alloc/sync.rs
1#![stable(feature = "rust1", since = "1.0.0")]
2
3//! Thread-safe reference-counting pointers.
4//!
5//! See the [`Arc<T>`][Arc] documentation for more details.
6//!
7//! **Note**: This module is only available on platforms that support atomic
8//! loads and stores of pointers. This may be detected at compile time using
9//! `#[cfg(target_has_atomic = "ptr")]`.
10
11use core::any::Any;
12#[cfg(not(no_global_oom_handling))]
13use core::clone::CloneToUninit;
14use core::clone::UseCloned;
15use core::cmp::Ordering;
16use core::hash::{Hash, Hasher};
17use core::intrinsics::abort;
18#[cfg(not(no_global_oom_handling))]
19use core::iter;
20use core::marker::{PhantomData, Unsize};
21use core::mem::{self, ManuallyDrop, align_of_val_raw};
22use core::num::NonZeroUsize;
23use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
24use core::panic::{RefUnwindSafe, UnwindSafe};
25use core::pin::{Pin, PinCoerceUnsized};
26use core::ptr::{self, NonNull};
27#[cfg(not(no_global_oom_handling))]
28use core::slice::from_raw_parts_mut;
29use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
30use core::sync::atomic::{self, Atomic};
31use core::{borrow, fmt, hint};
32
33#[cfg(not(no_global_oom_handling))]
34use crate::alloc::handle_alloc_error;
35use crate::alloc::{AllocError, Allocator, Global, Layout};
36use crate::borrow::{Cow, ToOwned};
37use crate::boxed::Box;
38use crate::rc::is_dangling;
39#[cfg(not(no_global_oom_handling))]
40use crate::string::String;
41#[cfg(not(no_global_oom_handling))]
42use crate::vec::Vec;
43
44/// A soft limit on the amount of references that may be made to an `Arc`.
45///
46/// Going above this limit will abort your program (although not
47/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
48/// Trying to go above it might call a `panic` (if not actually going above it).
49///
50/// This is a global invariant, and also applies when using a compare-exchange loop.
51///
52/// See comment in `Arc::clone`.
53const MAX_REFCOUNT: usize = (isize::MAX) as usize;
54
55/// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely.
56const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow";
57
58#[cfg(not(sanitize = "thread"))]
59macro_rules! acquire {
60 ($x:expr) => {
61 atomic::fence(Acquire)
62 };
63}
64
65// ThreadSanitizer does not support memory fences. To avoid false positive
66// reports in Arc / Weak implementation use atomic loads for synchronization
67// instead.
68#[cfg(sanitize = "thread")]
69macro_rules! acquire {
70 ($x:expr) => {
71 $x.load(Acquire)
72 };
73}
74
75/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
76/// Reference Counted'.
77///
78/// The type `Arc<T>` provides shared ownership of a value of type `T`,
79/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
80/// a new `Arc` instance, which points to the same allocation on the heap as the
81/// source `Arc`, while increasing a reference count. When the last `Arc`
82/// pointer to a given allocation is destroyed, the value stored in that allocation (often
83/// referred to as "inner value") is also dropped.
84///
85/// Shared references in Rust disallow mutation by default, and `Arc` is no
86/// exception: you cannot generally obtain a mutable reference to something
87/// inside an `Arc`. If you do need to mutate through an `Arc`, you have several options:
88///
89/// 1. Use interior mutability with synchronization primitives like [`Mutex`][mutex],
90/// [`RwLock`][rwlock], or one of the [`Atomic`][atomic] types.
91///
92/// 2. Use clone-on-write semantics with [`Arc::make_mut`] which provides efficient mutation
93/// without requiring interior mutability. This approach clones the data only when
94/// needed (when there are multiple references) and can be more efficient when mutations
95/// are infrequent.
96///
97/// 3. Use [`Arc::get_mut`] when you know your `Arc` is not shared (has a reference count of 1),
98/// which provides direct mutable access to the inner value without any cloning.
99///
100/// ```
101/// use std::sync::Arc;
102///
103/// let mut data = Arc::new(vec![1, 2, 3]);
104///
105/// // This will clone the vector only if there are other references to it
106/// Arc::make_mut(&mut data).push(4);
107///
108/// assert_eq!(*data, vec![1, 2, 3, 4]);
109/// ```
110///
111/// **Note**: This type is only available on platforms that support atomic
112/// loads and stores of pointers, which includes all platforms that support
113/// the `std` crate but not all those which only support [`alloc`](crate).
114/// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`.
115///
116/// ## Thread Safety
117///
118/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
119/// counting. This means that it is thread-safe. The disadvantage is that
120/// atomic operations are more expensive than ordinary memory accesses. If you
121/// are not sharing reference-counted allocations between threads, consider using
122/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
123/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
124/// However, a library might choose `Arc<T>` in order to give library consumers
125/// more flexibility.
126///
127/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
128/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
129/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
130/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
131/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
132/// data, but it doesn't add thread safety to its data. Consider
133/// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
134/// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem:
135/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
136/// non-atomic operations.
137///
138/// In the end, this means that you may need to pair `Arc<T>` with some sort of
139/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
140///
141/// ## Breaking cycles with `Weak`
142///
143/// The [`downgrade`][downgrade] method can be used to create a non-owning
144/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
145/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
146/// already been dropped. In other words, `Weak` pointers do not keep the value
147/// inside the allocation alive; however, they *do* keep the allocation
148/// (the backing store for the value) alive.
149///
150/// A cycle between `Arc` pointers will never be deallocated. For this reason,
151/// [`Weak`] is used to break cycles. For example, a tree could have
152/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
153/// pointers from children back to their parents.
154///
155/// # Cloning references
156///
157/// Creating a new reference from an existing reference-counted pointer is done using the
158/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
159///
160/// ```
161/// use std::sync::Arc;
162/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
163/// // The two syntaxes below are equivalent.
164/// let a = foo.clone();
165/// let b = Arc::clone(&foo);
166/// // a, b, and foo are all Arcs that point to the same memory location
167/// ```
168///
169/// ## `Deref` behavior
170///
171/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
172/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
173/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
174/// functions, called using [fully qualified syntax]:
175///
176/// ```
177/// use std::sync::Arc;
178///
179/// let my_arc = Arc::new(());
180/// let my_weak = Arc::downgrade(&my_arc);
181/// ```
182///
183/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
184/// fully qualified syntax. Some people prefer to use fully qualified syntax,
185/// while others prefer using method-call syntax.
186///
187/// ```
188/// use std::sync::Arc;
189///
190/// let arc = Arc::new(());
191/// // Method-call syntax
192/// let arc2 = arc.clone();
193/// // Fully qualified syntax
194/// let arc3 = Arc::clone(&arc);
195/// ```
196///
197/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
198/// already been dropped.
199///
200/// [`Rc<T>`]: crate::rc::Rc
201/// [clone]: Clone::clone
202/// [mutex]: ../../std/sync/struct.Mutex.html
203/// [rwlock]: ../../std/sync/struct.RwLock.html
204/// [atomic]: core::sync::atomic
205/// [downgrade]: Arc::downgrade
206/// [upgrade]: Weak::upgrade
207/// [RefCell\<T>]: core::cell::RefCell
208/// [`RefCell<T>`]: core::cell::RefCell
209/// [`std::sync`]: ../../std/sync/index.html
210/// [`Arc::clone(&from)`]: Arc::clone
211/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
212///
213/// # Examples
214///
215/// Sharing some immutable data between threads:
216///
217/// ```
218/// use std::sync::Arc;
219/// use std::thread;
220///
221/// let five = Arc::new(5);
222///
223/// for _ in 0..10 {
224/// let five = Arc::clone(&five);
225///
226/// thread::spawn(move || {
227/// println!("{five:?}");
228/// });
229/// }
230/// ```
231///
232/// Sharing a mutable [`AtomicUsize`]:
233///
234/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize"
235///
236/// ```
237/// use std::sync::Arc;
238/// use std::sync::atomic::{AtomicUsize, Ordering};
239/// use std::thread;
240///
241/// let val = Arc::new(AtomicUsize::new(5));
242///
243/// for _ in 0..10 {
244/// let val = Arc::clone(&val);
245///
246/// thread::spawn(move || {
247/// let v = val.fetch_add(1, Ordering::Relaxed);
248/// println!("{v:?}");
249/// });
250/// }
251/// ```
252///
253/// See the [`rc` documentation][rc_examples] for more examples of reference
254/// counting in general.
255///
256/// [rc_examples]: crate::rc#examples
257#[doc(search_unbox)]
258#[rustc_diagnostic_item = "Arc"]
259#[stable(feature = "rust1", since = "1.0.0")]
260#[rustc_insignificant_dtor]
261pub struct Arc<
262 T: ?Sized,
263 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
264> {
265 ptr: NonNull<ArcInner<T>>,
266 phantom: PhantomData<ArcInner<T>>,
267 alloc: A,
268}
269
270#[stable(feature = "rust1", since = "1.0.0")]
271unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Arc<T, A> {}
272#[stable(feature = "rust1", since = "1.0.0")]
273unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Arc<T, A> {}
274
275#[stable(feature = "catch_unwind", since = "1.9.0")]
276impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Arc<T, A> {}
277
278#[unstable(feature = "coerce_unsized", issue = "18598")]
279impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Arc<U, A>> for Arc<T, A> {}
280
281#[unstable(feature = "dispatch_from_dyn", issue = "none")]
282impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
283
284impl<T: ?Sized> Arc<T> {
285 unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
286 unsafe { Self::from_inner_in(ptr, Global) }
287 }
288
289 unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
290 unsafe { Self::from_ptr_in(ptr, Global) }
291 }
292}
293
294impl<T: ?Sized, A: Allocator> Arc<T, A> {
295 #[inline]
296 fn into_inner_with_allocator(this: Self) -> (NonNull<ArcInner<T>>, A) {
297 let this = mem::ManuallyDrop::new(this);
298 (this.ptr, unsafe { ptr::read(&this.alloc) })
299 }
300
301 #[inline]
302 unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self {
303 Self { ptr, phantom: PhantomData, alloc }
304 }
305
306 #[inline]
307 unsafe fn from_ptr_in(ptr: *mut ArcInner<T>, alloc: A) -> Self {
308 unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
309 }
310}
311
312/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
313/// managed allocation.
314///
315/// The allocation is accessed by calling [`upgrade`] on the `Weak`
316/// pointer, which returns an <code>[Option]<[Arc]\<T>></code>.
317///
318/// Since a `Weak` reference does not count towards ownership, it will not
319/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
320/// guarantees about the value still being present. Thus it may return [`None`]
321/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
322/// itself (the backing store) from being deallocated.
323///
324/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
325/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
326/// prevent circular references between [`Arc`] pointers, since mutual owning references
327/// would never allow either [`Arc`] to be dropped. For example, a tree could
328/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
329/// pointers from children back to their parents.
330///
331/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
332///
333/// [`upgrade`]: Weak::upgrade
334#[stable(feature = "arc_weak", since = "1.4.0")]
335#[rustc_diagnostic_item = "ArcWeak"]
336pub struct Weak<
337 T: ?Sized,
338 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
339> {
340 // This is a `NonNull` to allow optimizing the size of this type in enums,
341 // but it is not necessarily a valid pointer.
342 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
343 // to allocate space on the heap. That's not a value a real pointer
344 // will ever have because RcInner has alignment at least 2.
345 ptr: NonNull<ArcInner<T>>,
346 alloc: A,
347}
348
349#[stable(feature = "arc_weak", since = "1.4.0")]
350unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Weak<T, A> {}
351#[stable(feature = "arc_weak", since = "1.4.0")]
352unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Weak<T, A> {}
353
354#[unstable(feature = "coerce_unsized", issue = "18598")]
355impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
356#[unstable(feature = "dispatch_from_dyn", issue = "none")]
357impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
358
359#[stable(feature = "arc_weak", since = "1.4.0")]
360impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
361 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
362 write!(f, "(Weak)")
363 }
364}
365
366// This is repr(C) to future-proof against possible field-reordering, which
367// would interfere with otherwise safe [into|from]_raw() of transmutable
368// inner types.
369#[repr(C)]
370struct ArcInner<T: ?Sized> {
371 strong: Atomic<usize>,
372
373 // the value usize::MAX acts as a sentinel for temporarily "locking" the
374 // ability to upgrade weak pointers or downgrade strong ones; this is used
375 // to avoid races in `make_mut` and `get_mut`.
376 weak: Atomic<usize>,
377
378 data: T,
379}
380
381/// Calculate layout for `ArcInner<T>` using the inner value's layout
382fn arcinner_layout_for_value_layout(layout: Layout) -> Layout {
383 // Calculate layout using the given value layout.
384 // Previously, layout was calculated on the expression
385 // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
386 // reference (see #54908).
387 Layout::new::<ArcInner<()>>().extend(layout).unwrap().0.pad_to_align()
388}
389
390unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
391unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
392
393impl<T> Arc<T> {
394 /// Constructs a new `Arc<T>`.
395 ///
396 /// # Examples
397 ///
398 /// ```
399 /// use std::sync::Arc;
400 ///
401 /// let five = Arc::new(5);
402 /// ```
403 #[cfg(not(no_global_oom_handling))]
404 #[inline]
405 #[stable(feature = "rust1", since = "1.0.0")]
406 pub fn new(data: T) -> Arc<T> {
407 // Start the weak pointer count as 1 which is the weak pointer that's
408 // held by all the strong pointers (kinda), see std/rc.rs for more info
409 let x: Box<_> = Box::new(ArcInner {
410 strong: atomic::AtomicUsize::new(1),
411 weak: atomic::AtomicUsize::new(1),
412 data,
413 });
414 unsafe { Self::from_inner(Box::leak(x).into()) }
415 }
416
417 /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation,
418 /// to allow you to construct a `T` which holds a weak pointer to itself.
419 ///
420 /// Generally, a structure circularly referencing itself, either directly or
421 /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
422 /// Using this function, you get access to the weak pointer during the
423 /// initialization of `T`, before the `Arc<T>` is created, such that you can
424 /// clone and store it inside the `T`.
425 ///
426 /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`,
427 /// then calls your closure, giving it a `Weak<T>` to this allocation,
428 /// and only afterwards completes the construction of the `Arc<T>` by placing
429 /// the `T` returned from your closure into the allocation.
430 ///
431 /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic`
432 /// returns, calling [`upgrade`] on the weak reference inside your closure will
433 /// fail and result in a `None` value.
434 ///
435 /// # Panics
436 ///
437 /// If `data_fn` panics, the panic is propagated to the caller, and the
438 /// temporary [`Weak<T>`] is dropped normally.
439 ///
440 /// # Example
441 ///
442 /// ```
443 /// # #![allow(dead_code)]
444 /// use std::sync::{Arc, Weak};
445 ///
446 /// struct Gadget {
447 /// me: Weak<Gadget>,
448 /// }
449 ///
450 /// impl Gadget {
451 /// /// Constructs a reference counted Gadget.
452 /// fn new() -> Arc<Self> {
453 /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the
454 /// // `Arc` we're constructing.
455 /// Arc::new_cyclic(|me| {
456 /// // Create the actual struct here.
457 /// Gadget { me: me.clone() }
458 /// })
459 /// }
460 ///
461 /// /// Returns a reference counted pointer to Self.
462 /// fn me(&self) -> Arc<Self> {
463 /// self.me.upgrade().unwrap()
464 /// }
465 /// }
466 /// ```
467 /// [`upgrade`]: Weak::upgrade
468 #[cfg(not(no_global_oom_handling))]
469 #[inline]
470 #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
471 pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
472 where
473 F: FnOnce(&Weak<T>) -> T,
474 {
475 Self::new_cyclic_in(data_fn, Global)
476 }
477
478 /// Constructs a new `Arc` with uninitialized contents.
479 ///
480 /// # Examples
481 ///
482 /// ```
483 /// #![feature(get_mut_unchecked)]
484 ///
485 /// use std::sync::Arc;
486 ///
487 /// let mut five = Arc::<u32>::new_uninit();
488 ///
489 /// // Deferred initialization:
490 /// Arc::get_mut(&mut five).unwrap().write(5);
491 ///
492 /// let five = unsafe { five.assume_init() };
493 ///
494 /// assert_eq!(*five, 5)
495 /// ```
496 #[cfg(not(no_global_oom_handling))]
497 #[inline]
498 #[stable(feature = "new_uninit", since = "1.82.0")]
499 #[must_use]
500 pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
501 unsafe {
502 Arc::from_ptr(Arc::allocate_for_layout(
503 Layout::new::<T>(),
504 |layout| Global.allocate(layout),
505 <*mut u8>::cast,
506 ))
507 }
508 }
509
510 /// Constructs a new `Arc` with uninitialized contents, with the memory
511 /// being filled with `0` bytes.
512 ///
513 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
514 /// of this method.
515 ///
516 /// # Examples
517 ///
518 /// ```
519 /// use std::sync::Arc;
520 ///
521 /// let zero = Arc::<u32>::new_zeroed();
522 /// let zero = unsafe { zero.assume_init() };
523 ///
524 /// assert_eq!(*zero, 0)
525 /// ```
526 ///
527 /// [zeroed]: mem::MaybeUninit::zeroed
528 #[cfg(not(no_global_oom_handling))]
529 #[inline]
530 #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
531 #[must_use]
532 pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
533 unsafe {
534 Arc::from_ptr(Arc::allocate_for_layout(
535 Layout::new::<T>(),
536 |layout| Global.allocate_zeroed(layout),
537 <*mut u8>::cast,
538 ))
539 }
540 }
541
542 /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
543 /// `data` will be pinned in memory and unable to be moved.
544 #[cfg(not(no_global_oom_handling))]
545 #[stable(feature = "pin", since = "1.33.0")]
546 #[must_use]
547 pub fn pin(data: T) -> Pin<Arc<T>> {
548 unsafe { Pin::new_unchecked(Arc::new(data)) }
549 }
550
551 /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails.
552 #[unstable(feature = "allocator_api", issue = "32838")]
553 #[inline]
554 pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> {
555 unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) }
556 }
557
558 /// Constructs a new `Arc<T>`, returning an error if allocation fails.
559 ///
560 /// # Examples
561 ///
562 /// ```
563 /// #![feature(allocator_api)]
564 /// use std::sync::Arc;
565 ///
566 /// let five = Arc::try_new(5)?;
567 /// # Ok::<(), std::alloc::AllocError>(())
568 /// ```
569 #[unstable(feature = "allocator_api", issue = "32838")]
570 #[inline]
571 pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
572 // Start the weak pointer count as 1 which is the weak pointer that's
573 // held by all the strong pointers (kinda), see std/rc.rs for more info
574 let x: Box<_> = Box::try_new(ArcInner {
575 strong: atomic::AtomicUsize::new(1),
576 weak: atomic::AtomicUsize::new(1),
577 data,
578 })?;
579 unsafe { Ok(Self::from_inner(Box::leak(x).into())) }
580 }
581
582 /// Constructs a new `Arc` with uninitialized contents, returning an error
583 /// if allocation fails.
584 ///
585 /// # Examples
586 ///
587 /// ```
588 /// #![feature(allocator_api)]
589 /// #![feature(get_mut_unchecked)]
590 ///
591 /// use std::sync::Arc;
592 ///
593 /// let mut five = Arc::<u32>::try_new_uninit()?;
594 ///
595 /// // Deferred initialization:
596 /// Arc::get_mut(&mut five).unwrap().write(5);
597 ///
598 /// let five = unsafe { five.assume_init() };
599 ///
600 /// assert_eq!(*five, 5);
601 /// # Ok::<(), std::alloc::AllocError>(())
602 /// ```
603 #[unstable(feature = "allocator_api", issue = "32838")]
604 pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
605 unsafe {
606 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
607 Layout::new::<T>(),
608 |layout| Global.allocate(layout),
609 <*mut u8>::cast,
610 )?))
