Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

alloc/
rc.rs

1//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
2//! Counted'.
3//!
4//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
5//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
6//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
7//! given allocation is destroyed, the value stored in that allocation (often
8//! referred to as "inner value") is also dropped.
9//!
10//! Shared references in Rust disallow mutation by default, and [`Rc`]
11//! is no exception: you cannot generally obtain a mutable reference to
12//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
13//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
14//! inside an `Rc`][mutability].
15//!
16//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
17//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
18//! does not implement [`Send`]. As a result, the Rust compiler
19//! will check *at compile time* that you are not sending [`Rc`]s between
20//! threads. If you need multi-threaded, atomic reference counting, use
21//! [`sync::Arc`][arc].
22//!
23//! The [`downgrade`][downgrade] method can be used to create a non-owning
24//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
25//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
26//! already been dropped. In other words, `Weak` pointers do not keep the value
27//! inside the allocation alive; however, they *do* keep the allocation
28//! (the backing store for the inner value) alive.
29//!
30//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
31//! [`Weak`] is used to break cycles. For example, a tree could have strong
32//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
33//! children back to their parents.
34//!
35//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
36//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
37//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
38//! functions, called using [fully qualified syntax]:
39//!
40//! ```
41//! use std::rc::Rc;
42//!
43//! let my_rc = Rc::new(());
44//! let my_weak = Rc::downgrade(&my_rc);
45//! ```
46//!
47//! `Rc<T>`'s implementations of traits like `Clone` may also be called using
48//! fully qualified syntax. Some people prefer to use fully qualified syntax,
49//! while others prefer using method-call syntax.
50//!
51//! ```
52//! use std::rc::Rc;
53//!
54//! let rc = Rc::new(());
55//! // Method-call syntax
56//! let rc2 = rc.clone();
57//! // Fully qualified syntax
58//! let rc3 = Rc::clone(&rc);
59//! ```
60//!
61//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
62//! already been dropped.
63//!
64//! # Cloning references
65//!
66//! Creating a new reference to the same allocation as an existing reference counted pointer
67//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
68//!
69//! ```
70//! use std::rc::Rc;
71//!
72//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
73//! // The two syntaxes below are equivalent.
74//! let a = foo.clone();
75//! let b = Rc::clone(&foo);
76//! // a and b both point to the same memory location as foo.
77//! ```
78//!
79//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
80//! the meaning of the code. In the example above, this syntax makes it easier to see that
81//! this code is creating a new reference rather than copying the whole content of foo.
82//!
83//! # Examples
84//!
85//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
86//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
87//! unique ownership, because more than one gadget may belong to the same
88//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
89//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
90//!
91//! ```
92//! use std::rc::Rc;
93//!
94//! struct Owner {
95//!     name: String,
96//!     // ...other fields
97//! }
98//!
99//! struct Gadget {
100//!     id: i32,
101//!     owner: Rc<Owner>,
102//!     // ...other fields
103//! }
104//!
105//! fn main() {
106//!     // Create a reference-counted `Owner`.
107//!     let gadget_owner: Rc<Owner> = Rc::new(
108//!         Owner {
109//!             name: "Gadget Man".to_string(),
110//!         }
111//!     );
112//!
113//!     // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
114//!     // gives us a new pointer to the same `Owner` allocation, incrementing
115//!     // the reference count in the process.
116//!     let gadget1 = Gadget {
117//!         id: 1,
118//!         owner: Rc::clone(&gadget_owner),
119//!     };
120//!     let gadget2 = Gadget {
121//!         id: 2,
122//!         owner: Rc::clone(&gadget_owner),
123//!     };
124//!
125//!     // Dispose of our local variable `gadget_owner`.
126//!     drop(gadget_owner);
127//!
128//!     // Despite dropping `gadget_owner`, we're still able to print out the name
129//!     // of the `Owner` of the `Gadget`s. This is because we've only dropped a
130//!     // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
131//!     // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
132//!     // live. The field projection `gadget1.owner.name` works because
133//!     // `Rc<Owner>` automatically dereferences to `Owner`.
134//!     println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
135//!     println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
136//!
137//!     // At the end of the function, `gadget1` and `gadget2` are destroyed, and
138//!     // with them the last counted references to our `Owner`. Gadget Man now
139//!     // gets destroyed as well.
140//! }
141//! ```
142//!
143//! If our requirements change, and we also need to be able to traverse from
144//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
145//! to `Gadget` introduces a cycle. This means that their
146//! reference counts can never reach 0, and the allocation will never be destroyed:
147//! a memory leak. In order to get around this, we can use [`Weak`]
148//! pointers.
149//!
150//! Rust actually makes it somewhat difficult to produce this loop in the first
151//! place. In order to end up with two values that point at each other, one of
152//! them needs to be mutable. This is difficult because [`Rc`] enforces
153//! memory safety by only giving out shared references to the value it wraps,
154//! and these don't allow direct mutation. We need to wrap the part of the
155//! value we wish to mutate in a [`RefCell`], which provides *interior
156//! mutability*: a method to achieve mutability through a shared reference.
157//! [`RefCell`] enforces Rust's borrowing rules at runtime.
158//!
159//! ```
160//! use std::rc::Rc;
161//! use std::rc::Weak;
162//! use std::cell::RefCell;
163//!
164//! struct Owner {
165//!     name: String,
166//!     gadgets: RefCell<Vec<Weak<Gadget>>>,
167//!     // ...other fields
168//! }
169//!
170//! struct Gadget {
171//!     id: i32,
172//!     owner: Rc<Owner>,
173//!     // ...other fields
174//! }
175//!
176//! fn main() {
177//!     // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
178//!     // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
179//!     // a shared reference.
180//!     let gadget_owner: Rc<Owner> = Rc::new(
181//!         Owner {
182//!             name: "Gadget Man".to_string(),
183//!             gadgets: RefCell::new(vec![]),
184//!         }
185//!     );
186//!
187//!     // Create `Gadget`s belonging to `gadget_owner`, as before.
188//!     let gadget1 = Rc::new(
189//!         Gadget {
190//!             id: 1,
191//!             owner: Rc::clone(&gadget_owner),
192//!         }
193//!     );
194//!     let gadget2 = Rc::new(
195//!         Gadget {
196//!             id: 2,
197//!             owner: Rc::clone(&gadget_owner),
198//!         }
199//!     );
200//!
201//!     // Add the `Gadget`s to their `Owner`.
202//!     {
203//!         let mut gadgets = gadget_owner.gadgets.borrow_mut();
204//!         gadgets.push(Rc::downgrade(&gadget1));
205//!         gadgets.push(Rc::downgrade(&gadget2));
206//!
207//!         // `RefCell` dynamic borrow ends here.
208//!     }
209//!
210//!     // Iterate over our `Gadget`s, printing their details out.
211//!     for gadget_weak in gadget_owner.gadgets.borrow().iter() {
212//!
213//!         // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
214//!         // guarantee the allocation still exists, we need to call
215//!         // `upgrade`, which returns an `Option<Rc<Gadget>>`.
216//!         //
217//!         // In this case we know the allocation still exists, so we simply
218//!         // `unwrap` the `Option`. In a more complicated program, you might
219//!         // need graceful error handling for a `None` result.
220//!
221//!         let gadget = gadget_weak.upgrade().unwrap();
222//!         println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
223//!     }
224//!
225//!     // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
226//!     // are destroyed. There are now no strong (`Rc`) pointers to the
227//!     // gadgets, so they are destroyed. This zeroes the reference count on
228//!     // Gadget Man, so he gets destroyed as well.
229//! }
230//! ```
231//!
232//! [clone]: Clone::clone
233//! [`Cell`]: core::cell::Cell
234//! [`RefCell`]: core::cell::RefCell
235//! [arc]: crate::sync::Arc
236//! [`Deref`]: core::ops::Deref
237//! [downgrade]: Rc::downgrade
238//! [upgrade]: Weak::upgrade
239//! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable
240//! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
241
242#![stable(feature = "rust1", since = "1.0.0")]
243
244use core::any::Any;
245use core::cell::Cell;
246#[cfg(not(no_global_oom_handling))]
247use core::clone::CloneToUninit;
248use core::clone::UseCloned;
249use core::cmp::Ordering;
250use core::hash::{Hash, Hasher};
251use core::intrinsics::abort;
252#[cfg(not(no_global_oom_handling))]
253use core::iter;
254use core::marker::{PhantomData, Unsize};
255use core::mem::{self, ManuallyDrop, align_of_val_raw};
256use core::num::NonZeroUsize;
257use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
258use core::panic::{RefUnwindSafe, UnwindSafe};
259#[cfg(not(no_global_oom_handling))]
260use core::pin::Pin;
261use core::pin::PinCoerceUnsized;
262use core::ptr::{self, NonNull, drop_in_place};
263#[cfg(not(no_global_oom_handling))]
264use core::slice::from_raw_parts_mut;
265use core::{borrow, fmt, hint};
266
267#[cfg(not(no_global_oom_handling))]
268use crate::alloc::handle_alloc_error;
269use crate::alloc::{AllocError, Allocator, Global, Layout};
270use crate::borrow::{Cow, ToOwned};
271use crate::boxed::Box;
272#[cfg(not(no_global_oom_handling))]
273use crate::string::String;
274#[cfg(not(no_global_oom_handling))]
275use crate::vec::Vec;
276
277// This is repr(C) to future-proof against possible field-reordering, which
278// would interfere with otherwise safe [into|from]_raw() of transmutable
279// inner types.
280#[repr(C)]
281struct RcInner<T: ?Sized> {
282    strong: Cell<usize>,
283    weak: Cell<usize>,
284    value: T,
285}
286
287/// Calculate layout for `RcInner<T>` using the inner value's layout
288fn rc_inner_layout_for_value_layout(layout: Layout) -> Layout {
289    // Calculate layout using the given value layout.
290    // Previously, layout was calculated on the expression
291    // `&*(ptr as *const RcInner<T>)`, but this created a misaligned
292    // reference (see #54908).
293    Layout::new::<RcInner<()>>().extend(layout).unwrap().0.pad_to_align()
294}
295
296/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
297/// Counted'.
298///
299/// See the [module-level documentation](./index.html) for more details.
300///
301/// The inherent methods of `Rc` are all associated functions, which means
302/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
303/// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`.
304///
305/// [get_mut]: Rc::get_mut
306#[doc(search_unbox)]
307#[rustc_diagnostic_item = "Rc"]
308#[stable(feature = "rust1", since = "1.0.0")]
309#[rustc_insignificant_dtor]
310pub struct Rc<
311    T: ?Sized,
312    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
313> {
314    ptr: NonNull<RcInner<T>>,
315    phantom: PhantomData<RcInner<T>>,
316    alloc: A,
317}
318
319#[stable(feature = "rust1", since = "1.0.0")]
320impl<T: ?Sized, A: Allocator> !Send for Rc<T, A> {}
321
322// Note that this negative impl isn't strictly necessary for correctness,
323// as `Rc` transitively contains a `Cell`, which is itself `!Sync`.
324// However, given how important `Rc`'s `!Sync`-ness is,
325// having an explicit negative impl is nice for documentation purposes
326// and results in nicer error messages.
327#[stable(feature = "rust1", since = "1.0.0")]
328impl<T: ?Sized, A: Allocator> !Sync for Rc<T, A> {}
329
330#[stable(feature = "catch_unwind", since = "1.9.0")]
331impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Rc<T, A> {}
332#[stable(feature = "rc_ref_unwind_safe", since = "1.58.0")]
333impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> RefUnwindSafe for Rc<T, A> {}
334
335#[unstable(feature = "coerce_unsized", issue = "18598")]
336impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Rc<U, A>> for Rc<T, A> {}
337
338#[unstable(feature = "dispatch_from_dyn", issue = "none")]
339impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
340
341impl<T: ?Sized> Rc<T> {
342    #[inline]
343    unsafe fn from_inner(ptr: NonNull<RcInner<T>>) -> Self {
344        unsafe { Self::from_inner_in(ptr, Global) }
345    }
346
347    #[inline]
348    unsafe fn from_ptr(ptr: *mut RcInner<T>) -> Self {
349        unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
350    }
351}
352
353impl<T: ?Sized, A: Allocator> Rc<T, A> {
354    #[inline(always)]
355    fn inner(&self) -> &RcInner<T> {
356        // This unsafety is ok because while this Rc is alive we're guaranteed
357        // that the inner pointer is valid.
358        unsafe { self.ptr.as_ref() }
359    }
360
361    #[inline]
362    fn into_inner_with_allocator(this: Self) -> (NonNull<RcInner<T>>, A) {
363        let this = mem::ManuallyDrop::new(this);
364        (this.ptr, unsafe { ptr::read(&this.alloc) })
365    }
366
367    #[inline]
368    unsafe fn from_inner_in(ptr: NonNull<RcInner<T>>, alloc: A) -> Self {
369        Self { ptr, phantom: PhantomData, alloc }
370    }
371
372    #[inline]
373    unsafe fn from_ptr_in(ptr: *mut RcInner<T>, alloc: A) -> Self {
374        unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
375    }
376
377    // Non-inlined part of `drop`.
378    #[inline(never)]
379    unsafe fn drop_slow(&mut self) {
380        // Reconstruct the "strong weak" pointer and drop it when this
381        // variable goes out of scope. This ensures that the memory is
382        // deallocated even if the destructor of `T` panics.
383        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
384
385        // Destroy the contained object.
386        // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
387        unsafe {
388            ptr::drop_in_place(&mut (*self.ptr.as_ptr()).value);
389        }
390    }
391}
392
393impl<T> Rc<T> {
394    /// Constructs a new `Rc<T>`.
395    ///
396    /// # Examples
397    ///
398    /// ```
399    /// use std::rc::Rc;
400    ///
401    /// let five = Rc::new(5);
402    /// ```
403    #[cfg(not(no_global_oom_handling))]
404    #[stable(feature = "rust1", since = "1.0.0")]
405    pub fn new(value: T) -> Rc<T> {
406        // There is an implicit weak pointer owned by all the strong
407        // pointers, which ensures that the weak destructor never frees
408        // the allocation while the strong destructor is running, even
409        // if the weak pointer is stored inside the strong one.
410        unsafe {
411            Self::from_inner(
412                Box::leak(Box::new(RcInner { strong: Cell::new(1), weak: Cell::new(1), value }))
413                    .into(),
414            )
415        }
416    }
417
418    /// Constructs a new `Rc<T>` while giving you a `Weak<T>` to the allocation,
419    /// to allow you to construct a `T` which holds a weak pointer to itself.
420    ///
421    /// Generally, a structure circularly referencing itself, either directly or
422    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
423    /// Using this function, you get access to the weak pointer during the
424    /// initialization of `T`, before the `Rc<T>` is created, such that you can
425    /// clone and store it inside the `T`.
426    ///
427    /// `new_cyclic` first allocates the managed allocation for the `Rc<T>`,
428    /// then calls your closure, giving it a `Weak<T>` to this allocation,
429    /// and only afterwards completes the construction of the `Rc<T>` by placing
430    /// the `T` returned from your closure into the allocation.
431    ///
432    /// Since the new `Rc<T>` is not fully-constructed until `Rc<T>::new_cyclic`
433    /// returns, calling [`upgrade`] on the weak reference inside your closure will
434    /// fail and result in a `None` value.
435    ///
436    /// # Panics
437    ///
438    /// If `data_fn` panics, the panic is propagated to the caller, and the
439    /// temporary [`Weak<T>`] is dropped normally.
440    ///
441    /// # Examples
442    ///
443    /// ```
444    /// # #![allow(dead_code)]
445    /// use std::rc::{Rc, Weak};
446    ///
447    /// struct Gadget {
448    ///     me: Weak<Gadget>,
449    /// }
450    ///
451    /// impl Gadget {
452    ///     /// Constructs a reference counted Gadget.
453    ///     fn new() -> Rc<Self> {
454    ///         // `me` is a `Weak<Gadget>` pointing at the new allocation of the
455    ///         // `Rc` we're constructing.
456    ///         Rc::new_cyclic(|me| {
457    ///             // Create the actual struct here.
458    ///             Gadget { me: me.clone() }
459    ///         })
460    ///     }
461    ///
462    ///     /// Returns a reference counted pointer to Self.
463    ///     fn me(&self) -> Rc<Self> {
464    ///         self.me.upgrade().unwrap()
465    ///     }
466    /// }
467    /// ```
468    /// [`upgrade`]: Weak::upgrade
469    #[cfg(not(no_global_oom_handling))]
470    #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
471    pub fn new_cyclic<F>(data_fn: F) -> Rc<T>
472    where
473        F: FnOnce(&Weak<T>) -> T,
474    {
475        Self::new_cyclic_in(data_fn, Global)
476    }
477
478    /// Constructs a new `Rc` with uninitialized contents.
479    ///
480    /// # Examples
481    ///
482    /// ```
483    /// #![feature(get_mut_unchecked)]
484    ///
485    /// use std::rc::Rc;
486    ///
487    /// let mut five = Rc::<u32>::new_uninit();
488    ///
489    /// // Deferred initialization:
490    /// Rc::get_mut(&mut five).unwrap().write(5);
491    ///
492    /// let five = unsafe { five.assume_init() };
493    ///
494    /// assert_eq!(*five, 5)
495    /// ```
496    #[cfg(not(no_global_oom_handling))]
497    #[stable(feature = "new_uninit", since = "1.82.0")]
498    #[must_use]
499    pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
500        unsafe {
501            Rc::from_ptr(Rc::allocate_for_layout(
502                Layout::new::<T>(),
503                |layout| Global.allocate(layout),
504                <*mut u8>::cast,
505            ))
506        }
507    }
508
509    /// Constructs a new `Rc` with uninitialized contents, with the memory
510    /// being filled with `0` bytes.
511    ///
512    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
513    /// incorrect usage of this method.
