
1984    /// let my_string = "Hello World".to_string();
1985    /// print_if_string(Rc::new(my_string));
1986    /// print_if_string(Rc::new(0i8));
1987    /// ```
1988    #[inline]
1989    #[stable(feature = "rc_downcast", since = "1.29.0")]
1990    pub fn downcast<T: Any>(self) -> Result<Rc<T, A>, Self> {
1991        if (*self).is::<T>() {
1992            unsafe {
1993                let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1994                Ok(Rc::from_inner_in(ptr.cast(), alloc))
1995            }
1996        } else {
1997            Err(self)
1998        }
1999    }
2000
2001    /// Downcasts the `Rc<dyn Any>` to a concrete type.
2002    ///
2003    /// For a safe alternative see [`downcast`].
2004    ///
2005    /// # Examples
2006    ///
2007    /// ```
2008    /// #![feature(downcast_unchecked)]
2009    ///
2010    /// use std::any::Any;
2011    /// use std::rc::Rc;
2012    ///
2013    /// let x: Rc<dyn Any> = Rc::new(1_usize);
2014    ///
2015    /// unsafe {
2016    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2017    /// }
2018    /// ```
2019    ///
2020    /// # Safety
2021    ///
2022    /// The contained value must be of type `T`. Calling this method
2023    /// with the incorrect type is *undefined behavior*.
2024    ///
2025    ///
2026    /// [`downcast`]: Self::downcast
2027    #[inline]
2028    #[unstable(feature = "downcast_unchecked", issue = "90850")]
2029    pub unsafe fn downcast_unchecked<T: Any>(self) -> Rc<T, A> {
2030        unsafe {
2031            let (ptr, alloc) = Rc::into_inner_with_allocator(self);
2032            Rc::from_inner_in(ptr.cast(), alloc)
2033        }
2034    }
2035}
2036
2037impl<T: ?Sized> Rc<T> {
2038    /// Allocates an `RcInner<T>` with sufficient space for
2039    /// a possibly-unsized inner value where the value has the layout provided.
2040    ///
2041    /// The function `mem_to_rc_inner` is called with the data pointer
2042    /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
2043    #[cfg(not(no_global_oom_handling))]
2044    unsafe fn allocate_for_layout(
2045        value_layout: Layout,
2046        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2047        mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
2048    ) -> *mut RcInner<T> {
2049        let layout = rc_inner_layout_for_value_layout(value_layout);
2050        unsafe {
2051            Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rc_inner)
2052                .unwrap_or_else(|_| handle_alloc_error(layout))
2053        }
2054    }
2055
2056    /// Allocates an `RcInner<T>` with sufficient space for
2057    /// a possibly-unsized inner value where the value has the layout provided,
2058    /// returning an error if allocation fails.
2059    ///
2060    /// The function `mem_to_rc_inner` is called with the data pointer
2061    /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
2062    #[inline]
2063    unsafe fn try_allocate_for_layout(
2064        value_layout: Layout,
2065        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2066        mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
2067    ) -> Result<*mut RcInner<T>, AllocError> {
2068        let layout = rc_inner_layout_for_value_layout(value_layout);
2069
2070        // Allocate for the layout.
2071        let ptr = allocate(layout)?;
2072
2073        // Initialize the RcInner
2074        let inner = mem_to_rc_inner(ptr.as_non_null_ptr().as_ptr());
2075        unsafe {
2076            debug_assert_eq!(Layout::for_value_raw(inner), layout);
2077
2078            (&raw mut (*inner).strong).write(Cell::new(1));
2079            (&raw mut (*inner).weak).write(Cell::new(1));
2080        }
2081
2082        Ok(inner)
2083    }
2084}
2085
2086impl<T: ?Sized, A: Allocator> Rc<T, A> {
2087    /// Allocates an `RcInner<T>` with sufficient space for an unsized inner value
2088    #[cfg(not(no_global_oom_handling))]
2089    unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut RcInner<T> {
2090        // Allocate for the `RcInner<T>` using the given value.
2091        unsafe {
2092            Rc::<T>::allocate_for_layout(
2093                Layout::for_value_raw(ptr),
2094                |layout| alloc.allocate(layout),
2095                |mem| mem.with_metadata_of(ptr as *const RcInner<T>),
2096            )
2097        }
2098    }
2099
2100    #[cfg(not(no_global_oom_handling))]
2101    fn from_box_in(src: Box<T, A>) -> Rc<T, A> {
2102        unsafe {
2103            let value_size = size_of_val(&*src);
2104            let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2105
2106            // Copy value as bytes
2107            ptr::copy_nonoverlapping(
2108                (&raw const *src) as *const u8,
2109                (&raw mut (*ptr).value) as *mut u8,
2110                value_size,
2111            );
2112
2113            // Free the allocation without dropping its contents
2114            let (bptr, alloc) = Box::into_raw_with_allocator(src);
2115            let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2116            drop(src);
2117
2118            Self::from_ptr_in(ptr, alloc)
2119        }
2120    }
2121}
2122
2123impl<T> Rc<[T]> {
2124    /// Allocates an `RcInner<[T]>` with the given length.
2125    #[cfg(not(no_global_oom_handling))]
2126    unsafe fn allocate_for_slice(len: usize) -> *mut RcInner<[T]> {
2127        unsafe {
2128            Self::allocate_for_layout(
2129                Layout::array::<T>(len).unwrap(),
2130                |layout| Global.allocate(layout),
2131                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
2132            )
2133        }
2134    }
2135
2136    /// Copy elements from slice into newly allocated `Rc<[T]>`
2137    ///
2138    /// Unsafe because the caller must either take ownership or bind `T: Copy`
2139    #[cfg(not(no_global_oom_handling))]
2140    unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
2141        unsafe {
2142            let ptr = Self::allocate_for_slice(v.len());
2143            ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).value) as *mut T, v.len());
2144            Self::from_ptr(ptr)
2145        }
2146    }
2147
2148    /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
2149    ///
2150    /// Behavior is undefined should the size be wrong.
2151    #[cfg(not(no_global_oom_handling))]
2152    unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Rc<[T]> {
2153        // Panic guard while cloning T elements.
2154        // In the event of a panic, elements that have been written
2155        // into the new RcInner will be dropped, then the memory freed.
2156        struct Guard<T> {
2157            mem: NonNull<u8>,
2158            elems: *mut T,
2159            layout: Layout,
2160            n_elems: usize,
2161        }
2162
2163        impl<T> Drop for Guard<T> {
2164            fn drop(&mut self) {
2165                unsafe {
2166                    let slice = from_raw_parts_mut(self.elems, self.n_elems);
2167                    ptr::drop_in_place(slice);
2168
2169                    Global.deallocate(self.mem, self.layout);
2170                }
2171            }
2172        }
2173
2174        unsafe {
2175            let ptr = Self::allocate_for_slice(len);
2176
2177            let mem = ptr as *mut _ as *mut u8;
2178            let layout = Layout::for_value_raw(ptr);
2179
2180            // Pointer to first element
2181            let elems = (&raw mut (*ptr).value) as *mut T;
2182
2183            let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2184
2185            for (i, item) in iter.enumerate() {
2186                ptr::write(elems.add(i), item);
2187                guard.n_elems += 1;
2188            }
2189
2190            // All clear. Forget the guard so it doesn't free the new RcInner.
2191            mem::forget(guard);
2192
2193            Self::from_ptr(ptr)
2194        }
2195    }
2196}
2197
2198impl<T, A: Allocator> Rc<[T], A> {
2199    /// Allocates an `RcInner<[T]>` with the given length.
2200    #[inline]
2201    #[cfg(not(no_global_oom_handling))]
2202    unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut RcInner<[T]> {
2203        unsafe {
2204            Rc::<[T]>::allocate_for_layout(
2205                Layout::array::<T>(len).unwrap(),
2206                |layout| alloc.allocate(layout),
2207                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
2208            )
2209        }
2210    }
2211}
2212
2213#[cfg(not(no_global_oom_handling))]
2214/// Specialization trait used for `From<&[T]>`.
2215trait RcFromSlice<T> {
2216    fn from_slice(slice: &[T]) -> Self;
2217}
2218
2219#[cfg(not(no_global_oom_handling))]
2220impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
2221    #[inline]
2222    default fn from_slice(v: &[T]) -> Self {
2223        unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2224    }
2225}
2226
2227#[cfg(not(no_global_oom_handling))]
2228impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
2229    #[inline]
2230    fn from_slice(v: &[T]) -> Self {
2231        unsafe { Rc::copy_from_slice(v) }
2232    }
2233}
2234
2235#[stable(feature = "rust1", since = "1.0.0")]
2236impl<T: ?Sized, A: Allocator> Deref for Rc<T, A> {
2237    type Target = T;
2238
2239    #[inline(always)]
2240    fn deref(&self) -> &T {
2241        &self.inner().value
2242    }
2243}
2244
2245#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2246unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Rc<T, A> {}
2247
2248//#[unstable(feature = "unique_rc_arc", issue = "112566")]
2249#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2250unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for UniqueRc<T, A> {}
2251
2252#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2253unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2254
2255#[unstable(feature = "deref_pure_trait", issue = "87121")]
2256unsafe impl<T: ?Sized, A: Allocator> DerefPure for Rc<T, A> {}
2257
2258//#[unstable(feature = "unique_rc_arc", issue = "112566")]
2259#[unstable(feature = "deref_pure_trait", issue = "87121")]
2260unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueRc<T, A> {}
2261
2262#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2263impl<T: ?Sized> LegacyReceiver for Rc<T> {}
2264
2265#[stable(feature = "rust1", since = "1.0.0")]
2266unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Rc<T, A> {
2267    /// Drops the `Rc`.