611 }
612 }
613
614 /// Constructs a new `Arc` with uninitialized contents, with the memory
615 /// being filled with `0` bytes, returning an error if allocation fails.
616 ///
617 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
618 /// of this method.
619 ///
620 /// # Examples
621 ///
622 /// ```
623 /// #![feature( allocator_api)]
624 ///
625 /// use std::sync::Arc;
626 ///
627 /// let zero = Arc::<u32>::try_new_zeroed()?;
628 /// let zero = unsafe { zero.assume_init() };
629 ///
630 /// assert_eq!(*zero, 0);
631 /// # Ok::<(), std::alloc::AllocError>(())
632 /// ```
633 ///
634 /// [zeroed]: mem::MaybeUninit::zeroed
635 #[unstable(feature = "allocator_api", issue = "32838")]
636 pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
637 unsafe {
638 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
639 Layout::new::<T>(),
640 |layout| Global.allocate_zeroed(layout),
641 <*mut u8>::cast,
642 )?))
643 }
644 }
645}
646
647impl<T, A: Allocator> Arc<T, A> {
648 /// Constructs a new `Arc<T>` in the provided allocator.
649 ///
650 /// # Examples
651 ///
652 /// ```
653 /// #![feature(allocator_api)]
654 ///
655 /// use std::sync::Arc;
656 /// use std::alloc::System;
657 ///
658 /// let five = Arc::new_in(5, System);
659 /// ```
660 #[inline]
661 #[cfg(not(no_global_oom_handling))]
662 #[unstable(feature = "allocator_api", issue = "32838")]
663 pub fn new_in(data: T, alloc: A) -> Arc<T, A> {
664 // Start the weak pointer count as 1 which is the weak pointer that's
665 // held by all the strong pointers (kinda), see std/rc.rs for more info
666 let x = Box::new_in(
667 ArcInner {
668 strong: atomic::AtomicUsize::new(1),
669 weak: atomic::AtomicUsize::new(1),
670 data,
671 },
672 alloc,
673 );
674 let (ptr, alloc) = Box::into_unique(x);
675 unsafe { Self::from_inner_in(ptr.into(), alloc) }
676 }
677
678 /// Constructs a new `Arc` with uninitialized contents in the provided allocator.
679 ///
680 /// # Examples
681 ///
682 /// ```
683 /// #![feature(get_mut_unchecked)]
684 /// #![feature(allocator_api)]
685 ///
686 /// use std::sync::Arc;
687 /// use std::alloc::System;
688 ///
689 /// let mut five = Arc::<u32, _>::new_uninit_in(System);
690 ///
691 /// let five = unsafe {
692 /// // Deferred initialization:
693 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
694 ///
695 /// five.assume_init()
696 /// };
697 ///
698 /// assert_eq!(*five, 5)
699 /// ```
700 #[cfg(not(no_global_oom_handling))]
701 #[unstable(feature = "allocator_api", issue = "32838")]
702 #[inline]
703 pub fn new_uninit_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
704 unsafe {
705 Arc::from_ptr_in(
706 Arc::allocate_for_layout(
707 Layout::new::<T>(),
708 |layout| alloc.allocate(layout),
709 <*mut u8>::cast,
710 ),
711 alloc,
712 )
713 }
714 }
715
716 /// Constructs a new `Arc` with uninitialized contents, with the memory
717 /// being filled with `0` bytes, in the provided allocator.
718 ///
719 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
720 /// of this method.
721 ///
722 /// # Examples
723 ///
724 /// ```
725 /// #![feature(allocator_api)]
726 ///
727 /// use std::sync::Arc;
728 /// use std::alloc::System;
729 ///
730 /// let zero = Arc::<u32, _>::new_zeroed_in(System);
731 /// let zero = unsafe { zero.assume_init() };
732 ///
733 /// assert_eq!(*zero, 0)
734 /// ```
735 ///
736 /// [zeroed]: mem::MaybeUninit::zeroed
737 #[cfg(not(no_global_oom_handling))]
738 #[unstable(feature = "allocator_api", issue = "32838")]
739 #[inline]
740 pub fn new_zeroed_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
741 unsafe {
742 Arc::from_ptr_in(
743 Arc::allocate_for_layout(
744 Layout::new::<T>(),
745 |layout| alloc.allocate_zeroed(layout),
746 <*mut u8>::cast,
747 ),
748 alloc,
749 )
750 }
751 }
752
753 /// Constructs a new `Arc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
754 /// to allow you to construct a `T` which holds a weak pointer to itself.
755 ///
756 /// Generally, a structure circularly referencing itself, either directly or
757 /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
758 /// Using this function, you get access to the weak pointer during the
759 /// initialization of `T`, before the `Arc<T, A>` is created, such that you can
760 /// clone and store it inside the `T`.
761 ///
762 /// `new_cyclic_in` first allocates the managed allocation for the `Arc<T, A>`,
763 /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
764 /// and only afterwards completes the construction of the `Arc<T, A>` by placing
765 /// the `T` returned from your closure into the allocation.
766 ///
767 /// Since the new `Arc<T, A>` is not fully-constructed until `Arc<T, A>::new_cyclic_in`
768 /// returns, calling [`upgrade`] on the weak reference inside your closure will
769 /// fail and result in a `None` value.
770 ///
771 /// # Panics
772 ///
773 /// If `data_fn` panics, the panic is propagated to the caller, and the
774 /// temporary [`Weak<T>`] is dropped normally.
775 ///
776 /// # Example
777 ///
778 /// See [`new_cyclic`]
779 ///
780 /// [`new_cyclic`]: Arc::new_cyclic
781 /// [`upgrade`]: Weak::upgrade
782 #[cfg(not(no_global_oom_handling))]
783 #[inline]
784 #[unstable(feature = "allocator_api", issue = "32838")]
785 pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A>
786 where
787 F: FnOnce(&Weak<T, A>) -> T,
788 {
789 // Construct the inner in the "uninitialized" state with a single
790 // weak reference.
791 let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
792 ArcInner {
793 strong: atomic::AtomicUsize::new(0),
794 weak: atomic::AtomicUsize::new(1),
795 data: mem::MaybeUninit::<T>::uninit(),
796 },
797 alloc,
798 ));
799 let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
800 let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
801
802 let weak = Weak { ptr: init_ptr, alloc };
803
804 // It's important we don't give up ownership of the weak pointer, or
805 // else the memory might be freed by the time `data_fn` returns. If
806 // we really wanted to pass ownership, we could create an additional
807 // weak pointer for ourselves, but this would result in additional
808 // updates to the weak reference count which might not be necessary
809 // otherwise.
810 let data = data_fn(&weak);
811
812 // Now we can properly initialize the inner value and turn our weak
813 // reference into a strong reference.
814 let strong = unsafe {
815 let inner = init_ptr.as_ptr();
816 ptr::write(&raw mut (*inner).data, data);
817
818 // The above write to the data field must be visible to any threads which
819 // observe a non-zero strong count. Therefore we need at least "Release" ordering
820 // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
821 //
822 // "Acquire" ordering is not required. When considering the possible behaviors
823 // of `data_fn` we only need to look at what it could do with a reference to a
824 // non-upgradeable `Weak`:
825 // - It can *clone* the `Weak`, increasing the weak reference count.
826 // - It can drop those clones, decreasing the weak reference count (but never to zero).
827 //
828 // These side effects do not impact us in any way, and no other side effects are
829 // possible with safe code alone.
830 let prev_value = (*inner).strong.fetch_add(1, Release);
831 debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
832
833 // Strong references should collectively own a shared weak reference,
834 // so don't run the destructor for our old weak reference.
835 // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
836 // and forgetting the weak reference.
837 let alloc = weak.into_raw_with_allocator().1;
838
839 Arc::from_inner_in(init_ptr, alloc)
840 };
841
842 strong
843 }
844
845 /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`,
846 /// then `data` will be pinned in memory and unable to be moved.
847 #[cfg(not(no_global_oom_handling))]
848 #[unstable(feature = "allocator_api", issue = "32838")]
849 #[inline]
850 pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>>
851 where
852 A: 'static,
853 {
854 unsafe { Pin::new_unchecked(Arc::new_in(data, alloc)) }
855 }
856
857 /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator, return an error if allocation
858 /// fails.
859 #[inline]
860 #[unstable(feature = "allocator_api", issue = "32838")]
861 pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError>
862 where
863 A: 'static,
864 {
865 unsafe { Ok(Pin::new_unchecked(Arc::try_new_in(data, alloc)?)) }
866 }
867
868 /// Constructs a new `Arc<T, A>` in the provided allocator, returning an error if allocation fails.
869 ///
870 /// # Examples
871 ///
872 /// ```
873 /// #![feature(allocator_api)]
874 ///
875 /// use std::sync::Arc;
876 /// use std::alloc::System;
877 ///
878 /// let five = Arc::try_new_in(5, System)?;
879 /// # Ok::<(), std::alloc::AllocError>(())
880 /// ```
881 #[inline]
882 #[unstable(feature = "allocator_api", issue = "32838")]
883 #[inline]
884 pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError> {
885 // Start the weak pointer count as 1 which is the weak pointer that's
886 // held by all the strong pointers (kinda), see std/rc.rs for more info
887 let x = Box::try_new_in(
888 ArcInner {
889 strong: atomic::AtomicUsize::new(1),
890 weak: atomic::AtomicUsize::new(1),
891 data,
892 },
893 alloc,
894 )?;
895 let (ptr, alloc) = Box::into_unique(x);
896 Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
897 }
898
899 /// Constructs a new `Arc` with uninitialized contents, in the provided allocator, returning an
900 /// error if allocation fails.
901 ///
902 /// # Examples
903 ///
904 /// ```
905 /// #![feature(allocator_api)]
906 /// #![feature(get_mut_unchecked)]
907 ///
908 /// use std::sync::Arc;
909 /// use std::alloc::System;
910 ///
911 /// let mut five = Arc::<u32, _>::try_new_uninit_in(System)?;
912 ///
913 /// let five = unsafe {
914 /// // Deferred initialization:
915 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
916 ///
917 /// five.assume_init()
918 /// };
919 ///
920 /// assert_eq!(*five, 5);
921 /// # Ok::<(), std::alloc::AllocError>(())
922 /// ```
923 #[unstable(feature = "allocator_api", issue = "32838")]
924 #[inline]
925 pub fn try_new_uninit_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
926 unsafe {
927 Ok(Arc::from_ptr_in(
928 Arc::try_allocate_for_layout(
929 Layout::new::<T>(),
930 |layout| alloc.allocate(layout),
931 <*mut u8>::cast,
932 )?,
933 alloc,
934 ))
935 }
936 }
937
938 /// Constructs a new `Arc` with uninitialized contents, with the memory
939 /// being filled with `0` bytes, in the provided allocator, returning an error if allocation
940 /// fails.
941 ///
942 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
943 /// of this method.
944 ///
945 /// # Examples
946 ///
947 /// ```
948 /// #![feature(allocator_api)]
949 ///
950 /// use std::sync::Arc;
951 /// use std::alloc::System;
952 ///
953 /// let zero = Arc::<u32, _>::try_new_zeroed_in(System)?;
954 /// let zero = unsafe { zero.assume_init() };
955 ///
956 /// assert_eq!(*zero, 0);
957 /// # Ok::<(), std::alloc::AllocError>(())
958 /// ```
959 ///
960 /// [zeroed]: mem::MaybeUninit::zeroed
961 #[unstable(feature = "allocator_api", issue = "32838")]
962 #[inline]
963 pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
964 unsafe {
965 Ok(Arc::from_ptr_in(
966 Arc::try_allocate_for_layout(
967 Layout::new::<T>(),
968 |layout| alloc.allocate_zeroed(layout),
969 <*mut u8>::cast,
970 )?,
971 alloc,
972 ))
973 }
974 }
975 /// Returns the inner value, if the `Arc` has exactly one strong reference.
976 ///
977 /// Otherwise, an [`Err`] is returned with the same `Arc` that was
978 /// passed in.
979 ///
980 /// This will succeed even if there are outstanding weak references.
981 ///
982 /// It is strongly recommended to use [`Arc::into_inner`] instead if you don't
983 /// keep the `Arc` in the [`Err`] case.
984 /// Immediately dropping the [`Err`]-value, as the expression
985 /// `Arc::try_unwrap(this).ok()` does, can cause the strong count to
986 /// drop to zero and the inner value of the `Arc` to be dropped.
987 /// For instance, if two threads execute such an expression in parallel,
988 /// there is a race condition without the possibility of unsafety:
989 /// The threads could first both check whether they own the last instance
990 /// in `Arc::try_unwrap`, determine that they both do not, and then both
991 /// discard and drop their instance in the call to [`ok`][`Result::ok`].
992 /// In this scenario, the value inside the `Arc` is safely destroyed
993 /// by exactly one of the threads, but neither thread will ever be able
994 /// to use the value.
995 ///
996 /// # Examples
997 ///
998 /// ```
999 /// use std::sync::Arc;
1000 ///
1001 /// let x = Arc::new(3);
1002 /// assert_eq!(Arc::try_unwrap(x), Ok(3));
1003 ///
1004 /// let x = Arc::new(4);
1005 /// let _y = Arc::clone(&x);
1006 /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
1007 /// ```
1008 #[inline]
1009 #[stable(feature = "arc_unique", since = "1.4.0")]
1010 pub fn try_unwrap(this: Self) -> Result<T, Self> {
1011 if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
1012 return Err(this);
1013 }
1014
1015 acquire!(this.inner().strong);
1016
1017 let this = ManuallyDrop::new(this);
1018 let elem: T = unsafe { ptr::read(&this.ptr.as_ref().data) };
1019 let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
1020
1021 // Make a weak pointer to clean up the implicit strong-weak reference
1022 let _weak = Weak { ptr: this.ptr, alloc };
1023
1024 Ok(elem)
1025 }
1026
1027 /// Returns the inner value, if the `Arc` has exactly one strong reference.
1028 ///
1029 /// Otherwise, [`None`] is returned and the `Arc` is dropped.
1030 ///
1031 /// This will succeed even if there are outstanding weak references.
1032 ///
1033 /// If `Arc::into_inner` is called on every clone of this `Arc`,
1034 /// it is guaranteed that exactly one of the calls returns the inner value.
1035 /// This means in particular that the inner value is not dropped.
1036 ///
1037 /// [`Arc::try_unwrap`] is conceptually similar to `Arc::into_inner`, but it
1038 /// is meant for different use-cases. If used as a direct replacement
1039 /// for `Arc::into_inner` anyway, such as with the expression
1040 /// <code>[Arc::try_unwrap]\(this).[ok][Result::ok]()</code>, then it does
1041 /// **not** give the same guarantee as described in the previous paragraph.
1042 /// For more information, see the examples below and read the documentation
1043 /// of [`Arc::try_unwrap`].
1044 ///
1045 /// # Examples
1046 ///
1047 /// Minimal example demonstrating the guarantee that `Arc::into_inner` gives.
1048 /// ```
1049 /// use std::sync::Arc;
1050 ///
1051 /// let x = Arc::new(3);
1052 /// let y = Arc::clone(&x);
1053 ///
1054 /// // Two threads calling `Arc::into_inner` on both clones of an `Arc`:
1055 /// let x_thread = std::thread::spawn(|| Arc::into_inner(x));
1056 /// let y_thread = std::thread::spawn(|| Arc::into_inner(y));
1057 ///
1058 /// let x_inner_value = x_thread.join().unwrap();
1059 /// let y_inner_value = y_thread.join().unwrap();
1060 ///
1061 /// // One of the threads is guaranteed to receive the inner value:
1062 /// assert!(matches!(
1063 /// (x_inner_value, y_inner_value),
1064 /// (None, Some(3)) | (Some(3), None)
1065 /// ));
1066 /// // The result could also be `(None, None)` if the threads called
1067 /// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead.
1068 /// ```
1069 ///
1070 /// A more practical example demonstrating the need for `Arc::into_inner`:
1071 /// ```
1072 /// use std::sync::Arc;
1073 ///
1074 /// // Definition of a simple singly linked list using `Arc`:
1075 /// #[derive(Clone)]
1076 /// struct LinkedList<T>(Option<Arc<Node<T>>>);
1077 /// struct Node<T>(T, Option<Arc<Node<T>>>);
1078 ///
1079 /// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc`
1080 /// // can cause a stack overflow. To prevent this, we can provide a
1081 /// // manual `Drop` implementation that does the destruction in a loop:
1082 /// impl<T> Drop for LinkedList<T> {
1083 /// fn drop(&mut self) {
1084 /// let mut link = self.0.take();
1085 /// while let Some(arc_node) = link.take() {
1086 /// if let Some(Node(_value, next)) = Arc::into_inner(arc_node) {
1087 /// link = next;
1088 /// }
1089 /// }
1090 /// }
1091 /// }
1092 ///
1093 /// // Implementation of `new` and `push` omitted
1094 /// impl<T> LinkedList<T> {
1095 /// /* ... */
1096 /// # fn new() -> Self {
1097 /// # LinkedList(None)
1098 /// # }
1099 /// # fn push(&mut self, x: T) {
1100 /// # self.0 = Some(Arc::new(Node(x, self.0.take())));
1101 /// # }
1102 /// }
1103 ///
1104 /// // The following code could have still caused a stack overflow
1105 /// // despite the manual `Drop` impl if that `Drop` impl had used
1106 /// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`.
1107 ///
1108 /// // Create a long list and clone it
1109 /// let mut x = LinkedList::new();
1110 /// let size = 100000;
1111 /// # let size = if cfg!(miri) { 100 } else { size };
1112 /// for i in 0..size {
1113 /// x.push(i); // Adds i to the front of x
1114 /// }
1115 /// let y = x.clone();
1116 ///
1117 /// // Drop the clones in parallel
1118 /// let x_thread = std::thread::spawn(|| drop(x));
1119 /// let y_thread = std::thread::spawn(|| drop(y));
1120 /// x_thread.join().unwrap();
1121 /// y_thread.join().unwrap();
1122 /// ```
1123 #[inline]
1124 #[stable(feature = "arc_into_inner", since = "1.70.0")]
1125 pub fn into_inner(this: Self) -> Option<T> {
1126 // Make sure that the ordinary `Drop` implementation isn’t called as well
1127 let mut this = mem::ManuallyDrop::new(this);
1128
1129 // Following the implementation of `drop` and `drop_slow`
1130 if this.inner().strong.fetch_sub(1, Release) != 1 {
1131 return None;
1132 }
1133
1134 acquire!(this.inner().strong);
1135
1136 // SAFETY: This mirrors the line
1137 //
1138 // unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
1139 //
1140 // in `drop_slow`. Instead of dropping the value behind the pointer,
1141 // it is read and eventually returned; `ptr::read` has the same
1142 // safety conditions as `ptr::drop_in_place`.
1143
1144 let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) };
1145 let alloc = unsafe { ptr::read(&this.alloc) };
1146
1147 drop(Weak { ptr: this.ptr, alloc });
1148
1149 Some(inner)
1150 }
1151}
1152
1153impl<T> Arc<[T]> {
1154 /// Constructs a new atomically reference-counted slice with uninitialized contents.