514    ///
515    /// # Examples
516    ///
517    /// ```
518    /// use std::rc::Rc;
519    ///
520    /// let zero = Rc::<u32>::new_zeroed();
521    /// let zero = unsafe { zero.assume_init() };
522    ///
523    /// assert_eq!(*zero, 0)
524    /// ```
525    ///
526    /// [zeroed]: mem::MaybeUninit::zeroed
527    #[cfg(not(no_global_oom_handling))]
528    #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
529    #[must_use]
530    pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
531        unsafe {
532            Rc::from_ptr(Rc::allocate_for_layout(
533                Layout::new::<T>(),
534                |layout| Global.allocate_zeroed(layout),
535                <*mut u8>::cast,
536            ))
537        }
538    }
539
540    /// Constructs a new `Rc<T>`, returning an error if the allocation fails
541    ///
542    /// # Examples
543    ///
544    /// ```
545    /// #![feature(allocator_api)]
546    /// use std::rc::Rc;
547    ///
548    /// let five = Rc::try_new(5);
549    /// # Ok::<(), std::alloc::AllocError>(())
550    /// ```
551    #[unstable(feature = "allocator_api", issue = "32838")]
552    pub fn try_new(value: T) -> Result<Rc<T>, AllocError> {
553        // There is an implicit weak pointer owned by all the strong
554        // pointers, which ensures that the weak destructor never frees
555        // the allocation while the strong destructor is running, even
556        // if the weak pointer is stored inside the strong one.
557        unsafe {
558            Ok(Self::from_inner(
559                Box::leak(Box::try_new(RcInner {
560                    strong: Cell::new(1),
561                    weak: Cell::new(1),
562                    value,
563                })?)
564                .into(),
565            ))
566        }
567    }
568
569    /// Constructs a new `Rc` with uninitialized contents, returning an error if the allocation fails
570    ///
571    /// # Examples
572    ///
573    /// ```
574    /// #![feature(allocator_api)]
575    /// #![feature(get_mut_unchecked)]
576    ///
577    /// use std::rc::Rc;
578    ///
579    /// let mut five = Rc::<u32>::try_new_uninit()?;
580    ///
581    /// // Deferred initialization:
582    /// Rc::get_mut(&mut five).unwrap().write(5);
583    ///
584    /// let five = unsafe { five.assume_init() };
585    ///
586    /// assert_eq!(*five, 5);
587    /// # Ok::<(), std::alloc::AllocError>(())
588    /// ```
589    #[unstable(feature = "allocator_api", issue = "32838")]
590    pub fn try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
591        unsafe {
592            Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
593                Layout::new::<T>(),
594                |layout| Global.allocate(layout),
595                <*mut u8>::cast,
596            )?))
597        }
598    }
599
600    /// Constructs a new `Rc` with uninitialized contents, with the memory
601    /// being filled with `0` bytes, returning an error if the allocation fails
602    ///
603    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
604    /// incorrect usage of this method.
605    ///
606    /// # Examples
607    ///
608    /// ```
609    /// #![feature(allocator_api)]
610    ///
611    /// use std::rc::Rc;
612    ///
613    /// let zero = Rc::<u32>::try_new_zeroed()?;
614    /// let zero = unsafe { zero.assume_init() };
615    ///
616    /// assert_eq!(*zero, 0);
617    /// # Ok::<(), std::alloc::AllocError>(())
618    /// ```
619    ///
620    /// [zeroed]: mem::MaybeUninit::zeroed
621    #[unstable(feature = "allocator_api", issue = "32838")]
622    pub fn try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
623        unsafe {
624            Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
625                Layout::new::<T>(),
626                |layout| Global.allocate_zeroed(layout),
627                <*mut u8>::cast,
628            )?))
629        }
630    }
631    /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
632    /// `value` will be pinned in memory and unable to be moved.
633    #[cfg(not(no_global_oom_handling))]
634    #[stable(feature = "pin", since = "1.33.0")]
635    #[must_use]
636    pub fn pin(value: T) -> Pin<Rc<T>> {
637        unsafe { Pin::new_unchecked(Rc::new(value)) }
638    }
639}
640
641impl<T, A: Allocator> Rc<T, A> {
642    /// Constructs a new `Rc` in the provided allocator.
643    ///
644    /// # Examples
645    ///
646    /// ```
647    /// #![feature(allocator_api)]
648    /// use std::rc::Rc;
649    /// use std::alloc::System;
650    ///
651    /// let five = Rc::new_in(5, System);
652    /// ```
653    #[cfg(not(no_global_oom_handling))]
654    #[unstable(feature = "allocator_api", issue = "32838")]
655    #[inline]
656    pub fn new_in(value: T, alloc: A) -> Rc<T, A> {
657        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
658        // That would make code size bigger.
659        match Self::try_new_in(value, alloc) {
660            Ok(m) => m,
661            Err(_) => handle_alloc_error(Layout::new::<RcInner<T>>()),
662        }
663    }
664
665    /// Constructs a new `Rc` with uninitialized contents in the provided allocator.
666    ///
667    /// # Examples
668    ///
669    /// ```
670    /// #![feature(get_mut_unchecked)]
671    /// #![feature(allocator_api)]
672    ///
673    /// use std::rc::Rc;
674    /// use std::alloc::System;
675    ///
676    /// let mut five = Rc::<u32, _>::new_uninit_in(System);
677    ///
678    /// let five = unsafe {
679    ///     // Deferred initialization:
680    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
681    ///
682    ///     five.assume_init()
683    /// };
684    ///
685    /// assert_eq!(*five, 5)
686    /// ```
687    #[cfg(not(no_global_oom_handling))]
688    #[unstable(feature = "allocator_api", issue = "32838")]
689    #[inline]
690    pub fn new_uninit_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
691        unsafe {
692            Rc::from_ptr_in(
693                Rc::allocate_for_layout(
694                    Layout::new::<T>(),
695                    |layout| alloc.allocate(layout),
696                    <*mut u8>::cast,
697                ),
698                alloc,
699            )
700        }
701    }
702
703    /// Constructs a new `Rc` with uninitialized contents, with the memory
704    /// being filled with `0` bytes, in the provided allocator.
705    ///
706    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
707    /// incorrect usage of this method.
708    ///
709    /// # Examples
710    ///
711    /// ```
712    /// #![feature(allocator_api)]
713    ///
714    /// use std::rc::Rc;
715    /// use std::alloc::System;
716    ///
717    /// let zero = Rc::<u32, _>::new_zeroed_in(System);
718    /// let zero = unsafe { zero.assume_init() };
719    ///
720    /// assert_eq!(*zero, 0)
721    /// ```
722    ///
723    /// [zeroed]: mem::MaybeUninit::zeroed
724    #[cfg(not(no_global_oom_handling))]
725    #[unstable(feature = "allocator_api", issue = "32838")]
726    #[inline]
727    pub fn new_zeroed_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
728        unsafe {
729            Rc::from_ptr_in(
730                Rc::allocate_for_layout(
731                    Layout::new::<T>(),
732                    |layout| alloc.allocate_zeroed(layout),
733                    <*mut u8>::cast,
734                ),
735                alloc,
736            )
737        }
738    }
739
740    /// Constructs a new `Rc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
741    /// to allow you to construct a `T` which holds a weak pointer to itself.
742    ///
743    /// Generally, a structure circularly referencing itself, either directly or
744    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
745    /// Using this function, you get access to the weak pointer during the
746    /// initialization of `T`, before the `Rc<T, A>` is created, such that you can
747    /// clone and store it inside the `T`.
748    ///
749    /// `new_cyclic_in` first allocates the managed allocation for the `Rc<T, A>`,
750    /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
751    /// and only afterwards completes the construction of the `Rc<T, A>` by placing
752    /// the `T` returned from your closure into the allocation.
753    ///
754    /// Since the new `Rc<T, A>` is not fully-constructed until `Rc<T, A>::new_cyclic_in`
755    /// returns, calling [`upgrade`] on the weak reference inside your closure will
756    /// fail and result in a `None` value.
757    ///
758    /// # Panics
759    ///
760    /// If `data_fn` panics, the panic is propagated to the caller, and the
761    /// temporary [`Weak<T, A>`] is dropped normally.
762    ///
763    /// # Examples
764    ///
765    /// See [`new_cyclic`].
766    ///
767    /// [`new_cyclic`]: Rc::new_cyclic
768    /// [`upgrade`]: Weak::upgrade
769    #[cfg(not(no_global_oom_handling))]
770    #[unstable(feature = "allocator_api", issue = "32838")]
771    pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Rc<T, A>
772    where
773        F: FnOnce(&Weak<T, A>) -> T,
774    {
775        // Construct the inner in the "uninitialized" state with a single
776        // weak reference.
777        let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
778            RcInner {
779                strong: Cell::new(0),
780                weak: Cell::new(1),
781                value: mem::MaybeUninit::<T>::uninit(),
782            },
783            alloc,
784        ));
785        let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
786        let init_ptr: NonNull<RcInner<T>> = uninit_ptr.cast();
787
788        let weak = Weak { ptr: init_ptr, alloc };
789
790        // It's important we don't give up ownership of the weak pointer, or
791        // else the memory might be freed by the time `data_fn` returns. If
792        // we really wanted to pass ownership, we could create an additional
793        // weak pointer for ourselves, but this would result in additional
794        // updates to the weak reference count which might not be necessary
795        // otherwise.
796        let data = data_fn(&weak);
797
798        let strong = unsafe {
799            let inner = init_ptr.as_ptr();
800            ptr::write(&raw mut (*inner).value, data);
801
802            let prev_value = (*inner).strong.get();
803            debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
804            (*inner).strong.set(1);
805
806            // Strong references should collectively own a shared weak reference,
807            // so don't run the destructor for our old weak reference.
808            // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
809            // and forgetting the weak reference.
810            let alloc = weak.into_raw_with_allocator().1;
811
812            Rc::from_inner_in(init_ptr, alloc)
813        };
814
815        strong
816    }
817
818    /// Constructs a new `Rc<T>` in the provided allocator, returning an error if the allocation
819    /// fails
820    ///
821    /// # Examples
822    ///
823    /// ```
824    /// #![feature(allocator_api)]
825    /// use std::rc::Rc;
826    /// use std::alloc::System;
827    ///
828    /// let five = Rc::try_new_in(5, System);
829    /// # Ok::<(), std::alloc::AllocError>(())
830    /// ```
831    #[unstable(feature = "allocator_api", issue = "32838")]
832    #[inline]
833    pub fn try_new_in(value: T, alloc: A) -> Result<Self, AllocError> {
834        // There is an implicit weak pointer owned by all the strong
835        // pointers, which ensures that the weak destructor never frees
836        // the allocation while the strong destructor is running, even
837        // if the weak pointer is stored inside the strong one.
838        let (ptr, alloc) = Box::into_unique(Box::try_new_in(
839            RcInner { strong: Cell::new(1), weak: Cell::new(1), value },
840            alloc,
841        )?);
842        Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
843    }
844
845    /// Constructs a new `Rc` with uninitialized contents, in the provided allocator, returning an
846    /// error if the allocation fails
847    ///
848    /// # Examples
849    ///
850    /// ```
851    /// #![feature(allocator_api)]
852    /// #![feature(get_mut_unchecked)]
853    ///
854    /// use std::rc::Rc;
855    /// use std::alloc::System;
856    ///
857    /// let mut five = Rc::<u32, _>::try_new_uninit_in(System)?;
858    ///
859    /// let five = unsafe {
860    ///     // Deferred initialization:
861    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
862    ///
863    ///     five.assume_init()
864    /// };
865    ///
866    /// assert_eq!(*five, 5);
867    /// # Ok::<(), std::alloc::AllocError>(())
868    /// ```
869    #[unstable(feature = "allocator_api", issue = "32838")]
870    #[inline]
871    pub fn try_new_uninit_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
872        unsafe {
873            Ok(Rc::from_ptr_in(
874                Rc::try_allocate_for_layout(
875                    Layout::new::<T>(),
876                    |layout| alloc.allocate(layout),
877                    <*mut u8>::cast,
878                )?,
879                alloc,
880            ))
881        }
882    }
883
884    /// Constructs a new `Rc` with uninitialized contents, with the memory
885    /// being filled with `0` bytes, in the provided allocator, returning an error if the allocation
886    /// fails
887    ///
888    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
889    /// incorrect usage of this method.
890    ///
891    /// # Examples
892    ///
893    /// ```
894    /// #![feature(allocator_api)]
895    ///
896    /// use std::rc::Rc;
897    /// use std::alloc::System;
898    ///
899    /// let zero = Rc::<u32, _>::try_new_zeroed_in(System)?;
900    /// let zero = unsafe { zero.assume_init() };
901    ///
902    /// assert_eq!(*zero, 0);
903    /// # Ok::<(), std::alloc::AllocError>(())
904    /// ```
905    ///
906    /// [zeroed]: mem::MaybeUninit::zeroed
907    #[unstable(feature = "allocator_api", issue = "32838")]
908    #[inline]
909    pub fn try_new_zeroed_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
910        unsafe {
911            Ok(Rc::from_ptr_in(
912                Rc::try_allocate_for_layout(
913                    Layout::new::<T>(),
914                    |layout| alloc.allocate_zeroed(layout),
915                    <*mut u8>::cast,
916                )?,
917                alloc,
918            ))
919        }
920    }
921
922    /// Constructs a new `Pin<Rc<T>>` in the provided allocator. If `T` does not implement `Unpin`, then
923    /// `value` will be pinned in memory and unable to be moved.
924    #[cfg(not(no_global_oom_handling))]
925    #[unstable(feature = "allocator_api", issue = "32838")]
926    #[inline]
927    pub fn pin_in(value: T, alloc: A) -> Pin<Self>
928    where
929        A: 'static,
930    {
931        unsafe { Pin::new_unchecked(Rc::new_in(value, alloc)) }
932    }
933
934    /// Returns the inner value, if the `Rc` has exactly one strong reference.
935    ///
936    /// Otherwise, an [`Err`] is returned with the same `Rc` that was
937    /// passed in.
938    ///
939    /// This will succeed even if there are outstanding weak references.
940    ///
941    /// # Examples
942    ///
943    /// ```
944    /// use std::rc::Rc;
945    ///
946    /// let x = Rc::new(3);
947    /// assert_eq!(Rc::try_unwrap(x), Ok(3));
948    ///
949    /// let x = Rc::new(4);
950    /// let _y = Rc::clone(&x);
951    /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
952    /// ```
953    #[inline]
954    #[stable(feature = "rc_unique", since = "1.4.0")]
955    pub fn try_unwrap(this: Self) -> Result<T, Self> {
956        if Rc::strong_count(&this) == 1 {
957            let this = ManuallyDrop::new(this);
958
959            let val: T = unsafe { ptr::read(&**this) }; // copy the contained object
960            let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
961
962            // Indicate to Weaks that they can't be promoted by decrementing
963            // the strong count, and then remove the implicit "strong weak"
964            // pointer while also handling drop logic by just crafting a
965            // fake Weak.
966            this.inner().dec_strong();
967            let _weak = Weak { ptr: this.ptr, alloc };
968            Ok(val)
969        } else {
970            Err(this)
971        }
972    }
973
974    /// Returns the inner value, if the `Rc` has exactly one strong reference.
975    ///
976    /// Otherwise, [`None`] is returned and the `Rc` is dropped.
977    ///
978    /// This will succeed even if there are outstanding weak references.
979    ///
980    /// If `Rc::into_inner` is called on every clone of this `Rc`,
981    /// it is guaranteed that exactly one of the calls returns the inner value.
982    /// This means in particular that the inner value is not dropped.
983    ///
984    /// [`Rc::try_unwrap`] is conceptually similar to `Rc::into_inner`.
985    /// And while they are meant for different use-cases, `Rc::into_inner(this)`
986    /// is in fact equivalent to <code>[Rc::try_unwrap]\(this).[ok][Result::ok]()</code>.
987    /// (Note that the same kind of equivalence does **not** hold true for
988    /// [`Arc`](crate::sync::Arc), due to race conditions that do not apply to `Rc`!)
989    ///
990    /// # Examples
991    ///
992    /// ```
993    /// use std::rc::Rc;
994    ///
995    /// let x = Rc::new(3);
996    /// assert_eq!(Rc::into_inner(x), Some(3));
997    ///
998    /// let x = Rc::new(4);
999    /// let y = Rc::clone(&x);
1000    ///
1001    /// assert_eq!(Rc::into_inner(y), None);
1002    /// assert_eq!(Rc::into_inner(x), Some(4));
1003    /// ```
1004    #[inline]
1005    #[stable(feature = "rc_into_inner", since = "1.70.0")]
1006    pub fn into_inner(this: Self) -> Option<T> {
1007        Rc::try_unwrap(this).ok()
1008    }
1009}
1010
1011impl<T> Rc<[T]> {
1012    /// Constructs a new reference-counted slice with uninitialized contents.
1013    ///
1014    /// # Examples
1015    ///
1016    /// ```
1017    /// #![feature(get_mut_unchecked)]
1018    ///
1019    /// use std::rc::Rc;
1020    ///
1021    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
1022    ///
1023    /// // Deferred initialization:
1024    /// let data = Rc::get_mut(&mut values).unwrap();
1025    /// data[0].write(1);
1026    /// data[1].write(2);
1027    /// data[2].write(3);
1028    ///
1029    /// let values = unsafe { values.assume_init() };
1030    ///
1031    /// assert_eq!(*values, [1, 2, 3])
1032    /// ```
1033    #[cfg(not(no_global_oom_handling))]
1034    #[stable(feature = "new_uninit", since = "1.82.0")]
1035    #[must_use]
1036    pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
1037        unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
1038    }
1039
1040    /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
1041    /// filled with `0` bytes.
1042    ///
1043    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1044    /// incorrect usage of this method.
1045    ///
1046    /// # Examples
1047    ///
1048    /// ```
1049    /// use std::rc::Rc;
1050    ///
1051    /// let values = Rc::<[u32]>::new_zeroed_slice(3);
1052    /// let values = unsafe { values.assume_init() };
1053    ///
1054    /// assert_eq!(*values, [0, 0, 0])
1055    /// ```
1056    ///
1057    /// [zeroed]: mem::MaybeUninit::zeroed
1058    #[cfg(not(no_global_oom_handling))]
1059    #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
1060    #[must_use]
1061    pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
1062        unsafe {
1063            Rc::from_ptr(Rc::allocate_for_layout(
1064                Layout::array::<T>(len).unwrap(),
1065                |layout| Global.allocate_zeroed(layout),
1066                |mem| {
1067                    ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1068                        as *mut RcInner<[mem::MaybeUninit<T>]>
1069                },
1070            ))
1071        }
1072    }
1073
1074    /// Converts the reference-counted slice into a reference-counted array.