2268    ///
2269    /// This will decrement the strong reference count. If the strong reference
2270    /// count reaches zero then the only other references (if any) are
2271    /// [`Weak`], so we `drop` the inner value.
2272    ///
2273    /// # Examples
2274    ///
2275    /// ```
2276    /// use std::rc::Rc;
2277    ///
2278    /// struct Foo;
2279    ///
2280    /// impl Drop for Foo {
2281    ///     fn drop(&mut self) {
2282    ///         println!("dropped!");
2283    ///     }
2284    /// }
2285    ///
2286    /// let foo  = Rc::new(Foo);
2287    /// let foo2 = Rc::clone(&foo);
2288    ///
2289    /// drop(foo);    // Doesn't print anything
2290    /// drop(foo2);   // Prints "dropped!"
2291    /// ```
2292    #[inline]
2293    fn drop(&mut self) {
2294        unsafe {
2295            self.inner().dec_strong();
2296            if self.inner().strong() == 0 {
2297                self.drop_slow();
2298            }
2299        }
2300    }
2301}
2302
2303#[stable(feature = "rust1", since = "1.0.0")]
2304impl<T: ?Sized, A: Allocator + Clone> Clone for Rc<T, A> {
2305    /// Makes a clone of the `Rc` pointer.
2306    ///
2307    /// This creates another pointer to the same allocation, increasing the
2308    /// strong reference count.
2309    ///
2310    /// # Examples
2311    ///
2312    /// ```
2313    /// use std::rc::Rc;
2314    ///
2315    /// let five = Rc::new(5);
2316    ///
2317    /// let _ = Rc::clone(&five);
2318    /// ```
2319    #[inline]
2320    fn clone(&self) -> Self {
2321        unsafe {
2322            self.inner().inc_strong();
2323            Self::from_inner_in(self.ptr, self.alloc.clone())
2324        }
2325    }
2326}
2327
2328#[unstable(feature = "ergonomic_clones", issue = "132290")]
2329impl<T: ?Sized, A: Allocator + Clone> UseCloned for Rc<T, A> {}
2330
2331#[cfg(not(no_global_oom_handling))]
2332#[stable(feature = "rust1", since = "1.0.0")]
2333impl<T: Default> Default for Rc<T> {
2334    /// Creates a new `Rc<T>`, with the `Default` value for `T`.
2335    ///
2336    /// # Examples
2337    ///
2338    /// ```
2339    /// use std::rc::Rc;
2340    ///
2341    /// let x: Rc<i32> = Default::default();
2342    /// assert_eq!(*x, 0);
2343    /// ```
2344    #[inline]
2345    fn default() -> Self {
2346        unsafe {
2347            Self::from_inner(
2348                Box::leak(Box::write(
2349                    Box::new_uninit(),
2350                    RcInner { strong: Cell::new(1), weak: Cell::new(1), value: T::default() },
2351                ))
2352                .into(),
2353            )
2354        }
2355    }
2356}
2357
2358#[cfg(not(no_global_oom_handling))]
2359#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
2360impl Default for Rc<str> {
2361    /// Creates an empty `str` inside an `Rc`.
2362    ///
2363    /// This may or may not share an allocation with other Rcs on the same thread.
2364    #[inline]
2365    fn default() -> Self {
2366        let rc = Rc::<[u8]>::default();
2367        // `[u8]` has the same layout as `str`.
2368        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
2369    }
2370}
2371
2372#[cfg(not(no_global_oom_handling))]
2373#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
2374impl<T> Default for Rc<[T]> {
2375    /// Creates an empty `[T]` inside an `Rc`.
2376    ///
2377    /// This may or may not share an allocation with other Rcs on the same thread.
2378    #[inline]
2379    fn default() -> Self {
2380        let arr: [T; 0] = [];
2381        Rc::from(arr)
2382    }
2383}
2384
2385#[cfg(not(no_global_oom_handling))]
2386#[stable(feature = "pin_default_impls", since = "1.91.0")]
2387impl<T> Default for Pin<Rc<T>>
2388where
2389    T: ?Sized,
2390    Rc<T>: Default,
2391{
2392    #[inline]
2393    fn default() -> Self {
2394        unsafe { Pin::new_unchecked(Rc::<T>::default()) }
2395    }
2396}
2397
2398#[stable(feature = "rust1", since = "1.0.0")]
2399trait RcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
2400    fn eq(&self, other: &Rc<T, A>) -> bool;
2401    fn ne(&self, other: &Rc<T, A>) -> bool;
2402}
2403
2404#[stable(feature = "rust1", since = "1.0.0")]
2405impl<T: ?Sized + PartialEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
2406    #[inline]
2407    default fn eq(&self, other: &Rc<T, A>) -> bool {
2408        **self == **other
2409    }
2410
2411    #[inline]
2412    default fn ne(&self, other: &Rc<T, A>) -> bool {
2413        **self != **other
2414    }
2415}
2416
2417// Hack to allow specializing on `Eq` even though `Eq` has a method.
2418#[rustc_unsafe_specialization_marker]
2419pub(crate) trait MarkerEq: PartialEq<Self> {}
2420
2421impl<T: Eq> MarkerEq for T {}
2422
2423/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
2424/// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
2425/// store large values, that are slow to clone, but also heavy to check for equality, causing this
2426/// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
2427/// the same value, than two `&T`s.
2428///
2429/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
2430#[stable(feature = "rust1", since = "1.0.0")]
2431impl<T: ?Sized + MarkerEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
2432    #[inline]
2433    fn eq(&self, other: &Rc<T, A>) -> bool {
2434        Rc::ptr_eq(self, other) || **self == **other
2435    }
2436
2437    #[inline]
2438    fn ne(&self, other: &Rc<T, A>) -> bool {
2439        !Rc::ptr_eq(self, other) && **self != **other
2440    }
2441}
2442
2443#[stable(feature = "rust1", since = "1.0.0")]
2444impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Rc<T, A> {
2445    /// Equality for two `Rc`s.
2446    ///
2447    /// Two `Rc`s are equal if their inner values are equal, even if they are
2448    /// stored in different allocation.
2449    ///
2450    /// If `T` also implements `Eq` (implying reflexivity of equality),
2451    /// two `Rc`s that point to the same allocation are
2452    /// always equal.
2453    ///
2454    /// # Examples
2455    ///
2456    /// ```
2457    /// use std::rc::Rc;
2458    ///
2459    /// let five = Rc::new(5);
2460    ///
2461    /// assert!(five == Rc::new(5));
2462    /// ```
2463    #[inline]
2464    fn eq(&self, other: &Rc<T, A>) -> bool {
2465        RcEqIdent::eq(self, other)
2466    }
2467
2468    /// Inequality for two `Rc`s.
2469    ///
2470    /// Two `Rc`s are not equal if their inner values are not equal.
2471    ///
2472    /// If `T` also implements `Eq` (implying reflexivity of equality),
2473    /// two `Rc`s that point to the same allocation are
2474    /// always equal.
2475    ///
2476    /// # Examples
2477    ///
2478    /// ```
2479    /// use std::rc::Rc;
2480    ///
2481    /// let five = Rc::new(5);
2482    ///
2483    /// assert!(five != Rc::new(6));
2484    /// ```
2485    #[inline]
2486    fn ne(&self, other: &Rc<T, A>) -> bool {
2487        RcEqIdent::ne(self, other)
2488    }
2489}
2490
2491#[stable(feature = "rust1", since = "1.0.0")]
2492impl<T: ?Sized + Eq, A: Allocator> Eq for Rc<T, A> {}
2493
2494#[stable(feature = "rust1", since = "1.0.0")]
2495impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Rc<T, A> {
2496    /// Partial comparison for two `Rc`s.
2497    ///
2498    /// The two are compared by calling `partial_cmp()` on their inner values.
2499    ///
2500    /// # Examples
2501    ///
2502    /// ```
2503    /// use std::rc::Rc;
2504    /// use std::cmp::Ordering;
2505    ///
2506    /// let five = Rc::new(5);
2507    ///
2508    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
2509    /// ```
2510    #[inline(always)]
2511    fn partial_cmp(&self, other: &Rc<T, A>) -> Option<Ordering> {
2512        (**self).partial_cmp(&**other)
2513    }
2514
2515    /// Less-than comparison for two `Rc`s.
2516    ///
2517    /// The two are compared by calling `<` on their inner values.
2518    ///
2519    /// # Examples
2520    ///
2521    /// ```
2522    /// use std::rc::Rc;
2523    ///
2524    /// let five = Rc::new(5);
2525    ///
2526    /// assert!(five < Rc::new(6));
2527    /// ```
2528    #[inline(always)]
2529    fn lt(&self, other: &Rc<T, A>) -> bool {
2530        **self < **other
2531    }
2532
2533    /// 'Less than or equal to' comparison for two `Rc`s.
2534    ///
2535    /// The two are compared by calling `<=` on their inner values.
2536    ///
2537    /// # Examples
2538    ///
2539    /// ```
2540    /// use std::rc::Rc;
2541    ///
2542    /// let five = Rc::new(5);
2543    ///
2544    /// assert!(five <= Rc::new(5));
2545    /// ```
2546    #[inline(always)]
2547    fn le(&self, other: &Rc<T, A>) -> bool {
2548        **self <= **other
2549    }
2550
2551    /// Greater-than comparison for two `Rc`s.