1155 ///
1156 /// # Examples
1157 ///
1158 /// ```
1159 /// #![feature(get_mut_unchecked)]
1160 ///
1161 /// use std::sync::Arc;
1162 ///
1163 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1164 ///
1165 /// // Deferred initialization:
1166 /// let data = Arc::get_mut(&mut values).unwrap();
1167 /// data[0].write(1);
1168 /// data[1].write(2);
1169 /// data[2].write(3);
1170 ///
1171 /// let values = unsafe { values.assume_init() };
1172 ///
1173 /// assert_eq!(*values, [1, 2, 3])
1174 /// ```
1175 #[cfg(not(no_global_oom_handling))]
1176 #[inline]
1177 #[stable(feature = "new_uninit", since = "1.82.0")]
1178 #[must_use]
1179 pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1180 unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
1181 }
1182
1183 /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1184 /// filled with `0` bytes.
1185 ///
1186 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1187 /// incorrect usage of this method.
1188 ///
1189 /// # Examples
1190 ///
1191 /// ```
1192 /// use std::sync::Arc;
1193 ///
1194 /// let values = Arc::<[u32]>::new_zeroed_slice(3);
1195 /// let values = unsafe { values.assume_init() };
1196 ///
1197 /// assert_eq!(*values, [0, 0, 0])
1198 /// ```
1199 ///
1200 /// [zeroed]: mem::MaybeUninit::zeroed
1201 #[cfg(not(no_global_oom_handling))]
1202 #[inline]
1203 #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
1204 #[must_use]
1205 pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1206 unsafe {
1207 Arc::from_ptr(Arc::allocate_for_layout(
1208 Layout::array::<T>(len).unwrap(),
1209 |layout| Global.allocate_zeroed(layout),
1210 |mem| {
1211 ptr::slice_from_raw_parts_mut(mem as *mut T, len)
1212 as *mut ArcInner<[mem::MaybeUninit<T>]>
1213 },
1214 ))
1215 }
1216 }
1217
1218 /// Converts the reference-counted slice into a reference-counted array.
1219 ///
1220 /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1221 ///
1222 /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1223 #[unstable(feature = "slice_as_array", issue = "133508")]
1224 #[inline]
1225 #[must_use]
1226 pub fn into_array<const N: usize>(self) -> Option<Arc<[T; N]>> {
1227 if self.len() == N {
1228 let ptr = Self::into_raw(self) as *const [T; N];
1229
1230 // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1231 let me = unsafe { Arc::from_raw(ptr) };
1232 Some(me)
1233 } else {
1234 None
1235 }
1236 }
1237}
1238
1239impl<T, A: Allocator> Arc<[T], A> {
1240 /// Constructs a new atomically reference-counted slice with uninitialized contents in the
1241 /// provided allocator.
1242 ///
1243 /// # Examples
1244 ///
1245 /// ```
1246 /// #![feature(get_mut_unchecked)]
1247 /// #![feature(allocator_api)]
1248 ///
1249 /// use std::sync::Arc;
1250 /// use std::alloc::System;
1251 ///
1252 /// let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System);
1253 ///
1254 /// let values = unsafe {
1255 /// // Deferred initialization:
1256 /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1257 /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1258 /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1259 ///
1260 /// values.assume_init()
1261 /// };
1262 ///
1263 /// assert_eq!(*values, [1, 2, 3])
1264 /// ```
1265 #[cfg(not(no_global_oom_handling))]
1266 #[unstable(feature = "allocator_api", issue = "32838")]
1267 #[inline]
1268 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1269 unsafe { Arc::from_ptr_in(Arc::allocate_for_slice_in(len, &alloc), alloc) }
1270 }
1271
1272 /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1273 /// filled with `0` bytes, in the provided allocator.
1274 ///
1275 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1276 /// incorrect usage of this method.
1277 ///
1278 /// # Examples
1279 ///
1280 /// ```
1281 /// #![feature(allocator_api)]
1282 ///
1283 /// use std::sync::Arc;
1284 /// use std::alloc::System;
1285 ///
1286 /// let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System);
1287 /// let values = unsafe { values.assume_init() };
1288 ///
1289 /// assert_eq!(*values, [0, 0, 0])
1290 /// ```
1291 ///
1292 /// [zeroed]: mem::MaybeUninit::zeroed
1293 #[cfg(not(no_global_oom_handling))]
1294 #[unstable(feature = "allocator_api", issue = "32838")]
1295 #[inline]
1296 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1297 unsafe {
1298 Arc::from_ptr_in(
1299 Arc::allocate_for_layout(
1300 Layout::array::<T>(len).unwrap(),
1301 |layout| alloc.allocate_zeroed(layout),
1302 |mem| {
1303 ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1304 as *mut ArcInner<[mem::MaybeUninit<T>]>
1305 },
1306 ),
1307 alloc,
1308 )
1309 }
1310 }
1311}
1312
1313impl<T, A: Allocator> Arc<mem::MaybeUninit<T>, A> {
1314 /// Converts to `Arc<T>`.
1315 ///
1316 /// # Safety
1317 ///
1318 /// As with [`MaybeUninit::assume_init`],
1319 /// it is up to the caller to guarantee that the inner value
1320 /// really is in an initialized state.
1321 /// Calling this when the content is not yet fully initialized
1322 /// causes immediate undefined behavior.
1323 ///
1324 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1325 ///
1326 /// # Examples
1327 ///
1328 /// ```
1329 /// #![feature(get_mut_unchecked)]
1330 ///
1331 /// use std::sync::Arc;
1332 ///
1333 /// let mut five = Arc::<u32>::new_uninit();
1334 ///
1335 /// // Deferred initialization:
1336 /// Arc::get_mut(&mut five).unwrap().write(5);
1337 ///
1338 /// let five = unsafe { five.assume_init() };
1339 ///
1340 /// assert_eq!(*five, 5)
1341 /// ```
1342 #[stable(feature = "new_uninit", since = "1.82.0")]
1343 #[must_use = "`self` will be dropped if the result is not used"]
1344 #[inline]
1345 pub unsafe fn assume_init(self) -> Arc<T, A> {
1346 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1347 unsafe { Arc::from_inner_in(ptr.cast(), alloc) }
1348 }
1349}
1350
1351impl<T, A: Allocator> Arc<[mem::MaybeUninit<T>], A> {
1352 /// Converts to `Arc<[T]>`.
1353 ///
1354 /// # Safety
1355 ///
1356 /// As with [`MaybeUninit::assume_init`],
1357 /// it is up to the caller to guarantee that the inner value
1358 /// really is in an initialized state.
1359 /// Calling this when the content is not yet fully initialized
1360 /// causes immediate undefined behavior.
1361 ///
1362 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1363 ///
1364 /// # Examples
1365 ///
1366 /// ```
1367 /// #![feature(get_mut_unchecked)]
1368 ///
1369 /// use std::sync::Arc;
1370 ///
1371 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1372 ///
1373 /// // Deferred initialization:
1374 /// let data = Arc::get_mut(&mut values).unwrap();
1375 /// data[0].write(1);
1376 /// data[1].write(2);
1377 /// data[2].write(3);
1378 ///
1379 /// let values = unsafe { values.assume_init() };
1380 ///
1381 /// assert_eq!(*values, [1, 2, 3])
1382 /// ```
1383 #[stable(feature = "new_uninit", since = "1.82.0")]
1384 #[must_use = "`self` will be dropped if the result is not used"]
1385 #[inline]
1386 pub unsafe fn assume_init(self) -> Arc<[T], A> {
1387 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1388 unsafe { Arc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1389 }
1390}
1391
1392impl<T: ?Sized> Arc<T> {
1393 /// Constructs an `Arc<T>` from a raw pointer.
1394 ///
1395 /// The raw pointer must have been previously returned by a call to
1396 /// [`Arc<U>::into_raw`][into_raw] with the following requirements:
1397 ///
1398 /// * If `U` is sized, it must have the same size and alignment as `T`. This
1399 /// is trivially true if `U` is `T`.
1400 /// * If `U` is unsized, its data pointer must have the same size and
1401 /// alignment as `T`. This is trivially true if `Arc<U>` was constructed
1402 /// through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1403 /// coercion].
1404 ///
1405 /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1406 /// and alignment, this is basically like transmuting references of
1407 /// different types. See [`mem::transmute`][transmute] for more information
1408 /// on what restrictions apply in this case.
1409 ///
1410 /// The raw pointer must point to a block of memory allocated by the global allocator.
1411 ///
1412 /// The user of `from_raw` has to make sure a specific value of `T` is only
1413 /// dropped once.
1414 ///
1415 /// This function is unsafe because improper use may lead to memory unsafety,
1416 /// even if the returned `Arc<T>` is never accessed.
1417 ///
1418 /// [into_raw]: Arc::into_raw
1419 /// [transmute]: core::mem::transmute
1420 /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1421 ///
1422 /// # Examples
1423 ///
1424 /// ```
1425 /// use std::sync::Arc;
1426 ///
1427 /// let x = Arc::new("hello".to_owned());
1428 /// let x_ptr = Arc::into_raw(x);
1429 ///
1430 /// unsafe {
1431 /// // Convert back to an `Arc` to prevent leak.
1432 /// let x = Arc::from_raw(x_ptr);
1433 /// assert_eq!(&*x, "hello");
1434 ///
1435 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1436 /// }
1437 ///
1438 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1439 /// ```
1440 ///
1441 /// Convert a slice back into its original array:
1442 ///
1443 /// ```
1444 /// use std::sync::Arc;
1445 ///
1446 /// let x: Arc<[u32]> = Arc::new([1, 2, 3]);
1447 /// let x_ptr: *const [u32] = Arc::into_raw(x);
1448 ///
1449 /// unsafe {
1450 /// let x: Arc<[u32; 3]> = Arc::from_raw(x_ptr.cast::<[u32; 3]>());
1451 /// assert_eq!(&*x, &[1, 2, 3]);
1452 /// }
1453 /// ```
1454 #[inline]
1455 #[stable(feature = "rc_raw", since = "1.17.0")]
1456 pub unsafe fn from_raw(ptr: *const T) -> Self {
1457 unsafe { Arc::from_raw_in(ptr, Global) }
1458 }
1459
1460 /// Consumes the `Arc`, returning the wrapped pointer.
1461 ///
1462 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1463 /// [`Arc::from_raw`].
1464 ///
1465 /// # Examples
1466 ///
1467 /// ```
1468 /// use std::sync::Arc;
1469 ///
1470 /// let x = Arc::new("hello".to_owned());
1471 /// let x_ptr = Arc::into_raw(x);
1472 /// assert_eq!(unsafe { &*x_ptr }, "hello");
1473 /// # // Prevent leaks for Miri.
1474 /// # drop(unsafe { Arc::from_raw(x_ptr) });
1475 /// ```
1476 #[must_use = "losing the pointer will leak memory"]
1477 #[stable(feature = "rc_raw", since = "1.17.0")]
1478 #[rustc_never_returns_null_ptr]
1479 pub fn into_raw(this: Self) -> *const T {
1480 let this = ManuallyDrop::new(this);
1481 Self::as_ptr(&*this)
1482 }
1483
1484 /// Increments the strong reference count on the `Arc<T>` associated with the
1485 /// provided pointer by one.
1486 ///
1487 /// # Safety
1488 ///
1489 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1490 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1491 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1492 /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1493 /// allocated by the global allocator.
1494 ///
1495 /// [from_raw_in]: Arc::from_raw_in
1496 ///
1497 /// # Examples
1498 ///
1499 /// ```
1500 /// use std::sync::Arc;
1501 ///
1502 /// let five = Arc::new(5);
1503 ///
1504 /// unsafe {
1505 /// let ptr = Arc::into_raw(five);
1506 /// Arc::increment_strong_count(ptr);
1507 ///
1508 /// // This assertion is deterministic because we haven't shared
1509 /// // the `Arc` between threads.
1510 /// let five = Arc::from_raw(ptr);
1511 /// assert_eq!(2, Arc::strong_count(&five));
1512 /// # // Prevent leaks for Miri.
1513 /// # Arc::decrement_strong_count(ptr);
1514 /// }
1515 /// ```
1516 #[inline]
1517 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1518 pub unsafe fn increment_strong_count(ptr: *const T) {
1519 unsafe { Arc::increment_strong_count_in(ptr, Global) }
1520 }
1521
1522 /// Decrements the strong reference count on the `Arc<T>` associated with the
1523 /// provided pointer by one.
1524 ///
1525 /// # Safety
1526 ///
1527 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1528 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1529 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1530 /// least 1) when invoking this method, and `ptr` must point to a block of memory
1531 /// allocated by the global allocator. This method can be used to release the final
1532 /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1533 /// released.
1534 ///
1535 /// [from_raw_in]: Arc::from_raw_in
1536 ///
1537 /// # Examples
1538 ///
1539 /// ```
1540 /// use std::sync::Arc;
1541 ///
1542 /// let five = Arc::new(5);
1543 ///
1544 /// unsafe {
1545 /// let ptr = Arc::into_raw(five);
1546 /// Arc::increment_strong_count(ptr);
1547 ///
1548 /// // Those assertions are deterministic because we haven't shared
1549 /// // the `Arc` between threads.
1550 /// let five = Arc::from_raw(ptr);
1551 /// assert_eq!(2, Arc::strong_count(&five));
1552 /// Arc::decrement_strong_count(ptr);
1553 /// assert_eq!(1, Arc::strong_count(&five));
1554 /// }
1555 /// ```
1556 #[inline]
1557 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1558 pub unsafe fn decrement_strong_count(ptr: *const T) {
1559 unsafe { Arc::decrement_strong_count_in(ptr, Global) }
1560 }
1561}
1562
1563impl<T: ?Sized, A: Allocator> Arc<T, A> {
1564 /// Returns a reference to the underlying allocator.
1565 ///
1566 /// Note: this is an associated function, which means that you have
1567 /// to call it as `Arc::allocator(&a)` instead of `a.allocator()`. This
1568 /// is so that there is no conflict with a method on the inner type.
1569 #[inline]
1570 #[unstable(feature = "allocator_api", issue = "32838")]
1571 pub fn allocator(this: &Self) -> &A {
1572 &this.alloc
1573 }
1574
1575 /// Consumes the `Arc`, returning the wrapped pointer and allocator.
1576 ///
1577 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1578 /// [`Arc::from_raw_in`].
1579 ///
1580 /// # Examples
1581 ///
1582 /// ```
1583 /// #![feature(allocator_api)]
1584 /// use std::sync::Arc;
1585 /// use std::alloc::System;
1586 ///
1587 /// let x = Arc::new_in("hello".to_owned(), System);
1588 /// let (ptr, alloc) = Arc::into_raw_with_allocator(x);
1589 /// assert_eq!(unsafe { &*ptr }, "hello");
1590 /// let x = unsafe { Arc::from_raw_in(ptr, alloc) };
1591 /// assert_eq!(&*x, "hello");
1592 /// ```
1593 #[must_use = "losing the pointer will leak memory"]
1594 #[unstable(feature = "allocator_api", issue = "32838")]
1595 pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1596 let this = mem::ManuallyDrop::new(this);
1597 let ptr = Self::as_ptr(&this);
1598 // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1599 let alloc = unsafe { ptr::read(&this.alloc) };
1600 (ptr, alloc)
1601 }
1602
1603 /// Provides a raw pointer to the data.
1604 ///
1605 /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
1606 /// as long as there are strong counts in the `Arc`.
1607 ///
1608 /// # Examples
1609 ///
1610 /// ```
1611 /// use std::sync::Arc;
1612 ///
1613 /// let x = Arc::new("hello".to_owned());
1614 /// let y = Arc::clone(&x);
1615 /// let x_ptr = Arc::as_ptr(&x);
1616 /// assert_eq!(x_ptr, Arc::as_ptr(&y));
1617 /// assert_eq!(unsafe { &*x_ptr }, "hello");
1618 /// ```
1619 #[must_use]
1620 #[stable(feature = "rc_as_ptr", since = "1.45.0")]
1621 #[rustc_never_returns_null_ptr]
1622 pub fn as_ptr(this: &Self) -> *const T {
1623 let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
1624
1625 // SAFETY: This cannot go through Deref::deref or RcInnerPtr::inner because
1626 // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1627 // write through the pointer after the Rc is recovered through `from_raw`.
1628 unsafe { &raw mut (*ptr).data }
1629 }
1630
1631 /// Constructs an `Arc<T, A>` from a raw pointer.
1632 ///
1633 /// The raw pointer must have been previously returned by a call to [`Arc<U,
1634 /// A>::into_raw`][into_raw] with the following requirements:
1635 ///
1636 /// * If `U` is sized, it must have the same size and alignment as `T`. This
1637 /// is trivially true if `U` is `T`.
1638 /// * If `U` is unsized, its data pointer must have the same size and
1639 /// alignment as `T`. This is trivially true if `Arc<U>` was constructed
1640 /// through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1641 /// coercion].
1642 ///
1643 /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1644 /// and alignment, this is basically like transmuting references of
1645 /// different types. See [`mem::transmute`][transmute] for more information
1646 /// on what restrictions apply in this case.
1647 ///
1648 /// The raw pointer must point to a block of memory allocated by `alloc`
1649 ///
1650 /// The user of `from_raw` has to make sure a specific value of `T` is only
1651 /// dropped once.
1652 ///
1653 /// This function is unsafe because improper use may lead to memory unsafety,
1654 /// even if the returned `Arc<T>` is never accessed.
1655 ///
1656 /// [into_raw]: Arc::into_raw
1657 /// [transmute]: core::mem::transmute
1658 /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1659 ///
1660 /// # Examples
1661 ///
1662 /// ```
1663 /// #![feature(allocator_api)]
1664 ///
1665 /// use std::sync::Arc;
1666 /// use std::alloc::System;
1667 ///
1668 /// let x = Arc::new_in("hello".to_owned(), System);
1669 /// let (x_ptr, alloc) = Arc::into_raw_with_allocator(x);
1670 ///
1671 /// unsafe {
1672 /// // Convert back to an `Arc` to prevent leak.
1673 /// let x = Arc::from_raw_in(x_ptr, System);
1674 /// assert_eq!(&*x, "hello");
1675 ///
1676 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1677 /// }
1678 ///
1679 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1680 /// ```
1681 ///
1682 /// Convert a slice back into its original array:
1683 ///
1684 /// ```
1685 /// #![feature(allocator_api)]
1686 ///
1687 /// use std::sync::Arc;
1688 /// use std::alloc::System;
1689 ///
1690 /// let x: Arc<[u32], _> = Arc::new_in([1, 2, 3], System);
1691 /// let x_ptr: *const [u32] = Arc::into_raw_with_allocator(x).0;
1692 ///
1693 /// unsafe {
1694 /// let x: Arc<[u32; 3], _> = Arc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1695 /// assert_eq!(&*x, &[1, 2, 3]);
1696 /// }
1697 /// ```
1698 #[inline]
1699 #[unstable(feature = "allocator_api", issue = "32838")]
1700 pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1701 unsafe {
1702 let offset = data_offset(ptr);
1703
1704 // Reverse the offset to find the original ArcInner.
1705 let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>;
1706
1707 Self::from_ptr_in(arc_ptr, alloc)
1708 }
1709 }
1710
1711 /// Creates a new [`Weak`] pointer to this allocation.
1712 ///
1713 /// # Examples
1714 ///
1715 /// ```
1716 /// use std::sync::Arc;
1717 ///
1718 /// let five = Arc::new(5);
1719 ///
1720 /// let weak_five = Arc::downgrade(&five);
1721 /// ```
1722 #[must_use = "this returns a new `Weak` pointer, \
1723 without modifying the original `Arc`"]
1724 #[stable(feature = "arc_weak", since = "1.4.0")]
1725 pub fn downgrade(this: &Self) -> Weak<T, A>
1726 where
1727 A: Clone,
1728 {
1729 // This Relaxed is OK because we're checking the value in the CAS
1730 // below.