1075    ///
1076    /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1077    ///
1078    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1079    #[unstable(feature = "slice_as_array", issue = "133508")]
1080    #[inline]
1081    #[must_use]
1082    pub fn into_array<const N: usize>(self) -> Option<Rc<[T; N]>> {
1083        if self.len() == N {
1084            let ptr = Self::into_raw(self) as *const [T; N];
1085
1086            // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1087            let me = unsafe { Rc::from_raw(ptr) };
1088            Some(me)
1089        } else {
1090            None
1091        }
1092    }
1093}
1094
1095impl<T, A: Allocator> Rc<[T], A> {
1096    /// Constructs a new reference-counted slice with uninitialized contents.
1097    ///
1098    /// # Examples
1099    ///
1100    /// ```
1101    /// #![feature(get_mut_unchecked)]
1102    /// #![feature(allocator_api)]
1103    ///
1104    /// use std::rc::Rc;
1105    /// use std::alloc::System;
1106    ///
1107    /// let mut values = Rc::<[u32], _>::new_uninit_slice_in(3, System);
1108    ///
1109    /// let values = unsafe {
1110    ///     // Deferred initialization:
1111    ///     Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1112    ///     Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1113    ///     Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1114    ///
1115    ///     values.assume_init()
1116    /// };
1117    ///
1118    /// assert_eq!(*values, [1, 2, 3])
1119    /// ```
1120    #[cfg(not(no_global_oom_handling))]
1121    #[unstable(feature = "allocator_api", issue = "32838")]
1122    #[inline]
1123    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
1124        unsafe { Rc::from_ptr_in(Rc::allocate_for_slice_in(len, &alloc), alloc) }
1125    }
1126
1127    /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
1128    /// filled with `0` bytes.
1129    ///
1130    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1131    /// incorrect usage of this method.
1132    ///
1133    /// # Examples
1134    ///
1135    /// ```
1136    /// #![feature(allocator_api)]
1137    ///
1138    /// use std::rc::Rc;
1139    /// use std::alloc::System;
1140    ///
1141    /// let values = Rc::<[u32], _>::new_zeroed_slice_in(3, System);
1142    /// let values = unsafe { values.assume_init() };
1143    ///
1144    /// assert_eq!(*values, [0, 0, 0])
1145    /// ```
1146    ///
1147    /// [zeroed]: mem::MaybeUninit::zeroed
1148    #[cfg(not(no_global_oom_handling))]
1149    #[unstable(feature = "allocator_api", issue = "32838")]
1150    #[inline]
1151    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
1152        unsafe {
1153            Rc::from_ptr_in(
1154                Rc::allocate_for_layout(
1155                    Layout::array::<T>(len).unwrap(),
1156                    |layout| alloc.allocate_zeroed(layout),
1157                    |mem| {
1158                        ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1159                            as *mut RcInner<[mem::MaybeUninit<T>]>
1160                    },
1161                ),
1162                alloc,
1163            )
1164        }
1165    }
1166}
1167
1168impl<T, A: Allocator> Rc<mem::MaybeUninit<T>, A> {
1169    /// Converts to `Rc<T>`.
1170    ///
1171    /// # Safety
1172    ///
1173    /// As with [`MaybeUninit::assume_init`],
1174    /// it is up to the caller to guarantee that the inner value
1175    /// really is in an initialized state.
1176    /// Calling this when the content is not yet fully initialized
1177    /// causes immediate undefined behavior.
1178    ///
1179    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1180    ///
1181    /// # Examples
1182    ///
1183    /// ```
1184    /// #![feature(get_mut_unchecked)]
1185    ///
1186    /// use std::rc::Rc;
1187    ///
1188    /// let mut five = Rc::<u32>::new_uninit();
1189    ///
1190    /// // Deferred initialization:
1191    /// Rc::get_mut(&mut five).unwrap().write(5);
1192    ///
1193    /// let five = unsafe { five.assume_init() };
1194    ///
1195    /// assert_eq!(*five, 5)
1196    /// ```
1197    #[stable(feature = "new_uninit", since = "1.82.0")]
1198    #[inline]
1199    pub unsafe fn assume_init(self) -> Rc<T, A> {
1200        let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1201        unsafe { Rc::from_inner_in(ptr.cast(), alloc) }
1202    }
1203}
1204
1205impl<T, A: Allocator> Rc<[mem::MaybeUninit<T>], A> {
1206    /// Converts to `Rc<[T]>`.
1207    ///
1208    /// # Safety
1209    ///
1210    /// As with [`MaybeUninit::assume_init`],
1211    /// it is up to the caller to guarantee that the inner value
1212    /// really is in an initialized state.
1213    /// Calling this when the content is not yet fully initialized
1214    /// causes immediate undefined behavior.
1215    ///
1216    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1217    ///
1218    /// # Examples
1219    ///
1220    /// ```
1221    /// #![feature(get_mut_unchecked)]
1222    ///
1223    /// use std::rc::Rc;
1224    ///
1225    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
1226    ///
1227    /// // Deferred initialization:
1228    /// let data = Rc::get_mut(&mut values).unwrap();
1229    /// data[0].write(1);
1230    /// data[1].write(2);
1231    /// data[2].write(3);
1232    ///
1233    /// let values = unsafe { values.assume_init() };
1234    ///
1235    /// assert_eq!(*values, [1, 2, 3])
1236    /// ```
1237    #[stable(feature = "new_uninit", since = "1.82.0")]
1238    #[inline]
1239    pub unsafe fn assume_init(self) -> Rc<[T], A> {
1240        let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1241        unsafe { Rc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1242    }
1243}
1244
1245impl<T: ?Sized> Rc<T> {
1246    /// Constructs an `Rc<T>` from a raw pointer.
1247    ///
1248    /// The raw pointer must have been previously returned by a call to
1249    /// [`Rc<U>::into_raw`][into_raw] with the following requirements:
1250    ///
1251    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1252    ///   is trivially true if `U` is `T`.
1253    /// * If `U` is unsized, its data pointer must have the same size and
1254    ///   alignment as `T`. This is trivially true if `Rc<U>` was constructed
1255    ///   through `Rc<T>` and then converted to `Rc<U>` through an [unsized
1256    ///   coercion].
1257    ///
1258    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1259    /// and alignment, this is basically like transmuting references of
1260    /// different types. See [`mem::transmute`][transmute] for more information
1261    /// on what restrictions apply in this case.
1262    ///
1263    /// The raw pointer must point to a block of memory allocated by the global allocator
1264    ///
1265    /// The user of `from_raw` has to make sure a specific value of `T` is only
1266    /// dropped once.
1267    ///
1268    /// This function is unsafe because improper use may lead to memory unsafety,
1269    /// even if the returned `Rc<T>` is never accessed.
1270    ///
1271    /// [into_raw]: Rc::into_raw
1272    /// [transmute]: core::mem::transmute
1273    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1274    ///
1275    /// # Examples
1276    ///
1277    /// ```
1278    /// use std::rc::Rc;
1279    ///
1280    /// let x = Rc::new("hello".to_owned());
1281    /// let x_ptr = Rc::into_raw(x);
1282    ///
1283    /// unsafe {
1284    ///     // Convert back to an `Rc` to prevent leak.
1285    ///     let x = Rc::from_raw(x_ptr);
1286    ///     assert_eq!(&*x, "hello");
1287    ///
1288    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
1289    /// }
1290    ///
1291    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1292    /// ```
1293    ///
1294    /// Convert a slice back into its original array:
1295    ///
1296    /// ```
1297    /// use std::rc::Rc;
1298    ///
1299    /// let x: Rc<[u32]> = Rc::new([1, 2, 3]);
1300    /// let x_ptr: *const [u32] = Rc::into_raw(x);
1301    ///
1302    /// unsafe {
1303    ///     let x: Rc<[u32; 3]> = Rc::from_raw(x_ptr.cast::<[u32; 3]>());
1304    ///     assert_eq!(&*x, &[1, 2, 3]);
1305    /// }
1306    /// ```
1307    #[inline]
1308    #[stable(feature = "rc_raw", since = "1.17.0")]
1309    pub unsafe fn from_raw(ptr: *const T) -> Self {
1310        unsafe { Self::from_raw_in(ptr, Global) }
1311    }
1312
1313    /// Consumes the `Rc`, returning the wrapped pointer.
1314    ///
1315    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
1316    /// [`Rc::from_raw`].
1317    ///
1318    /// # Examples
1319    ///
1320    /// ```
1321    /// use std::rc::Rc;
1322    ///
1323    /// let x = Rc::new("hello".to_owned());
1324    /// let x_ptr = Rc::into_raw(x);
1325    /// assert_eq!(unsafe { &*x_ptr }, "hello");
1326    /// # // Prevent leaks for Miri.
1327    /// # drop(unsafe { Rc::from_raw(x_ptr) });
1328    /// ```
1329    #[must_use = "losing the pointer will leak memory"]
1330    #[stable(feature = "rc_raw", since = "1.17.0")]
1331    #[rustc_never_returns_null_ptr]
1332    pub fn into_raw(this: Self) -> *const T {
1333        let this = ManuallyDrop::new(this);
1334        Self::as_ptr(&*this)
1335    }
1336
1337    /// Increments the strong reference count on the `Rc<T>` associated with the
1338    /// provided pointer by one.
1339    ///
1340    /// # Safety
1341    ///
1342    /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the
1343    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1344    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1345    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1346    /// allocated by the global allocator.
1347    ///
1348    /// [from_raw_in]: Rc::from_raw_in
1349    ///
1350    /// # Examples
1351    ///
1352    /// ```
1353    /// use std::rc::Rc;
1354    ///
1355    /// let five = Rc::new(5);
1356    ///
1357    /// unsafe {
1358    ///     let ptr = Rc::into_raw(five);
1359    ///     Rc::increment_strong_count(ptr);
1360    ///
1361    ///     let five = Rc::from_raw(ptr);
1362    ///     assert_eq!(2, Rc::strong_count(&five));
1363    /// #   // Prevent leaks for Miri.
1364    /// #   Rc::decrement_strong_count(ptr);
1365    /// }
1366    /// ```
1367    #[inline]
1368    #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
1369    pub unsafe fn increment_strong_count(ptr: *const T) {
1370        unsafe { Self::increment_strong_count_in(ptr, Global) }
1371    }
1372
1373    /// Decrements the strong reference count on the `Rc<T>` associated with the
1374    /// provided pointer by one.
1375    ///
1376    /// # Safety
1377    ///
1378    /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the
1379    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1380    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1381    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1382    /// allocated by the global allocator. This method can be used to release the final `Rc` and
1383    /// backing storage, but **should not** be called after the final `Rc` has been released.
1384    ///
1385    /// [from_raw_in]: Rc::from_raw_in
1386    ///
1387    /// # Examples
1388    ///
1389    /// ```
1390    /// use std::rc::Rc;
1391    ///
1392    /// let five = Rc::new(5);
1393    ///
1394    /// unsafe {
1395    ///     let ptr = Rc::into_raw(five);
1396    ///     Rc::increment_strong_count(ptr);
1397    ///
1398    ///     let five = Rc::from_raw(ptr);
1399    ///     assert_eq!(2, Rc::strong_count(&five));
1400    ///     Rc::decrement_strong_count(ptr);
1401    ///     assert_eq!(1, Rc::strong_count(&five));
1402    /// }
1403    /// ```
1404    #[inline]
1405    #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
1406    pub unsafe fn decrement_strong_count(ptr: *const T) {
1407        unsafe { Self::decrement_strong_count_in(ptr, Global) }
1408    }
1409}
1410
1411impl<T: ?Sized, A: Allocator> Rc<T, A> {
1412    /// Returns a reference to the underlying allocator.
1413    ///
1414    /// Note: this is an associated function, which means that you have
1415    /// to call it as `Rc::allocator(&r)` instead of `r.allocator()`. This
1416    /// is so that there is no conflict with a method on the inner type.
1417    #[inline]
1418    #[unstable(feature = "allocator_api", issue = "32838")]
1419    pub fn allocator(this: &Self) -> &A {
1420        &this.alloc
1421    }
1422
1423    /// Consumes the `Rc`, returning the wrapped pointer and allocator.
1424    ///
1425    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
1426    /// [`Rc::from_raw_in`].
1427    ///
1428    /// # Examples
1429    ///
1430    /// ```
1431    /// #![feature(allocator_api)]
1432    /// use std::rc::Rc;
1433    /// use std::alloc::System;
1434    ///
1435    /// let x = Rc::new_in("hello".to_owned(), System);
1436    /// let (ptr, alloc) = Rc::into_raw_with_allocator(x);
1437    /// assert_eq!(unsafe { &*ptr }, "hello");
1438    /// let x = unsafe { Rc::from_raw_in(ptr, alloc) };
1439    /// assert_eq!(&*x, "hello");
1440    /// ```
1441    #[must_use = "losing the pointer will leak memory"]
1442    #[unstable(feature = "allocator_api", issue = "32838")]
1443    pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1444        let this = mem::ManuallyDrop::new(this);
1445        let ptr = Self::as_ptr(&this);
1446        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1447        let alloc = unsafe { ptr::read(&this.alloc) };
1448        (ptr, alloc)
1449    }
1450
1451    /// Provides a raw pointer to the data.
1452    ///
1453    /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
1454    /// for as long as there are strong counts in the `Rc`.
1455    ///
1456    /// # Examples
1457    ///
1458    /// ```
1459    /// use std::rc::Rc;
1460    ///
1461    /// let x = Rc::new(0);
1462    /// let y = Rc::clone(&x);
1463    /// let x_ptr = Rc::as_ptr(&x);
1464    /// assert_eq!(x_ptr, Rc::as_ptr(&y));
1465    /// assert_eq!(unsafe { *x_ptr }, 0);
1466    /// ```
1467    #[stable(feature = "weak_into_raw", since = "1.45.0")]
1468    #[rustc_never_returns_null_ptr]
1469    pub fn as_ptr(this: &Self) -> *const T {
1470        let ptr: *mut RcInner<T> = NonNull::as_ptr(this.ptr);
1471
1472        // SAFETY: This cannot go through Deref::deref or Rc::inner because
1473        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1474        // write through the pointer after the Rc is recovered through `from_raw`.
1475        unsafe { &raw mut (*ptr).value }
1476    }
1477
1478    /// Constructs an `Rc<T, A>` from a raw pointer in the provided allocator.
1479    ///
1480    /// The raw pointer must have been previously returned by a call to [`Rc<U,
1481    /// A>::into_raw`][into_raw] with the following requirements:
1482    ///
1483    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1484    ///   is trivially true if `U` is `T`.
1485    /// * If `U` is unsized, its data pointer must have the same size and
1486    ///   alignment as `T`. This is trivially true if `Rc<U>` was constructed
1487    ///   through `Rc<T>` and then converted to `Rc<U>` through an [unsized
1488    ///   coercion].
1489    ///
1490    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1491    /// and alignment, this is basically like transmuting references of
1492    /// different types. See [`mem::transmute`][transmute] for more information
1493    /// on what restrictions apply in this case.
1494    ///
1495    /// The raw pointer must point to a block of memory allocated by `alloc`
1496    ///
1497    /// The user of `from_raw` has to make sure a specific value of `T` is only
1498    /// dropped once.
1499    ///
1500    /// This function is unsafe because improper use may lead to memory unsafety,
1501    /// even if the returned `Rc<T>` is never accessed.
1502    ///
1503    /// [into_raw]: Rc::into_raw
1504    /// [transmute]: core::mem::transmute
1505    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1506    ///
1507    /// # Examples
1508    ///
1509    /// ```
1510    /// #![feature(allocator_api)]
1511    ///
1512    /// use std::rc::Rc;
1513    /// use std::alloc::System;
1514    ///
1515    /// let x = Rc::new_in("hello".to_owned(), System);
1516    /// let (x_ptr, _alloc) = Rc::into_raw_with_allocator(x);
1517    ///
1518    /// unsafe {
1519    ///     // Convert back to an `Rc` to prevent leak.
1520    ///     let x = Rc::from_raw_in(x_ptr, System);
1521    ///     assert_eq!(&*x, "hello");
1522    ///
1523    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
1524    /// }
1525    ///
1526    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1527    /// ```
1528    ///
1529    /// Convert a slice back into its original array:
1530    ///
1531    /// ```
1532    /// #![feature(allocator_api)]
1533    ///
1534    /// use std::rc::Rc;
1535    /// use std::alloc::System;
1536    ///
1537    /// let x: Rc<[u32], _> = Rc::new_in([1, 2, 3], System);
1538    /// let x_ptr: *const [u32] = Rc::into_raw_with_allocator(x).0;
1539    ///
1540    /// unsafe {
1541    ///     let x: Rc<[u32; 3], _> = Rc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1542    ///     assert_eq!(&*x, &[1, 2, 3]);
1543    /// }
1544    /// ```
1545    #[unstable(feature = "allocator_api", issue = "32838")]
1546    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1547        let offset = unsafe { data_offset(ptr) };
1548
1549        // Reverse the offset to find the original RcInner.
1550        let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcInner<T> };
1551
1552        unsafe { Self::from_ptr_in(rc_ptr, alloc) }
1553    }
1554
1555    /// Creates a new [`Weak`] pointer to this allocation.
1556    ///
1557    /// # Examples
1558    ///
1559    /// ```
1560    /// use std::rc::Rc;
1561    ///
1562    /// let five = Rc::new(5);
1563    ///
1564    /// let weak_five = Rc::downgrade(&five);
1565    /// ```
1566    #[must_use = "this returns a new `Weak` pointer, \
1567                  without modifying the original `Rc`"]
1568    #[stable(feature = "rc_weak", since = "1.4.0")]
1569    pub fn downgrade(this: &Self) -> Weak<T, A>
1570    where
1571        A: Clone,
1572    {
1573        this.inner().inc_weak();
1574        // Make sure we do not create a dangling Weak
1575        debug_assert!(!is_dangling(this.ptr.as_ptr()));
1576        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
1577    }
1578
1579    /// Gets the number of [`Weak`] pointers to this allocation.