2552    ///
2553    /// The two are compared by calling `>` on their inner values.
2554    ///
2555    /// # Examples
2556    ///
2557    /// ```
2558    /// use std::rc::Rc;
2559    ///
2560    /// let five = Rc::new(5);
2561    ///
2562    /// assert!(five > Rc::new(4));
2563    /// ```
2564    #[inline(always)]
2565    fn gt(&self, other: &Rc<T, A>) -> bool {
2566        **self > **other
2567    }
2568
2569    /// 'Greater than or equal to' comparison for two `Rc`s.
2570    ///
2571    /// The two are compared by calling `>=` on their inner values.
2572    ///
2573    /// # Examples
2574    ///
2575    /// ```
2576    /// use std::rc::Rc;
2577    ///
2578    /// let five = Rc::new(5);
2579    ///
2580    /// assert!(five >= Rc::new(5));
2581    /// ```
2582    #[inline(always)]
2583    fn ge(&self, other: &Rc<T, A>) -> bool {
2584        **self >= **other
2585    }
2586}
2587
2588#[stable(feature = "rust1", since = "1.0.0")]
2589impl<T: ?Sized + Ord, A: Allocator> Ord for Rc<T, A> {
2590    /// Comparison for two `Rc`s.
2591    ///
2592    /// The two are compared by calling `cmp()` on their inner values.
2593    ///
2594    /// # Examples
2595    ///
2596    /// ```
2597    /// use std::rc::Rc;
2598    /// use std::cmp::Ordering;
2599    ///
2600    /// let five = Rc::new(5);
2601    ///
2602    /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
2603    /// ```
2604    #[inline]
2605    fn cmp(&self, other: &Rc<T, A>) -> Ordering {
2606        (**self).cmp(&**other)
2607    }
2608}
2609
2610#[stable(feature = "rust1", since = "1.0.0")]
2611impl<T: ?Sized + Hash, A: Allocator> Hash for Rc<T, A> {
2612    fn hash<H: Hasher>(&self, state: &mut H) {
2613        (**self).hash(state);
2614    }
2615}
2616
2617#[stable(feature = "rust1", since = "1.0.0")]
2618impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Rc<T, A> {
2619    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2620        fmt::Display::fmt(&**self, f)
2621    }
2622}
2623
2624#[stable(feature = "rust1", since = "1.0.0")]
2625impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Rc<T, A> {
2626    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2627        fmt::Debug::fmt(&**self, f)
2628    }
2629}
2630
2631#[stable(feature = "rust1", since = "1.0.0")]
2632impl<T: ?Sized, A: Allocator> fmt::Pointer for Rc<T, A> {
2633    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2634        fmt::Pointer::fmt(&(&raw const **self), f)
2635    }
2636}
2637
2638#[cfg(not(no_global_oom_handling))]
2639#[stable(feature = "from_for_ptrs", since = "1.6.0")]
2640impl<T> From<T> for Rc<T> {
2641    /// Converts a generic type `T` into an `Rc<T>`
2642    ///
2643    /// The conversion allocates on the heap and moves `t`
2644    /// from the stack into it.
2645    ///
2646    /// # Example
2647    /// ```rust
2648    /// # use std::rc::Rc;
2649    /// let x = 5;
2650    /// let rc = Rc::new(5);
2651    ///
2652    /// assert_eq!(Rc::from(x), rc);
2653    /// ```
2654    fn from(t: T) -> Self {
2655        Rc::new(t)
2656    }
2657}
2658
2659#[cfg(not(no_global_oom_handling))]
2660#[stable(feature = "shared_from_array", since = "1.74.0")]
2661impl<T, const N: usize> From<[T; N]> for Rc<[T]> {
2662    /// Converts a [`[T; N]`](prim@array) into an `Rc<[T]>`.
2663    ///
2664    /// The conversion moves the array into a newly allocated `Rc`.
2665    ///
2666    /// # Example
2667    ///
2668    /// ```
2669    /// # use std::rc::Rc;
2670    /// let original: [i32; 3] = [1, 2, 3];
2671    /// let shared: Rc<[i32]> = Rc::from(original);
2672    /// assert_eq!(&[1, 2, 3], &shared[..]);
2673    /// ```
2674    #[inline]
2675    fn from(v: [T; N]) -> Rc<[T]> {
2676        Rc::<[T; N]>::from(v)
2677    }
2678}
2679
2680#[cfg(not(no_global_oom_handling))]
2681#[stable(feature = "shared_from_slice", since = "1.21.0")]
2682impl<T: Clone> From<&[T]> for Rc<[T]> {
2683    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
2684    ///
2685    /// # Example
2686    ///
2687    /// ```
2688    /// # use std::rc::Rc;
2689    /// let original: &[i32] = &[1, 2, 3];
2690    /// let shared: Rc<[i32]> = Rc::from(original);
2691    /// assert_eq!(&[1, 2, 3], &shared[..]);
2692    /// ```
2693    #[inline]
2694    fn from(v: &[T]) -> Rc<[T]> {
2695        <Self as RcFromSlice<T>>::from_slice(v)
2696    }
2697}
2698
2699#[cfg(not(no_global_oom_handling))]
2700#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2701impl<T: Clone> From<&mut [T]> for Rc<[T]> {
2702    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
2703    ///
2704    /// # Example
2705    ///
2706    /// ```
2707    /// # use std::rc::Rc;
2708    /// let mut original = [1, 2, 3];
2709    /// let original: &mut [i32] = &mut original;
2710    /// let shared: Rc<[i32]> = Rc::from(original);
2711    /// assert_eq!(&[1, 2, 3], &shared[..]);
2712    /// ```
2713    #[inline]
2714    fn from(v: &mut [T]) -> Rc<[T]> {
2715        Rc::from(&*v)
2716    }
2717}
2718
2719#[cfg(not(no_global_oom_handling))]
2720#[stable(feature = "shared_from_slice", since = "1.21.0")]
2721impl From<&str> for Rc<str> {
2722    /// Allocates a reference-counted string slice and copies `v` into it.
2723    ///
2724    /// # Example
2725    ///
2726    /// ```
2727    /// # use std::rc::Rc;
2728    /// let shared: Rc<str> = Rc::from("statue");
2729    /// assert_eq!("statue", &shared[..]);
2730    /// ```
2731    #[inline]
2732    fn from(v: &str) -> Rc<str> {
2733        let rc = Rc::<[u8]>::from(v.as_bytes());
2734        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
2735    }
2736}
2737
2738#[cfg(not(no_global_oom_handling))]
2739#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2740impl From<&mut str> for Rc<str> {
2741    /// Allocates a reference-counted string slice and copies `v` into it.
2742    ///
2743    /// # Example
2744    ///
2745    /// ```
2746    /// # use std::rc::Rc;
2747    /// let mut original = String::from("statue");
2748    /// let original: &mut str = &mut original;
2749    /// let shared: Rc<str> = Rc::from(original);
2750    /// assert_eq!("statue", &shared[..]);
2751    /// ```
2752    #[inline]
2753    fn from(v: &mut str) -> Rc<str> {
2754        Rc::from(&*v)
2755    }
2756}
2757
2758#[cfg(not(no_global_oom_handling))]
2759#[stable(feature = "shared_from_slice", since = "1.21.0")]
2760impl From<String> for Rc<str> {
2761    /// Allocates a reference-counted string slice and copies `v` into it.
2762    ///
2763    /// # Example
2764    ///
2765    /// ```
2766    /// # use std::rc::Rc;
2767    /// let original: String = "statue".to_owned();
2768    /// let shared: Rc<str> = Rc::from(original);
2769    /// assert_eq!("statue", &shared[..]);
2770    /// ```
2771    #[inline]
2772    fn from(v: String) -> Rc<str> {
2773        Rc::from(&v[..])
2774    }
2775}
2776
2777#[cfg(not(no_global_oom_handling))]
2778#[stable(feature = "shared_from_slice", since = "1.21.0")]
2779impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Rc<T, A> {
2780    /// Move a boxed object to a new, reference counted, allocation.
2781    ///
2782    /// # Example
2783    ///
2784    /// ```
2785    /// # use std::rc::Rc;
2786    /// let original: Box<i32> = Box::new(1);
2787    /// let shared: Rc<i32> = Rc::from(original);
2788    /// assert_eq!(1, *shared);
2789    /// ```
2790    #[inline]
2791    fn from(v: Box<T, A>) -> Rc<T, A> {
2792        Rc::from_box_in(v)
2793    }
2794}
2795
2796#[cfg(not(no_global_oom_handling))]
2797#[stable(feature = "shared_from_slice", since = "1.21.0")]
2798impl<T, A: Allocator> From<Vec<T, A>> for Rc<[T], A> {
2799    /// Allocates a reference-counted slice and moves `v`'s items into it.
2800    ///
2801    /// # Example
2802    ///
2803    /// ```
2804    /// # use std::rc::Rc;
2805    /// let unique: Vec<i32> = vec![1, 2, 3];
2806    /// let shared: Rc<[i32]> = Rc::from(unique);
2807    /// assert_eq!(&[1, 2, 3], &shared[..]);
2808    /// ```
2809    #[inline]
2810    fn from(v: Vec<T, A>) -> Rc<[T], A> {
2811        unsafe {
2812            let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
2813
2814            let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
2815            ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).value) as *mut T, len);
2816
2817            // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
2818            // without dropping its contents or the allocator
2819            let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
2820
2821            Self::from_ptr_in(rc_ptr, alloc)
2822        }
2823    }
2824}
2825
2826#[stable(feature = "shared_from_cow", since = "1.45.0")]
2827impl<'a, B> From<Cow<'a, B>> for Rc<B>
2828where
2829    B: ToOwned + ?Sized,
2830    Rc<B>: From<&'a B> + From<B::Owned>,
2831{
2832    /// Creates a reference-counted pointer from a clone-on-write pointer by
2833    /// copying its content.