1731 let mut cur = this.inner().weak.load(Relaxed);
1732
1733 loop {
1734 // check if the weak counter is currently "locked"; if so, spin.
1735 if cur == usize::MAX {
1736 hint::spin_loop();
1737 cur = this.inner().weak.load(Relaxed);
1738 continue;
1739 }
1740
1741 // We can't allow the refcount to increase much past `MAX_REFCOUNT`.
1742 assert!(cur <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
1743
1744 // NOTE: this code currently ignores the possibility of overflow
1745 // into usize::MAX; in general both Rc and Arc need to be adjusted
1746 // to deal with overflow.
1747
1748 // Unlike with Clone(), we need this to be an Acquire read to
1749 // synchronize with the write coming from `is_unique`, so that the
1750 // events prior to that write happen before this read.
1751 match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
1752 Ok(_) => {
1753 // Make sure we do not create a dangling Weak
1754 debug_assert!(!is_dangling(this.ptr.as_ptr()));
1755 return Weak { ptr: this.ptr, alloc: this.alloc.clone() };
1756 }
1757 Err(old) => cur = old,
1758 }
1759 }
1760 }
1761
1762 /// Gets the number of [`Weak`] pointers to this allocation.
1763 ///
1764 /// # Safety
1765 ///
1766 /// This method by itself is safe, but using it correctly requires extra care.
1767 /// Another thread can change the weak count at any time,
1768 /// including potentially between calling this method and acting on the result.
1769 ///
1770 /// # Examples
1771 ///
1772 /// ```
1773 /// use std::sync::Arc;
1774 ///
1775 /// let five = Arc::new(5);
1776 /// let _weak_five = Arc::downgrade(&five);
1777 ///
1778 /// // This assertion is deterministic because we haven't shared
1779 /// // the `Arc` or `Weak` between threads.
1780 /// assert_eq!(1, Arc::weak_count(&five));
1781 /// ```
1782 #[inline]
1783 #[must_use]
1784 #[stable(feature = "arc_counts", since = "1.15.0")]
1785 pub fn weak_count(this: &Self) -> usize {
1786 let cnt = this.inner().weak.load(Relaxed);
1787 // If the weak count is currently locked, the value of the
1788 // count was 0 just before taking the lock.
1789 if cnt == usize::MAX { 0 } else { cnt - 1 }
1790 }
1791
1792 /// Gets the number of strong (`Arc`) pointers to this allocation.
1793 ///
1794 /// # Safety
1795 ///
1796 /// This method by itself is safe, but using it correctly requires extra care.
1797 /// Another thread can change the strong count at any time,
1798 /// including potentially between calling this method and acting on the result.
1799 ///
1800 /// # Examples
1801 ///
1802 /// ```
1803 /// use std::sync::Arc;
1804 ///
1805 /// let five = Arc::new(5);
1806 /// let _also_five = Arc::clone(&five);
1807 ///
1808 /// // This assertion is deterministic because we haven't shared
1809 /// // the `Arc` between threads.
1810 /// assert_eq!(2, Arc::strong_count(&five));
1811 /// ```
1812 #[inline]
1813 #[must_use]
1814 #[stable(feature = "arc_counts", since = "1.15.0")]
1815 pub fn strong_count(this: &Self) -> usize {
1816 this.inner().strong.load(Relaxed)
1817 }
1818
1819 /// Increments the strong reference count on the `Arc<T>` associated with the
1820 /// provided pointer by one.
1821 ///
1822 /// # Safety
1823 ///
1824 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1825 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1826 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1827 /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1828 /// allocated by `alloc`.
1829 ///
1830 /// [from_raw_in]: Arc::from_raw_in
1831 ///
1832 /// # Examples
1833 ///
1834 /// ```
1835 /// #![feature(allocator_api)]
1836 ///
1837 /// use std::sync::Arc;
1838 /// use std::alloc::System;
1839 ///
1840 /// let five = Arc::new_in(5, System);
1841 ///
1842 /// unsafe {
1843 /// let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1844 /// Arc::increment_strong_count_in(ptr, System);
1845 ///
1846 /// // This assertion is deterministic because we haven't shared
1847 /// // the `Arc` between threads.
1848 /// let five = Arc::from_raw_in(ptr, System);
1849 /// assert_eq!(2, Arc::strong_count(&five));
1850 /// # // Prevent leaks for Miri.
1851 /// # Arc::decrement_strong_count_in(ptr, System);
1852 /// }
1853 /// ```
1854 #[inline]
1855 #[unstable(feature = "allocator_api", issue = "32838")]
1856 pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1857 where
1858 A: Clone,
1859 {
1860 // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
1861 let arc = unsafe { mem::ManuallyDrop::new(Arc::from_raw_in(ptr, alloc)) };
1862 // Now increase refcount, but don't drop new refcount either
1863 let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
1864 }
1865
1866 /// Decrements the strong reference count on the `Arc<T>` associated with the
1867 /// provided pointer by one.
1868 ///
1869 /// # Safety
1870 ///
1871 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1872 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1873 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1874 /// least 1) when invoking this method, and `ptr` must point to a block of memory
1875 /// allocated by `alloc`. This method can be used to release the final
1876 /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1877 /// released.
1878 ///
1879 /// [from_raw_in]: Arc::from_raw_in
1880 ///
1881 /// # Examples
1882 ///
1883 /// ```
1884 /// #![feature(allocator_api)]
1885 ///
1886 /// use std::sync::Arc;
1887 /// use std::alloc::System;
1888 ///
1889 /// let five = Arc::new_in(5, System);
1890 ///
1891 /// unsafe {
1892 /// let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1893 /// Arc::increment_strong_count_in(ptr, System);
1894 ///
1895 /// // Those assertions are deterministic because we haven't shared
1896 /// // the `Arc` between threads.
1897 /// let five = Arc::from_raw_in(ptr, System);
1898 /// assert_eq!(2, Arc::strong_count(&five));
1899 /// Arc::decrement_strong_count_in(ptr, System);
1900 /// assert_eq!(1, Arc::strong_count(&five));
1901 /// }
1902 /// ```
1903 #[inline]
1904 #[unstable(feature = "allocator_api", issue = "32838")]
1905 pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1906 unsafe { drop(Arc::from_raw_in(ptr, alloc)) };
1907 }
1908
1909 #[inline]
1910 fn inner(&self) -> &ArcInner<T> {
1911 // This unsafety is ok because while this arc is alive we're guaranteed
1912 // that the inner pointer is valid. Furthermore, we know that the
1913 // `ArcInner` structure itself is `Sync` because the inner data is
1914 // `Sync` as well, so we're ok loaning out an immutable pointer to these
1915 // contents.
1916 unsafe { self.ptr.as_ref() }
1917 }
1918
1919 // Non-inlined part of `drop`.
1920 #[inline(never)]
1921 unsafe fn drop_slow(&mut self) {
1922 // Drop the weak ref collectively held by all strong references when this
1923 // variable goes out of scope. This ensures that the memory is deallocated
1924 // even if the destructor of `T` panics.
1925 // Take a reference to `self.alloc` instead of cloning because 1. it'll last long
1926 // enough, and 2. you should be able to drop `Arc`s with unclonable allocators
1927 let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
1928
1929 // Destroy the data at this time, even though we must not free the box
1930 // allocation itself (there might still be weak pointers lying around).
1931 // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
1932 unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
1933 }
1934
1935 /// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to
1936 /// [`ptr::eq`]. This function ignores the metadata of `dyn Trait` pointers.
1937 ///
1938 /// # Examples
1939 ///
1940 /// ```
1941 /// use std::sync::Arc;
1942 ///
1943 /// let five = Arc::new(5);
1944 /// let same_five = Arc::clone(&five);
1945 /// let other_five = Arc::new(5);
1946 ///
1947 /// assert!(Arc::ptr_eq(&five, &same_five));
1948 /// assert!(!Arc::ptr_eq(&five, &other_five));
1949 /// ```
1950 ///
1951 /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
1952 #[inline]
1953 #[must_use]
1954 #[stable(feature = "ptr_eq", since = "1.17.0")]
1955 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1956 ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
1957 }
1958}
1959
1960impl<T: ?Sized> Arc<T> {
1961 /// Allocates an `ArcInner<T>` with sufficient space for
1962 /// a possibly-unsized inner value where the value has the layout provided.
1963 ///
1964 /// The function `mem_to_arcinner` is called with the data pointer
1965 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1966 #[cfg(not(no_global_oom_handling))]
1967 unsafe fn allocate_for_layout(
1968 value_layout: Layout,
1969 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1970 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1971 ) -> *mut ArcInner<T> {
1972 let layout = arcinner_layout_for_value_layout(value_layout);
1973
1974 let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout));
1975
1976 unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) }
1977 }
1978
1979 /// Allocates an `ArcInner<T>` with sufficient space for
1980 /// a possibly-unsized inner value where the value has the layout provided,
1981 /// returning an error if allocation fails.
1982 ///
1983 /// The function `mem_to_arcinner` is called with the data pointer
1984 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1985 unsafe fn try_allocate_for_layout(
1986 value_layout: Layout,
1987 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1988 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1989 ) -> Result<*mut ArcInner<T>, AllocError> {
1990 let layout = arcinner_layout_for_value_layout(value_layout);
1991
1992 let ptr = allocate(layout)?;
1993
1994 let inner = unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) };
1995
1996 Ok(inner)
1997 }
1998
1999 unsafe fn initialize_arcinner(
2000 ptr: NonNull<[u8]>,
2001 layout: Layout,
2002 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
2003 ) -> *mut ArcInner<T> {
2004 let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
2005 debug_assert_eq!(unsafe { Layout::for_value_raw(inner) }, layout);
2006
2007 unsafe {
2008 (&raw mut (*inner).strong).write(atomic::AtomicUsize::new(1));
2009 (&raw mut (*inner).weak).write(atomic::AtomicUsize::new(1));
2010 }
2011
2012 inner
2013 }
2014}
2015
2016impl<T: ?Sized, A: Allocator> Arc<T, A> {
2017 /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
2018 #[inline]
2019 #[cfg(not(no_global_oom_handling))]
2020 unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut ArcInner<T> {
2021 // Allocate for the `ArcInner<T>` using the given value.
2022 unsafe {
2023 Arc::allocate_for_layout(
2024 Layout::for_value_raw(ptr),
2025 |layout| alloc.allocate(layout),
2026 |mem| mem.with_metadata_of(ptr as *const ArcInner<T>),
2027 )
2028 }
2029 }
2030
2031 #[cfg(not(no_global_oom_handling))]
2032 fn from_box_in(src: Box<T, A>) -> Arc<T, A> {
2033 unsafe {
2034 let value_size = size_of_val(&*src);
2035 let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2036
2037 // Copy value as bytes
2038 ptr::copy_nonoverlapping(
2039 (&raw const *src) as *const u8,
2040 (&raw mut (*ptr).data) as *mut u8,
2041 value_size,
2042 );
2043
2044 // Free the allocation without dropping its contents
2045 let (bptr, alloc) = Box::into_raw_with_allocator(src);
2046 let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2047 drop(src);
2048
2049 Self::from_ptr_in(ptr, alloc)
2050 }
2051 }
2052}
2053
2054impl<T> Arc<[T]> {
2055 /// Allocates an `ArcInner<[T]>` with the given length.
2056 #[cfg(not(no_global_oom_handling))]
2057 unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
2058 unsafe {
2059 Self::allocate_for_layout(
2060 Layout::array::<T>(len).unwrap(),
2061 |layout| Global.allocate(layout),
2062 |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2063 )
2064 }
2065 }
2066
2067 /// Copy elements from slice into newly allocated `Arc<[T]>`
2068 ///
2069 /// Unsafe because the caller must either take ownership or bind `T: Copy`.
2070 #[cfg(not(no_global_oom_handling))]
2071 unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
2072 unsafe {
2073 let ptr = Self::allocate_for_slice(v.len());
2074
2075 ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).data) as *mut T, v.len());
2076
2077 Self::from_ptr(ptr)
2078 }
2079 }
2080
2081 /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
2082 ///
2083 /// Behavior is undefined should the size be wrong.
2084 #[cfg(not(no_global_oom_handling))]
2085 unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> {
2086 // Panic guard while cloning T elements.
2087 // In the event of a panic, elements that have been written
2088 // into the new ArcInner will be dropped, then the memory freed.
2089 struct Guard<T> {
2090 mem: NonNull<u8>,
2091 elems: *mut T,
2092 layout: Layout,
2093 n_elems: usize,
2094 }
2095
2096 impl<T> Drop for Guard<T> {
2097 fn drop(&mut self) {
2098 unsafe {
2099 let slice = from_raw_parts_mut(self.elems, self.n_elems);
2100 ptr::drop_in_place(slice);
2101
2102 Global.deallocate(self.mem, self.layout);
2103 }
2104 }
2105 }
2106
2107 unsafe {
2108 let ptr = Self::allocate_for_slice(len);
2109
2110 let mem = ptr as *mut _ as *mut u8;
2111 let layout = Layout::for_value_raw(ptr);
2112
2113 // Pointer to first element
2114 let elems = (&raw mut (*ptr).data) as *mut T;
2115
2116 let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2117
2118 for (i, item) in iter.enumerate() {
2119 ptr::write(elems.add(i), item);
2120 guard.n_elems += 1;
2121 }
2122
2123 // All clear. Forget the guard so it doesn't free the new ArcInner.
2124 mem::forget(guard);
2125
2126 Self::from_ptr(ptr)
2127 }
2128 }
2129}
2130
2131impl<T, A: Allocator> Arc<[T], A> {
2132 /// Allocates an `ArcInner<[T]>` with the given length.
2133 #[inline]
2134 #[cfg(not(no_global_oom_handling))]
2135 unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut ArcInner<[T]> {
2136 unsafe {
2137 Arc::allocate_for_layout(
2138 Layout::array::<T>(len).unwrap(),
2139 |layout| alloc.allocate(layout),
2140 |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2141 )
2142 }
2143 }
2144}
2145
2146/// Specialization trait used for `From<&[T]>`.
2147#[cfg(not(no_global_oom_handling))]
2148trait ArcFromSlice<T> {
2149 fn from_slice(slice: &[T]) -> Self;
2150}
2151
2152#[cfg(not(no_global_oom_handling))]
2153impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
2154 #[inline]
2155 default fn from_slice(v: &[T]) -> Self {
2156 unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2157 }
2158}
2159
2160#[cfg(not(no_global_oom_handling))]
2161impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
2162 #[inline]
2163 fn from_slice(v: &[T]) -> Self {
2164 unsafe { Arc::copy_from_slice(v) }
2165 }
2166}
2167
2168#[stable(feature = "rust1", since = "1.0.0")]
2169impl<T: ?Sized, A: Allocator + Clone> Clone for Arc<T, A> {
2170 /// Makes a clone of the `Arc` pointer.
2171 ///
2172 /// This creates another pointer to the same allocation, increasing the
2173 /// strong reference count.
2174 ///
2175 /// # Examples
2176 ///
2177 /// ```
2178 /// use std::sync::Arc;
2179 ///
2180 /// let five = Arc::new(5);
2181 ///
2182 /// let _ = Arc::clone(&five);
2183 /// ```
2184 #[inline]
2185 fn clone(&self) -> Arc<T, A> {
2186 // Using a relaxed ordering is alright here, as knowledge of the
2187 // original reference prevents other threads from erroneously deleting
2188 // the object.
2189 //
2190 // As explained in the [Boost documentation][1], Increasing the
2191 // reference counter can always be done with memory_order_relaxed: New
2192 // references to an object can only be formed from an existing
2193 // reference, and passing an existing reference from one thread to
2194 // another must already provide any required synchronization.
2195 //
2196 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2197 let old_size = self.inner().strong.fetch_add(1, Relaxed);
2198
2199 // However we need to guard against massive refcounts in case someone is `mem::forget`ing
2200 // Arcs. If we don't do this the count can overflow and users will use-after free. This
2201 // branch will never be taken in any realistic program. We abort because such a program is
2202 // incredibly degenerate, and we don't care to support it.
2203 //
2204 // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
2205 // But we do that check *after* having done the increment, so there is a chance here that
2206 // the worst already happened and we actually do overflow the `usize` counter. However, that
2207 // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
2208 // above and the `abort` below, which seems exceedingly unlikely.
2209 //
2210 // This is a global invariant, and also applies when using a compare-exchange loop to increment
2211 // counters in other methods.
2212 // Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop,
2213 // and then overflow using a few `fetch_add`s.
2214 if old_size > MAX_REFCOUNT {
2215 abort();
2216 }
2217
2218 unsafe { Self::from_inner_in(self.ptr, self.alloc.clone()) }
2219 }
2220}
2221
2222#[unstable(feature = "ergonomic_clones", issue = "132290")]
2223impl<T: ?Sized, A: Allocator + Clone> UseCloned for Arc<T, A> {}
2224
2225#[stable(feature = "rust1", since = "1.0.0")]
2226impl<T: ?Sized, A: Allocator> Deref for Arc<T, A> {
2227 type Target = T;
2228
2229 #[inline]
2230 fn deref(&self) -> &T {
2231 &self.inner().data
2232 }
2233}
2234
2235#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2236unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Arc<T, A> {}
2237
2238#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2239unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2240
2241#[unstable(feature = "deref_pure_trait", issue = "87121")]
2242unsafe impl<T: ?Sized, A: Allocator> DerefPure for Arc<T, A> {}
2243
2244#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2245impl<T: ?Sized> LegacyReceiver for Arc<T> {}
2246
2247#[cfg(not(no_global_oom_handling))]
2248impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Arc<T, A> {
2249 /// Makes a mutable reference into the given `Arc`.
2250 ///
2251 /// If there are other `Arc` pointers to the same allocation, then `make_mut` will
2252 /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
2253 /// referred to as clone-on-write.
2254 ///
2255 /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`]
2256 /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not
2257 /// be cloned.
2258 ///
2259 /// See also [`get_mut`], which will fail rather than cloning the inner value
2260 /// or dissociating [`Weak`] pointers.
2261 ///
2262 /// [`clone`]: Clone::clone
2263 /// [`get_mut`]: Arc::get_mut
2264 ///
2265 /// # Examples
2266 ///
2267 /// ```
2268 /// use std::sync::Arc;
2269 ///
2270 /// let mut data = Arc::new(5);
2271 ///
2272 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
2273 /// let mut other_data = Arc::clone(&data); // Won't clone inner data
2274 /// *Arc::make_mut(&mut data) += 1; // Clones inner data
2275 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
2276 /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
2277 ///
2278 /// // Now `data` and `other_data` point to different allocations.
2279 /// assert_eq!(*data, 8);
2280 /// assert_eq!(*other_data, 12);
2281 /// ```
2282 ///
2283 /// [`Weak`] pointers will be dissociated:
2284 ///
2285 /// ```
2286 /// use std::sync::Arc;
2287 ///
2288 /// let mut data = Arc::new(75);
2289 /// let weak = Arc::downgrade(&data);
2290 ///
2291 /// assert!(75 == *data);
2292 /// assert!(75 == *weak.upgrade().unwrap());
2293 ///
2294 /// *Arc::make_mut(&mut data) += 1;
2295 ///
2296 /// assert!(76 == *data);
2297 /// assert!(weak.upgrade().is_none());
2298 /// ```
2299 #[inline]
2300 #[stable(feature = "arc_unique", since = "1.4.0")]
2301 pub fn make_mut(this: &mut Self) -> &mut T {
2302 let size_of_val = size_of_val::<T>(&**this);
2303
2304 // Note that we hold both a strong reference and a weak reference.