1580    ///
1581    /// # Examples
1582    ///
1583    /// ```
1584    /// use std::rc::Rc;
1585    ///
1586    /// let five = Rc::new(5);
1587    /// let _weak_five = Rc::downgrade(&five);
1588    ///
1589    /// assert_eq!(1, Rc::weak_count(&five));
1590    /// ```
1591    #[inline]
1592    #[stable(feature = "rc_counts", since = "1.15.0")]
1593    pub fn weak_count(this: &Self) -> usize {
1594        this.inner().weak() - 1
1595    }
1596
1597    /// Gets the number of strong (`Rc`) pointers to this allocation.
1598    ///
1599    /// # Examples
1600    ///
1601    /// ```
1602    /// use std::rc::Rc;
1603    ///
1604    /// let five = Rc::new(5);
1605    /// let _also_five = Rc::clone(&five);
1606    ///
1607    /// assert_eq!(2, Rc::strong_count(&five));
1608    /// ```
1609    #[inline]
1610    #[stable(feature = "rc_counts", since = "1.15.0")]
1611    pub fn strong_count(this: &Self) -> usize {
1612        this.inner().strong()
1613    }
1614
1615    /// Increments the strong reference count on the `Rc<T>` associated with the
1616    /// provided pointer by one.
1617    ///
1618    /// # Safety
1619    ///
1620    /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the
1621    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1622    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1623    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1624    /// allocated by `alloc`.
1625    ///
1626    /// [from_raw_in]: Rc::from_raw_in
1627    ///
1628    /// # Examples
1629    ///
1630    /// ```
1631    /// #![feature(allocator_api)]
1632    ///
1633    /// use std::rc::Rc;
1634    /// use std::alloc::System;
1635    ///
1636    /// let five = Rc::new_in(5, System);
1637    ///
1638    /// unsafe {
1639    ///     let (ptr, _alloc) = Rc::into_raw_with_allocator(five);
1640    ///     Rc::increment_strong_count_in(ptr, System);
1641    ///
1642    ///     let five = Rc::from_raw_in(ptr, System);
1643    ///     assert_eq!(2, Rc::strong_count(&five));
1644    /// #   // Prevent leaks for Miri.
1645    /// #   Rc::decrement_strong_count_in(ptr, System);
1646    /// }
1647    /// ```
1648    #[inline]
1649    #[unstable(feature = "allocator_api", issue = "32838")]
1650    pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1651    where
1652        A: Clone,
1653    {
1654        // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop
1655        let rc = unsafe { mem::ManuallyDrop::new(Rc::<T, A>::from_raw_in(ptr, alloc)) };
1656        // Now increase refcount, but don't drop new refcount either
1657        let _rc_clone: mem::ManuallyDrop<_> = rc.clone();
1658    }
1659
1660    /// Decrements the strong reference count on the `Rc<T>` associated with the
1661    /// provided pointer by one.
1662    ///
1663    /// # Safety
1664    ///
1665    /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the
1666    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1667    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1668    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1669    /// allocated by `alloc`. This method can be used to release the final `Rc` and
1670    /// backing storage, but **should not** be called after the final `Rc` has been released.
1671    ///
1672    /// [from_raw_in]: Rc::from_raw_in
1673    ///
1674    /// # Examples
1675    ///
1676    /// ```
1677    /// #![feature(allocator_api)]
1678    ///
1679    /// use std::rc::Rc;
1680    /// use std::alloc::System;
1681    ///
1682    /// let five = Rc::new_in(5, System);
1683    ///
1684    /// unsafe {
1685    ///     let (ptr, _alloc) = Rc::into_raw_with_allocator(five);
1686    ///     Rc::increment_strong_count_in(ptr, System);
1687    ///
1688    ///     let five = Rc::from_raw_in(ptr, System);
1689    ///     assert_eq!(2, Rc::strong_count(&five));
1690    ///     Rc::decrement_strong_count_in(ptr, System);
1691    ///     assert_eq!(1, Rc::strong_count(&five));
1692    /// }
1693    /// ```
1694    #[inline]
1695    #[unstable(feature = "allocator_api", issue = "32838")]
1696    pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1697        unsafe { drop(Rc::from_raw_in(ptr, alloc)) };
1698    }
1699
1700    /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to
1701    /// this allocation.
1702    #[inline]
1703    fn is_unique(this: &Self) -> bool {
1704        Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
1705    }
1706
1707    /// Returns a mutable reference into the given `Rc`, if there are
1708    /// no other `Rc` or [`Weak`] pointers to the same allocation.
1709    ///
1710    /// Returns [`None`] otherwise, because it is not safe to
1711    /// mutate a shared value.
1712    ///
1713    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
1714    /// the inner value when there are other `Rc` pointers.
1715    ///
1716    /// [make_mut]: Rc::make_mut
1717    /// [clone]: Clone::clone
1718    ///
1719    /// # Examples
1720    ///
1721    /// ```
1722    /// use std::rc::Rc;
1723    ///
1724    /// let mut x = Rc::new(3);
1725    /// *Rc::get_mut(&mut x).unwrap() = 4;
1726    /// assert_eq!(*x, 4);
1727    ///
1728    /// let _y = Rc::clone(&x);
1729    /// assert!(Rc::get_mut(&mut x).is_none());
1730    /// ```
1731    #[inline]
1732    #[stable(feature = "rc_unique", since = "1.4.0")]
1733    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
1734        if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
1735    }
1736
1737    /// Returns a mutable reference into the given `Rc`,
1738    /// without any check.
1739    ///
1740    /// See also [`get_mut`], which is safe and does appropriate checks.
1741    ///
1742    /// [`get_mut`]: Rc::get_mut
1743    ///
1744    /// # Safety
1745    ///
1746    /// If any other `Rc` or [`Weak`] pointers to the same allocation exist, then
1747    /// they must not be dereferenced or have active borrows for the duration
1748    /// of the returned borrow, and their inner type must be exactly the same as the
1749    /// inner type of this Rc (including lifetimes). This is trivially the case if no
1750    /// such pointers exist, for example immediately after `Rc::new`.
1751    ///
1752    /// # Examples
1753    ///
1754    /// ```
1755    /// #![feature(get_mut_unchecked)]
1756    ///
1757    /// use std::rc::Rc;
1758    ///
1759    /// let mut x = Rc::new(String::new());
1760    /// unsafe {
1761    ///     Rc::get_mut_unchecked(&mut x).push_str("foo")
1762    /// }
1763    /// assert_eq!(*x, "foo");
1764    /// ```
1765    /// Other `Rc` pointers to the same allocation must be to the same type.
1766    /// ```no_run
1767    /// #![feature(get_mut_unchecked)]
1768    ///
1769    /// use std::rc::Rc;
1770    ///
1771    /// let x: Rc<str> = Rc::from("Hello, world!");
1772    /// let mut y: Rc<[u8]> = x.clone().into();
1773    /// unsafe {
1774    ///     // this is Undefined Behavior, because x's inner type is str, not [u8]
1775    ///     Rc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
1776    /// }
1777    /// println!("{}", &*x); // Invalid UTF-8 in a str
1778    /// ```
1779    /// Other `Rc` pointers to the same allocation must be to the exact same type, including lifetimes.
1780    /// ```no_run
1781    /// #![feature(get_mut_unchecked)]
1782    ///
1783    /// use std::rc::Rc;
1784    ///
1785    /// let x: Rc<&str> = Rc::new("Hello, world!");
1786    /// {
1787    ///     let s = String::from("Oh, no!");
1788    ///     let mut y: Rc<&str> = x.clone();
1789    ///     unsafe {
1790    ///         // this is Undefined Behavior, because x's inner type
1791    ///         // is &'long str, not &'short str
1792    ///         *Rc::get_mut_unchecked(&mut y) = &s;
1793    ///     }
1794    /// }
1795    /// println!("{}", &*x); // Use-after-free
1796    /// ```
1797    #[inline]
1798    #[unstable(feature = "get_mut_unchecked", issue = "63292")]
1799    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
1800        // We are careful to *not* create a reference covering the "count" fields, as
1801        // this would conflict with accesses to the reference counts (e.g. by `Weak`).
1802        unsafe { &mut (*this.ptr.as_ptr()).value }
1803    }
1804
1805    #[inline]
1806    #[stable(feature = "ptr_eq", since = "1.17.0")]
1807    /// Returns `true` if the two `Rc`s point to the same allocation in a vein similar to
1808    /// [`ptr::eq`]. This function ignores the metadata of  `dyn Trait` pointers.
1809    ///
1810    /// # Examples
1811    ///
1812    /// ```
1813    /// use std::rc::Rc;
1814    ///
1815    /// let five = Rc::new(5);
1816    /// let same_five = Rc::clone(&five);
1817    /// let other_five = Rc::new(5);
1818    ///
1819    /// assert!(Rc::ptr_eq(&five, &same_five));
1820    /// assert!(!Rc::ptr_eq(&five, &other_five));
1821    /// ```
1822    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1823        ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
1824    }
1825}
1826
1827#[cfg(not(no_global_oom_handling))]
1828impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Rc<T, A> {
1829    /// Makes a mutable reference into the given `Rc`.
1830    ///
1831    /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
1832    /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
1833    /// referred to as clone-on-write.
1834    ///
1835    /// However, if there are no other `Rc` pointers to this allocation, but some [`Weak`]
1836    /// pointers, then the [`Weak`] pointers will be disassociated and the inner value will not
1837    /// be cloned.
1838    ///
1839    /// See also [`get_mut`], which will fail rather than cloning the inner value
1840    /// or disassociating [`Weak`] pointers.
1841    ///
1842    /// [`clone`]: Clone::clone
1843    /// [`get_mut`]: Rc::get_mut
1844    ///
1845    /// # Examples
1846    ///
1847    /// ```
1848    /// use std::rc::Rc;
1849    ///
1850    /// let mut data = Rc::new(5);
1851    ///
1852    /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
1853    /// let mut other_data = Rc::clone(&data); // Won't clone inner data
1854    /// *Rc::make_mut(&mut data) += 1;         // Clones inner data
1855    /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
1856    /// *Rc::make_mut(&mut other_data) *= 2;   // Won't clone anything
1857    ///
1858    /// // Now `data` and `other_data` point to different allocations.
1859    /// assert_eq!(*data, 8);
1860    /// assert_eq!(*other_data, 12);
1861    /// ```
1862    ///
1863    /// [`Weak`] pointers will be disassociated:
1864    ///
1865    /// ```
1866    /// use std::rc::Rc;
1867    ///
1868    /// let mut data = Rc::new(75);
1869    /// let weak = Rc::downgrade(&data);
1870    ///
1871    /// assert!(75 == *data);
1872    /// assert!(75 == *weak.upgrade().unwrap());
1873    ///
1874    /// *Rc::make_mut(&mut data) += 1;
1875    ///
1876    /// assert!(76 == *data);
1877    /// assert!(weak.upgrade().is_none());
1878    /// ```
1879    #[inline]
1880    #[stable(feature = "rc_unique", since = "1.4.0")]
1881    pub fn make_mut(this: &mut Self) -> &mut T {
1882        let size_of_val = size_of_val::<T>(&**this);
1883
1884        if Rc::strong_count(this) != 1 {
1885            // Gotta clone the data, there are other Rcs.
1886
1887            let this_data_ref: &T = &**this;
1888            // `in_progress` drops the allocation if we panic before finishing initializing it.
1889            let mut in_progress: UniqueRcUninit<T, A> =
1890                UniqueRcUninit::new(this_data_ref, this.alloc.clone());
1891
1892            // Initialize with clone of this.
1893            let initialized_clone = unsafe {
1894                // Clone. If the clone panics, `in_progress` will be dropped and clean up.
1895                this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
1896                // Cast type of pointer, now that it is initialized.
1897                in_progress.into_rc()
1898            };
1899
1900            // Replace `this` with newly constructed Rc.
1901            *this = initialized_clone;
1902        } else if Rc::weak_count(this) != 0 {
1903            // Can just steal the data, all that's left is Weaks
1904
1905            // We don't need panic-protection like the above branch does, but we might as well
1906            // use the same mechanism.
1907            let mut in_progress: UniqueRcUninit<T, A> =
1908                UniqueRcUninit::new(&**this, this.alloc.clone());
1909            unsafe {
1910                // Initialize `in_progress` with move of **this.
1911                // We have to express this in terms of bytes because `T: ?Sized`; there is no
1912                // operation that just copies a value based on its `size_of_val()`.
1913                ptr::copy_nonoverlapping(
1914                    ptr::from_ref(&**this).cast::<u8>(),
1915                    in_progress.data_ptr().cast::<u8>(),
1916                    size_of_val,
1917                );
1918
1919                this.inner().dec_strong();
1920                // Remove implicit strong-weak ref (no need to craft a fake
1921                // Weak here -- we know other Weaks can clean up for us)
1922                this.inner().dec_weak();
1923                // Replace `this` with newly constructed Rc that has the moved data.
1924                ptr::write(this, in_progress.into_rc());
1925            }
1926        }
1927        // This unsafety is ok because we're guaranteed that the pointer
1928        // returned is the *only* pointer that will ever be returned to T. Our
1929        // reference count is guaranteed to be 1 at this point, and we required
1930        // the `Rc<T>` itself to be `mut`, so we're returning the only possible
1931        // reference to the allocation.
1932        unsafe { &mut this.ptr.as_mut().value }
1933    }
1934}
1935
1936impl<T: Clone, A: Allocator> Rc<T, A> {
1937    /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
1938    /// clone.
1939    ///
1940    /// Assuming `rc_t` is of type `Rc<T>`, this function is functionally equivalent to
1941    /// `(*rc_t).clone()`, but will avoid cloning the inner value where possible.
1942    ///
1943    /// # Examples
1944    ///
1945    /// ```
1946    /// # use std::{ptr, rc::Rc};
1947    /// let inner = String::from("test");
1948    /// let ptr = inner.as_ptr();
1949    ///
1950    /// let rc = Rc::new(inner);
1951    /// let inner = Rc::unwrap_or_clone(rc);
1952    /// // The inner value was not cloned
1953    /// assert!(ptr::eq(ptr, inner.as_ptr()));
1954    ///
1955    /// let rc = Rc::new(inner);
1956    /// let rc2 = rc.clone();
1957    /// let inner = Rc::unwrap_or_clone(rc);
1958    /// // Because there were 2 references, we had to clone the inner value.
1959    /// assert!(!ptr::eq(ptr, inner.as_ptr()));
1960    /// // `rc2` is the last reference, so when we unwrap it we get back
1961    /// // the original `String`.
1962    /// let inner = Rc::unwrap_or_clone(rc2);
1963    /// assert!(ptr::eq(ptr, inner.as_ptr()));
1964    /// ```
1965    #[inline]
1966    #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
1967    pub fn unwrap_or_clone(this: Self) -> T {
1968        Rc::try_unwrap(this).unwrap_or_else(|rc| (*rc).clone())
1969    }
1970}
1971
1972impl<A: Allocator> Rc<dyn Any, A> {
1973    /// Attempts to downcast the `Rc<dyn Any>` to a concrete type.
1974    ///
1975    /// # Examples
1976    ///
1977    /// ```
1978    /// use std::any::Any;
1979    /// use std::rc::Rc;
1980    ///
1981    /// fn print_if_string(value: Rc<dyn Any>) {
1982    ///     if let Ok(string) = value.downcast::<String>() {
1983    ///         println!("String ({}): {}", string.len(), string);
1984    ///     }
1985    /// }
1986    ///
1987    /// let my_string = "Hello World".to_string();
1988    /// print_if_string(Rc::new(my_string));
1989    /// print_if_string(Rc::new(0i8));
1990    /// ```
1991    #[inline]
1992    #[stable(feature = "rc_downcast", since = "1.29.0")]
1993    pub fn downcast<T: Any>(self) -> Result<Rc<T, A>, Self> {
1994        if (*self).is::<T>() {
1995            unsafe {
1996                let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1997                Ok(Rc::from_inner_in(ptr.cast(), alloc))
1998            }
1999        } else {
2000            Err(self)
2001        }
2002    }
2003
2004    /// Downcasts the `Rc<dyn Any>` to a concrete type.
2005    ///
2006    /// For a safe alternative see [`downcast`].
2007    ///
2008    /// # Examples
2009    ///
2010    /// ```
2011    /// #![feature(downcast_unchecked)]
2012    ///
2013    /// use std::any::Any;
2014    /// use std::rc::Rc;
2015    ///
2016    /// let x: Rc<dyn Any> = Rc::new(1_usize);
2017    ///
2018    /// unsafe {
2019    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2020    /// }
2021    /// ```
2022    ///
2023    /// # Safety
2024    ///
2025    /// The contained value must be of type `T`. Calling this method
2026    /// with the incorrect type is *undefined behavior*.
2027    ///
2028    ///
2029    /// [`downcast`]: Self::downcast
2030    #[inline]
2031    #[unstable(feature = "downcast_unchecked", issue = "90850")]
2032    pub unsafe fn downcast_unchecked<T: Any>(self) -> Rc<T, A> {
2033        unsafe {
2034            let (ptr, alloc) = Rc::into_inner_with_allocator(self);
2035            Rc::from_inner_in(ptr.cast(), alloc)
2036        }
2037    }
2038}
2039
2040impl<T: ?Sized> Rc<T> {
2041    /// Allocates an `RcInner<T>` with sufficient space for
2042    /// a possibly-unsized inner value where the value has the layout provided.
2043    ///
2044    /// The function `mem_to_rc_inner` is called with the data pointer
2045    /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
2046    #[cfg(not(no_global_oom_handling))]
2047    unsafe fn allocate_for_layout(
2048        value_layout: Layout,
2049        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2050        mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
2051    ) -> *mut RcInner<T> {
2052        let layout = rc_inner_layout_for_value_layout(value_layout);
2053        unsafe {
2054            Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rc_inner)
2055                .unwrap_or_else(|_| handle_alloc_error(layout))
2056        }
2057    }
2058
2059    /// Allocates an `RcInner<T>` with sufficient space for
2060    /// a possibly-unsized inner value where the value has the layout provided,
2061    /// returning an error if allocation fails.