2834    ///
2835    /// # Example
2836    ///
2837    /// ```rust
2838    /// # use std::rc::Rc;
2839    /// # use std::borrow::Cow;
2840    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
2841    /// let shared: Rc<str> = Rc::from(cow);
2842    /// assert_eq!("eggplant", &shared[..]);
2843    /// ```
2844    #[inline]
2845    fn from(cow: Cow<'a, B>) -> Rc<B> {
2846        match cow {
2847            Cow::Borrowed(s) => Rc::from(s),
2848            Cow::Owned(s) => Rc::from(s),
2849        }
2850    }
2851}
2852
2853#[stable(feature = "shared_from_str", since = "1.62.0")]
2854impl From<Rc<str>> for Rc<[u8]> {
2855    /// Converts a reference-counted string slice into a byte slice.
2856    ///
2857    /// # Example
2858    ///
2859    /// ```
2860    /// # use std::rc::Rc;
2861    /// let string: Rc<str> = Rc::from("eggplant");
2862    /// let bytes: Rc<[u8]> = Rc::from(string);
2863    /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
2864    /// ```
2865    #[inline]
2866    fn from(rc: Rc<str>) -> Self {
2867        // SAFETY: `str` has the same layout as `[u8]`.
2868        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const [u8]) }
2869    }
2870}
2871
2872#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
2873impl<T, A: Allocator, const N: usize> TryFrom<Rc<[T], A>> for Rc<[T; N], A> {
2874    type Error = Rc<[T], A>;
2875
2876    fn try_from(boxed_slice: Rc<[T], A>) -> Result<Self, Self::Error> {
2877        if boxed_slice.len() == N {
2878            let (ptr, alloc) = Rc::into_inner_with_allocator(boxed_slice);
2879            Ok(unsafe { Rc::from_inner_in(ptr.cast(), alloc) })
2880        } else {
2881            Err(boxed_slice)
2882        }
2883    }
2884}
2885
2886#[cfg(not(no_global_oom_handling))]
2887#[stable(feature = "shared_from_iter", since = "1.37.0")]
2888impl<T> FromIterator<T> for Rc<[T]> {
2889    /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
2890    ///
2891    /// # Performance characteristics
2892    ///
2893    /// ## The general case
2894    ///
2895    /// In the general case, collecting into `Rc<[T]>` is done by first
2896    /// collecting into a `Vec<T>`. That is, when writing the following:
2897    ///
2898    /// ```rust
2899    /// # use std::rc::Rc;
2900    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
2901    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2902    /// ```
2903    ///
2904    /// this behaves as if we wrote:
2905    ///
2906    /// ```rust
2907    /// # use std::rc::Rc;
2908    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
2909    ///     .collect::<Vec<_>>() // The first set of allocations happens here.
2910    ///     .into(); // A second allocation for `Rc<[T]>` happens here.
2911    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2912    /// ```
2913    ///
2914    /// This will allocate as many times as needed for constructing the `Vec<T>`
2915    /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
2916    ///
2917    /// ## Iterators of known length
2918    ///
2919    /// When your `Iterator` implements `TrustedLen` and is of an exact size,
2920    /// a single allocation will be made for the `Rc<[T]>`. For example:
2921    ///
2922    /// ```rust
2923    /// # use std::rc::Rc;
2924    /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
2925    /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
2926    /// ```
2927    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
2928        ToRcSlice::to_rc_slice(iter.into_iter())
2929    }
2930}
2931
2932/// Specialization trait used for collecting into `Rc<[T]>`.
2933#[cfg(not(no_global_oom_handling))]
2934trait ToRcSlice<T>: Iterator<Item = T> + Sized {
2935    fn to_rc_slice(self) -> Rc<[T]>;
2936}
2937
2938#[cfg(not(no_global_oom_handling))]
2939impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I {
2940    default fn to_rc_slice(self) -> Rc<[T]> {
2941        self.collect::<Vec<T>>().into()
2942    }
2943}
2944
2945#[cfg(not(no_global_oom_handling))]
2946impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I {
2947    fn to_rc_slice(self) -> Rc<[T]> {
2948        // This is the case for a `TrustedLen` iterator.
2949        let (low, high) = self.size_hint();
2950        if let Some(high) = high {
2951            debug_assert_eq!(
2952                low,
2953                high,
2954                "TrustedLen iterator's size hint is not exact: {:?}",
2955                (low, high)
2956            );
2957
2958            unsafe {
2959                // SAFETY: We need to ensure that the iterator has an exact length and we have.
2960                Rc::from_iter_exact(self, low)
2961            }
2962        } else {
2963            // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
2964            // length exceeding `usize::MAX`.
2965            // The default implementation would collect into a vec which would panic.
2966            // Thus we panic here immediately without invoking `Vec` code.
2967            panic!("capacity overflow");
2968        }
2969    }
2970}
2971
2972/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
2973/// managed allocation.
2974///
2975/// The allocation is accessed by calling [`upgrade`] on the `Weak`
2976/// pointer, which returns an <code>[Option]<[Rc]\<T>></code>.
2977///
2978/// Since a `Weak` reference does not count towards ownership, it will not
2979/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
2980/// guarantees about the value still being present. Thus it may return [`None`]
2981/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
2982/// itself (the backing store) from being deallocated.
2983///
2984/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
2985/// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
2986/// prevent circular references between [`Rc`] pointers, since mutual owning references
2987/// would never allow either [`Rc`] to be dropped. For example, a tree could
2988/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
2989/// pointers from children back to their parents.
2990///
2991/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
2992///
2993/// [`upgrade`]: Weak::upgrade
2994#[stable(feature = "rc_weak", since = "1.4.0")]
2995#[rustc_diagnostic_item = "RcWeak"]
2996pub struct Weak<
2997    T: ?Sized,
2998    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
2999> {
3000    // This is a `NonNull` to allow optimizing the size of this type in enums,
3001    // but it is not necessarily a valid pointer.
3002    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
3003    // to allocate space on the heap. That's not a value a real pointer
3004    // will ever have because RcInner has alignment at least 2.
3005    ptr: NonNull<RcInner<T>>,
3006    alloc: A,
3007}
3008
3009#[stable(feature = "rc_weak", since = "1.4.0")]
3010impl<T: ?Sized, A: Allocator> !Send for Weak<T, A> {}
3011#[stable(feature = "rc_weak", since = "1.4.0")]
3012impl<T: ?Sized, A: Allocator> !Sync for Weak<T, A> {}
3013
3014#[unstable(feature = "coerce_unsized", issue = "18598")]
3015impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
3016
3017#[unstable(feature = "dispatch_from_dyn", issue = "none")]
3018impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
3019
3020// SAFETY: `Weak::clone` doesn't access any `Cell`s which could contain the `Weak` being cloned.
3021#[unstable(feature = "cell_get_cloned", issue = "145329")]
3022unsafe impl<T: ?Sized> CloneFromCell for Weak<T> {}
3023
3024impl<T> Weak<T> {
3025    /// Constructs a new `Weak<T>`, without allocating any memory.
3026    /// Calling [`upgrade`] on the return value always gives [`None`].
3027    ///
3028    /// [`upgrade`]: Weak::upgrade
3029    ///
3030    /// # Examples
3031    ///
3032    /// ```
3033    /// use std::rc::Weak;
3034    ///
3035    /// let empty: Weak<i64> = Weak::new();
3036    /// assert!(empty.upgrade().is_none());
3037    /// ```
3038    #[inline]
3039    #[stable(feature = "downgraded_weak", since = "1.10.0")]
3040    #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
3041    #[must_use]
3042    pub const fn new() -> Weak<T> {
3043        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
3044    }
3045}
3046
3047impl<T, A: Allocator> Weak<T, A> {
3048    /// Constructs a new `Weak<T>`, without allocating any memory, technically in the provided
3049    /// allocator.
3050    /// Calling [`upgrade`] on the return value always gives [`None`].
3051    ///
3052    /// [`upgrade`]: Weak::upgrade
3053    ///
3054    /// # Examples
3055    ///
3056    /// ```
3057    /// use std::rc::Weak;
3058    ///
3059    /// let empty: Weak<i64> = Weak::new();
3060    /// assert!(empty.upgrade().is_none());
3061    /// ```
3062    #[inline]
3063    #[unstable(feature = "allocator_api", issue = "32838")]
3064    pub fn new_in(alloc: A) -> Weak<T, A> {
3065        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
3066    }
3067}
3068
3069pub(crate) fn is_dangling<T: ?Sized>(ptr: *const T) -> bool {
3070    (ptr.cast::<()>()).addr() == usize::MAX
3071}
3072
3073/// Helper type to allow accessing the reference counts without
3074/// making any assertions about the data field.
3075struct WeakInner<'a> {
3076    weak: &'a Cell<usize>,
3077    strong: &'a Cell<usize>,
3078}
3079
3080impl<T: ?Sized> Weak<T> {
3081    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
3082    ///
3083    /// This can be used to safely get a strong reference (by calling [`upgrade`]
3084    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
3085    ///
3086    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
3087    /// as these don't own anything; the method still works on them).
3088    ///
3089    /// # Safety
3090    ///
3091    /// The pointer must have originated from the [`into_raw`] and must still own its potential
3092    /// weak reference, and `ptr` must point to a block of memory allocated by the global allocator.