2305 // Thus, releasing our strong reference only will not, by itself, cause
2306 // the memory to be deallocated.
2307 //
2308 // Use Acquire to ensure that we see any writes to `weak` that happen
2309 // before release writes (i.e., decrements) to `strong`. Since we hold a
2310 // weak count, there's no chance the ArcInner itself could be
2311 // deallocated.
2312 if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
2313 // Another strong pointer exists, so we must clone.
2314
2315 let this_data_ref: &T = &**this;
2316 // `in_progress` drops the allocation if we panic before finishing initializing it.
2317 let mut in_progress: UniqueArcUninit<T, A> =
2318 UniqueArcUninit::new(this_data_ref, this.alloc.clone());
2319
2320 let initialized_clone = unsafe {
2321 // Clone. If the clone panics, `in_progress` will be dropped and clean up.
2322 this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
2323 // Cast type of pointer, now that it is initialized.
2324 in_progress.into_arc()
2325 };
2326 *this = initialized_clone;
2327 } else if this.inner().weak.load(Relaxed) != 1 {
2328 // Relaxed suffices in the above because this is fundamentally an
2329 // optimization: we are always racing with weak pointers being
2330 // dropped. Worst case, we end up allocated a new Arc unnecessarily.
2331
2332 // We removed the last strong ref, but there are additional weak
2333 // refs remaining. We'll move the contents to a new Arc, and
2334 // invalidate the other weak refs.
2335
2336 // Note that it is not possible for the read of `weak` to yield
2337 // usize::MAX (i.e., locked), since the weak count can only be
2338 // locked by a thread with a strong reference.
2339
2340 // Materialize our own implicit weak pointer, so that it can clean
2341 // up the ArcInner as needed.
2342 let _weak = Weak { ptr: this.ptr, alloc: this.alloc.clone() };
2343
2344 // Can just steal the data, all that's left is Weaks
2345 //
2346 // We don't need panic-protection like the above branch does, but we might as well
2347 // use the same mechanism.
2348 let mut in_progress: UniqueArcUninit<T, A> =
2349 UniqueArcUninit::new(&**this, this.alloc.clone());
2350 unsafe {
2351 // Initialize `in_progress` with move of **this.
2352 // We have to express this in terms of bytes because `T: ?Sized`; there is no
2353 // operation that just copies a value based on its `size_of_val()`.
2354 ptr::copy_nonoverlapping(
2355 ptr::from_ref(&**this).cast::<u8>(),
2356 in_progress.data_ptr().cast::<u8>(),
2357 size_of_val,
2358 );
2359
2360 ptr::write(this, in_progress.into_arc());
2361 }
2362 } else {
2363 // We were the sole reference of either kind; bump back up the
2364 // strong ref count.
2365 this.inner().strong.store(1, Release);
2366 }
2367
2368 // As with `get_mut()`, the unsafety is ok because our reference was
2369 // either unique to begin with, or became one upon cloning the contents.
2370 unsafe { Self::get_mut_unchecked(this) }
2371 }
2372}
2373
2374impl<T: Clone, A: Allocator> Arc<T, A> {
2375 /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
2376 /// clone.
2377 ///
2378 /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to
2379 /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
2380 ///
2381 /// # Examples
2382 ///
2383 /// ```
2384 /// # use std::{ptr, sync::Arc};
2385 /// let inner = String::from("test");
2386 /// let ptr = inner.as_ptr();
2387 ///
2388 /// let arc = Arc::new(inner);
2389 /// let inner = Arc::unwrap_or_clone(arc);
2390 /// // The inner value was not cloned
2391 /// assert!(ptr::eq(ptr, inner.as_ptr()));
2392 ///
2393 /// let arc = Arc::new(inner);
2394 /// let arc2 = arc.clone();
2395 /// let inner = Arc::unwrap_or_clone(arc);
2396 /// // Because there were 2 references, we had to clone the inner value.
2397 /// assert!(!ptr::eq(ptr, inner.as_ptr()));
2398 /// // `arc2` is the last reference, so when we unwrap it we get back
2399 /// // the original `String`.
2400 /// let inner = Arc::unwrap_or_clone(arc2);
2401 /// assert!(ptr::eq(ptr, inner.as_ptr()));
2402 /// ```
2403 #[inline]
2404 #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
2405 pub fn unwrap_or_clone(this: Self) -> T {
2406 Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone())
2407 }
2408}
2409
2410impl<T: ?Sized, A: Allocator> Arc<T, A> {
2411 /// Returns a mutable reference into the given `Arc`, if there are
2412 /// no other `Arc` or [`Weak`] pointers to the same allocation.
2413 ///
2414 /// Returns [`None`] otherwise, because it is not safe to
2415 /// mutate a shared value.
2416 ///
2417 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
2418 /// the inner value when there are other `Arc` pointers.
2419 ///
2420 /// [make_mut]: Arc::make_mut
2421 /// [clone]: Clone::clone
2422 ///
2423 /// # Examples
2424 ///
2425 /// ```
2426 /// use std::sync::Arc;
2427 ///
2428 /// let mut x = Arc::new(3);
2429 /// *Arc::get_mut(&mut x).unwrap() = 4;
2430 /// assert_eq!(*x, 4);
2431 ///
2432 /// let _y = Arc::clone(&x);
2433 /// assert!(Arc::get_mut(&mut x).is_none());
2434 /// ```
2435 #[inline]
2436 #[stable(feature = "arc_unique", since = "1.4.0")]
2437 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
2438 if Self::is_unique(this) {
2439 // This unsafety is ok because we're guaranteed that the pointer
2440 // returned is the *only* pointer that will ever be returned to T. Our
2441 // reference count is guaranteed to be 1 at this point, and we required
2442 // the Arc itself to be `mut`, so we're returning the only possible
2443 // reference to the inner data.
2444 unsafe { Some(Arc::get_mut_unchecked(this)) }
2445 } else {
2446 None
2447 }
2448 }
2449
2450 /// Returns a mutable reference into the given `Arc`,
2451 /// without any check.
2452 ///
2453 /// See also [`get_mut`], which is safe and does appropriate checks.
2454 ///
2455 /// [`get_mut`]: Arc::get_mut
2456 ///
2457 /// # Safety
2458 ///
2459 /// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then
2460 /// they must not be dereferenced or have active borrows for the duration
2461 /// of the returned borrow, and their inner type must be exactly the same as the
2462 /// inner type of this Rc (including lifetimes). This is trivially the case if no
2463 /// such pointers exist, for example immediately after `Arc::new`.
2464 ///
2465 /// # Examples
2466 ///
2467 /// ```
2468 /// #![feature(get_mut_unchecked)]
2469 ///
2470 /// use std::sync::Arc;
2471 ///
2472 /// let mut x = Arc::new(String::new());
2473 /// unsafe {
2474 /// Arc::get_mut_unchecked(&mut x).push_str("foo")
2475 /// }
2476 /// assert_eq!(*x, "foo");
2477 /// ```
2478 /// Other `Arc` pointers to the same allocation must be to the same type.
2479 /// ```no_run
2480 /// #![feature(get_mut_unchecked)]
2481 ///
2482 /// use std::sync::Arc;
2483 ///
2484 /// let x: Arc<str> = Arc::from("Hello, world!");
2485 /// let mut y: Arc<[u8]> = x.clone().into();
2486 /// unsafe {
2487 /// // this is Undefined Behavior, because x's inner type is str, not [u8]
2488 /// Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
2489 /// }
2490 /// println!("{}", &*x); // Invalid UTF-8 in a str
2491 /// ```
2492 /// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes.
2493 /// ```no_run
2494 /// #![feature(get_mut_unchecked)]
2495 ///
2496 /// use std::sync::Arc;
2497 ///
2498 /// let x: Arc<&str> = Arc::new("Hello, world!");
2499 /// {
2500 /// let s = String::from("Oh, no!");
2501 /// let mut y: Arc<&str> = x.clone();
2502 /// unsafe {
2503 /// // this is Undefined Behavior, because x's inner type
2504 /// // is &'long str, not &'short str
2505 /// *Arc::get_mut_unchecked(&mut y) = &s;
2506 /// }
2507 /// }
2508 /// println!("{}", &*x); // Use-after-free
2509 /// ```
2510 #[inline]
2511 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
2512 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
2513 // We are careful to *not* create a reference covering the "count" fields, as
2514 // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
2515 unsafe { &mut (*this.ptr.as_ptr()).data }
2516 }
2517
2518 /// Determine whether this is the unique reference to the underlying data.
2519 ///
2520 /// Returns `true` if there are no other `Arc` or [`Weak`] pointers to the same allocation;
2521 /// returns `false` otherwise.
2522 ///
2523 /// If this function returns `true`, then is guaranteed to be safe to call [`get_mut_unchecked`]
2524 /// on this `Arc`, so long as no clones occur in between.
2525 ///
2526 /// # Examples
2527 ///
2528 /// ```
2529 /// #![feature(arc_is_unique)]
2530 ///
2531 /// use std::sync::Arc;
2532 ///
2533 /// let x = Arc::new(3);
2534 /// assert!(Arc::is_unique(&x));
2535 ///
2536 /// let y = Arc::clone(&x);
2537 /// assert!(!Arc::is_unique(&x));
2538 /// drop(y);
2539 ///
2540 /// // Weak references also count, because they could be upgraded at any time.
2541 /// let z = Arc::downgrade(&x);
2542 /// assert!(!Arc::is_unique(&x));
2543 /// ```
2544 ///
2545 /// # Pointer invalidation
2546 ///
2547 /// This function will always return the same value as `Arc::get_mut(arc).is_some()`. However,
2548 /// unlike that operation it does not produce any mutable references to the underlying data,
2549 /// meaning no pointers to the data inside the `Arc` are invalidated by the call. Thus, the
2550 /// following code is valid, even though it would be UB if it used `Arc::get_mut`:
2551 ///
2552 /// ```
2553 /// #![feature(arc_is_unique)]
2554 ///
2555 /// use std::sync::Arc;
2556 ///
2557 /// let arc = Arc::new(5);
2558 /// let pointer: *const i32 = &*arc;
2559 /// assert!(Arc::is_unique(&arc));
2560 /// assert_eq!(unsafe { *pointer }, 5);
2561 /// ```
2562 ///
2563 /// # Atomic orderings
2564 ///
2565 /// Concurrent drops to other `Arc` pointers to the same allocation will synchronize with this
2566 /// call - that is, this call performs an `Acquire` operation on the underlying strong and weak
2567 /// ref counts. This ensures that calling `get_mut_unchecked` is safe.
2568 ///
2569 /// Note that this operation requires locking the weak ref count, so concurrent calls to
2570 /// `downgrade` may spin-loop for a short period of time.
2571 ///
2572 /// [`get_mut_unchecked`]: Self::get_mut_unchecked
2573 #[inline]
2574 #[unstable(feature = "arc_is_unique", issue = "138938")]
2575 pub fn is_unique(this: &Self) -> bool {
2576 // lock the weak pointer count if we appear to be the sole weak pointer
2577 // holder.
2578 //
2579 // The acquire label here ensures a happens-before relationship with any
2580 // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
2581 // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
2582 // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
2583 if this.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
2584 // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
2585 // counter in `drop` -- the only access that happens when any but the last reference
2586 // is being dropped.
2587 let unique = this.inner().strong.load(Acquire) == 1;
2588
2589 // The release write here synchronizes with a read in `downgrade`,
2590 // effectively preventing the above read of `strong` from happening
2591 // after the write.
2592 this.inner().weak.store(1, Release); // release the lock
2593 unique
2594 } else {
2595 false
2596 }
2597 }
2598}
2599
2600#[stable(feature = "rust1", since = "1.0.0")]
2601unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Arc<T, A> {
2602 /// Drops the `Arc`.
2603 ///
2604 /// This will decrement the strong reference count. If the strong reference
2605 /// count reaches zero then the only other references (if any) are
2606 /// [`Weak`], so we `drop` the inner value.
2607 ///
2608 /// # Examples
2609 ///
2610 /// ```
2611 /// use std::sync::Arc;
2612 ///
2613 /// struct Foo;
2614 ///
2615 /// impl Drop for Foo {
2616 /// fn drop(&mut self) {
2617 /// println!("dropped!");
2618 /// }
2619 /// }
2620 ///
2621 /// let foo = Arc::new(Foo);
2622 /// let foo2 = Arc::clone(&foo);
2623 ///
2624 /// drop(foo); // Doesn't print anything
2625 /// drop(foo2); // Prints "dropped!"
2626 /// ```
2627 #[inline]
2628 fn drop(&mut self) {
2629 // Because `fetch_sub` is already atomic, we do not need to synchronize
2630 // with other threads unless we are going to delete the object. This
2631 // same logic applies to the below `fetch_sub` to the `weak` count.
2632 if self.inner().strong.fetch_sub(1, Release) != 1 {
2633 return;
2634 }
2635
2636 // This fence is needed to prevent reordering of use of the data and
2637 // deletion of the data. Because it is marked `Release`, the decreasing
2638 // of the reference count synchronizes with this `Acquire` fence. This
2639 // means that use of the data happens before decreasing the reference
2640 // count, which happens before this fence, which happens before the
2641 // deletion of the data.
2642 //
2643 // As explained in the [Boost documentation][1],
2644 //
2645 // > It is important to enforce any possible access to the object in one
2646 // > thread (through an existing reference) to *happen before* deleting
2647 // > the object in a different thread. This is achieved by a "release"
2648 // > operation after dropping a reference (any access to the object
2649 // > through this reference must obviously happened before), and an
2650 // > "acquire" operation before deleting the object.
2651 //
2652 // In particular, while the contents of an Arc are usually immutable, it's
2653 // possible to have interior writes to something like a Mutex<T>. Since a
2654 // Mutex is not acquired when it is deleted, we can't rely on its
2655 // synchronization logic to make writes in thread A visible to a destructor
2656 // running in thread B.
2657 //
2658 // Also note that the Acquire fence here could probably be replaced with an
2659 // Acquire load, which could improve performance in highly-contended
2660 // situations. See [2].
2661 //
2662 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2663 // [2]: (https://github.com/rust-lang/rust/pull/41714)
2664 acquire!(self.inner().strong);
2665
2666 // Make sure we aren't trying to "drop" the shared static for empty slices
2667 // used by Default::default.
2668 debug_assert!(
2669 !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
2670 "Arcs backed by a static should never reach a strong count of 0. \
2671 Likely decrement_strong_count or from_raw were called too many times.",
2672 );
2673
2674 unsafe {
2675 self.drop_slow();
2676 }
2677 }
2678}
2679
2680impl<A: Allocator> Arc<dyn Any + Send + Sync, A> {
2681 /// Attempts to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
2682 ///
2683 /// # Examples
2684 ///
2685 /// ```
2686 /// use std::any::Any;
2687 /// use std::sync::Arc;
2688 ///
2689 /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
2690 /// if let Ok(string) = value.downcast::<String>() {
2691 /// println!("String ({}): {}", string.len(), string);
2692 /// }
2693 /// }
2694 ///
2695 /// let my_string = "Hello World".to_string();
2696 /// print_if_string(Arc::new(my_string));
2697 /// print_if_string(Arc::new(0i8));
2698 /// ```
2699 #[inline]
2700 #[stable(feature = "rc_downcast", since = "1.29.0")]
2701 pub fn downcast<T>(self) -> Result<Arc<T, A>, Self>
2702 where
2703 T: Any + Send + Sync,
2704 {
2705 if (*self).is::<T>() {
2706 unsafe {
2707 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2708 Ok(Arc::from_inner_in(ptr.cast(), alloc))
2709 }
2710 } else {
2711 Err(self)
2712 }
2713 }
2714
2715 /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type.
2716 ///
2717 /// For a safe alternative see [`downcast`].
2718 ///
2719 /// # Examples
2720 ///
2721 /// ```
2722 /// #![feature(downcast_unchecked)]
2723 ///
2724 /// use std::any::Any;
2725 /// use std::sync::Arc;
2726 ///
2727 /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);
2728 ///
2729 /// unsafe {
2730 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2731 /// }
2732 /// ```
2733 ///
2734 /// # Safety
2735 ///
2736 /// The contained value must be of type `T`. Calling this method
2737 /// with the incorrect type is *undefined behavior*.
2738 ///
2739 ///
2740 /// [`downcast`]: Self::downcast
2741 #[inline]
2742 #[unstable(feature = "downcast_unchecked", issue = "90850")]
2743 pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A>
2744 where
2745 T: Any + Send + Sync,
2746 {
2747 unsafe {
2748 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2749 Arc::from_inner_in(ptr.cast(), alloc)
2750 }
2751 }
2752}
2753
2754impl<T> Weak<T> {
2755 /// Constructs a new `Weak<T>`, without allocating any memory.
2756 /// Calling [`upgrade`] on the return value always gives [`None`].
2757 ///
2758 /// [`upgrade`]: Weak::upgrade
2759 ///
2760 /// # Examples
2761 ///
2762 /// ```
2763 /// use std::sync::Weak;
2764 ///
2765 /// let empty: Weak<i64> = Weak::new();
2766 /// assert!(empty.upgrade().is_none());
2767 /// ```
2768 #[inline]
2769 #[stable(feature = "downgraded_weak", since = "1.10.0")]
2770 #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
2771 #[must_use]
2772 pub const fn new() -> Weak<T> {
2773 Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
2774 }
2775}
2776
2777impl<T, A: Allocator> Weak<T, A> {
2778 /// Constructs a new `Weak<T, A>`, without allocating any memory, technically in the provided
2779 /// allocator.
2780 /// Calling [`upgrade`] on the return value always gives [`None`].
2781 ///
2782 /// [`upgrade`]: Weak::upgrade
2783 ///
2784 /// # Examples
2785 ///
2786 /// ```
2787 /// #![feature(allocator_api)]
2788 ///
2789 /// use std::sync::Weak;
2790 /// use std::alloc::System;
2791 ///
2792 /// let empty: Weak<i64, _> = Weak::new_in(System);
2793 /// assert!(empty.upgrade().is_none());
2794 /// ```
2795 #[inline]
2796 #[unstable(feature = "allocator_api", issue = "32838")]
2797 pub fn new_in(alloc: A) -> Weak<T, A> {
2798 Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
2799 }
2800}
2801
2802/// Helper type to allow accessing the reference counts without
2803/// making any assertions about the data field.
2804struct WeakInner<'a> {
2805 weak: &'a Atomic<usize>,
2806 strong: &'a Atomic<usize>,
2807}
2808
2809impl<T: ?Sized> Weak<T> {
2810 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
2811 ///
2812 /// This can be used to safely get a strong reference (by calling [`upgrade`]
2813 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2814 ///
2815 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2816 /// as these don't own anything; the method still works on them).
2817 ///
2818 /// # Safety
2819 ///
2820 /// The pointer must have originated from the [`into_raw`] and must still own its potential
2821 /// weak reference, and must point to a block of memory allocated by global allocator.
2822 ///
2823 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2824 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2825 /// count is not modified by this operation) and therefore it must be paired with a previous
2826 /// call to [`into_raw`].
2827 /// # Examples
2828 ///
2829 /// ```
2830 /// use std::sync::{Arc, Weak};
2831 ///
2832 /// let strong = Arc::new("hello".to_owned());
2833 ///
2834 /// let raw_1 = Arc::downgrade(&strong).into_raw();
2835 /// let raw_2 = Arc::downgrade(&strong).into_raw();
2836 ///
2837 /// assert_eq!(2, Arc::weak_count(&strong));
2838 ///
2839 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
2840 /// assert_eq!(1, Arc::weak_count(&strong));
2841 ///
2842 /// drop(strong);
2843 ///
2844 /// // Decrement the last weak count.