2062    ///
2063    /// The function `mem_to_rc_inner` is called with the data pointer
2064    /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
2065    #[inline]
2066    unsafe fn try_allocate_for_layout(
2067        value_layout: Layout,
2068        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2069        mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
2070    ) -> Result<*mut RcInner<T>, AllocError> {
2071        let layout = rc_inner_layout_for_value_layout(value_layout);
2072
2073        // Allocate for the layout.
2074        let ptr = allocate(layout)?;
2075
2076        // Initialize the RcInner
2077        let inner = mem_to_rc_inner(ptr.as_non_null_ptr().as_ptr());
2078        unsafe {
2079            debug_assert_eq!(Layout::for_value_raw(inner), layout);
2080
2081            (&raw mut (*inner).strong).write(Cell::new(1));
2082            (&raw mut (*inner).weak).write(Cell::new(1));
2083        }
2084
2085        Ok(inner)
2086    }
2087}
2088
2089impl<T: ?Sized, A: Allocator> Rc<T, A> {
2090    /// Allocates an `RcInner<T>` with sufficient space for an unsized inner value
2091    #[cfg(not(no_global_oom_handling))]
2092    unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut RcInner<T> {
2093        // Allocate for the `RcInner<T>` using the given value.
2094        unsafe {
2095            Rc::<T>::allocate_for_layout(
2096                Layout::for_value_raw(ptr),
2097                |layout| alloc.allocate(layout),
2098                |mem| mem.with_metadata_of(ptr as *const RcInner<T>),
2099            )
2100        }
2101    }
2102
2103    #[cfg(not(no_global_oom_handling))]
2104    fn from_box_in(src: Box<T, A>) -> Rc<T, A> {
2105        unsafe {
2106            let value_size = size_of_val(&*src);
2107            let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2108
2109            // Copy value as bytes
2110            ptr::copy_nonoverlapping(
2111                (&raw const *src) as *const u8,
2112                (&raw mut (*ptr).value) as *mut u8,
2113                value_size,
2114            );
2115
2116            // Free the allocation without dropping its contents
2117            let (bptr, alloc) = Box::into_raw_with_allocator(src);
2118            let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2119            drop(src);
2120
2121            Self::from_ptr_in(ptr, alloc)
2122        }
2123    }
2124}
2125
2126impl<T> Rc<[T]> {
2127    /// Allocates an `RcInner<[T]>` with the given length.
2128    #[cfg(not(no_global_oom_handling))]
2129    unsafe fn allocate_for_slice(len: usize) -> *mut RcInner<[T]> {
2130        unsafe {
2131            Self::allocate_for_layout(
2132                Layout::array::<T>(len).unwrap(),
2133                |layout| Global.allocate(layout),
2134                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
2135            )
2136        }
2137    }
2138
2139    /// Copy elements from slice into newly allocated `Rc<[T]>`
2140    ///
2141    /// Unsafe because the caller must either take ownership or bind `T: Copy`
2142    #[cfg(not(no_global_oom_handling))]
2143    unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
2144        unsafe {
2145            let ptr = Self::allocate_for_slice(v.len());
2146            ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).value) as *mut T, v.len());
2147            Self::from_ptr(ptr)
2148        }
2149    }
2150
2151    /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
2152    ///
2153    /// Behavior is undefined should the size be wrong.
2154    #[cfg(not(no_global_oom_handling))]
2155    unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Rc<[T]> {
2156        // Panic guard while cloning T elements.
2157        // In the event of a panic, elements that have been written
2158        // into the new RcInner will be dropped, then the memory freed.
2159        struct Guard<T> {
2160            mem: NonNull<u8>,
2161            elems: *mut T,
2162            layout: Layout,
2163            n_elems: usize,
2164        }
2165
2166        impl<T> Drop for Guard<T> {
2167            fn drop(&mut self) {
2168                unsafe {
2169                    let slice = from_raw_parts_mut(self.elems, self.n_elems);
2170                    ptr::drop_in_place(slice);
2171
2172                    Global.deallocate(self.mem, self.layout);
2173                }
2174            }
2175        }
2176
2177        unsafe {
2178            let ptr = Self::allocate_for_slice(len);
2179
2180            let mem = ptr as *mut _ as *mut u8;
2181            let layout = Layout::for_value_raw(ptr);
2182
2183            // Pointer to first element
2184            let elems = (&raw mut (*ptr).value) as *mut T;
2185
2186            let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2187
2188            for (i, item) in iter.enumerate() {
2189                ptr::write(elems.add(i), item);
2190                guard.n_elems += 1;
2191            }
2192
2193            // All clear. Forget the guard so it doesn't free the new RcInner.
2194            mem::forget(guard);
2195
2196            Self::from_ptr(ptr)
2197        }
2198    }
2199}
2200
2201impl<T, A: Allocator> Rc<[T], A> {
2202    /// Allocates an `RcInner<[T]>` with the given length.
2203    #[inline]
2204    #[cfg(not(no_global_oom_handling))]
2205    unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut RcInner<[T]> {
2206        unsafe {
2207            Rc::<[T]>::allocate_for_layout(
2208                Layout::array::<T>(len).unwrap(),
2209                |layout| alloc.allocate(layout),
2210                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
2211            )
2212        }
2213    }
2214}
2215
2216#[cfg(not(no_global_oom_handling))]
2217/// Specialization trait used for `From<&[T]>`.
2218trait RcFromSlice<T> {
2219    fn from_slice(slice: &[T]) -> Self;
2220}
2221
2222#[cfg(not(no_global_oom_handling))]
2223impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
2224    #[inline]
2225    default fn from_slice(v: &[T]) -> Self {
2226        unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2227    }
2228}
2229
2230#[cfg(not(no_global_oom_handling))]
2231impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
2232    #[inline]
2233    fn from_slice(v: &[T]) -> Self {
2234        unsafe { Rc::copy_from_slice(v) }
2235    }
2236}
2237
2238#[stable(feature = "rust1", since = "1.0.0")]
2239impl<T: ?Sized, A: Allocator> Deref for Rc<T, A> {
2240    type Target = T;
2241
2242    #[inline(always)]
2243    fn deref(&self) -> &T {
2244        &self.inner().value
2245    }
2246}
2247
2248#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2249unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Rc<T, A> {}
2250
2251//#[unstable(feature = "unique_rc_arc", issue = "112566")]
2252#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2253unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for UniqueRc<T, A> {}
2254
2255#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2256unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2257
2258#[unstable(feature = "deref_pure_trait", issue = "87121")]
2259unsafe impl<T: ?Sized, A: Allocator> DerefPure for Rc<T, A> {}
2260
2261//#[unstable(feature = "unique_rc_arc", issue = "112566")]
2262#[unstable(feature = "deref_pure_trait", issue = "87121")]
2263unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueRc<T, A> {}
2264
2265#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2266impl<T: ?Sized> LegacyReceiver for Rc<T> {}
2267
2268#[stable(feature = "rust1", since = "1.0.0")]
2269unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Rc<T, A> {
2270    /// Drops the `Rc`.
2271    ///
2272    /// This will decrement the strong reference count. If the strong reference
2273    /// count reaches zero then the only other references (if any) are
2274    /// [`Weak`], so we `drop` the inner value.
2275    ///
2276    /// # Examples
2277    ///
2278    /// ```
2279    /// use std::rc::Rc;
2280    ///
2281    /// struct Foo;
2282    ///
2283    /// impl Drop for Foo {
2284    ///     fn drop(&mut self) {
2285    ///         println!("dropped!");
2286    ///     }
2287    /// }
2288    ///
2289    /// let foo  = Rc::new(Foo);
2290    /// let foo2 = Rc::clone(&foo);
2291    ///
2292    /// drop(foo);    // Doesn't print anything
2293    /// drop(foo2);   // Prints "dropped!"
2294    /// ```
2295    #[inline]
2296    fn drop(&mut self) {
2297        unsafe {
2298            self.inner().dec_strong();
2299            if self.inner().strong() == 0 {
2300                self.drop_slow();
2301            }
2302        }
2303    }
2304}
2305
2306#[stable(feature = "rust1", since = "1.0.0")]
2307impl<T: ?Sized, A: Allocator + Clone> Clone for Rc<T, A> {
2308    /// Makes a clone of the `Rc` pointer.
2309    ///
2310    /// This creates another pointer to the same allocation, increasing the
2311    /// strong reference count.
2312    ///
2313    /// # Examples
2314    ///
2315    /// ```
2316    /// use std::rc::Rc;
2317    ///
2318    /// let five = Rc::new(5);
2319    ///
2320    /// let _ = Rc::clone(&five);
2321    /// ```
2322    #[inline]
2323    fn clone(&self) -> Self {
2324        unsafe {
2325            self.inner().inc_strong();
2326            Self::from_inner_in(self.ptr, self.alloc.clone())
2327        }
2328    }
2329}
2330
2331#[unstable(feature = "ergonomic_clones", issue = "132290")]
2332impl<T: ?Sized, A: Allocator + Clone> UseCloned for Rc<T, A> {}
2333
2334#[cfg(not(no_global_oom_handling))]
2335#[stable(feature = "rust1", since = "1.0.0")]
2336impl<T: Default> Default for Rc<T> {
2337    /// Creates a new `Rc<T>`, with the `Default` value for `T`.
2338    ///
2339    /// # Examples
2340    ///
2341    /// ```
2342    /// use std::rc::Rc;
2343    ///
2344    /// let x: Rc<i32> = Default::default();
2345    /// assert_eq!(*x, 0);
2346    /// ```
2347    #[inline]
2348    fn default() -> Self {
2349        unsafe {
2350            Self::from_inner(
2351                Box::leak(Box::write(
2352                    Box::new_uninit(),
2353                    RcInner { strong: Cell::new(1), weak: Cell::new(1), value: T::default() },
2354                ))
2355                .into(),
2356            )
2357        }
2358    }
2359}
2360
2361#[cfg(not(no_global_oom_handling))]
2362#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
2363impl Default for Rc<str> {
2364    /// Creates an empty `str` inside an `Rc`.
2365    ///
2366    /// This may or may not share an allocation with other Rcs on the same thread.
2367    #[inline]
2368    fn default() -> Self {
2369        let rc = Rc::<[u8]>::default();
2370        // `[u8]` has the same layout as `str`.
2371        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
2372    }
2373}
2374
2375#[cfg(not(no_global_oom_handling))]
2376#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
2377impl<T> Default for Rc<[T]> {
2378    /// Creates an empty `[T]` inside an `Rc`.
2379    ///
2380    /// This may or may not share an allocation with other Rcs on the same thread.
2381    #[inline]
2382    fn default() -> Self {
2383        let arr: [T; 0] = [];
2384        Rc::from(arr)
2385    }
2386}
2387
2388#[cfg(not(no_global_oom_handling))]
2389#[stable(feature = "pin_default_impls", since = "CURRENT_RUSTC_VERSION")]
2390impl<T> Default for Pin<Rc<T>>
2391where
2392    T: ?Sized,
2393    Rc<T>: Default,
2394{
2395    #[inline]
2396    fn default() -> Self {
2397        unsafe { Pin::new_unchecked(Rc::<T>::default()) }
2398    }
2399}
2400
2401#[stable(feature = "rust1", since = "1.0.0")]
2402trait RcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
2403    fn eq(&self, other: &Rc<T, A>) -> bool;
2404    fn ne(&self, other: &Rc<T, A>) -> bool;
2405}
2406
2407#[stable(feature = "rust1", since = "1.0.0")]
2408impl<T: ?Sized + PartialEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
2409    #[inline]
2410    default fn eq(&self, other: &Rc<T, A>) -> bool {
2411        **self == **other
2412    }
2413
2414    #[inline]
2415    default fn ne(&self, other: &Rc<T, A>) -> bool {
2416        **self != **other
2417    }
2418}
2419
2420// Hack to allow specializing on `Eq` even though `Eq` has a method.
2421#[rustc_unsafe_specialization_marker]
2422pub(crate) trait MarkerEq: PartialEq<Self> {}
2423
2424impl<T: Eq> MarkerEq for T {}
2425
2426/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
2427/// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
2428/// store large values, that are slow to clone, but also heavy to check for equality, causing this
2429/// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
2430/// the same value, than two `&T`s.
2431///
2432/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
2433#[stable(feature = "rust1", since = "1.0.0")]
2434impl<T: ?Sized + MarkerEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
2435    #[inline]
2436    fn eq(&self, other: &Rc<T, A>) -> bool {
2437        Rc::ptr_eq(self, other) || **self == **other
2438    }
2439
2440    #[inline]
2441    fn ne(&self, other: &Rc<T, A>) -> bool {
2442        !Rc::ptr_eq(self, other) && **self != **other
2443    }
2444}
2445
2446#[stable(feature = "rust1", since = "1.0.0")]
2447impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Rc<T, A> {
2448    /// Equality for two `Rc`s.
2449    ///
2450    /// Two `Rc`s are equal if their inner values are equal, even if they are
2451    /// stored in different allocation.
2452    ///
2453    /// If `T` also implements `Eq` (implying reflexivity of equality),
2454    /// two `Rc`s that point to the same allocation are
2455    /// always equal.
2456    ///
2457    /// # Examples
2458    ///
2459    /// ```
2460    /// use std::rc::Rc;
2461    ///
2462    /// let five = Rc::new(5);
2463    ///
2464    /// assert!(five == Rc::new(5));
2465    /// ```
2466    #[inline]
2467    fn eq(&self, other: &Rc<T, A>) -> bool {
2468        RcEqIdent::eq(self, other)
2469    }
2470
2471    /// Inequality for two `Rc`s.
2472    ///
2473    /// Two `Rc`s are not equal if their inner values are not equal.
2474    ///
2475    /// If `T` also implements `Eq` (implying reflexivity of equality),
2476    /// two `Rc`s that point to the same allocation are
2477    /// always equal.
2478    ///
2479    /// # Examples
2480    ///
2481    /// ```
2482    /// use std::rc::Rc;
2483    ///
2484    /// let five = Rc::new(5);
2485    ///
2486    /// assert!(five != Rc::new(6));
2487    /// ```
2488    #[inline]
2489    fn ne(&self, other: &Rc<T, A>) -> bool {
2490        RcEqIdent::ne(self, other)
2491    }
2492}
2493
2494#[stable(feature = "rust1", since = "1.0.0")]
2495impl<T: ?Sized + Eq, A: Allocator> Eq for Rc<T, A> {}
2496
2497#[stable(feature = "rust1", since = "1.0.0")]
2498impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Rc<T, A> {
2499    /// Partial comparison for two `Rc`s.
2500    ///
2501    /// The two are compared by calling `partial_cmp()` on their inner values.
2502    ///
2503    /// # Examples
2504    ///
2505    /// ```
2506    /// use std::rc::Rc;
2507    /// use std::cmp::Ordering;
2508    ///
2509    /// let five = Rc::new(5);
2510    ///
2511    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
2512    /// ```
2513    #[inline(always)]
2514    fn partial_cmp(&self, other: &Rc<T, A>) -> Option<Ordering> {
2515        (**self).partial_cmp(&**other)
2516    }
2517
2518    /// Less-than comparison for two `Rc`s.
2519    ///
2520    /// The two are compared by calling `<` on their inner values.
2521    ///
2522    /// # Examples
2523    ///
2524    /// ```
2525    /// use std::rc::Rc;
2526    ///
2527    /// let five = Rc::new(5);
2528    ///
2529    /// assert!(five < Rc::new(6));
2530    /// ```
2531    #[inline(always)]
2532    fn lt(&self, other: &Rc<T, A>) -> bool {
2533        **self < **other
2534    }
2535
2536    /// 'Less than or equal to' comparison for two `Rc`s.
2537    ///
2538    /// The two are compared by calling `<=` on their inner values.
2539    ///
2540    /// # Examples
2541    ///
2542    /// ```
2543    /// use std::rc::Rc;
2544    ///
2545    /// let five = Rc::new(5);
2546    ///
2547    /// assert!(five <= Rc::new(5));
2548    /// ```
2549    #[inline(always)]
2550    fn le(&self, other: &Rc<T, A>) -> bool {
2551        **self <= **other
2552    }
2553
2554    /// Greater-than comparison for two `Rc`s.
2555    ///
2556    /// The two are compared by calling `>` on their inner values.
2557    ///
2558    /// # Examples
2559    ///
2560    /// ```
2561    /// use std::rc::Rc;
2562    ///
2563    /// let five = Rc::new(5);
2564    ///
2565    /// assert!(five > Rc::new(4));
2566    /// ```
2567    #[inline(always)]
2568    fn gt(&self, other: &Rc<T, A>) -> bool {
2569        **self > **other
2570    }
2571
2572    /// 'Greater than or equal to' comparison for two `Rc`s.
2573    ///
2574    /// The two are compared by calling `>=` on their inner values.
2575    ///
2576    /// # Examples
2577    ///
2578    /// ```
2579    /// use std::rc::Rc;
2580    ///
2581    /// let five = Rc::new(5);
2582    ///
2583    /// assert!(five >= Rc::new(5));
2584    /// ```
2585    #[inline(always)]
2586    fn ge(&self, other: &Rc<T, A>) -> bool {
2587        **self >= **other
2588    }
2589}
2590
2591#[stable(feature = "rust1", since = "1.0.0")]
2592impl<T: ?Sized + Ord, A: Allocator> Ord for Rc<T, A> {
2593    /// Comparison for two `Rc`s.
2594    ///
2595    /// The two are compared by calling `cmp()` on their inner values.