3093    ///
3094    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3095    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3096    /// count is not modified by this operation) and therefore it must be paired with a previous
3097    /// call to [`into_raw`].
3098    ///
3099    /// # Examples
3100    ///
3101    /// ```
3102    /// use std::rc::{Rc, Weak};
3103    ///
3104    /// let strong = Rc::new("hello".to_owned());
3105    ///
3106    /// let raw_1 = Rc::downgrade(&strong).into_raw();
3107    /// let raw_2 = Rc::downgrade(&strong).into_raw();
3108    ///
3109    /// assert_eq!(2, Rc::weak_count(&strong));
3110    ///
3111    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3112    /// assert_eq!(1, Rc::weak_count(&strong));
3113    ///
3114    /// drop(strong);
3115    ///
3116    /// // Decrement the last weak count.
3117    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3118    /// ```
3119    ///
3120    /// [`into_raw`]: Weak::into_raw
3121    /// [`upgrade`]: Weak::upgrade
3122    /// [`new`]: Weak::new
3123    #[inline]
3124    #[stable(feature = "weak_into_raw", since = "1.45.0")]
3125    pub unsafe fn from_raw(ptr: *const T) -> Self {
3126        unsafe { Self::from_raw_in(ptr, Global) }
3127    }
3128
3129    /// Consumes the `Weak<T>` and turns it into a raw pointer.
3130    ///
3131    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
3132    /// one weak reference (the weak count is not modified by this operation). It can be turned
3133    /// back into the `Weak<T>` with [`from_raw`].
3134    ///
3135    /// The same restrictions of accessing the target of the pointer as with
3136    /// [`as_ptr`] apply.
3137    ///
3138    /// # Examples
3139    ///
3140    /// ```
3141    /// use std::rc::{Rc, Weak};
3142    ///
3143    /// let strong = Rc::new("hello".to_owned());
3144    /// let weak = Rc::downgrade(&strong);
3145    /// let raw = weak.into_raw();
3146    ///
3147    /// assert_eq!(1, Rc::weak_count(&strong));
3148    /// assert_eq!("hello", unsafe { &*raw });
3149    ///
3150    /// drop(unsafe { Weak::from_raw(raw) });
3151    /// assert_eq!(0, Rc::weak_count(&strong));
3152    /// ```
3153    ///
3154    /// [`from_raw`]: Weak::from_raw
3155    /// [`as_ptr`]: Weak::as_ptr
3156    #[must_use = "losing the pointer will leak memory"]
3157    #[stable(feature = "weak_into_raw", since = "1.45.0")]
3158    pub fn into_raw(self) -> *const T {
3159        mem::ManuallyDrop::new(self).as_ptr()
3160    }
3161}
3162
3163impl<T: ?Sized, A: Allocator> Weak<T, A> {
3164    /// Returns a reference to the underlying allocator.
3165    #[inline]
3166    #[unstable(feature = "allocator_api", issue = "32838")]
3167    pub fn allocator(&self) -> &A {
3168        &self.alloc
3169    }
3170
3171    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
3172    ///
3173    /// The pointer is valid only if there are some strong references. The pointer may be dangling,
3174    /// unaligned or even [`null`] otherwise.
3175    ///
3176    /// # Examples
3177    ///
3178    /// ```
3179    /// use std::rc::Rc;
3180    /// use std::ptr;
3181    ///
3182    /// let strong = Rc::new("hello".to_owned());
3183    /// let weak = Rc::downgrade(&strong);
3184    /// // Both point to the same object
3185    /// assert!(ptr::eq(&*strong, weak.as_ptr()));
3186    /// // The strong here keeps it alive, so we can still access the object.
3187    /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
3188    ///
3189    /// drop(strong);
3190    /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
3191    /// // undefined behavior.
3192    /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
3193    /// ```
3194    ///
3195    /// [`null`]: ptr::null
3196    #[must_use]
3197    #[stable(feature = "rc_as_ptr", since = "1.45.0")]
3198    pub fn as_ptr(&self) -> *const T {
3199        let ptr: *mut RcInner<T> = NonNull::as_ptr(self.ptr);
3200
3201        if is_dangling(ptr) {
3202            // If the pointer is dangling, we return the sentinel directly. This cannot be
3203            // a valid payload address, as the payload is at least as aligned as RcInner (usize).
3204            ptr as *const T
3205        } else {
3206            // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
3207            // The payload may be dropped at this point, and we have to maintain provenance,
3208            // so use raw pointer manipulation.
3209            unsafe { &raw mut (*ptr).value }
3210        }
3211    }
3212
3213    /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
3214    ///
3215    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
3216    /// one weak reference (the weak count is not modified by this operation). It can be turned
3217    /// back into the `Weak<T>` with [`from_raw_in`].
3218    ///
3219    /// The same restrictions of accessing the target of the pointer as with
3220    /// [`as_ptr`] apply.
3221    ///
3222    /// # Examples
3223    ///
3224    /// ```
3225    /// #![feature(allocator_api)]
3226    /// use std::rc::{Rc, Weak};
3227    /// use std::alloc::System;
3228    ///
3229    /// let strong = Rc::new_in("hello".to_owned(), System);
3230    /// let weak = Rc::downgrade(&strong);
3231    /// let (raw, alloc) = weak.into_raw_with_allocator();
3232    ///
3233    /// assert_eq!(1, Rc::weak_count(&strong));
3234    /// assert_eq!("hello", unsafe { &*raw });
3235    ///
3236    /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
3237    /// assert_eq!(0, Rc::weak_count(&strong));
3238    /// ```
3239    ///
3240    /// [`from_raw_in`]: Weak::from_raw_in
3241    /// [`as_ptr`]: Weak::as_ptr
3242    #[must_use = "losing the pointer will leak memory"]
3243    #[inline]
3244    #[unstable(feature = "allocator_api", issue = "32838")]
3245    pub fn into_raw_with_allocator(self) -> (*const T, A) {
3246        let this = mem::ManuallyDrop::new(self);
3247        let result = this.as_ptr();
3248        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
3249        let alloc = unsafe { ptr::read(&this.alloc) };
3250        (result, alloc)
3251    }
3252
3253    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
3254    ///
3255    /// This can be used to safely get a strong reference (by calling [`upgrade`]
3256    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
3257    ///
3258    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
3259    /// as these don't own anything; the method still works on them).
3260    ///
3261    /// # Safety
3262    ///
3263    /// The pointer must have originated from the [`into_raw`] and must still own its potential
3264    /// weak reference, and `ptr` must point to a block of memory allocated by `alloc`.
3265    ///
3266    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3267    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3268    /// count is not modified by this operation) and therefore it must be paired with a previous
3269    /// call to [`into_raw`].
3270    ///
3271    /// # Examples
3272    ///
3273    /// ```
3274    /// use std::rc::{Rc, Weak};
3275    ///
3276    /// let strong = Rc::new("hello".to_owned());
3277    ///
3278    /// let raw_1 = Rc::downgrade(&strong).into_raw();
3279    /// let raw_2 = Rc::downgrade(&strong).into_raw();
3280    ///
3281    /// assert_eq!(2, Rc::weak_count(&strong));
3282    ///
3283    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3284    /// assert_eq!(1, Rc::weak_count(&strong));
3285    ///
3286    /// drop(strong);
3287    ///
3288    /// // Decrement the last weak count.
3289    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3290    /// ```
3291    ///
3292    /// [`into_raw`]: Weak::into_raw
3293    /// [`upgrade`]: Weak::upgrade
3294    /// [`new`]: Weak::new
3295    #[inline]
3296    #[unstable(feature = "allocator_api", issue = "32838")]
3297    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3298        // See Weak::as_ptr for context on how the input pointer is derived.
3299
3300        let ptr = if is_dangling(ptr) {
3301            // This is a dangling Weak.
3302            ptr as *mut RcInner<T>
3303        } else {
3304            // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3305            // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3306            let offset = unsafe { data_offset(ptr) };
3307            // Thus, we reverse the offset to get the whole RcInner.
3308            // SAFETY: the pointer originated from a Weak, so this offset is safe.
3309            unsafe { ptr.byte_sub(offset) as *mut RcInner<T> }
3310        };
3311
3312        // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3313        Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3314    }
3315
3316    /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
3317    /// dropping of the inner value if successful.
3318    ///
3319    /// Returns [`None`] if the inner value has since been dropped.
3320    ///
3321    /// # Examples
3322    ///
3323    /// ```
3324    /// use std::rc::Rc;
3325    ///
3326    /// let five = Rc::new(5);
3327    ///
3328    /// let weak_five = Rc::downgrade(&five);
3329    ///
3330    /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
3331    /// assert!(strong_five.is_some());
3332    ///
3333    /// // Destroy all strong pointers.
3334    /// drop(strong_five);
3335    /// drop(five);
3336    ///
3337    /// assert!(weak_five.upgrade().is_none());
3338    /// ```
3339    #[must_use = "this returns a new `Rc`, \
3340                  without modifying the original weak pointer"]
3341    #[stable(feature = "rc_weak", since = "1.4.0")]
3342    pub fn upgrade(&self) -> Option<Rc<T, A>>
3343    where
3344        A: Clone,
3345    {
3346        let inner = self.inner()?;
3347
3348        if inner.strong() == 0 {
3349            None
3350        } else {
3351            unsafe {
3352                inner.inc_strong();
3353                Some(Rc::from_inner_in(self.ptr, self.alloc.clone()))
3354            }
3355        }
3356    }
3357
3358    /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
3359    ///
3360    /// If `self` was created using [`Weak::new`], this will return 0.