2845 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
2846 /// ```
2847 ///
2848 /// [`new`]: Weak::new
2849 /// [`into_raw`]: Weak::into_raw
2850 /// [`upgrade`]: Weak::upgrade
2851 #[inline]
2852 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2853 pub unsafe fn from_raw(ptr: *const T) -> Self {
2854 unsafe { Weak::from_raw_in(ptr, Global) }
2855 }
2856
2857 /// Consumes the `Weak<T>` and turns it into a raw pointer.
2858 ///
2859 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2860 /// one weak reference (the weak count is not modified by this operation). It can be turned
2861 /// back into the `Weak<T>` with [`from_raw`].
2862 ///
2863 /// The same restrictions of accessing the target of the pointer as with
2864 /// [`as_ptr`] apply.
2865 ///
2866 /// # Examples
2867 ///
2868 /// ```
2869 /// use std::sync::{Arc, Weak};
2870 ///
2871 /// let strong = Arc::new("hello".to_owned());
2872 /// let weak = Arc::downgrade(&strong);
2873 /// let raw = weak.into_raw();
2874 ///
2875 /// assert_eq!(1, Arc::weak_count(&strong));
2876 /// assert_eq!("hello", unsafe { &*raw });
2877 ///
2878 /// drop(unsafe { Weak::from_raw(raw) });
2879 /// assert_eq!(0, Arc::weak_count(&strong));
2880 /// ```
2881 ///
2882 /// [`from_raw`]: Weak::from_raw
2883 /// [`as_ptr`]: Weak::as_ptr
2884 #[must_use = "losing the pointer will leak memory"]
2885 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2886 pub fn into_raw(self) -> *const T {
2887 ManuallyDrop::new(self).as_ptr()
2888 }
2889}
2890
2891impl<T: ?Sized, A: Allocator> Weak<T, A> {
2892 /// Returns a reference to the underlying allocator.
2893 #[inline]
2894 #[unstable(feature = "allocator_api", issue = "32838")]
2895 pub fn allocator(&self) -> &A {
2896 &self.alloc
2897 }
2898
2899 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
2900 ///
2901 /// The pointer is valid only if there are some strong references. The pointer may be dangling,
2902 /// unaligned or even [`null`] otherwise.
2903 ///
2904 /// # Examples
2905 ///
2906 /// ```
2907 /// use std::sync::Arc;
2908 /// use std::ptr;
2909 ///
2910 /// let strong = Arc::new("hello".to_owned());
2911 /// let weak = Arc::downgrade(&strong);
2912 /// // Both point to the same object
2913 /// assert!(ptr::eq(&*strong, weak.as_ptr()));
2914 /// // The strong here keeps it alive, so we can still access the object.
2915 /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
2916 ///
2917 /// drop(strong);
2918 /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
2919 /// // undefined behavior.
2920 /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
2921 /// ```
2922 ///
2923 /// [`null`]: core::ptr::null "ptr::null"
2924 #[must_use]
2925 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2926 pub fn as_ptr(&self) -> *const T {
2927 let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
2928
2929 if is_dangling(ptr) {
2930 // If the pointer is dangling, we return the sentinel directly. This cannot be
2931 // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
2932 ptr as *const T
2933 } else {
2934 // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
2935 // The payload may be dropped at this point, and we have to maintain provenance,
2936 // so use raw pointer manipulation.
2937 unsafe { &raw mut (*ptr).data }
2938 }
2939 }
2940
2941 /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
2942 ///
2943 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2944 /// one weak reference (the weak count is not modified by this operation). It can be turned
2945 /// back into the `Weak<T>` with [`from_raw_in`].
2946 ///
2947 /// The same restrictions of accessing the target of the pointer as with
2948 /// [`as_ptr`] apply.
2949 ///
2950 /// # Examples
2951 ///
2952 /// ```
2953 /// #![feature(allocator_api)]
2954 /// use std::sync::{Arc, Weak};
2955 /// use std::alloc::System;
2956 ///
2957 /// let strong = Arc::new_in("hello".to_owned(), System);
2958 /// let weak = Arc::downgrade(&strong);
2959 /// let (raw, alloc) = weak.into_raw_with_allocator();
2960 ///
2961 /// assert_eq!(1, Arc::weak_count(&strong));
2962 /// assert_eq!("hello", unsafe { &*raw });
2963 ///
2964 /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
2965 /// assert_eq!(0, Arc::weak_count(&strong));
2966 /// ```
2967 ///
2968 /// [`from_raw_in`]: Weak::from_raw_in
2969 /// [`as_ptr`]: Weak::as_ptr
2970 #[must_use = "losing the pointer will leak memory"]
2971 #[unstable(feature = "allocator_api", issue = "32838")]
2972 pub fn into_raw_with_allocator(self) -> (*const T, A) {
2973 let this = mem::ManuallyDrop::new(self);
2974 let result = this.as_ptr();
2975 // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
2976 let alloc = unsafe { ptr::read(&this.alloc) };
2977 (result, alloc)
2978 }
2979
2980 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>` in the provided
2981 /// allocator.
2982 ///
2983 /// This can be used to safely get a strong reference (by calling [`upgrade`]
2984 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2985 ///
2986 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2987 /// as these don't own anything; the method still works on them).
2988 ///
2989 /// # Safety
2990 ///
2991 /// The pointer must have originated from the [`into_raw`] and must still own its potential
2992 /// weak reference, and must point to a block of memory allocated by `alloc`.
2993 ///
2994 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2995 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2996 /// count is not modified by this operation) and therefore it must be paired with a previous
2997 /// call to [`into_raw`].
2998 /// # Examples
2999 ///
3000 /// ```
3001 /// use std::sync::{Arc, Weak};
3002 ///
3003 /// let strong = Arc::new("hello".to_owned());
3004 ///
3005 /// let raw_1 = Arc::downgrade(&strong).into_raw();
3006 /// let raw_2 = Arc::downgrade(&strong).into_raw();
3007 ///
3008 /// assert_eq!(2, Arc::weak_count(&strong));
3009 ///
3010 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3011 /// assert_eq!(1, Arc::weak_count(&strong));
3012 ///
3013 /// drop(strong);
3014 ///
3015 /// // Decrement the last weak count.
3016 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3017 /// ```
3018 ///
3019 /// [`new`]: Weak::new
3020 /// [`into_raw`]: Weak::into_raw
3021 /// [`upgrade`]: Weak::upgrade
3022 #[inline]
3023 #[unstable(feature = "allocator_api", issue = "32838")]
3024 pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3025 // See Weak::as_ptr for context on how the input pointer is derived.
3026
3027 let ptr = if is_dangling(ptr) {
3028 // This is a dangling Weak.
3029 ptr as *mut ArcInner<T>
3030 } else {
3031 // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3032 // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3033 let offset = unsafe { data_offset(ptr) };
3034 // Thus, we reverse the offset to get the whole RcInner.
3035 // SAFETY: the pointer originated from a Weak, so this offset is safe.
3036 unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> }
3037 };
3038
3039 // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3040 Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3041 }
3042}
3043
3044impl<T: ?Sized, A: Allocator> Weak<T, A> {
3045 /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
3046 /// dropping of the inner value if successful.
3047 ///
3048 /// Returns [`None`] if the inner value has since been dropped.
3049 ///
3050 /// # Examples
3051 ///
3052 /// ```
3053 /// use std::sync::Arc;
3054 ///
3055 /// let five = Arc::new(5);
3056 ///
3057 /// let weak_five = Arc::downgrade(&five);
3058 ///
3059 /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
3060 /// assert!(strong_five.is_some());
3061 ///
3062 /// // Destroy all strong pointers.
3063 /// drop(strong_five);
3064 /// drop(five);
3065 ///
3066 /// assert!(weak_five.upgrade().is_none());
3067 /// ```
3068 #[must_use = "this returns a new `Arc`, \
3069 without modifying the original weak pointer"]
3070 #[stable(feature = "arc_weak", since = "1.4.0")]
3071 pub fn upgrade(&self) -> Option<Arc<T, A>>
3072 where
3073 A: Clone,
3074 {
3075 #[inline]
3076 fn checked_increment(n: usize) -> Option<usize> {
3077 // Any write of 0 we can observe leaves the field in permanently zero state.
3078 if n == 0 {
3079 return None;
3080 }
3081 // See comments in `Arc::clone` for why we do this (for `mem::forget`).
3082 assert!(n <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
3083 Some(n + 1)
3084 }
3085
3086 // We use a CAS loop to increment the strong count instead of a
3087 // fetch_add as this function should never take the reference count
3088 // from zero to one.
3089 //
3090 // Relaxed is fine for the failure case because we don't have any expectations about the new state.
3091 // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
3092 // value can be initialized after `Weak` references have already been created. In that case, we
3093 // expect to observe the fully initialized value.
3094 if self.inner()?.strong.fetch_update(Acquire, Relaxed, checked_increment).is_ok() {
3095 // SAFETY: pointer is not null, verified in checked_increment
3096 unsafe { Some(Arc::from_inner_in(self.ptr, self.alloc.clone())) }
3097 } else {
3098 None
3099 }
3100 }
3101
3102 /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
3103 ///
3104 /// If `self` was created using [`Weak::new`], this will return 0.
3105 #[must_use]
3106 #[stable(feature = "weak_counts", since = "1.41.0")]
3107 pub fn strong_count(&self) -> usize {
3108 if let Some(inner) = self.inner() { inner.strong.load(Relaxed) } else { 0 }
3109 }
3110
3111 /// Gets an approximation of the number of `Weak` pointers pointing to this
3112 /// allocation.
3113 ///
3114 /// If `self` was created using [`Weak::new`], or if there are no remaining
3115 /// strong pointers, this will return 0.
3116 ///
3117 /// # Accuracy
3118 ///
3119 /// Due to implementation details, the returned value can be off by 1 in
3120 /// either direction when other threads are manipulating any `Arc`s or
3121 /// `Weak`s pointing to the same allocation.
3122 #[must_use]
3123 #[stable(feature = "weak_counts", since = "1.41.0")]
3124 pub fn weak_count(&self) -> usize {
3125 if let Some(inner) = self.inner() {
3126 let weak = inner.weak.load(Acquire);
3127 let strong = inner.strong.load(Relaxed);
3128 if strong == 0 {
3129 0
3130 } else {
3131 // Since we observed that there was at least one strong pointer
3132 // after reading the weak count, we know that the implicit weak
3133 // reference (present whenever any strong references are alive)
3134 // was still around when we observed the weak count, and can
3135 // therefore safely subtract it.
3136 weak - 1
3137 }
3138 } else {
3139 0
3140 }
3141 }
3142
3143 /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
3144 /// (i.e., when this `Weak` was created by `Weak::new`).
3145 #[inline]
3146 fn inner(&self) -> Option<WeakInner<'_>> {
3147 let ptr = self.ptr.as_ptr();
3148 if is_dangling(ptr) {
3149 None
3150 } else {
3151 // We are careful to *not* create a reference covering the "data" field, as
3152 // the field may be mutated concurrently (for example, if the last `Arc`
3153 // is dropped, the data field will be dropped in-place).
3154 Some(unsafe { WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } })
3155 }
3156 }
3157
3158 /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3159 /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3160 /// this function ignores the metadata of `dyn Trait` pointers.
3161 ///
3162 /// # Notes
3163 ///
3164 /// Since this compares pointers it means that `Weak::new()` will equal each
3165 /// other, even though they don't point to any allocation.
3166 ///
3167 /// # Examples
3168 ///
3169 /// ```
3170 /// use std::sync::Arc;
3171 ///
3172 /// let first_rc = Arc::new(5);
3173 /// let first = Arc::downgrade(&first_rc);
3174 /// let second = Arc::downgrade(&first_rc);
3175 ///
3176 /// assert!(first.ptr_eq(&second));
3177 ///
3178 /// let third_rc = Arc::new(5);
3179 /// let third = Arc::downgrade(&third_rc);
3180 ///
3181 /// assert!(!first.ptr_eq(&third));
3182 /// ```
3183 ///
3184 /// Comparing `Weak::new`.
3185 ///
3186 /// ```
3187 /// use std::sync::{Arc, Weak};
3188 ///
3189 /// let first = Weak::new();
3190 /// let second = Weak::new();
3191 /// assert!(first.ptr_eq(&second));
3192 ///
3193 /// let third_rc = Arc::new(());
3194 /// let third = Arc::downgrade(&third_rc);
3195 /// assert!(!first.ptr_eq(&third));
3196 /// ```
3197 ///
3198 /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
3199 #[inline]
3200 #[must_use]
3201 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3202 pub fn ptr_eq(&self, other: &Self) -> bool {
3203 ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3204 }
3205}
3206
3207#[stable(feature = "arc_weak", since = "1.4.0")]
3208impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3209 /// Makes a clone of the `Weak` pointer that points to the same allocation.
3210 ///
3211 /// # Examples
3212 ///
3213 /// ```
3214 /// use std::sync::{Arc, Weak};
3215 ///
3216 /// let weak_five = Arc::downgrade(&Arc::new(5));
3217 ///
3218 /// let _ = Weak::clone(&weak_five);
3219 /// ```
3220 #[inline]
3221 fn clone(&self) -> Weak<T, A> {
3222 if let Some(inner) = self.inner() {
3223 // See comments in Arc::clone() for why this is relaxed. This can use a
3224 // fetch_add (ignoring the lock) because the weak count is only locked
3225 // where are *no other* weak pointers in existence. (So we can't be
3226 // running this code in that case).
3227 let old_size = inner.weak.fetch_add(1, Relaxed);
3228
3229 // See comments in Arc::clone() for why we do this (for mem::forget).
3230 if old_size > MAX_REFCOUNT {
3231 abort();
3232 }
3233 }
3234
3235 Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3236 }
3237}
3238
3239#[unstable(feature = "ergonomic_clones", issue = "132290")]
3240impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3241
3242#[stable(feature = "downgraded_weak", since = "1.10.0")]
3243impl<T> Default for Weak<T> {
3244 /// Constructs a new `Weak<T>`, without allocating memory.
3245 /// Calling [`upgrade`] on the return value always
3246 /// gives [`None`].
3247 ///
3248 /// [`upgrade`]: Weak::upgrade
3249 ///
3250 /// # Examples
3251 ///
3252 /// ```
3253 /// use std::sync::Weak;
3254 ///
3255 /// let empty: Weak<i64> = Default::default();
3256 /// assert!(empty.upgrade().is_none());
3257 /// ```
3258 fn default() -> Weak<T> {
3259 Weak::new()
3260 }
3261}
3262
3263#[stable(feature = "arc_weak", since = "1.4.0")]
3264unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3265 /// Drops the `Weak` pointer.
3266 ///
3267 /// # Examples
3268 ///
3269 /// ```
3270 /// use std::sync::{Arc, Weak};
3271 ///
3272 /// struct Foo;
3273 ///
3274 /// impl Drop for Foo {
3275 /// fn drop(&mut self) {
3276 /// println!("dropped!");
3277 /// }
3278 /// }
3279 ///
3280 /// let foo = Arc::new(Foo);
3281 /// let weak_foo = Arc::downgrade(&foo);
3282 /// let other_weak_foo = Weak::clone(&weak_foo);
3283 ///
3284 /// drop(weak_foo); // Doesn't print anything
3285 /// drop(foo); // Prints "dropped!"
3286 ///
3287 /// assert!(other_weak_foo.upgrade().is_none());
3288 /// ```
3289 fn drop(&mut self) {
3290 // If we find out that we were the last weak pointer, then its time to
3291 // deallocate the data entirely. See the discussion in Arc::drop() about
3292 // the memory orderings
3293 //
3294 // It's not necessary to check for the locked state here, because the
3295 // weak count can only be locked if there was precisely one weak ref,
3296 // meaning that drop could only subsequently run ON that remaining weak
3297 // ref, which can only happen after the lock is released.
3298 let inner = if let Some(inner) = self.inner() { inner } else { return };
3299
3300 if inner.weak.fetch_sub(1, Release) == 1 {
3301 acquire!(inner.weak);
3302
3303 // Make sure we aren't trying to "deallocate" the shared static for empty slices
3304 // used by Default::default.
3305 debug_assert!(
3306 !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
3307 "Arc/Weaks backed by a static should never be deallocated. \
3308 Likely decrement_strong_count or from_raw were called too many times.",
3309 );
3310
3311 unsafe {
3312 self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()))
3313 }
3314 }
3315 }
3316}
3317
3318#[stable(feature = "rust1", since = "1.0.0")]
3319trait ArcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
3320 fn eq(&self, other: &Arc<T, A>) -> bool;
3321 fn ne(&self, other: &Arc<T, A>) -> bool;
3322}
3323
3324#[stable(feature = "rust1", since = "1.0.0")]
3325impl<T: ?Sized + PartialEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3326 #[inline]
3327 default fn eq(&self, other: &Arc<T, A>) -> bool {
3328 **self == **other
3329 }
3330 #[inline]
3331 default fn ne(&self, other: &Arc<T, A>) -> bool {
3332 **self != **other
3333 }
3334}
3335
3336/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
3337/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
3338/// store large values, that are slow to clone, but also heavy to check for equality, causing this
3339/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
3340/// the same value, than two `&T`s.
3341///
3342/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
3343#[stable(feature = "rust1", since = "1.0.0")]
3344impl<T: ?Sized + crate::rc::MarkerEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3345 #[inline]
3346 fn eq(&self, other: &Arc<T, A>) -> bool {
3347 Arc::ptr_eq(self, other) || **self == **other
3348 }
3349
3350 #[inline]
3351 fn ne(&self, other: &Arc<T, A>) -> bool {
3352 !Arc::ptr_eq(self, other) && **self != **other
3353 }
3354}
3355
3356#[stable(feature = "rust1", since = "1.0.0")]
3357impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Arc<T, A> {
3358 /// Equality for two `Arc`s.
3359 ///
3360 /// Two `Arc`s are equal if their inner values are equal, even if they are
3361 /// stored in different allocation.
3362 ///
3363 /// If `T` also implements `Eq` (implying reflexivity of equality),
3364 /// two `Arc`s that point to the same allocation are always equal.
3365 ///
3366 /// # Examples
3367 ///
3368 /// ```
3369 /// use std::sync::Arc;
3370 ///
3371 /// let five = Arc::new(5);
3372 ///
3373 /// assert!(five == Arc::new(5));
3374 /// ```
3375 #[inline]
3376 fn eq(&self, other: &Arc<T, A>) -> bool {
3377 ArcEqIdent::eq(self, other)
3378 }
3379
3380 /// Inequality for two `Arc`s.
3381 ///
3382 /// Two `Arc`s are not equal if their inner values are not equal.
3383 ///
3384 /// If `T` also implements `Eq` (implying reflexivity of equality),
3385 /// two `Arc`s that point to the same value are always equal.
3386 ///
3387 /// # Examples
3388 ///
3389 /// ```
3390 /// use std::sync::Arc;
3391 ///
3392 /// let five = Arc::new(5);
3393 ///
3394 /// assert!(five != Arc::new(6));
3395 /// ```
3396 #[inline]
3397 fn ne(&self, other: &Arc<T, A>) -> bool {
3398 ArcEqIdent::ne(self, other)
3399 }
3400}
3401
3402#[stable(feature = "rust1", since = "1.0.0")]
3403impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Arc<T, A> {
3404 /// Partial comparison for two `Arc`s.
3405 ///
3406 /// The two are compared by calling `partial_cmp()` on their inner values.