2596    ///
2597    /// # Examples
2598    ///
2599    /// ```
2600    /// use std::rc::Rc;
2601    /// use std::cmp::Ordering;
2602    ///
2603    /// let five = Rc::new(5);
2604    ///
2605    /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
2606    /// ```
2607    #[inline]
2608    fn cmp(&self, other: &Rc<T, A>) -> Ordering {
2609        (**self).cmp(&**other)
2610    }
2611}
2612
2613#[stable(feature = "rust1", since = "1.0.0")]
2614impl<T: ?Sized + Hash, A: Allocator> Hash for Rc<T, A> {
2615    fn hash<H: Hasher>(&self, state: &mut H) {
2616        (**self).hash(state);
2617    }
2618}
2619
2620#[stable(feature = "rust1", since = "1.0.0")]
2621impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Rc<T, A> {
2622    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2623        fmt::Display::fmt(&**self, f)
2624    }
2625}
2626
2627#[stable(feature = "rust1", since = "1.0.0")]
2628impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Rc<T, A> {
2629    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2630        fmt::Debug::fmt(&**self, f)
2631    }
2632}
2633
2634#[stable(feature = "rust1", since = "1.0.0")]
2635impl<T: ?Sized, A: Allocator> fmt::Pointer for Rc<T, A> {
2636    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2637        fmt::Pointer::fmt(&(&raw const **self), f)
2638    }
2639}
2640
2641#[cfg(not(no_global_oom_handling))]
2642#[stable(feature = "from_for_ptrs", since = "1.6.0")]
2643impl<T> From<T> for Rc<T> {
2644    /// Converts a generic type `T` into an `Rc<T>`
2645    ///
2646    /// The conversion allocates on the heap and moves `t`
2647    /// from the stack into it.
2648    ///
2649    /// # Example
2650    /// ```rust
2651    /// # use std::rc::Rc;
2652    /// let x = 5;
2653    /// let rc = Rc::new(5);
2654    ///
2655    /// assert_eq!(Rc::from(x), rc);
2656    /// ```
2657    fn from(t: T) -> Self {
2658        Rc::new(t)
2659    }
2660}
2661
2662#[cfg(not(no_global_oom_handling))]
2663#[stable(feature = "shared_from_array", since = "1.74.0")]
2664impl<T, const N: usize> From<[T; N]> for Rc<[T]> {
2665    /// Converts a [`[T; N]`](prim@array) into an `Rc<[T]>`.
2666    ///
2667    /// The conversion moves the array into a newly allocated `Rc`.
2668    ///
2669    /// # Example
2670    ///
2671    /// ```
2672    /// # use std::rc::Rc;
2673    /// let original: [i32; 3] = [1, 2, 3];
2674    /// let shared: Rc<[i32]> = Rc::from(original);
2675    /// assert_eq!(&[1, 2, 3], &shared[..]);
2676    /// ```
2677    #[inline]
2678    fn from(v: [T; N]) -> Rc<[T]> {
2679        Rc::<[T; N]>::from(v)
2680    }
2681}
2682
2683#[cfg(not(no_global_oom_handling))]
2684#[stable(feature = "shared_from_slice", since = "1.21.0")]
2685impl<T: Clone> From<&[T]> for Rc<[T]> {
2686    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
2687    ///
2688    /// # Example
2689    ///
2690    /// ```
2691    /// # use std::rc::Rc;
2692    /// let original: &[i32] = &[1, 2, 3];
2693    /// let shared: Rc<[i32]> = Rc::from(original);
2694    /// assert_eq!(&[1, 2, 3], &shared[..]);
2695    /// ```
2696    #[inline]
2697    fn from(v: &[T]) -> Rc<[T]> {
2698        <Self as RcFromSlice<T>>::from_slice(v)
2699    }
2700}
2701
2702#[cfg(not(no_global_oom_handling))]
2703#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2704impl<T: Clone> From<&mut [T]> for Rc<[T]> {
2705    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
2706    ///
2707    /// # Example
2708    ///
2709    /// ```
2710    /// # use std::rc::Rc;
2711    /// let mut original = [1, 2, 3];
2712    /// let original: &mut [i32] = &mut original;
2713    /// let shared: Rc<[i32]> = Rc::from(original);
2714    /// assert_eq!(&[1, 2, 3], &shared[..]);
2715    /// ```
2716    #[inline]
2717    fn from(v: &mut [T]) -> Rc<[T]> {
2718        Rc::from(&*v)
2719    }
2720}
2721
2722#[cfg(not(no_global_oom_handling))]
2723#[stable(feature = "shared_from_slice", since = "1.21.0")]
2724impl From<&str> for Rc<str> {
2725    /// Allocates a reference-counted string slice and copies `v` into it.
2726    ///
2727    /// # Example
2728    ///
2729    /// ```
2730    /// # use std::rc::Rc;
2731    /// let shared: Rc<str> = Rc::from("statue");
2732    /// assert_eq!("statue", &shared[..]);
2733    /// ```
2734    #[inline]
2735    fn from(v: &str) -> Rc<str> {
2736        let rc = Rc::<[u8]>::from(v.as_bytes());
2737        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
2738    }
2739}
2740
2741#[cfg(not(no_global_oom_handling))]
2742#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2743impl From<&mut str> for Rc<str> {
2744    /// Allocates a reference-counted string slice and copies `v` into it.
2745    ///
2746    /// # Example
2747    ///
2748    /// ```
2749    /// # use std::rc::Rc;
2750    /// let mut original = String::from("statue");
2751    /// let original: &mut str = &mut original;
2752    /// let shared: Rc<str> = Rc::from(original);
2753    /// assert_eq!("statue", &shared[..]);
2754    /// ```
2755    #[inline]
2756    fn from(v: &mut str) -> Rc<str> {
2757        Rc::from(&*v)
2758    }
2759}
2760
2761#[cfg(not(no_global_oom_handling))]
2762#[stable(feature = "shared_from_slice", since = "1.21.0")]
2763impl From<String> for Rc<str> {
2764    /// Allocates a reference-counted string slice and copies `v` into it.
2765    ///
2766    /// # Example
2767    ///
2768    /// ```
2769    /// # use std::rc::Rc;
2770    /// let original: String = "statue".to_owned();
2771    /// let shared: Rc<str> = Rc::from(original);
2772    /// assert_eq!("statue", &shared[..]);
2773    /// ```
2774    #[inline]
2775    fn from(v: String) -> Rc<str> {
2776        Rc::from(&v[..])
2777    }
2778}
2779
2780#[cfg(not(no_global_oom_handling))]
2781#[stable(feature = "shared_from_slice", since = "1.21.0")]
2782impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Rc<T, A> {
2783    /// Move a boxed object to a new, reference counted, allocation.
2784    ///
2785    /// # Example
2786    ///
2787    /// ```
2788    /// # use std::rc::Rc;
2789    /// let original: Box<i32> = Box::new(1);
2790    /// let shared: Rc<i32> = Rc::from(original);
2791    /// assert_eq!(1, *shared);
2792    /// ```
2793    #[inline]
2794    fn from(v: Box<T, A>) -> Rc<T, A> {
2795        Rc::from_box_in(v)
2796    }
2797}
2798
2799#[cfg(not(no_global_oom_handling))]
2800#[stable(feature = "shared_from_slice", since = "1.21.0")]
2801impl<T, A: Allocator> From<Vec<T, A>> for Rc<[T], A> {
2802    /// Allocates a reference-counted slice and moves `v`'s items into it.
2803    ///
2804    /// # Example
2805    ///
2806    /// ```
2807    /// # use std::rc::Rc;
2808    /// let unique: Vec<i32> = vec![1, 2, 3];
2809    /// let shared: Rc<[i32]> = Rc::from(unique);
2810    /// assert_eq!(&[1, 2, 3], &shared[..]);
2811    /// ```
2812    #[inline]
2813    fn from(v: Vec<T, A>) -> Rc<[T], A> {
2814        unsafe {
2815            let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
2816
2817            let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
2818            ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).value) as *mut T, len);
2819
2820            // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
2821            // without dropping its contents or the allocator
2822            let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
2823
2824            Self::from_ptr_in(rc_ptr, alloc)
2825        }
2826    }
2827}
2828
2829#[stable(feature = "shared_from_cow", since = "1.45.0")]
2830impl<'a, B> From<Cow<'a, B>> for Rc<B>
2831where
2832    B: ToOwned + ?Sized,
2833    Rc<B>: From<&'a B> + From<B::Owned>,
2834{
2835    /// Creates a reference-counted pointer from a clone-on-write pointer by
2836    /// copying its content.
2837    ///
2838    /// # Example
2839    ///
2840    /// ```rust
2841    /// # use std::rc::Rc;
2842    /// # use std::borrow::Cow;
2843    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
2844    /// let shared: Rc<str> = Rc::from(cow);
2845    /// assert_eq!("eggplant", &shared[..]);
2846    /// ```
2847    #[inline]
2848    fn from(cow: Cow<'a, B>) -> Rc<B> {
2849        match cow {
2850            Cow::Borrowed(s) => Rc::from(s),
2851            Cow::Owned(s) => Rc::from(s),
2852        }
2853    }
2854}
2855
2856#[stable(feature = "shared_from_str", since = "1.62.0")]
2857impl From<Rc<str>> for Rc<[u8]> {
2858    /// Converts a reference-counted string slice into a byte slice.
2859    ///
2860    /// # Example
2861    ///
2862    /// ```
2863    /// # use std::rc::Rc;
2864    /// let string: Rc<str> = Rc::from("eggplant");
2865    /// let bytes: Rc<[u8]> = Rc::from(string);
2866    /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
2867    /// ```
2868    #[inline]
2869    fn from(rc: Rc<str>) -> Self {
2870        // SAFETY: `str` has the same layout as `[u8]`.
2871        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const [u8]) }
2872    }
2873}
2874
2875#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
2876impl<T, A: Allocator, const N: usize> TryFrom<Rc<[T], A>> for Rc<[T; N], A> {
2877    type Error = Rc<[T], A>;
2878
2879    fn try_from(boxed_slice: Rc<[T], A>) -> Result<Self, Self::Error> {
2880        if boxed_slice.len() == N {
2881            let (ptr, alloc) = Rc::into_inner_with_allocator(boxed_slice);
2882            Ok(unsafe { Rc::from_inner_in(ptr.cast(), alloc) })
2883        } else {
2884            Err(boxed_slice)
2885        }
2886    }
2887}
2888
2889#[cfg(not(no_global_oom_handling))]
2890#[stable(feature = "shared_from_iter", since = "1.37.0")]
2891impl<T> FromIterator<T> for Rc<[T]> {
2892    /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
2893    ///
2894    /// # Performance characteristics
2895    ///
2896    /// ## The general case
2897    ///
2898    /// In the general case, collecting into `Rc<[T]>` is done by first
2899    /// collecting into a `Vec<T>`. That is, when writing the following:
2900    ///
2901    /// ```rust
2902    /// # use std::rc::Rc;
2903    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
2904    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2905    /// ```
2906    ///
2907    /// this behaves as if we wrote:
2908    ///
2909    /// ```rust
2910    /// # use std::rc::Rc;
2911    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
2912    ///     .collect::<Vec<_>>() // The first set of allocations happens here.
2913    ///     .into(); // A second allocation for `Rc<[T]>` happens here.
2914    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2915    /// ```
2916    ///
2917    /// This will allocate as many times as needed for constructing the `Vec<T>`
2918    /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
2919    ///
2920    /// ## Iterators of known length
2921    ///
2922    /// When your `Iterator` implements `TrustedLen` and is of an exact size,
2923    /// a single allocation will be made for the `Rc<[T]>`. For example:
2924    ///
2925    /// ```rust
2926    /// # use std::rc::Rc;
2927    /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
2928    /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
2929    /// ```
2930    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
2931        ToRcSlice::to_rc_slice(iter.into_iter())
2932    }
2933}
2934
2935/// Specialization trait used for collecting into `Rc<[T]>`.
2936#[cfg(not(no_global_oom_handling))]
2937trait ToRcSlice<T>: Iterator<Item = T> + Sized {
2938    fn to_rc_slice(self) -> Rc<[T]>;
2939}
2940
2941#[cfg(not(no_global_oom_handling))]
2942impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I {
2943    default fn to_rc_slice(self) -> Rc<[T]> {
2944        self.collect::<Vec<T>>().into()
2945    }
2946}
2947
2948#[cfg(not(no_global_oom_handling))]
2949impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I {
2950    fn to_rc_slice(self) -> Rc<[T]> {
2951        // This is the case for a `TrustedLen` iterator.
2952        let (low, high) = self.size_hint();
2953        if let Some(high) = high {
2954            debug_assert_eq!(
2955                low,
2956                high,
2957                "TrustedLen iterator's size hint is not exact: {:?}",
2958                (low, high)
2959            );
2960
2961            unsafe {
2962                // SAFETY: We need to ensure that the iterator has an exact length and we have.
2963                Rc::from_iter_exact(self, low)
2964            }
2965        } else {
2966            // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
2967            // length exceeding `usize::MAX`.
2968            // The default implementation would collect into a vec which would panic.
2969            // Thus we panic here immediately without invoking `Vec` code.
2970            panic!("capacity overflow");
2971        }
2972    }
2973}
2974
2975/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
2976/// managed allocation.
2977///
2978/// The allocation is accessed by calling [`upgrade`] on the `Weak`
2979/// pointer, which returns an <code>[Option]<[Rc]\<T>></code>.
2980///
2981/// Since a `Weak` reference does not count towards ownership, it will not
2982/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
2983/// guarantees about the value still being present. Thus it may return [`None`]
2984/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
2985/// itself (the backing store) from being deallocated.
2986///
2987/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
2988/// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
2989/// prevent circular references between [`Rc`] pointers, since mutual owning references
2990/// would never allow either [`Rc`] to be dropped. For example, a tree could
2991/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
2992/// pointers from children back to their parents.
2993///
2994/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
2995///
2996/// [`upgrade`]: Weak::upgrade
2997#[stable(feature = "rc_weak", since = "1.4.0")]
2998#[rustc_diagnostic_item = "RcWeak"]
2999pub struct Weak<
3000    T: ?Sized,
3001    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
3002> {
3003    // This is a `NonNull` to allow optimizing the size of this type in enums,
3004    // but it is not necessarily a valid pointer.
3005    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
3006    // to allocate space on the heap. That's not a value a real pointer
3007    // will ever have because RcInner has alignment at least 2.
3008    ptr: NonNull<RcInner<T>>,
3009    alloc: A,
3010}
3011
3012#[stable(feature = "rc_weak", since = "1.4.0")]
3013impl<T: ?Sized, A: Allocator> !Send for Weak<T, A> {}
3014#[stable(feature = "rc_weak", since = "1.4.0")]
3015impl<T: ?Sized, A: Allocator> !Sync for Weak<T, A> {}
3016
3017#[unstable(feature = "coerce_unsized", issue = "18598")]
3018impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
3019
3020#[unstable(feature = "dispatch_from_dyn", issue = "none")]
3021impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
3022
3023impl<T> Weak<T> {
3024    /// Constructs a new `Weak<T>`, without allocating any memory.
3025    /// Calling [`upgrade`] on the return value always gives [`None`].
3026    ///
3027    /// [`upgrade`]: Weak::upgrade
3028    ///
3029    /// # Examples
3030    ///
3031    /// ```
3032    /// use std::rc::Weak;
3033    ///
3034    /// let empty: Weak<i64> = Weak::new();
3035    /// assert!(empty.upgrade().is_none());
3036    /// ```
3037    #[inline]
3038    #[stable(feature = "downgraded_weak", since = "1.10.0")]
3039    #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
3040    #[must_use]
3041    pub const fn new() -> Weak<T> {
3042        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
3043    }
3044}
3045
3046impl<T, A: Allocator> Weak<T, A> {
3047    /// Constructs a new `Weak<T>`, without allocating any memory, technically in the provided
3048    /// allocator.
3049    /// Calling [`upgrade`] on the return value always gives [`None`].
3050    ///
3051    /// [`upgrade`]: Weak::upgrade
3052    ///
3053    /// # Examples
3054    ///
3055    /// ```
3056    /// use std::rc::Weak;
3057    ///
3058    /// let empty: Weak<i64> = Weak::new();
3059    /// assert!(empty.upgrade().is_none());
3060    /// ```
3061    #[inline]
3062    #[unstable(feature = "allocator_api", issue = "32838")]
3063    pub fn new_in(alloc: A) -> Weak<T, A> {
3064        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
3065    }
3066}
3067
3068pub(crate) fn is_dangling<T: ?Sized>(ptr: *const T) -> bool {
3069    (ptr.cast::<()>()).addr() == usize::MAX
3070}
3071
3072/// Helper type to allow accessing the reference counts without
3073/// making any assertions about the data field.
3074struct WeakInner<'a> {
3075    weak: &'a Cell<usize>,
3076    strong: &'a Cell<usize>,
3077}
3078
3079impl<T: ?Sized> Weak<T> {
3080    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
3081    ///
3082    /// This can be used to safely get a strong reference (by calling [`upgrade`]
3083    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
3084    ///
3085    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
3086    /// as these don't own anything; the method still works on them).
3087    ///
3088    /// # Safety
3089    ///
3090    /// The pointer must have originated from the [`into_raw`] and must still own its potential
3091    /// weak reference, and `ptr` must point to a block of memory allocated by the global allocator.
3092    ///
3093    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3094    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3095    /// count is not modified by this operation) and therefore it must be paired with a previous
3096    /// call to [`into_raw`].
3097    ///
3098    /// # Examples
3099    ///
3100    /// ```
3101    /// use std::rc::{Rc, Weak};
3102    ///
3103    /// let strong = Rc::new("hello".to_owned());
3104    ///
3105    /// let raw_1 = Rc::downgrade(&strong).into_raw();
3106    /// let raw_2 = Rc::downgrade(&strong).into_raw();
3107    ///
3108    /// assert_eq!(2, Rc::weak_count(&strong));
3109    ///
3110    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3111    /// assert_eq!(1, Rc::weak_count(&strong));
3112    ///
3113    /// drop(strong);
3114    ///
3115    /// // Decrement the last weak count.
3116    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3117    /// ```
3118    ///
3119    /// [`into_raw`]: Weak::into_raw
3120    /// [`upgrade`]: Weak::upgrade
3121    /// [`new`]: Weak::new
3122    #[inline]
3123    #[stable(feature = "weak_into_raw", since = "1.45.0")]
3124    pub unsafe fn from_raw(ptr: *const T) -> Self {
3125        unsafe { Self::from_raw_in(ptr, Global) }
3126    }
3127
3128    /// Consumes the `Weak<T>` and turns it into a raw pointer.