3361    #[must_use]
3362    #[stable(feature = "weak_counts", since = "1.41.0")]
3363    pub fn strong_count(&self) -> usize {
3364        if let Some(inner) = self.inner() { inner.strong() } else { 0 }
3365    }
3366
3367    /// Gets the number of `Weak` pointers pointing to this allocation.
3368    ///
3369    /// If no strong pointers remain, this will return zero.
3370    #[must_use]
3371    #[stable(feature = "weak_counts", since = "1.41.0")]
3372    pub fn weak_count(&self) -> usize {
3373        if let Some(inner) = self.inner() {
3374            if inner.strong() > 0 {
3375                inner.weak() - 1 // subtract the implicit weak ptr
3376            } else {
3377                0
3378            }
3379        } else {
3380            0
3381        }
3382    }
3383
3384    /// Returns `None` when the pointer is dangling and there is no allocated `RcInner`,
3385    /// (i.e., when this `Weak` was created by `Weak::new`).
3386    #[inline]
3387    fn inner(&self) -> Option<WeakInner<'_>> {
3388        if is_dangling(self.ptr.as_ptr()) {
3389            None
3390        } else {
3391            // We are careful to *not* create a reference covering the "data" field, as
3392            // the field may be mutated concurrently (for example, if the last `Rc`
3393            // is dropped, the data field will be dropped in-place).
3394            Some(unsafe {
3395                let ptr = self.ptr.as_ptr();
3396                WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
3397            })
3398        }
3399    }
3400
3401    /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3402    /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3403    /// this function ignores the metadata of  `dyn Trait` pointers.
3404    ///
3405    /// # Notes
3406    ///
3407    /// Since this compares pointers it means that `Weak::new()` will equal each
3408    /// other, even though they don't point to any allocation.
3409    ///
3410    /// # Examples
3411    ///
3412    /// ```
3413    /// use std::rc::Rc;
3414    ///
3415    /// let first_rc = Rc::new(5);
3416    /// let first = Rc::downgrade(&first_rc);
3417    /// let second = Rc::downgrade(&first_rc);
3418    ///
3419    /// assert!(first.ptr_eq(&second));
3420    ///
3421    /// let third_rc = Rc::new(5);
3422    /// let third = Rc::downgrade(&third_rc);
3423    ///
3424    /// assert!(!first.ptr_eq(&third));
3425    /// ```
3426    ///
3427    /// Comparing `Weak::new`.
3428    ///
3429    /// ```
3430    /// use std::rc::{Rc, Weak};
3431    ///
3432    /// let first = Weak::new();
3433    /// let second = Weak::new();
3434    /// assert!(first.ptr_eq(&second));
3435    ///
3436    /// let third_rc = Rc::new(());
3437    /// let third = Rc::downgrade(&third_rc);
3438    /// assert!(!first.ptr_eq(&third));
3439    /// ```
3440    #[inline]
3441    #[must_use]
3442    #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3443    pub fn ptr_eq(&self, other: &Self) -> bool {
3444        ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3445    }
3446}
3447
3448#[stable(feature = "rc_weak", since = "1.4.0")]
3449unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3450    /// Drops the `Weak` pointer.
3451    ///
3452    /// # Examples
3453    ///
3454    /// ```
3455    /// use std::rc::{Rc, Weak};
3456    ///
3457    /// struct Foo;
3458    ///
3459    /// impl Drop for Foo {
3460    ///     fn drop(&mut self) {
3461    ///         println!("dropped!");
3462    ///     }
3463    /// }
3464    ///
3465    /// let foo = Rc::new(Foo);
3466    /// let weak_foo = Rc::downgrade(&foo);
3467    /// let other_weak_foo = Weak::clone(&weak_foo);
3468    ///
3469    /// drop(weak_foo);   // Doesn't print anything
3470    /// drop(foo);        // Prints "dropped!"
3471    ///
3472    /// assert!(other_weak_foo.upgrade().is_none());
3473    /// ```
3474    fn drop(&mut self) {
3475        let inner = if let Some(inner) = self.inner() { inner } else { return };
3476
3477        inner.dec_weak();
3478        // the weak count starts at 1, and will only go to zero if all
3479        // the strong pointers have disappeared.
3480        if inner.weak() == 0 {
3481            unsafe {
3482                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
3483            }
3484        }
3485    }
3486}
3487
3488#[stable(feature = "rc_weak", since = "1.4.0")]
3489impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3490    /// Makes a clone of the `Weak` pointer that points to the same allocation.
3491    ///
3492    /// # Examples
3493    ///
3494    /// ```
3495    /// use std::rc::{Rc, Weak};
3496    ///
3497    /// let weak_five = Rc::downgrade(&Rc::new(5));
3498    ///
3499    /// let _ = Weak::clone(&weak_five);
3500    /// ```
3501    #[inline]
3502    fn clone(&self) -> Weak<T, A> {
3503        if let Some(inner) = self.inner() {
3504            inner.inc_weak()
3505        }
3506        Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3507    }
3508}
3509
3510#[unstable(feature = "ergonomic_clones", issue = "132290")]
3511impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3512
3513#[stable(feature = "rc_weak", since = "1.4.0")]
3514impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
3515    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3516        write!(f, "(Weak)")
3517    }
3518}
3519
3520#[stable(feature = "downgraded_weak", since = "1.10.0")]
3521impl<T> Default for Weak<T> {
3522    /// Constructs a new `Weak<T>`, without allocating any memory.
3523    /// Calling [`upgrade`] on the return value always gives [`None`].
3524    ///
3525    /// [`upgrade`]: Weak::upgrade
3526    ///
3527    /// # Examples
3528    ///
3529    /// ```
3530    /// use std::rc::Weak;
3531    ///
3532    /// let empty: Weak<i64> = Default::default();
3533    /// assert!(empty.upgrade().is_none());
3534    /// ```
3535    fn default() -> Weak<T> {
3536        Weak::new()
3537    }
3538}
3539
3540// NOTE: If you mem::forget Rcs (or Weaks), drop is skipped and the ref-count
3541// is not decremented, meaning the ref-count can overflow, and then you can
3542// free the allocation while outstanding Rcs (or Weaks) exist, which would be
3543// unsound. We abort because this is such a degenerate scenario that we don't
3544// care about what happens -- no real program should ever experience this.
3545//
3546// This should have negligible overhead since you don't actually need to
3547// clone these much in Rust thanks to ownership and move-semantics.
3548
3549#[doc(hidden)]
3550trait RcInnerPtr {
3551    fn weak_ref(&self) -> &Cell<usize>;
3552    fn strong_ref(&self) -> &Cell<usize>;
3553
3554    #[inline]
3555    fn strong(&self) -> usize {
3556        self.strong_ref().get()
3557    }
3558
3559    #[inline]
3560    fn inc_strong(&self) {
3561        let strong = self.strong();
3562
3563        // We insert an `assume` here to hint LLVM at an otherwise
3564        // missed optimization.
3565        // SAFETY: The reference count will never be zero when this is
3566        // called.
3567        unsafe {
3568            hint::assert_unchecked(strong != 0);
3569        }
3570
3571        let strong = strong.wrapping_add(1);
3572        self.strong_ref().set(strong);
3573
3574        // We want to abort on overflow instead of dropping the value.
3575        // Checking for overflow after the store instead of before
3576        // allows for slightly better code generation.
3577        if core::intrinsics::unlikely(strong == 0) {
3578            abort();
3579        }
3580    }
3581
3582    #[inline]
3583    fn dec_strong(&self) {
3584        self.strong_ref().set(self.strong() - 1);
3585    }
3586
3587    #[inline]
3588    fn weak(&self) -> usize {
3589        self.weak_ref().get()
3590    }
3591
3592    #[inline]
3593    fn inc_weak(&self) {
3594        let weak = self.weak();
3595
3596        // We insert an `assume` here to hint LLVM at an otherwise
3597        // missed optimization.
3598        // SAFETY: The reference count will never be zero when this is
3599        // called.
3600        unsafe {
3601            hint::assert_unchecked(weak != 0);
3602        }
3603
3604        let weak = weak.wrapping_add(1);
3605        self.weak_ref().set(weak);
3606
3607        // We want to abort on overflow instead of dropping the value.
3608        // Checking for overflow after the store instead of before
3609        // allows for slightly better code generation.
3610        if core::intrinsics::unlikely(weak == 0) {
3611            abort();
3612        }
3613    }
3614
3615    #[inline]
3616    fn dec_weak(&self) {
3617        self.weak_ref().set(self.weak() - 1);
3618    }
3619}
3620
3621impl<T: ?Sized> RcInnerPtr for RcInner<T> {
3622    #[inline(always)]
3623    fn weak_ref(&self) -> &Cell<usize> {
3624        &self.weak
3625    }
3626
3627    #[inline(always)]
3628    fn strong_ref(&self) -> &Cell<usize> {
3629        &self.strong
3630    }
3631}
3632
3633impl<'a> RcInnerPtr for WeakInner<'a> {
3634    #[inline(always)]
3635    fn weak_ref(&self) -> &Cell<usize> {
3636        self.weak
3637    }
3638
3639    #[inline(always)]
3640    fn strong_ref(&self) -> &Cell<usize> {
3641        self.strong
3642    }
3643}
3644
3645#[stable(feature = "rust1", since = "1.0.0")]
3646impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Rc<T, A> {
3647    fn borrow(&self) -> &T {
3648        &**self
3649    }
3650}
3651
3652#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
3653impl<T: ?Sized, A: Allocator> AsRef<T> for Rc<T, A> {
3654    fn as_ref(&self) -> &T {
3655        &**self
3656    }
3657}
3658
3659#[stable(feature = "pin", since = "1.33.0")]
3660impl<T: ?Sized, A: Allocator> Unpin for Rc<T, A> {}
3661
3662/// Gets the offset within an `RcInner` for the payload behind a pointer.