3407 ///
3408 /// # Examples
3409 ///
3410 /// ```
3411 /// use std::sync::Arc;
3412 /// use std::cmp::Ordering;
3413 ///
3414 /// let five = Arc::new(5);
3415 ///
3416 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
3417 /// ```
3418 fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering> {
3419 (**self).partial_cmp(&**other)
3420 }
3421
3422 /// Less-than comparison for two `Arc`s.
3423 ///
3424 /// The two are compared by calling `<` on their inner values.
3425 ///
3426 /// # Examples
3427 ///
3428 /// ```
3429 /// use std::sync::Arc;
3430 ///
3431 /// let five = Arc::new(5);
3432 ///
3433 /// assert!(five < Arc::new(6));
3434 /// ```
3435 fn lt(&self, other: &Arc<T, A>) -> bool {
3436 *(*self) < *(*other)
3437 }
3438
3439 /// 'Less than or equal to' comparison for two `Arc`s.
3440 ///
3441 /// The two are compared by calling `<=` on their inner values.
3442 ///
3443 /// # Examples
3444 ///
3445 /// ```
3446 /// use std::sync::Arc;
3447 ///
3448 /// let five = Arc::new(5);
3449 ///
3450 /// assert!(five <= Arc::new(5));
3451 /// ```
3452 fn le(&self, other: &Arc<T, A>) -> bool {
3453 *(*self) <= *(*other)
3454 }
3455
3456 /// Greater-than comparison for two `Arc`s.
3457 ///
3458 /// The two are compared by calling `>` on their inner values.
3459 ///
3460 /// # Examples
3461 ///
3462 /// ```
3463 /// use std::sync::Arc;
3464 ///
3465 /// let five = Arc::new(5);
3466 ///
3467 /// assert!(five > Arc::new(4));
3468 /// ```
3469 fn gt(&self, other: &Arc<T, A>) -> bool {
3470 *(*self) > *(*other)
3471 }
3472
3473 /// 'Greater than or equal to' comparison for two `Arc`s.
3474 ///
3475 /// The two are compared by calling `>=` on their inner values.
3476 ///
3477 /// # Examples
3478 ///
3479 /// ```
3480 /// use std::sync::Arc;
3481 ///
3482 /// let five = Arc::new(5);
3483 ///
3484 /// assert!(five >= Arc::new(5));
3485 /// ```
3486 fn ge(&self, other: &Arc<T, A>) -> bool {
3487 *(*self) >= *(*other)
3488 }
3489}
3490#[stable(feature = "rust1", since = "1.0.0")]
3491impl<T: ?Sized + Ord, A: Allocator> Ord for Arc<T, A> {
3492 /// Comparison for two `Arc`s.
3493 ///
3494 /// The two are compared by calling `cmp()` on their inner values.
3495 ///
3496 /// # Examples
3497 ///
3498 /// ```
3499 /// use std::sync::Arc;
3500 /// use std::cmp::Ordering;
3501 ///
3502 /// let five = Arc::new(5);
3503 ///
3504 /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
3505 /// ```
3506 fn cmp(&self, other: &Arc<T, A>) -> Ordering {
3507 (**self).cmp(&**other)
3508 }
3509}
3510#[stable(feature = "rust1", since = "1.0.0")]
3511impl<T: ?Sized + Eq, A: Allocator> Eq for Arc<T, A> {}
3512
3513#[stable(feature = "rust1", since = "1.0.0")]
3514impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Arc<T, A> {
3515 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3516 fmt::Display::fmt(&**self, f)
3517 }
3518}
3519
3520#[stable(feature = "rust1", since = "1.0.0")]
3521impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Arc<T, A> {
3522 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3523 fmt::Debug::fmt(&**self, f)
3524 }
3525}
3526
3527#[stable(feature = "rust1", since = "1.0.0")]
3528impl<T: ?Sized, A: Allocator> fmt::Pointer for Arc<T, A> {
3529 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3530 fmt::Pointer::fmt(&(&raw const **self), f)
3531 }
3532}
3533
3534#[cfg(not(no_global_oom_handling))]
3535#[stable(feature = "rust1", since = "1.0.0")]
3536impl<T: Default> Default for Arc<T> {
3537 /// Creates a new `Arc<T>`, with the `Default` value for `T`.
3538 ///
3539 /// # Examples
3540 ///
3541 /// ```
3542 /// use std::sync::Arc;
3543 ///
3544 /// let x: Arc<i32> = Default::default();
3545 /// assert_eq!(*x, 0);
3546 /// ```
3547 fn default() -> Arc<T> {
3548 unsafe {
3549 Self::from_inner(
3550 Box::leak(Box::write(
3551 Box::new_uninit(),
3552 ArcInner {
3553 strong: atomic::AtomicUsize::new(1),
3554 weak: atomic::AtomicUsize::new(1),
3555 data: T::default(),
3556 },
3557 ))
3558 .into(),
3559 )
3560 }
3561 }
3562}
3563
3564/// Struct to hold the static `ArcInner` used for empty `Arc<str/CStr/[T]>` as
3565/// returned by `Default::default`.
3566///
3567/// Layout notes:
3568/// * `repr(align(16))` so we can use it for `[T]` with `align_of::<T>() <= 16`.
3569/// * `repr(C)` so `inner` is at offset 0 (and thus guaranteed to actually be aligned to 16).
3570/// * `[u8; 1]` (to be initialized with 0) so it can be used for `Arc<CStr>`.
3571#[repr(C, align(16))]
3572struct SliceArcInnerForStatic {
3573 inner: ArcInner<[u8; 1]>,
3574}
3575#[cfg(not(no_global_oom_handling))]
3576const MAX_STATIC_INNER_SLICE_ALIGNMENT: usize = 16;
3577
3578static STATIC_INNER_SLICE: SliceArcInnerForStatic = SliceArcInnerForStatic {
3579 inner: ArcInner {
3580 strong: atomic::AtomicUsize::new(1),
3581 weak: atomic::AtomicUsize::new(1),
3582 data: [0],
3583 },
3584};
3585
3586#[cfg(not(no_global_oom_handling))]
3587#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3588impl Default for Arc<str> {
3589 /// Creates an empty str inside an Arc
3590 ///
3591 /// This may or may not share an allocation with other Arcs.
3592 #[inline]
3593 fn default() -> Self {
3594 let arc: Arc<[u8]> = Default::default();
3595 debug_assert!(core::str::from_utf8(&*arc).is_ok());
3596 let (ptr, alloc) = Arc::into_inner_with_allocator(arc);
3597 unsafe { Arc::from_ptr_in(ptr.as_ptr() as *mut ArcInner<str>, alloc) }
3598 }
3599}
3600
3601#[cfg(not(no_global_oom_handling))]
3602#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3603impl Default for Arc<core::ffi::CStr> {
3604 /// Creates an empty CStr inside an Arc
3605 ///
3606 /// This may or may not share an allocation with other Arcs.
3607 #[inline]
3608 fn default() -> Self {
3609 use core::ffi::CStr;
3610 let inner: NonNull<ArcInner<[u8]>> = NonNull::from(&STATIC_INNER_SLICE.inner);
3611 let inner: NonNull<ArcInner<CStr>> =
3612 NonNull::new(inner.as_ptr() as *mut ArcInner<CStr>).unwrap();
3613 // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3614 let this: mem::ManuallyDrop<Arc<CStr>> =
3615 unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3616 (*this).clone()
3617 }
3618}
3619
3620#[cfg(not(no_global_oom_handling))]
3621#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3622impl<T> Default for Arc<[T]> {
3623 /// Creates an empty `[T]` inside an Arc
3624 ///
3625 /// This may or may not share an allocation with other Arcs.
3626 #[inline]
3627 fn default() -> Self {
3628 if align_of::<T>() <= MAX_STATIC_INNER_SLICE_ALIGNMENT {
3629 // We take a reference to the whole struct instead of the ArcInner<[u8; 1]> inside it so
3630 // we don't shrink the range of bytes the ptr is allowed to access under Stacked Borrows.
3631 // (Miri complains on 32-bit targets with Arc<[Align16]> otherwise.)
3632 // (Note that NonNull::from(&STATIC_INNER_SLICE.inner) is fine under Tree Borrows.)
3633 let inner: NonNull<SliceArcInnerForStatic> = NonNull::from(&STATIC_INNER_SLICE);
3634 let inner: NonNull<ArcInner<[T; 0]>> = inner.cast();
3635 // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3636 let this: mem::ManuallyDrop<Arc<[T; 0]>> =
3637 unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3638 return (*this).clone();
3639 }
3640
3641 // If T's alignment is too large for the static, make a new unique allocation.
3642 let arr: [T; 0] = [];
3643 Arc::from(arr)
3644 }
3645}
3646
3647#[cfg(not(no_global_oom_handling))]
3648#[stable(feature = "pin_default_impls", since = "CURRENT_RUSTC_VERSION")]
3649impl<T> Default for Pin<Arc<T>>
3650where
3651 T: ?Sized,
3652 Arc<T>: Default,
3653{
3654 #[inline]
3655 fn default() -> Self {
3656 unsafe { Pin::new_unchecked(Arc::<T>::default()) }
3657 }
3658}
3659
3660#[stable(feature = "rust1", since = "1.0.0")]
3661impl<T: ?Sized + Hash, A: Allocator> Hash for Arc<T, A> {
3662 fn hash<H: Hasher>(&self, state: &mut H) {
3663 (**self).hash(state)
3664 }
3665}
3666
3667#[cfg(not(no_global_oom_handling))]
3668#[stable(feature = "from_for_ptrs", since = "1.6.0")]
3669impl<T> From<T> for Arc<T> {
3670 /// Converts a `T` into an `Arc<T>`
3671 ///
3672 /// The conversion moves the value into a
3673 /// newly allocated `Arc`. It is equivalent to
3674 /// calling `Arc::new(t)`.
3675 ///
3676 /// # Example
3677 /// ```rust
3678 /// # use std::sync::Arc;
3679 /// let x = 5;
3680 /// let arc = Arc::new(5);
3681 ///
3682 /// assert_eq!(Arc::from(x), arc);
3683 /// ```
3684 fn from(t: T) -> Self {
3685 Arc::new(t)
3686 }
3687}
3688
3689#[cfg(not(no_global_oom_handling))]
3690#[stable(feature = "shared_from_array", since = "1.74.0")]
3691impl<T, const N: usize> From<[T; N]> for Arc<[T]> {
3692 /// Converts a [`[T; N]`](prim@array) into an `Arc<[T]>`.
3693 ///
3694 /// The conversion moves the array into a newly allocated `Arc`.
3695 ///
3696 /// # Example
3697 ///
3698 /// ```
3699 /// # use std::sync::Arc;
3700 /// let original: [i32; 3] = [1, 2, 3];
3701 /// let shared: Arc<[i32]> = Arc::from(original);
3702 /// assert_eq!(&[1, 2, 3], &shared[..]);
3703 /// ```
3704 #[inline]
3705 fn from(v: [T; N]) -> Arc<[T]> {
3706 Arc::<[T; N]>::from(v)
3707 }
3708}
3709
3710#[cfg(not(no_global_oom_handling))]
3711#[stable(feature = "shared_from_slice", since = "1.21.0")]
3712impl<T: Clone> From<&[T]> for Arc<[T]> {
3713 /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3714 ///
3715 /// # Example
3716 ///
3717 /// ```
3718 /// # use std::sync::Arc;
3719 /// let original: &[i32] = &[1, 2, 3];
3720 /// let shared: Arc<[i32]> = Arc::from(original);
3721 /// assert_eq!(&[1, 2, 3], &shared[..]);
3722 /// ```
3723 #[inline]
3724 fn from(v: &[T]) -> Arc<[T]> {
3725 <Self as ArcFromSlice<T>>::from_slice(v)
3726 }
3727}
3728
3729#[cfg(not(no_global_oom_handling))]
3730#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3731impl<T: Clone> From<&mut [T]> for Arc<[T]> {
3732 /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3733 ///
3734 /// # Example
3735 ///
3736 /// ```
3737 /// # use std::sync::Arc;
3738 /// let mut original = [1, 2, 3];
3739 /// let original: &mut [i32] = &mut original;
3740 /// let shared: Arc<[i32]> = Arc::from(original);
3741 /// assert_eq!(&[1, 2, 3], &shared[..]);
3742 /// ```
3743 #[inline]
3744 fn from(v: &mut [T]) -> Arc<[T]> {
3745 Arc::from(&*v)
3746 }
3747}
3748
3749#[cfg(not(no_global_oom_handling))]
3750#[stable(feature = "shared_from_slice", since = "1.21.0")]
3751impl From<&str> for Arc<str> {
3752 /// Allocates a reference-counted `str` and copies `v` into it.
3753 ///
3754 /// # Example
3755 ///
3756 /// ```
3757 /// # use std::sync::Arc;
3758 /// let shared: Arc<str> = Arc::from("eggplant");
3759 /// assert_eq!("eggplant", &shared[..]);
3760 /// ```
3761 #[inline]
3762 fn from(v: &str) -> Arc<str> {
3763 let arc = Arc::<[u8]>::from(v.as_bytes());
3764 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
3765 }
3766}
3767
3768#[cfg(not(no_global_oom_handling))]
3769#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3770impl From<&mut str> for Arc<str> {
3771 /// Allocates a reference-counted `str` and copies `v` into it.
3772 ///
3773 /// # Example
3774 ///
3775 /// ```
3776 /// # use std::sync::Arc;
3777 /// let mut original = String::from("eggplant");
3778 /// let original: &mut str = &mut original;
3779 /// let shared: Arc<str> = Arc::from(original);
3780 /// assert_eq!("eggplant", &shared[..]);
3781 /// ```
3782 #[inline]
3783 fn from(v: &mut str) -> Arc<str> {
3784 Arc::from(&*v)
3785 }
3786}
3787
3788#[cfg(not(no_global_oom_handling))]
3789#[stable(feature = "shared_from_slice", since = "1.21.0")]
3790impl From<String> for Arc<str> {
3791 /// Allocates a reference-counted `str` and copies `v` into it.
3792 ///
3793 /// # Example
3794 ///
3795 /// ```
3796 /// # use std::sync::Arc;
3797 /// let unique: String = "eggplant".to_owned();
3798 /// let shared: Arc<str> = Arc::from(unique);
3799 /// assert_eq!("eggplant", &shared[..]);
3800 /// ```
3801 #[inline]
3802 fn from(v: String) -> Arc<str> {
3803 Arc::from(&v[..])
3804 }
3805}
3806
3807#[cfg(not(no_global_oom_handling))]
3808#[stable(feature = "shared_from_slice", since = "1.21.0")]
3809impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Arc<T, A> {
3810 /// Move a boxed object to a new, reference-counted allocation.
3811 ///
3812 /// # Example
3813 ///
3814 /// ```
3815 /// # use std::sync::Arc;
3816 /// let unique: Box<str> = Box::from("eggplant");
3817 /// let shared: Arc<str> = Arc::from(unique);
3818 /// assert_eq!("eggplant", &shared[..]);
3819 /// ```
3820 #[inline]
3821 fn from(v: Box<T, A>) -> Arc<T, A> {
3822 Arc::from_box_in(v)
3823 }
3824}
3825
3826#[cfg(not(no_global_oom_handling))]
3827#[stable(feature = "shared_from_slice", since = "1.21.0")]
3828impl<T, A: Allocator + Clone> From<Vec<T, A>> for Arc<[T], A> {
3829 /// Allocates a reference-counted slice and moves `v`'s items into it.
3830 ///
3831 /// # Example
3832 ///
3833 /// ```
3834 /// # use std::sync::Arc;
3835 /// let unique: Vec<i32> = vec![1, 2, 3];
3836 /// let shared: Arc<[i32]> = Arc::from(unique);
3837 /// assert_eq!(&[1, 2, 3], &shared[..]);
3838 /// ```
3839 #[inline]
3840 fn from(v: Vec<T, A>) -> Arc<[T], A> {
3841 unsafe {
3842 let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
3843
3844 let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
3845 ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).data) as *mut T, len);
3846
3847 // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
3848 // without dropping its contents or the allocator
3849 let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
3850
3851 Self::from_ptr_in(rc_ptr, alloc)
3852 }
3853 }
3854}
3855
3856#[stable(feature = "shared_from_cow", since = "1.45.0")]
3857impl<'a, B> From<Cow<'a, B>> for Arc<B>
3858where
3859 B: ToOwned + ?Sized,
3860 Arc<B>: From<&'a B> + From<B::Owned>,
3861{
3862 /// Creates an atomically reference-counted pointer from a clone-on-write
3863 /// pointer by copying its content.
3864 ///
3865 /// # Example
3866 ///
3867 /// ```rust
3868 /// # use std::sync::Arc;
3869 /// # use std::borrow::Cow;
3870 /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3871 /// let shared: Arc<str> = Arc::from(cow);
3872 /// assert_eq!("eggplant", &shared[..]);
3873 /// ```
3874 #[inline]
3875 fn from(cow: Cow<'a, B>) -> Arc<B> {
3876 match cow {
3877 Cow::Borrowed(s) => Arc::from(s),
3878 Cow::Owned(s) => Arc::from(s),
3879 }
3880 }
3881}
3882
3883#[stable(feature = "shared_from_str", since = "1.62.0")]
3884impl From<Arc<str>> for Arc<[u8]> {
3885 /// Converts an atomically reference-counted string slice into a byte slice.
3886 ///
3887 /// # Example
3888 ///
3889 /// ```
3890 /// # use std::sync::Arc;
3891 /// let string: Arc<str> = Arc::from("eggplant");
3892 /// let bytes: Arc<[u8]> = Arc::from(string);
3893 /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
3894 /// ```
3895 #[inline]
3896 fn from(rc: Arc<str>) -> Self {
3897 // SAFETY: `str` has the same layout as `[u8]`.
3898 unsafe { Arc::from_raw(Arc::into_raw(rc) as *const [u8]) }
3899 }
3900}
3901
3902#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
3903impl<T, A: Allocator, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A> {
3904 type Error = Arc<[T], A>;
3905
3906 fn try_from(boxed_slice: Arc<[T], A>) -> Result<Self, Self::Error> {
3907 if boxed_slice.len() == N {
3908 let (ptr, alloc) = Arc::into_inner_with_allocator(boxed_slice);
3909 Ok(unsafe { Arc::from_inner_in(ptr.cast(), alloc) })
3910 } else {
3911 Err(boxed_slice)
3912 }
3913 }
3914}
3915
3916#[cfg(not(no_global_oom_handling))]
3917#[stable(feature = "shared_from_iter", since = "1.37.0")]
3918impl<T> FromIterator<T> for Arc<[T]> {
3919 /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
3920 ///
3921 /// # Performance characteristics
3922 ///
3923 /// ## The general case
3924 ///
3925 /// In the general case, collecting into `Arc<[T]>` is done by first
3926 /// collecting into a `Vec<T>`. That is, when writing the following:
3927 ///
3928 /// ```rust
3929 /// # use std::sync::Arc;
3930 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
3931 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3932 /// ```
3933 ///
3934 /// this behaves as if we wrote:
3935 ///
3936 /// ```rust
3937 /// # use std::sync::Arc;
3938 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
3939 /// .collect::<Vec<_>>() // The first set of allocations happens here.
3940 /// .into(); // A second allocation for `Arc<[T]>` happens here.