3129    ///
3130    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
3131    /// one weak reference (the weak count is not modified by this operation). It can be turned
3132    /// back into the `Weak<T>` with [`from_raw`].
3133    ///
3134    /// The same restrictions of accessing the target of the pointer as with
3135    /// [`as_ptr`] apply.
3136    ///
3137    /// # Examples
3138    ///
3139    /// ```
3140    /// use std::rc::{Rc, Weak};
3141    ///
3142    /// let strong = Rc::new("hello".to_owned());
3143    /// let weak = Rc::downgrade(&strong);
3144    /// let raw = weak.into_raw();
3145    ///
3146    /// assert_eq!(1, Rc::weak_count(&strong));
3147    /// assert_eq!("hello", unsafe { &*raw });
3148    ///
3149    /// drop(unsafe { Weak::from_raw(raw) });
3150    /// assert_eq!(0, Rc::weak_count(&strong));
3151    /// ```
3152    ///
3153    /// [`from_raw`]: Weak::from_raw
3154    /// [`as_ptr`]: Weak::as_ptr
3155    #[must_use = "losing the pointer will leak memory"]
3156    #[stable(feature = "weak_into_raw", since = "1.45.0")]
3157    pub fn into_raw(self) -> *const T {
3158        mem::ManuallyDrop::new(self).as_ptr()
3159    }
3160}
3161
3162impl<T: ?Sized, A: Allocator> Weak<T, A> {
3163    /// Returns a reference to the underlying allocator.
3164    #[inline]
3165    #[unstable(feature = "allocator_api", issue = "32838")]
3166    pub fn allocator(&self) -> &A {
3167        &self.alloc
3168    }
3169
3170    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
3171    ///
3172    /// The pointer is valid only if there are some strong references. The pointer may be dangling,
3173    /// unaligned or even [`null`] otherwise.
3174    ///
3175    /// # Examples
3176    ///
3177    /// ```
3178    /// use std::rc::Rc;
3179    /// use std::ptr;
3180    ///
3181    /// let strong = Rc::new("hello".to_owned());
3182    /// let weak = Rc::downgrade(&strong);
3183    /// // Both point to the same object
3184    /// assert!(ptr::eq(&*strong, weak.as_ptr()));
3185    /// // The strong here keeps it alive, so we can still access the object.
3186    /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
3187    ///
3188    /// drop(strong);
3189    /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
3190    /// // undefined behavior.
3191    /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
3192    /// ```
3193    ///
3194    /// [`null`]: ptr::null
3195    #[must_use]
3196    #[stable(feature = "rc_as_ptr", since = "1.45.0")]
3197    pub fn as_ptr(&self) -> *const T {
3198        let ptr: *mut RcInner<T> = NonNull::as_ptr(self.ptr);
3199
3200        if is_dangling(ptr) {
3201            // If the pointer is dangling, we return the sentinel directly. This cannot be
3202            // a valid payload address, as the payload is at least as aligned as RcInner (usize).
3203            ptr as *const T
3204        } else {
3205            // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
3206            // The payload may be dropped at this point, and we have to maintain provenance,
3207            // so use raw pointer manipulation.
3208            unsafe { &raw mut (*ptr).value }
3209        }
3210    }
3211
3212    /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
3213    ///
3214    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
3215    /// one weak reference (the weak count is not modified by this operation). It can be turned
3216    /// back into the `Weak<T>` with [`from_raw_in`].
3217    ///
3218    /// The same restrictions of accessing the target of the pointer as with
3219    /// [`as_ptr`] apply.
3220    ///
3221    /// # Examples
3222    ///
3223    /// ```
3224    /// #![feature(allocator_api)]
3225    /// use std::rc::{Rc, Weak};
3226    /// use std::alloc::System;
3227    ///
3228    /// let strong = Rc::new_in("hello".to_owned(), System);
3229    /// let weak = Rc::downgrade(&strong);
3230    /// let (raw, alloc) = weak.into_raw_with_allocator();
3231    ///
3232    /// assert_eq!(1, Rc::weak_count(&strong));
3233    /// assert_eq!("hello", unsafe { &*raw });
3234    ///
3235    /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
3236    /// assert_eq!(0, Rc::weak_count(&strong));
3237    /// ```
3238    ///
3239    /// [`from_raw_in`]: Weak::from_raw_in
3240    /// [`as_ptr`]: Weak::as_ptr
3241    #[must_use = "losing the pointer will leak memory"]
3242    #[inline]
3243    #[unstable(feature = "allocator_api", issue = "32838")]
3244    pub fn into_raw_with_allocator(self) -> (*const T, A) {
3245        let this = mem::ManuallyDrop::new(self);
3246        let result = this.as_ptr();
3247        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
3248        let alloc = unsafe { ptr::read(&this.alloc) };
3249        (result, alloc)
3250    }
3251
3252    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
3253    ///
3254    /// This can be used to safely get a strong reference (by calling [`upgrade`]
3255    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
3256    ///
3257    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
3258    /// as these don't own anything; the method still works on them).
3259    ///
3260    /// # Safety
3261    ///
3262    /// The pointer must have originated from the [`into_raw`] and must still own its potential
3263    /// weak reference, and `ptr` must point to a block of memory allocated by `alloc`.
3264    ///
3265    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3266    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3267    /// count is not modified by this operation) and therefore it must be paired with a previous
3268    /// call to [`into_raw`].
3269    ///
3270    /// # Examples
3271    ///
3272    /// ```
3273    /// use std::rc::{Rc, Weak};
3274    ///
3275    /// let strong = Rc::new("hello".to_owned());
3276    ///
3277    /// let raw_1 = Rc::downgrade(&strong).into_raw();
3278    /// let raw_2 = Rc::downgrade(&strong).into_raw();
3279    ///
3280    /// assert_eq!(2, Rc::weak_count(&strong));
3281    ///
3282    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3283    /// assert_eq!(1, Rc::weak_count(&strong));
3284    ///
3285    /// drop(strong);
3286    ///
3287    /// // Decrement the last weak count.
3288    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3289    /// ```
3290    ///
3291    /// [`into_raw`]: Weak::into_raw
3292    /// [`upgrade`]: Weak::upgrade
3293    /// [`new`]: Weak::new
3294    #[inline]
3295    #[unstable(feature = "allocator_api", issue = "32838")]
3296    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3297        // See Weak::as_ptr for context on how the input pointer is derived.
3298
3299        let ptr = if is_dangling(ptr) {
3300            // This is a dangling Weak.
3301            ptr as *mut RcInner<T>
3302        } else {
3303            // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3304            // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3305            let offset = unsafe { data_offset(ptr) };
3306            // Thus, we reverse the offset to get the whole RcInner.
3307            // SAFETY: the pointer originated from a Weak, so this offset is safe.
3308            unsafe { ptr.byte_sub(offset) as *mut RcInner<T> }
3309        };
3310
3311        // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3312        Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3313    }
3314
3315    /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
3316    /// dropping of the inner value if successful.
3317    ///
3318    /// Returns [`None`] if the inner value has since been dropped.
3319    ///
3320    /// # Examples
3321    ///
3322    /// ```
3323    /// use std::rc::Rc;
3324    ///
3325    /// let five = Rc::new(5);
3326    ///
3327    /// let weak_five = Rc::downgrade(&five);
3328    ///
3329    /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
3330    /// assert!(strong_five.is_some());
3331    ///
3332    /// // Destroy all strong pointers.
3333    /// drop(strong_five);
3334    /// drop(five);
3335    ///
3336    /// assert!(weak_five.upgrade().is_none());
3337    /// ```
3338    #[must_use = "this returns a new `Rc`, \
3339                  without modifying the original weak pointer"]
3340    #[stable(feature = "rc_weak", since = "1.4.0")]
3341    pub fn upgrade(&self) -> Option<Rc<T, A>>
3342    where
3343        A: Clone,
3344    {
3345        let inner = self.inner()?;
3346
3347        if inner.strong() == 0 {
3348            None
3349        } else {
3350            unsafe {
3351                inner.inc_strong();
3352                Some(Rc::from_inner_in(self.ptr, self.alloc.clone()))
3353            }
3354        }
3355    }
3356
3357    /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
3358    ///
3359    /// If `self` was created using [`Weak::new`], this will return 0.
3360    #[must_use]
3361    #[stable(feature = "weak_counts", since = "1.41.0")]
3362    pub fn strong_count(&self) -> usize {
3363        if let Some(inner) = self.inner() { inner.strong() } else { 0 }
3364    }
3365
3366    /// Gets the number of `Weak` pointers pointing to this allocation.
3367    ///
3368    /// If no strong pointers remain, this will return zero.
3369    #[must_use]
3370    #[stable(feature = "weak_counts", since = "1.41.0")]
3371    pub fn weak_count(&self) -> usize {
3372        if let Some(inner) = self.inner() {
3373            if inner.strong() > 0 {
3374                inner.weak() - 1 // subtract the implicit weak ptr
3375            } else {
3376                0
3377            }
3378        } else {
3379            0
3380        }
3381    }
3382
3383    /// Returns `None` when the pointer is dangling and there is no allocated `RcInner`,
3384    /// (i.e., when this `Weak` was created by `Weak::new`).
3385    #[inline]
3386    fn inner(&self) -> Option<WeakInner<'_>> {
3387        if is_dangling(self.ptr.as_ptr()) {
3388            None
3389        } else {
3390            // We are careful to *not* create a reference covering the "data" field, as
3391            // the field may be mutated concurrently (for example, if the last `Rc`
3392            // is dropped, the data field will be dropped in-place).
3393            Some(unsafe {
3394                let ptr = self.ptr.as_ptr();
3395                WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
3396            })
3397        }
3398    }
3399
3400    /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3401    /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3402    /// this function ignores the metadata of  `dyn Trait` pointers.
3403    ///
3404    /// # Notes
3405    ///
3406    /// Since this compares pointers it means that `Weak::new()` will equal each
3407    /// other, even though they don't point to any allocation.
3408    ///
3409    /// # Examples
3410    ///
3411    /// ```
3412    /// use std::rc::Rc;
3413    ///
3414    /// let first_rc = Rc::new(5);
3415    /// let first = Rc::downgrade(&first_rc);
3416    /// let second = Rc::downgrade(&first_rc);
3417    ///
3418    /// assert!(first.ptr_eq(&second));
3419    ///
3420    /// let third_rc = Rc::new(5);
3421    /// let third = Rc::downgrade(&third_rc);
3422    ///
3423    /// assert!(!first.ptr_eq(&third));
3424    /// ```
3425    ///
3426    /// Comparing `Weak::new`.
3427    ///
3428    /// ```
3429    /// use std::rc::{Rc, Weak};
3430    ///
3431    /// let first = Weak::new();
3432    /// let second = Weak::new();
3433    /// assert!(first.ptr_eq(&second));
3434    ///
3435    /// let third_rc = Rc::new(());
3436    /// let third = Rc::downgrade(&third_rc);
3437    /// assert!(!first.ptr_eq(&third));
3438    /// ```
3439    #[inline]
3440    #[must_use]
3441    #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3442    pub fn ptr_eq(&self, other: &Self) -> bool {
3443        ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3444    }
3445}
3446
3447#[stable(feature = "rc_weak", since = "1.4.0")]
3448unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3449    /// Drops the `Weak` pointer.
3450    ///
3451    /// # Examples
3452    ///
3453    /// ```
3454    /// use std::rc::{Rc, Weak};
3455    ///
3456    /// struct Foo;
3457    ///
3458    /// impl Drop for Foo {
3459    ///     fn drop(&mut self) {
3460    ///         println!("dropped!");
3461    ///     }
3462    /// }
3463    ///
3464    /// let foo = Rc::new(Foo);
3465    /// let weak_foo = Rc::downgrade(&foo);
3466    /// let other_weak_foo = Weak::clone(&weak_foo);
3467    ///
3468    /// drop(weak_foo);   // Doesn't print anything
3469    /// drop(foo);        // Prints "dropped!"
3470    ///
3471    /// assert!(other_weak_foo.upgrade().is_none());
3472    /// ```
3473    fn drop(&mut self) {
3474        let inner = if let Some(inner) = self.inner() { inner } else { return };
3475
3476        inner.dec_weak();
3477        // the weak count starts at 1, and will only go to zero if all
3478        // the strong pointers have disappeared.
3479        if inner.weak() == 0 {
3480            unsafe {
3481                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
3482            }
3483        }
3484    }
3485}
3486
3487#[stable(feature = "rc_weak", since = "1.4.0")]
3488impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3489    /// Makes a clone of the `Weak` pointer that points to the same allocation.
3490    ///
3491    /// # Examples
3492    ///
3493    /// ```
3494    /// use std::rc::{Rc, Weak};
3495    ///
3496    /// let weak_five = Rc::downgrade(&Rc::new(5));
3497    ///
3498    /// let _ = Weak::clone(&weak_five);
3499    /// ```
3500    #[inline]
3501    fn clone(&self) -> Weak<T, A> {
3502        if let Some(inner) = self.inner() {
3503            inner.inc_weak()
3504        }
3505        Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3506    }
3507}
3508
3509#[unstable(feature = "ergonomic_clones", issue = "132290")]
3510impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3511
3512#[stable(feature = "rc_weak", since = "1.4.0")]
3513impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
3514    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3515        write!(f, "(Weak)")
3516    }
3517}
3518
3519#[stable(feature = "downgraded_weak", since = "1.10.0")]
3520impl<T> Default for Weak<T> {
3521    /// Constructs a new `Weak<T>`, without allocating any memory.
3522    /// Calling [`upgrade`] on the return value always gives [`None`].
3523    ///
3524    /// [`upgrade`]: Weak::upgrade
3525    ///
3526    /// # Examples
3527    ///
3528    /// ```
3529    /// use std::rc::Weak;
3530    ///
3531    /// let empty: Weak<i64> = Default::default();
3532    /// assert!(empty.upgrade().is_none());
3533    /// ```
3534    fn default() -> Weak<T> {
3535        Weak::new()
3536    }
3537}
3538
3539// NOTE: If you mem::forget Rcs (or Weaks), drop is skipped and the ref-count
3540// is not decremented, meaning the ref-count can overflow, and then you can
3541// free the allocation while outstanding Rcs (or Weaks) exist, which would be
3542// unsound. We abort because this is such a degenerate scenario that we don't
3543// care about what happens -- no real program should ever experience this.
3544//
3545// This should have negligible overhead since you don't actually need to
3546// clone these much in Rust thanks to ownership and move-semantics.
3547
3548#[doc(hidden)]
3549trait RcInnerPtr {
3550    fn weak_ref(&self) -> &Cell<usize>;
3551    fn strong_ref(&self) -> &Cell<usize>;
3552
3553    #[inline]
3554    fn strong(&self) -> usize {
3555        self.strong_ref().get()
3556    }
3557
3558    #[inline]
3559    fn inc_strong(&self) {
3560        let strong = self.strong();
3561
3562        // We insert an `assume` here to hint LLVM at an otherwise
3563        // missed optimization.
3564        // SAFETY: The reference count will never be zero when this is
3565        // called.
3566        unsafe {
3567            hint::assert_unchecked(strong != 0);
3568        }
3569
3570        let strong = strong.wrapping_add(1);
3571        self.strong_ref().set(strong);
3572
3573        // We want to abort on overflow instead of dropping the value.
3574        // Checking for overflow after the store instead of before
3575        // allows for slightly better code generation.
3576        if core::intrinsics::unlikely(strong == 0) {
3577            abort();
3578        }
3579    }
3580
3581    #[inline]
3582    fn dec_strong(&self) {
3583        self.strong_ref().set(self.strong() - 1);
3584    }
3585
3586    #[inline]
3587    fn weak(&self) -> usize {
3588        self.weak_ref().get()
3589    }
3590
3591    #[inline]
3592    fn inc_weak(&self) {
3593        let weak = self.weak();
3594
3595        // We insert an `assume` here to hint LLVM at an otherwise
3596        // missed optimization.
3597        // SAFETY: The reference count will never be zero when this is
3598        // called.
3599        unsafe {
3600            hint::assert_unchecked(weak != 0);
3601        }
3602
3603        let weak = weak.wrapping_add(1);
3604        self.weak_ref().set(weak);
3605
3606        // We want to abort on overflow instead of dropping the value.
3607        // Checking for overflow after the store instead of before
3608        // allows for slightly better code generation.
3609        if core::intrinsics::unlikely(weak == 0) {
3610            abort();
3611        }
3612    }
3613
3614    #[inline]
3615    fn dec_weak(&self) {
3616        self.weak_ref().set(self.weak() - 1);
3617    }
3618}
3619
3620impl<T: ?Sized> RcInnerPtr for RcInner<T> {
3621    #[inline(always)]
3622    fn weak_ref(&self) -> &Cell<usize> {
3623        &self.weak
3624    }
3625
3626    #[inline(always)]
3627    fn strong_ref(&self) -> &Cell<usize> {
3628        &self.strong
3629    }
3630}
3631
3632impl<'a> RcInnerPtr for WeakInner<'a> {
3633    #[inline(always)]
3634    fn weak_ref(&self) -> &Cell<usize> {
3635        self.weak
3636    }
3637
3638    #[inline(always)]
3639    fn strong_ref(&self) -> &Cell<usize> {
3640        self.strong
3641    }
3642}
3643
3644#[stable(feature = "rust1", since = "1.0.0")]
3645impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Rc<T, A> {
3646    fn borrow(&self) -> &T {
3647        &**self
3648    }
3649}
3650
3651#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
3652impl<T: ?Sized, A: Allocator> AsRef<T> for Rc<T, A> {
3653    fn as_ref(&self) -> &T {
3654        &**self
3655    }
3656}
3657
3658#[stable(feature = "pin", since = "1.33.0")]
3659impl<T: ?Sized, A: Allocator> Unpin for Rc<T, A> {}
3660
3661/// Gets the offset within an `RcInner` for the payload behind a pointer.
3662///
3663/// # Safety
3664///
3665/// The pointer must point to (and have valid metadata for) a previously
3666/// valid instance of T, but the T is allowed to be dropped.
3667unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
3668    // Align the unsized value to the end of the RcInner.