3663///
3664/// # Safety
3665///
3666/// The pointer must point to (and have valid metadata for) a previously
3667/// valid instance of T, but the T is allowed to be dropped.
3668unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
3669    // Align the unsized value to the end of the RcInner.
3670    // Because RcInner is repr(C), it will always be the last field in memory.
3671    // SAFETY: since the only unsized types possible are slices, trait objects,
3672    // and extern types, the input safety requirement is currently enough to
3673    // satisfy the requirements of align_of_val_raw; this is an implementation
3674    // detail of the language that must not be relied upon outside of std.
3675    unsafe { data_offset_align(align_of_val_raw(ptr)) }
3676}
3677
3678#[inline]
3679fn data_offset_align(align: usize) -> usize {
3680    let layout = Layout::new::<RcInner<()>>();
3681    layout.size() + layout.padding_needed_for(align)
3682}
3683
3684/// A uniquely owned [`Rc`].
3685///
3686/// This represents an `Rc` that is known to be uniquely owned -- that is, have exactly one strong
3687/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
3688/// references will fail unless the `UniqueRc` they point to has been converted into a regular `Rc`.
3689///
3690/// Because they are uniquely owned, the contents of a `UniqueRc` can be freely mutated. A common
3691/// use case is to have an object be mutable during its initialization phase but then have it become
3692/// immutable and converted to a normal `Rc`.
3693///
3694/// This can be used as a flexible way to create cyclic data structures, as in the example below.
3695///
3696/// ```
3697/// #![feature(unique_rc_arc)]
3698/// use std::rc::{Rc, Weak, UniqueRc};
3699///
3700/// struct Gadget {
3701///     #[allow(dead_code)]
3702///     me: Weak<Gadget>,
3703/// }
3704///
3705/// fn create_gadget() -> Option<Rc<Gadget>> {
3706///     let mut rc = UniqueRc::new(Gadget {
3707///         me: Weak::new(),
3708///     });
3709///     rc.me = UniqueRc::downgrade(&rc);
3710///     Some(UniqueRc::into_rc(rc))
3711/// }
3712///
3713/// create_gadget().unwrap();
3714/// ```
3715///
3716/// An advantage of using `UniqueRc` over [`Rc::new_cyclic`] to build cyclic data structures is that
3717/// [`Rc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
3718/// previous example, `UniqueRc` allows for more flexibility in the construction of cyclic data,
3719/// including fallible or async constructors.
3720#[unstable(feature = "unique_rc_arc", issue = "112566")]
3721pub struct UniqueRc<
3722    T: ?Sized,
3723    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
3724> {
3725    ptr: NonNull<RcInner<T>>,
3726    // Define the ownership of `RcInner<T>` for drop-check
3727    _marker: PhantomData<RcInner<T>>,
3728    // Invariance is necessary for soundness: once other `Weak`
3729    // references exist, we already have a form of shared mutability!
3730    _marker2: PhantomData<*mut T>,
3731    alloc: A,
3732}
3733
3734// Not necessary for correctness since `UniqueRc` contains `NonNull`,
3735// but having an explicit negative impl is nice for documentation purposes
3736// and results in nicer error messages.
3737#[unstable(feature = "unique_rc_arc", issue = "112566")]
3738impl<T: ?Sized, A: Allocator> !Send for UniqueRc<T, A> {}
3739
3740// Not necessary for correctness since `UniqueRc` contains `NonNull`,
3741// but having an explicit negative impl is nice for documentation purposes
3742// and results in nicer error messages.
3743#[unstable(feature = "unique_rc_arc", issue = "112566")]
3744impl<T: ?Sized, A: Allocator> !Sync for UniqueRc<T, A> {}
3745
3746#[unstable(feature = "unique_rc_arc", issue = "112566")]
3747impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueRc<U, A>>
3748    for UniqueRc<T, A>
3749{
3750}
3751
3752//#[unstable(feature = "unique_rc_arc", issue = "112566")]
3753#[unstable(feature = "dispatch_from_dyn", issue = "none")]
3754impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueRc<U>> for UniqueRc<T> {}
3755
3756#[unstable(feature = "unique_rc_arc", issue = "112566")]
3757impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueRc<T, A> {
3758    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3759        fmt::Display::fmt(&**self, f)
3760    }
3761}
3762
3763#[unstable(feature = "unique_rc_arc", issue = "112566")]
3764impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueRc<T, A> {
3765    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3766        fmt::Debug::fmt(&**self, f)
3767    }
3768}
3769
3770#[unstable(feature = "unique_rc_arc", issue = "112566")]
3771impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueRc<T, A> {
3772    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3773        fmt::Pointer::fmt(&(&raw const **self), f)
3774    }
3775}
3776
3777#[unstable(feature = "unique_rc_arc", issue = "112566")]
3778impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueRc<T, A> {
3779    fn borrow(&self) -> &T {
3780        &**self
3781    }
3782}
3783
3784#[unstable(feature = "unique_rc_arc", issue = "112566")]
3785impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueRc<T, A> {
3786    fn borrow_mut(&mut self) -> &mut T {
3787        &mut **self
3788    }
3789}
3790
3791#[unstable(feature = "unique_rc_arc", issue = "112566")]
3792impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueRc<T, A> {
3793    fn as_ref(&self) -> &T {
3794        &**self
3795    }
3796}
3797
3798#[unstable(feature = "unique_rc_arc", issue = "112566")]
3799impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueRc<T, A> {
3800    fn as_mut(&mut self) -> &mut T {
3801        &mut **self
3802    }
3803}
3804
3805#[unstable(feature = "unique_rc_arc", issue = "112566")]
3806impl<T: ?Sized, A: Allocator> Unpin for UniqueRc<T, A> {}
3807
3808#[unstable(feature = "unique_rc_arc", issue = "112566")]
3809impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueRc<T, A> {
3810    /// Equality for two `UniqueRc`s.
3811    ///
3812    /// Two `UniqueRc`s are equal if their inner values are equal.
3813    ///
3814    /// # Examples
3815    ///
3816    /// ```
3817    /// #![feature(unique_rc_arc)]
3818    /// use std::rc::UniqueRc;
3819    ///
3820    /// let five = UniqueRc::new(5);
3821    ///
3822    /// assert!(five == UniqueRc::new(5));
3823    /// ```
3824    #[inline]
3825    fn eq(&self, other: &Self) -> bool {
3826        PartialEq::eq(&**self, &**other)
3827    }
3828
3829    /// Inequality for two `UniqueRc`s.
3830    ///
3831    /// Two `UniqueRc`s are not equal if their inner values are not equal.
3832    ///
3833    /// # Examples
3834    ///
3835    /// ```
3836    /// #![feature(unique_rc_arc)]
3837    /// use std::rc::UniqueRc;
3838    ///
3839    /// let five = UniqueRc::new(5);
3840    ///
3841    /// assert!(five != UniqueRc::new(6));
3842    /// ```
3843    #[inline]
3844    fn ne(&self, other: &Self) -> bool {
3845        PartialEq::ne(&**self, &**other)
3846    }
3847}
3848
3849#[unstable(feature = "unique_rc_arc", issue = "112566")]
3850impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueRc<T, A> {
3851    /// Partial comparison for two `UniqueRc`s.
3852    ///
3853    /// The two are compared by calling `partial_cmp()` on their inner values.
3854    ///
3855    /// # Examples
3856    ///
3857    /// ```
3858    /// #![feature(unique_rc_arc)]
3859    /// use std::rc::UniqueRc;
3860    /// use std::cmp::Ordering;
3861    ///
3862    /// let five = UniqueRc::new(5);
3863    ///
3864    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueRc::new(6)));
3865    /// ```
3866    #[inline(always)]
3867    fn partial_cmp(&self, other: &UniqueRc<T, A>) -> Option<Ordering> {
3868        (**self).partial_cmp(&**other)
3869    }
3870
3871    /// Less-than comparison for two `UniqueRc`s.
3872    ///
3873    /// The two are compared by calling `<` on their inner values.
3874    ///
3875    /// # Examples
3876    ///
3877    /// ```
3878    /// #![feature(unique_rc_arc)]
3879    /// use std::rc::UniqueRc;
3880    ///
3881    /// let five = UniqueRc::new(5);
3882    ///
3883    /// assert!(five < UniqueRc::new(6));
3884    /// ```
3885    #[inline(always)]
3886    fn lt(&self, other: &UniqueRc<T, A>) -> bool {
3887        **self < **other
3888    }
3889
3890    /// 'Less than or equal to' comparison for two `UniqueRc`s.
3891    ///
3892    /// The two are compared by calling `<=` on their inner values.
3893    ///
3894    /// # Examples
3895    ///
3896    /// ```
3897    /// #![feature(unique_rc_arc)]
3898    /// use std::rc::UniqueRc;
3899    ///
3900    /// let five = UniqueRc::new(5);
3901    ///
3902    /// assert!(five <= UniqueRc::new(5));
3903    /// ```
3904    #[inline(always)]
3905    fn le(&self, other: &UniqueRc<T, A>) -> bool {
3906        **self <= **other
3907    }
3908
3909    /// Greater-than comparison for two `UniqueRc`s.