3669    // Because RcInner is repr(C), it will always be the last field in memory.
3670    // SAFETY: since the only unsized types possible are slices, trait objects,
3671    // and extern types, the input safety requirement is currently enough to
3672    // satisfy the requirements of align_of_val_raw; this is an implementation
3673    // detail of the language that must not be relied upon outside of std.
3674    unsafe { data_offset_align(align_of_val_raw(ptr)) }
3675}
3676
3677#[inline]
3678fn data_offset_align(align: usize) -> usize {
3679    let layout = Layout::new::<RcInner<()>>();
3680    layout.size() + layout.padding_needed_for(align)
3681}
3682
3683/// A uniquely owned [`Rc`].
3684///
3685/// This represents an `Rc` that is known to be uniquely owned -- that is, have exactly one strong
3686/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
3687/// references will fail unless the `UniqueRc` they point to has been converted into a regular `Rc`.
3688///
3689/// Because they are uniquely owned, the contents of a `UniqueRc` can be freely mutated. A common
3690/// use case is to have an object be mutable during its initialization phase but then have it become
3691/// immutable and converted to a normal `Rc`.
3692///
3693/// This can be used as a flexible way to create cyclic data structures, as in the example below.
3694///
3695/// ```
3696/// #![feature(unique_rc_arc)]
3697/// use std::rc::{Rc, Weak, UniqueRc};
3698///
3699/// struct Gadget {
3700///     #[allow(dead_code)]
3701///     me: Weak<Gadget>,
3702/// }
3703///
3704/// fn create_gadget() -> Option<Rc<Gadget>> {
3705///     let mut rc = UniqueRc::new(Gadget {
3706///         me: Weak::new(),
3707///     });
3708///     rc.me = UniqueRc::downgrade(&rc);
3709///     Some(UniqueRc::into_rc(rc))
3710/// }
3711///
3712/// create_gadget().unwrap();
3713/// ```
3714///
3715/// An advantage of using `UniqueRc` over [`Rc::new_cyclic`] to build cyclic data structures is that
3716/// [`Rc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
3717/// previous example, `UniqueRc` allows for more flexibility in the construction of cyclic data,
3718/// including fallible or async constructors.
3719#[unstable(feature = "unique_rc_arc", issue = "112566")]
3720pub struct UniqueRc<
3721    T: ?Sized,
3722    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
3723> {
3724    ptr: NonNull<RcInner<T>>,
3725    // Define the ownership of `RcInner<T>` for drop-check
3726    _marker: PhantomData<RcInner<T>>,
3727    // Invariance is necessary for soundness: once other `Weak`
3728    // references exist, we already have a form of shared mutability!
3729    _marker2: PhantomData<*mut T>,
3730    alloc: A,
3731}
3732
3733// Not necessary for correctness since `UniqueRc` contains `NonNull`,
3734// but having an explicit negative impl is nice for documentation purposes
3735// and results in nicer error messages.
3736#[unstable(feature = "unique_rc_arc", issue = "112566")]
3737impl<T: ?Sized, A: Allocator> !Send for UniqueRc<T, A> {}
3738
3739// Not necessary for correctness since `UniqueRc` contains `NonNull`,
3740// but having an explicit negative impl is nice for documentation purposes
3741// and results in nicer error messages.
3742#[unstable(feature = "unique_rc_arc", issue = "112566")]
3743impl<T: ?Sized, A: Allocator> !Sync for UniqueRc<T, A> {}
3744
3745#[unstable(feature = "unique_rc_arc", issue = "112566")]
3746impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueRc<U, A>>
3747    for UniqueRc<T, A>
3748{
3749}
3750
3751//#[unstable(feature = "unique_rc_arc", issue = "112566")]
3752#[unstable(feature = "dispatch_from_dyn", issue = "none")]
3753impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueRc<U>> for UniqueRc<T> {}
3754
3755#[unstable(feature = "unique_rc_arc", issue = "112566")]
3756impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueRc<T, A> {
3757    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3758        fmt::Display::fmt(&**self, f)
3759    }
3760}
3761
3762#[unstable(feature = "unique_rc_arc", issue = "112566")]
3763impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueRc<T, A> {
3764    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3765        fmt::Debug::fmt(&**self, f)
3766    }
3767}
3768
3769#[unstable(feature = "unique_rc_arc", issue = "112566")]
3770impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueRc<T, A> {
3771    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3772        fmt::Pointer::fmt(&(&raw const **self), f)
3773    }
3774}
3775
3776#[unstable(feature = "unique_rc_arc", issue = "112566")]
3777impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueRc<T, A> {
3778    fn borrow(&self) -> &T {
3779        &**self
3780    }
3781}
3782
3783#[unstable(feature = "unique_rc_arc", issue = "112566")]
3784impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueRc<T, A> {
3785    fn borrow_mut(&mut self) -> &mut T {
3786        &mut **self
3787    }
3788}
3789
3790#[unstable(feature = "unique_rc_arc", issue = "112566")]
3791impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueRc<T, A> {
3792    fn as_ref(&self) -> &T {
3793        &**self
3794    }
3795}
3796
3797#[unstable(feature = "unique_rc_arc", issue = "112566")]
3798impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueRc<T, A> {
3799    fn as_mut(&mut self) -> &mut T {
3800        &mut **self
3801    }
3802}
3803
3804#[unstable(feature = "unique_rc_arc", issue = "112566")]
3805impl<T: ?Sized, A: Allocator> Unpin for UniqueRc<T, A> {}
3806
3807#[unstable(feature = "unique_rc_arc", issue = "112566")]
3808impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueRc<T, A> {
3809    /// Equality for two `UniqueRc`s.
3810    ///
3811    /// Two `UniqueRc`s are equal if their inner values are equal.
3812    ///
3813    /// # Examples
3814    ///
3815    /// ```
3816    /// #![feature(unique_rc_arc)]
3817    /// use std::rc::UniqueRc;
3818    ///
3819    /// let five = UniqueRc::new(5);
3820    ///
3821    /// assert!(five == UniqueRc::new(5));
3822    /// ```
3823    #[inline]
3824    fn eq(&self, other: &Self) -> bool {
3825        PartialEq::eq(&**self, &**other)
3826    }
3827
3828    /// Inequality for two `UniqueRc`s.
3829    ///
3830    /// Two `UniqueRc`s are not equal if their inner values are not equal.
3831    ///
3832    /// # Examples
3833    ///
3834    /// ```
3835    /// #![feature(unique_rc_arc)]
3836    /// use std::rc::UniqueRc;
3837    ///
3838    /// let five = UniqueRc::new(5);
3839    ///
3840    /// assert!(five != UniqueRc::new(6));
3841    /// ```
3842    #[inline]
3843    fn ne(&self, other: &Self) -> bool {
3844        PartialEq::ne(&**self, &**other)
3845    }
3846}
3847
3848#[unstable(feature = "unique_rc_arc", issue = "112566")]
3849impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueRc<T, A> {
3850    /// Partial comparison for two `UniqueRc`s.
3851    ///
3852    /// The two are compared by calling `partial_cmp()` on their inner values.
3853    ///
3854    /// # Examples
3855    ///
3856    /// ```
3857    /// #![feature(unique_rc_arc)]
3858    /// use std::rc::UniqueRc;
3859    /// use std::cmp::Ordering;
3860    ///
3861    /// let five = UniqueRc::new(5);
3862    ///
3863    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueRc::new(6)));
3864    /// ```
3865    #[inline(always)]
3866    fn partial_cmp(&self, other: &UniqueRc<T, A>) -> Option<Ordering> {
3867        (**self).partial_cmp(&**other)
3868    }
3869
3870    /// Less-than comparison for two `UniqueRc`s.
3871    ///
3872    /// The two are compared by calling `<` on their inner values.
3873    ///
3874    /// # Examples
3875    ///
3876    /// ```
3877    /// #![feature(unique_rc_arc)]
3878    /// use std::rc::UniqueRc;
3879    ///
3880    /// let five = UniqueRc::new(5);
3881    ///
3882    /// assert!(five < UniqueRc::new(6));
3883    /// ```
3884    #[inline(always)]
3885    fn lt(&self, other: &UniqueRc<T, A>) -> bool {
3886        **self < **other
3887    }
3888
3889    /// 'Less than or equal to' comparison for two `UniqueRc`s.
3890    ///
3891    /// The two are compared by calling `<=` on their inner values.
3892    ///
3893    /// # Examples
3894    ///
3895    /// ```
3896    /// #![feature(unique_rc_arc)]
3897    /// use std::rc::UniqueRc;
3898    ///
3899    /// let five = UniqueRc::new(5);
3900    ///
3901    /// assert!(five <= UniqueRc::new(5));
3902    /// ```
3903    #[inline(always)]
3904    fn le(&self, other: &UniqueRc<T, A>) -> bool {
3905        **self <= **other
3906    }
3907
3908    /// Greater-than comparison for two `UniqueRc`s.
3909    ///
3910    /// The two are compared by calling `>` on their inner values.
3911    ///
3912    /// # Examples
3913    ///
3914    /// ```
3915    /// #![feature(unique_rc_arc)]
3916    /// use std::rc::UniqueRc;
3917    ///
3918    /// let five = UniqueRc::new(5);
3919    ///
3920    /// assert!(five > UniqueRc::new(4));
3921    /// ```
3922    #[inline(always)]
3923    fn gt(&self, other: &UniqueRc<T, A>) -> bool {
3924        **self > **other
3925    }
3926
3927    /// 'Greater than or equal to' comparison for two `UniqueRc`s.
3928    ///
3929    /// The two are compared by calling `>=` on their inner values.
3930    ///
3931    /// # Examples
3932    ///
3933    /// ```
3934    /// #![feature(unique_rc_arc)]
3935    /// use std::rc::UniqueRc;
3936    ///
3937    /// let five = UniqueRc::new(5);
3938    ///
3939    /// assert!(five >= UniqueRc::new(5));
3940    /// ```
3941    #[inline(always)]
3942    fn ge(&self, other: &UniqueRc<T, A>) -> bool {
3943        **self >= **other
3944    }
3945}
3946
3947#[unstable(feature = "unique_rc_arc", issue = "112566")]
3948impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueRc<T, A> {
3949    /// Comparison for two `UniqueRc`s.
3950    ///
3951    /// The two are compared by calling `cmp()` on their inner values.
3952    ///
3953    /// # Examples
3954    ///
3955    /// ```
3956    /// #![feature(unique_rc_arc)]
3957    /// use std::rc::UniqueRc;
3958    /// use std::cmp::Ordering;
3959    ///
3960    /// let five = UniqueRc::new(5);
3961    ///
3962    /// assert_eq!(Ordering::Less, five.cmp(&UniqueRc::new(6)));
3963    /// ```
3964    #[inline]
3965    fn cmp(&self, other: &UniqueRc<T, A>) -> Ordering {
3966        (**self).cmp(&**other)
3967    }
3968}
3969
3970#[unstable(feature = "unique_rc_arc", issue = "112566")]
3971impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueRc<T, A> {}
3972
3973#[unstable(feature = "unique_rc_arc", issue = "112566")]
3974impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueRc<T, A> {
3975    fn hash<H: Hasher>(&self, state: &mut H) {
3976        (**self).hash(state);
3977    }
3978}
3979
3980// Depends on A = Global
3981impl<T> UniqueRc<T> {
3982    /// Creates a new `UniqueRc`.
3983    ///
3984    /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
3985    /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
3986    /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
3987    /// point to the new [`Rc`].
3988    #[cfg(not(no_global_oom_handling))]
3989    #[unstable(feature = "unique_rc_arc", issue = "112566")]
3990    pub fn new(value: T) -> Self {
3991        Self::new_in(value, Global)
3992    }
3993}
3994
3995impl<T, A: Allocator> UniqueRc<T, A> {
3996    /// Creates a new `UniqueRc` in the provided allocator.
3997    ///
3998    /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
3999    /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
4000    /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
4001    /// point to the new [`Rc`].
4002    #[cfg(not(no_global_oom_handling))]
4003    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4004    pub fn new_in(value: T, alloc: A) -> Self {
4005        let (ptr, alloc) = Box::into_unique(Box::new_in(
4006            RcInner {
4007                strong: Cell::new(0),
4008                // keep one weak reference so if all the weak pointers that are created are dropped
4009                // the UniqueRc still stays valid.
4010                weak: Cell::new(1),
4011                value,
4012            },
4013            alloc,
4014        ));
4015        Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4016    }
4017}
4018
4019impl<T: ?Sized, A: Allocator> UniqueRc<T, A> {
4020    /// Converts the `UniqueRc` into a regular [`Rc`].
4021    ///
4022    /// This consumes the `UniqueRc` and returns a regular [`Rc`] that contains the `value` that
4023    /// is passed to `into_rc`.
4024    ///
4025    /// Any weak references created before this method is called can now be upgraded to strong
4026    /// references.
4027    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4028    pub fn into_rc(this: Self) -> Rc<T, A> {
4029        let mut this = ManuallyDrop::new(this);
4030
4031        // Move the allocator out.
4032        // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4033        // a `ManuallyDrop`.
4034        let alloc: A = unsafe { ptr::read(&this.alloc) };
4035
4036        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4037        unsafe {
4038            // Convert our weak reference into a strong reference
4039            this.ptr.as_mut().strong.set(1);
4040            Rc::from_inner_in(this.ptr, alloc)
4041        }
4042    }
4043}
4044
4045impl<T: ?Sized, A: Allocator + Clone> UniqueRc<T, A> {
4046    /// Creates a new weak reference to the `UniqueRc`.
4047    ///
4048    /// Attempting to upgrade this weak reference will fail before the `UniqueRc` has been converted
4049    /// to a [`Rc`] using [`UniqueRc::into_rc`].
4050    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4051    pub fn downgrade(this: &Self) -> Weak<T, A> {
4052        // SAFETY: This pointer was allocated at creation time and we guarantee that we only have
4053        // one strong reference before converting to a regular Rc.
4054        unsafe {
4055            this.ptr.as_ref().inc_weak();
4056        }
4057        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4058    }
4059}
4060
4061#[unstable(feature = "unique_rc_arc", issue = "112566")]
4062impl<T: ?Sized, A: Allocator> Deref for UniqueRc<T, A> {
4063    type Target = T;
4064
4065    fn deref(&self) -> &T {
4066        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4067        unsafe { &self.ptr.as_ref().value }
4068    }
4069}
4070
4071#[unstable(feature = "unique_rc_arc", issue = "112566")]
4072impl<T: ?Sized, A: Allocator> DerefMut for UniqueRc<T, A> {
4073    fn deref_mut(&mut self) -> &mut T {
4074        // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4075        // have unique ownership and therefore it's safe to make a mutable reference because
4076        // `UniqueRc` owns the only strong reference to itself.
4077        unsafe { &mut (*self.ptr.as_ptr()).value }
4078    }
4079}
4080
4081#[unstable(feature = "unique_rc_arc", issue = "112566")]
4082unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueRc<T, A> {
4083    fn drop(&mut self) {
4084        unsafe {
4085            // destroy the contained object
4086            drop_in_place(DerefMut::deref_mut(self));
4087
4088            // remove the implicit "strong weak" pointer now that we've destroyed the contents.
4089            self.ptr.as_ref().dec_weak();
4090
4091            if self.ptr.as_ref().weak() == 0 {
4092                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
4093            }
4094        }
4095    }
4096}
4097
4098/// A unique owning pointer to a [`RcInner`] **that does not imply the contents are initialized,**
4099/// but will deallocate it (without dropping the value) when dropped.
4100///
4101/// This is a helper for [`Rc::make_mut()`] to ensure correct cleanup on panic.
4102/// It is nearly a duplicate of `UniqueRc<MaybeUninit<T>, A>` except that it allows `T: !Sized`,
4103/// which `MaybeUninit` does not.
4104#[cfg(not(no_global_oom_handling))]
4105struct UniqueRcUninit<T: ?Sized, A: Allocator> {
4106    ptr: NonNull<RcInner<T>>,
4107    layout_for_value: Layout,
4108    alloc: Option<A>,
4109}
4110
4111#[cfg(not(no_global_oom_handling))]
4112impl<T: ?Sized, A: Allocator> UniqueRcUninit<T, A> {
4113    /// Allocates a RcInner with layout suitable to contain `for_value` or a clone of it.
4114    fn new(for_value: &T, alloc: A) -> UniqueRcUninit<T, A> {
4115        let layout = Layout::for_value(for_value);
4116        let ptr = unsafe {
4117            Rc::allocate_for_layout(
4118                layout,
4119                |layout_for_rc_inner| alloc.allocate(layout_for_rc_inner),
4120                |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const RcInner<T>),
4121            )
4122        };
4123        Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4124    }
4125
4126    /// Returns the pointer to be written into to initialize the [`Rc`].
4127    fn data_ptr(&mut self) -> *mut T {
4128        let offset = data_offset_align(self.layout_for_value.align());
4129        unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4130    }
4131
4132    /// Upgrade this into a normal [`Rc`].
4133    ///
4134    /// # Safety
4135    ///
4136    /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4137    unsafe fn into_rc(self) -> Rc<T, A> {
4138        let mut this = ManuallyDrop::new(self);
4139        let ptr = this.ptr;
4140        let alloc = this.alloc.take().unwrap();
4141
4142        // SAFETY: The pointer is valid as per `UniqueRcUninit::new`, and the caller is responsible
4143        // for having initialized the data.
4144        unsafe { Rc::from_ptr_in(ptr.as_ptr(), alloc) }
4145    }
4146}
4147
4148#[cfg(not(no_global_oom_handling))]
4149impl<T: ?Sized, A: Allocator> Drop for UniqueRcUninit<T, A> {
4150    fn drop(&mut self) {
4151        // SAFETY:
4152        // * new() produced a pointer safe to deallocate.
4153        // * We own the pointer unless into_rc() was called, which forgets us.
4154        unsafe {
4155            self.alloc.take().unwrap().deallocate(
4156                self.ptr.cast(),
4157                rc_inner_layout_for_value_layout(self.layout_for_value),
4158            );
4159        }
4160    }
4161}