3910    ///
3911    /// The two are compared by calling `>` on their inner values.
3912    ///
3913    /// # Examples
3914    ///
3915    /// ```
3916    /// #![feature(unique_rc_arc)]
3917    /// use std::rc::UniqueRc;
3918    ///
3919    /// let five = UniqueRc::new(5);
3920    ///
3921    /// assert!(five > UniqueRc::new(4));
3922    /// ```
3923    #[inline(always)]
3924    fn gt(&self, other: &UniqueRc<T, A>) -> bool {
3925        **self > **other
3926    }
3927
3928    /// 'Greater than or equal to' comparison for two `UniqueRc`s.
3929    ///
3930    /// The two are compared by calling `>=` on their inner values.
3931    ///
3932    /// # Examples
3933    ///
3934    /// ```
3935    /// #![feature(unique_rc_arc)]
3936    /// use std::rc::UniqueRc;
3937    ///
3938    /// let five = UniqueRc::new(5);
3939    ///
3940    /// assert!(five >= UniqueRc::new(5));
3941    /// ```
3942    #[inline(always)]
3943    fn ge(&self, other: &UniqueRc<T, A>) -> bool {
3944        **self >= **other
3945    }
3946}
3947
3948#[unstable(feature = "unique_rc_arc", issue = "112566")]
3949impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueRc<T, A> {
3950    /// Comparison for two `UniqueRc`s.
3951    ///
3952    /// The two are compared by calling `cmp()` on their inner values.
3953    ///
3954    /// # Examples
3955    ///
3956    /// ```
3957    /// #![feature(unique_rc_arc)]
3958    /// use std::rc::UniqueRc;
3959    /// use std::cmp::Ordering;
3960    ///
3961    /// let five = UniqueRc::new(5);
3962    ///
3963    /// assert_eq!(Ordering::Less, five.cmp(&UniqueRc::new(6)));
3964    /// ```
3965    #[inline]
3966    fn cmp(&self, other: &UniqueRc<T, A>) -> Ordering {
3967        (**self).cmp(&**other)
3968    }
3969}
3970
3971#[unstable(feature = "unique_rc_arc", issue = "112566")]
3972impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueRc<T, A> {}
3973
3974#[unstable(feature = "unique_rc_arc", issue = "112566")]
3975impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueRc<T, A> {
3976    fn hash<H: Hasher>(&self, state: &mut H) {
3977        (**self).hash(state);
3978    }
3979}
3980
3981// Depends on A = Global
3982impl<T> UniqueRc<T> {
3983    /// Creates a new `UniqueRc`.
3984    ///
3985    /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
3986    /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
3987    /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
3988    /// point to the new [`Rc`].
3989    #[cfg(not(no_global_oom_handling))]
3990    #[unstable(feature = "unique_rc_arc", issue = "112566")]
3991    pub fn new(value: T) -> Self {
3992        Self::new_in(value, Global)
3993    }
3994}
3995
3996impl<T, A: Allocator> UniqueRc<T, A> {
3997    /// Creates a new `UniqueRc` in the provided allocator.
3998    ///
3999    /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
4000    /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
4001    /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
4002    /// point to the new [`Rc`].
4003    #[cfg(not(no_global_oom_handling))]
4004    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4005    pub fn new_in(value: T, alloc: A) -> Self {
4006        let (ptr, alloc) = Box::into_unique(Box::new_in(
4007            RcInner {
4008                strong: Cell::new(0),
4009                // keep one weak reference so if all the weak pointers that are created are dropped
4010                // the UniqueRc still stays valid.
4011                weak: Cell::new(1),
4012                value,
4013            },
4014            alloc,
4015        ));
4016        Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4017    }
4018}
4019
4020impl<T: ?Sized, A: Allocator> UniqueRc<T, A> {
4021    /// Converts the `UniqueRc` into a regular [`Rc`].
4022    ///
4023    /// This consumes the `UniqueRc` and returns a regular [`Rc`] that contains the `value` that
4024    /// is passed to `into_rc`.
4025    ///
4026    /// Any weak references created before this method is called can now be upgraded to strong
4027    /// references.
4028    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4029    pub fn into_rc(this: Self) -> Rc<T, A> {
4030        let mut this = ManuallyDrop::new(this);
4031
4032        // Move the allocator out.
4033        // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4034        // a `ManuallyDrop`.
4035        let alloc: A = unsafe { ptr::read(&this.alloc) };
4036
4037        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4038        unsafe {
4039            // Convert our weak reference into a strong reference
4040            this.ptr.as_mut().strong.set(1);
4041            Rc::from_inner_in(this.ptr, alloc)
4042        }
4043    }
4044}
4045
4046impl<T: ?Sized, A: Allocator + Clone> UniqueRc<T, A> {
4047    /// Creates a new weak reference to the `UniqueRc`.
4048    ///
4049    /// Attempting to upgrade this weak reference will fail before the `UniqueRc` has been converted
4050    /// to a [`Rc`] using [`UniqueRc::into_rc`].
4051    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4052    pub fn downgrade(this: &Self) -> Weak<T, A> {
4053        // SAFETY: This pointer was allocated at creation time and we guarantee that we only have
4054        // one strong reference before converting to a regular Rc.
4055        unsafe {
4056            this.ptr.as_ref().inc_weak();
4057        }
4058        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4059    }
4060}
4061
4062#[unstable(feature = "unique_rc_arc", issue = "112566")]
4063impl<T: ?Sized, A: Allocator> Deref for UniqueRc<T, A> {
4064    type Target = T;
4065
4066    fn deref(&self) -> &T {
4067        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4068        unsafe { &self.ptr.as_ref().value }
4069    }
4070}
4071
4072#[unstable(feature = "unique_rc_arc", issue = "112566")]
4073impl<T: ?Sized, A: Allocator> DerefMut for UniqueRc<T, A> {
4074    fn deref_mut(&mut self) -> &mut T {
4075        // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4076        // have unique ownership and therefore it's safe to make a mutable reference because
4077        // `UniqueRc` owns the only strong reference to itself.
4078        unsafe { &mut (*self.ptr.as_ptr()).value }
4079    }
4080}
4081
4082#[unstable(feature = "unique_rc_arc", issue = "112566")]
4083unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueRc<T, A> {
4084    fn drop(&mut self) {
4085        unsafe {
4086            // destroy the contained object
4087            drop_in_place(DerefMut::deref_mut(self));
4088
4089            // remove the implicit "strong weak" pointer now that we've destroyed the contents.
4090            self.ptr.as_ref().dec_weak();
4091
4092            if self.ptr.as_ref().weak() == 0 {
4093                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
4094            }
4095        }
4096    }
4097}
4098
4099/// A unique owning pointer to a [`RcInner`] **that does not imply the contents are initialized,**
4100/// but will deallocate it (without dropping the value) when dropped.
4101///
4102/// This is a helper for [`Rc::make_mut()`] to ensure correct cleanup on panic.
4103/// It is nearly a duplicate of `UniqueRc<MaybeUninit<T>, A>` except that it allows `T: !Sized`,
4104/// which `MaybeUninit` does not.
4105#[cfg(not(no_global_oom_handling))]
4106struct UniqueRcUninit<T: ?Sized, A: Allocator> {
4107    ptr: NonNull<RcInner<T>>,
4108    layout_for_value: Layout,
4109    alloc: Option<A>,
4110}
4111
4112#[cfg(not(no_global_oom_handling))]
4113impl<T: ?Sized, A: Allocator> UniqueRcUninit<T, A> {
4114    /// Allocates a RcInner with layout suitable to contain `for_value` or a clone of it.
4115    fn new(for_value: &T, alloc: A) -> UniqueRcUninit<T, A> {
4116        let layout = Layout::for_value(for_value);
4117        let ptr = unsafe {
4118            Rc::allocate_for_layout(
4119                layout,
4120                |layout_for_rc_inner| alloc.allocate(layout_for_rc_inner),
4121                |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const RcInner<T>),
4122            )
4123        };
4124        Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4125    }
4126
4127    /// Returns the pointer to be written into to initialize the [`Rc`].
4128    fn data_ptr(&mut self) -> *mut T {
4129        let offset = data_offset_align(self.layout_for_value.align());
4130        unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4131    }
4132
4133    /// Upgrade this into a normal [`Rc`].
4134    ///
4135    /// # Safety
4136    ///
4137    /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4138    unsafe fn into_rc(self) -> Rc<T, A> {
4139        let mut this = ManuallyDrop::new(self);
4140        let ptr = this.ptr;
4141        let alloc = this.alloc.take().unwrap();
4142
4143        // SAFETY: The pointer is valid as per `UniqueRcUninit::new`, and the caller is responsible
4144        // for having initialized the data.
4145        unsafe { Rc::from_ptr_in(ptr.as_ptr(), alloc) }
4146    }
4147}
4148
4149#[cfg(not(no_global_oom_handling))]
4150impl<T: ?Sized, A: Allocator> Drop for UniqueRcUninit<T, A> {
4151    fn drop(&mut self) {
4152        // SAFETY:
4153        // * new() produced a pointer safe to deallocate.
4154        // * We own the pointer unless into_rc() was called, which forgets us.
4155        unsafe {
4156            self.alloc.take().unwrap().deallocate(
4157                self.ptr.cast(),
4158                rc_inner_layout_for_value_layout(self.layout_for_value),
4159            );
4160        }
4161    }
4162}