3941 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3942 /// ```
3943 ///
3944 /// This will allocate as many times as needed for constructing the `Vec<T>`
3945 /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
3946 ///
3947 /// ## Iterators of known length
3948 ///
3949 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
3950 /// a single allocation will be made for the `Arc<[T]>`. For example:
3951 ///
3952 /// ```rust
3953 /// # use std::sync::Arc;
3954 /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
3955 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
3956 /// ```
3957 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
3958 ToArcSlice::to_arc_slice(iter.into_iter())
3959 }
3960}
3961
3962#[cfg(not(no_global_oom_handling))]
3963/// Specialization trait used for collecting into `Arc<[T]>`.
3964trait ToArcSlice<T>: Iterator<Item = T> + Sized {
3965 fn to_arc_slice(self) -> Arc<[T]>;
3966}
3967
3968#[cfg(not(no_global_oom_handling))]
3969impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
3970 default fn to_arc_slice(self) -> Arc<[T]> {
3971 self.collect::<Vec<T>>().into()
3972 }
3973}
3974
3975#[cfg(not(no_global_oom_handling))]
3976impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
3977 fn to_arc_slice(self) -> Arc<[T]> {
3978 // This is the case for a `TrustedLen` iterator.
3979 let (low, high) = self.size_hint();
3980 if let Some(high) = high {
3981 debug_assert_eq!(
3982 low,
3983 high,
3984 "TrustedLen iterator's size hint is not exact: {:?}",
3985 (low, high)
3986 );
3987
3988 unsafe {
3989 // SAFETY: We need to ensure that the iterator has an exact length and we have.
3990 Arc::from_iter_exact(self, low)
3991 }
3992 } else {
3993 // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
3994 // length exceeding `usize::MAX`.
3995 // The default implementation would collect into a vec which would panic.
3996 // Thus we panic here immediately without invoking `Vec` code.
3997 panic!("capacity overflow");
3998 }
3999 }
4000}
4001
4002#[stable(feature = "rust1", since = "1.0.0")]
4003impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Arc<T, A> {
4004 fn borrow(&self) -> &T {
4005 &**self
4006 }
4007}
4008
4009#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
4010impl<T: ?Sized, A: Allocator> AsRef<T> for Arc<T, A> {
4011 fn as_ref(&self) -> &T {
4012 &**self
4013 }
4014}
4015
4016#[stable(feature = "pin", since = "1.33.0")]
4017impl<T: ?Sized, A: Allocator> Unpin for Arc<T, A> {}
4018
4019/// Gets the offset within an `ArcInner` for the payload behind a pointer.
4020///
4021/// # Safety
4022///
4023/// The pointer must point to (and have valid metadata for) a previously
4024/// valid instance of T, but the T is allowed to be dropped.
4025unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
4026 // Align the unsized value to the end of the ArcInner.
4027 // Because RcInner is repr(C), it will always be the last field in memory.
4028 // SAFETY: since the only unsized types possible are slices, trait objects,
4029 // and extern types, the input safety requirement is currently enough to
4030 // satisfy the requirements of align_of_val_raw; this is an implementation
4031 // detail of the language that must not be relied upon outside of std.
4032 unsafe { data_offset_align(align_of_val_raw(ptr)) }
4033}
4034
4035#[inline]
4036fn data_offset_align(align: usize) -> usize {
4037 let layout = Layout::new::<ArcInner<()>>();
4038 layout.size() + layout.padding_needed_for(align)
4039}
4040
4041/// A unique owning pointer to an [`ArcInner`] **that does not imply the contents are initialized,**
4042/// but will deallocate it (without dropping the value) when dropped.
4043///
4044/// This is a helper for [`Arc::make_mut()`] to ensure correct cleanup on panic.
4045#[cfg(not(no_global_oom_handling))]
4046struct UniqueArcUninit<T: ?Sized, A: Allocator> {
4047 ptr: NonNull<ArcInner<T>>,
4048 layout_for_value: Layout,
4049 alloc: Option<A>,
4050}
4051
4052#[cfg(not(no_global_oom_handling))]
4053impl<T: ?Sized, A: Allocator> UniqueArcUninit<T, A> {
4054 /// Allocates an ArcInner with layout suitable to contain `for_value` or a clone of it.
4055 fn new(for_value: &T, alloc: A) -> UniqueArcUninit<T, A> {
4056 let layout = Layout::for_value(for_value);
4057 let ptr = unsafe {
4058 Arc::allocate_for_layout(
4059 layout,
4060 |layout_for_arcinner| alloc.allocate(layout_for_arcinner),
4061 |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const ArcInner<T>),
4062 )
4063 };
4064 Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4065 }
4066
4067 /// Returns the pointer to be written into to initialize the [`Arc`].
4068 fn data_ptr(&mut self) -> *mut T {
4069 let offset = data_offset_align(self.layout_for_value.align());
4070 unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4071 }
4072
4073 /// Upgrade this into a normal [`Arc`].
4074 ///
4075 /// # Safety
4076 ///
4077 /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4078 unsafe fn into_arc(self) -> Arc<T, A> {
4079 let mut this = ManuallyDrop::new(self);
4080 let ptr = this.ptr.as_ptr();
4081 let alloc = this.alloc.take().unwrap();
4082
4083 // SAFETY: The pointer is valid as per `UniqueArcUninit::new`, and the caller is responsible
4084 // for having initialized the data.
4085 unsafe { Arc::from_ptr_in(ptr, alloc) }
4086 }
4087}
4088
4089#[cfg(not(no_global_oom_handling))]
4090impl<T: ?Sized, A: Allocator> Drop for UniqueArcUninit<T, A> {
4091 fn drop(&mut self) {
4092 // SAFETY:
4093 // * new() produced a pointer safe to deallocate.
4094 // * We own the pointer unless into_arc() was called, which forgets us.
4095 unsafe {
4096 self.alloc.take().unwrap().deallocate(
4097 self.ptr.cast(),
4098 arcinner_layout_for_value_layout(self.layout_for_value),
4099 );
4100 }
4101 }
4102}
4103
4104#[stable(feature = "arc_error", since = "1.52.0")]
4105impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> {
4106 #[allow(deprecated)]
4107 fn cause(&self) -> Option<&dyn core::error::Error> {
4108 core::error::Error::cause(&**self)
4109 }
4110
4111 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
4112 core::error::Error::source(&**self)
4113 }
4114
4115 fn provide<'a>(&'a self, req: &mut core::error::Request<'a>) {
4116 core::error::Error::provide(&**self, req);
4117 }
4118}
4119
4120/// A uniquely owned [`Arc`].
4121///
4122/// This represents an `Arc` that is known to be uniquely owned -- that is, have exactly one strong
4123/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
4124/// references will fail unless the `UniqueArc` they point to has been converted into a regular `Arc`.
4125///
4126/// Because it is uniquely owned, the contents of a `UniqueArc` can be freely mutated. A common
4127/// use case is to have an object be mutable during its initialization phase but then have it become
4128/// immutable and converted to a normal `Arc`.
4129///
4130/// This can be used as a flexible way to create cyclic data structures, as in the example below.
4131///
4132/// ```
4133/// #![feature(unique_rc_arc)]
4134/// use std::sync::{Arc, Weak, UniqueArc};
4135///
4136/// struct Gadget {
4137/// me: Weak<Gadget>,
4138/// }
4139///
4140/// fn create_gadget() -> Option<Arc<Gadget>> {
4141/// let mut rc = UniqueArc::new(Gadget {
4142/// me: Weak::new(),
4143/// });
4144/// rc.me = UniqueArc::downgrade(&rc);
4145/// Some(UniqueArc::into_arc(rc))
4146/// }
4147///
4148/// create_gadget().unwrap();
4149/// ```
4150///
4151/// An advantage of using `UniqueArc` over [`Arc::new_cyclic`] to build cyclic data structures is that
4152/// [`Arc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
4153/// previous example, `UniqueArc` allows for more flexibility in the construction of cyclic data,
4154/// including fallible or async constructors.
4155#[unstable(feature = "unique_rc_arc", issue = "112566")]
4156pub struct UniqueArc<
4157 T: ?Sized,
4158 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
4159> {
4160 ptr: NonNull<ArcInner<T>>,
4161 // Define the ownership of `ArcInner<T>` for drop-check
4162 _marker: PhantomData<ArcInner<T>>,
4163 // Invariance is necessary for soundness: once other `Weak`
4164 // references exist, we already have a form of shared mutability!
4165 _marker2: PhantomData<*mut T>,
4166 alloc: A,
4167}
4168
4169#[unstable(feature = "unique_rc_arc", issue = "112566")]
4170unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for UniqueArc<T, A> {}
4171
4172#[unstable(feature = "unique_rc_arc", issue = "112566")]
4173unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for UniqueArc<T, A> {}
4174
4175#[unstable(feature = "unique_rc_arc", issue = "112566")]
4176// #[unstable(feature = "coerce_unsized", issue = "18598")]
4177impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueArc<U, A>>
4178 for UniqueArc<T, A>
4179{
4180}
4181
4182//#[unstable(feature = "unique_rc_arc", issue = "112566")]
4183#[unstable(feature = "dispatch_from_dyn", issue = "none")]
4184impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueArc<U>> for UniqueArc<T> {}
4185
4186#[unstable(feature = "unique_rc_arc", issue = "112566")]
4187impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueArc<T, A> {
4188 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4189 fmt::Display::fmt(&**self, f)
4190 }
4191}
4192
4193#[unstable(feature = "unique_rc_arc", issue = "112566")]
4194impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueArc<T, A> {
4195 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4196 fmt::Debug::fmt(&**self, f)
4197 }
4198}
4199
4200#[unstable(feature = "unique_rc_arc", issue = "112566")]
4201impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueArc<T, A> {
4202 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4203 fmt::Pointer::fmt(&(&raw const **self), f)
4204 }
4205}
4206
4207#[unstable(feature = "unique_rc_arc", issue = "112566")]
4208impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueArc<T, A> {
4209 fn borrow(&self) -> &T {
4210 &**self
4211 }
4212}
4213
4214#[unstable(feature = "unique_rc_arc", issue = "112566")]
4215impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueArc<T, A> {
4216 fn borrow_mut(&mut self) -> &mut T {
4217 &mut **self
4218 }
4219}
4220
4221#[unstable(feature = "unique_rc_arc", issue = "112566")]
4222impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueArc<T, A> {
4223 fn as_ref(&self) -> &T {
4224 &**self
4225 }
4226}
4227
4228#[unstable(feature = "unique_rc_arc", issue = "112566")]
4229impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueArc<T, A> {
4230 fn as_mut(&mut self) -> &mut T {
4231 &mut **self
4232 }
4233}
4234
4235#[unstable(feature = "unique_rc_arc", issue = "112566")]
4236impl<T: ?Sized, A: Allocator> Unpin for UniqueArc<T, A> {}
4237
4238#[unstable(feature = "unique_rc_arc", issue = "112566")]
4239impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueArc<T, A> {
4240 /// Equality for two `UniqueArc`s.
4241 ///
4242 /// Two `UniqueArc`s are equal if their inner values are equal.
4243 ///
4244 /// # Examples
4245 ///
4246 /// ```
4247 /// #![feature(unique_rc_arc)]
4248 /// use std::sync::UniqueArc;
4249 ///
4250 /// let five = UniqueArc::new(5);
4251 ///
4252 /// assert!(five == UniqueArc::new(5));
4253 /// ```
4254 #[inline]
4255 fn eq(&self, other: &Self) -> bool {
4256 PartialEq::eq(&**self, &**other)
4257 }
4258}
4259
4260#[unstable(feature = "unique_rc_arc", issue = "112566")]
4261impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueArc<T, A> {
4262 /// Partial comparison for two `UniqueArc`s.
4263 ///
4264 /// The two are compared by calling `partial_cmp()` on their inner values.
4265 ///
4266 /// # Examples
4267 ///
4268 /// ```
4269 /// #![feature(unique_rc_arc)]
4270 /// use std::sync::UniqueArc;
4271 /// use std::cmp::Ordering;
4272 ///
4273 /// let five = UniqueArc::new(5);
4274 ///
4275 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueArc::new(6)));
4276 /// ```
4277 #[inline(always)]
4278 fn partial_cmp(&self, other: &UniqueArc<T, A>) -> Option<Ordering> {
4279 (**self).partial_cmp(&**other)
4280 }
4281
4282 /// Less-than comparison for two `UniqueArc`s.
4283 ///
4284 /// The two are compared by calling `<` on their inner values.
4285 ///
4286 /// # Examples
4287 ///
4288 /// ```
4289 /// #![feature(unique_rc_arc)]
4290 /// use std::sync::UniqueArc;
4291 ///
4292 /// let five = UniqueArc::new(5);
4293 ///
4294 /// assert!(five < UniqueArc::new(6));
4295 /// ```
4296 #[inline(always)]
4297 fn lt(&self, other: &UniqueArc<T, A>) -> bool {
4298 **self < **other
4299 }
4300
4301 /// 'Less than or equal to' comparison for two `UniqueArc`s.
4302 ///
4303 /// The two are compared by calling `<=` on their inner values.
4304 ///
4305 /// # Examples
4306 ///
4307 /// ```
4308 /// #![feature(unique_rc_arc)]
4309 /// use std::sync::UniqueArc;
4310 ///
4311 /// let five = UniqueArc::new(5);
4312 ///
4313 /// assert!(five <= UniqueArc::new(5));
4314 /// ```
4315 #[inline(always)]
4316 fn le(&self, other: &UniqueArc<T, A>) -> bool {
4317 **self <= **other
4318 }
4319
4320 /// Greater-than comparison for two `UniqueArc`s.
4321 ///
4322 /// The two are compared by calling `>` on their inner values.
4323 ///
4324 /// # Examples
4325 ///
4326 /// ```
4327 /// #![feature(unique_rc_arc)]
4328 /// use std::sync::UniqueArc;
4329 ///
4330 /// let five = UniqueArc::new(5);
4331 ///
4332 /// assert!(five > UniqueArc::new(4));
4333 /// ```
4334 #[inline(always)]
4335 fn gt(&self, other: &UniqueArc<T, A>) -> bool {
4336 **self > **other
4337 }
4338
4339 /// 'Greater than or equal to' comparison for two `UniqueArc`s.
4340 ///
4341 /// The two are compared by calling `>=` on their inner values.
4342 ///
4343 /// # Examples
4344 ///
4345 /// ```
4346 /// #![feature(unique_rc_arc)]
4347 /// use std::sync::UniqueArc;
4348 ///
4349 /// let five = UniqueArc::new(5);
4350 ///
4351 /// assert!(five >= UniqueArc::new(5));
4352 /// ```
4353 #[inline(always)]
4354 fn ge(&self, other: &UniqueArc<T, A>) -> bool {
4355 **self >= **other
4356 }
4357}
4358
4359#[unstable(feature = "unique_rc_arc", issue = "112566")]
4360impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueArc<T, A> {
4361 /// Comparison for two `UniqueArc`s.
4362 ///
4363 /// The two are compared by calling `cmp()` on their inner values.
4364 ///
4365 /// # Examples
4366 ///
4367 /// ```
4368 /// #![feature(unique_rc_arc)]
4369 /// use std::sync::UniqueArc;
4370 /// use std::cmp::Ordering;
4371 ///
4372 /// let five = UniqueArc::new(5);
4373 ///
4374 /// assert_eq!(Ordering::Less, five.cmp(&UniqueArc::new(6)));
4375 /// ```
4376 #[inline]
4377 fn cmp(&self, other: &UniqueArc<T, A>) -> Ordering {
4378 (**self).cmp(&**other)
4379 }
4380}
4381
4382#[unstable(feature = "unique_rc_arc", issue = "112566")]
4383impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueArc<T, A> {}
4384
4385#[unstable(feature = "unique_rc_arc", issue = "112566")]
4386impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueArc<T, A> {
4387 fn hash<H: Hasher>(&self, state: &mut H) {
4388 (**self).hash(state);
4389 }
4390}
4391
4392impl<T> UniqueArc<T, Global> {
4393 /// Creates a new `UniqueArc`.
4394 ///
4395 /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4396 /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4397 /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4398 /// point to the new [`Arc`].
4399 #[cfg(not(no_global_oom_handling))]
4400 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4401 #[must_use]
4402 pub fn new(value: T) -> Self {
4403 Self::new_in(value, Global)
4404 }
4405}
4406
4407impl<T, A: Allocator> UniqueArc<T, A> {
4408 /// Creates a new `UniqueArc` in the provided allocator.
4409 ///
4410 /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4411 /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4412 /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4413 /// point to the new [`Arc`].
4414 #[cfg(not(no_global_oom_handling))]
4415 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4416 #[must_use]
4417 // #[unstable(feature = "allocator_api", issue = "32838")]
4418 pub fn new_in(data: T, alloc: A) -> Self {
4419 let (ptr, alloc) = Box::into_unique(Box::new_in(
4420 ArcInner {
4421 strong: atomic::AtomicUsize::new(0),
4422 // keep one weak reference so if all the weak pointers that are created are dropped
4423 // the UniqueArc still stays valid.
4424 weak: atomic::AtomicUsize::new(1),
4425 data,
4426 },
4427 alloc,
4428 ));
4429 Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4430 }
4431}
4432
4433impl<T: ?Sized, A: Allocator> UniqueArc<T, A> {
4434 /// Converts the `UniqueArc` into a regular [`Arc`].
4435 ///
4436 /// This consumes the `UniqueArc` and returns a regular [`Arc`] that contains the `value` that
4437 /// is passed to `into_arc`.
4438 ///
4439 /// Any weak references created before this method is called can now be upgraded to strong
4440 /// references.
4441 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4442 #[must_use]
4443 pub fn into_arc(this: Self) -> Arc<T, A> {
4444 let this = ManuallyDrop::new(this);
4445
4446 // Move the allocator out.
4447 // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4448 // a `ManuallyDrop`.
4449 let alloc: A = unsafe { ptr::read(&this.alloc) };
4450
4451 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4452 unsafe {
4453 // Convert our weak reference into a strong reference
4454 (*this.ptr.as_ptr()).strong.store(1, Release);
4455 Arc::from_inner_in(this.ptr, alloc)
4456 }
4457 }
4458}
4459
4460impl<T: ?Sized, A: Allocator + Clone> UniqueArc<T, A> {
4461 /// Creates a new weak reference to the `UniqueArc`.
4462 ///
4463 /// Attempting to upgrade this weak reference will fail before the `UniqueArc` has been converted
4464 /// to a [`Arc`] using [`UniqueArc::into_arc`].
4465 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4466 #[must_use]
4467 pub fn downgrade(this: &Self) -> Weak<T, A> {
4468 // Using a relaxed ordering is alright here, as knowledge of the
4469 // original reference prevents other threads from erroneously deleting
4470 // the object or converting the object to a normal `Arc<T, A>`.
4471 //
4472 // Note that we don't need to test if the weak counter is locked because there
4473 // are no such operations like `Arc::get_mut` or `Arc::make_mut` that will lock
4474 // the weak counter.
4475 //
4476 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4477 let old_size = unsafe { (*this.ptr.as_ptr()).weak.fetch_add(1, Relaxed) };
4478
4479 // See comments in Arc::clone() for why we do this (for mem::forget).
4480 if old_size > MAX_REFCOUNT {
4481 abort();
4482 }
4483
4484 Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4485 }
4486}
4487
4488#[unstable(feature = "unique_rc_arc", issue = "112566")]
4489impl<T: ?Sized, A: Allocator> Deref for UniqueArc<T, A> {
4490 type Target = T;
4491
4492 fn deref(&self) -> &T {
4493 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4494 unsafe { &self.ptr.as_ref().data }
4495 }
4496}
4497
4498// #[unstable(feature = "unique_rc_arc", issue = "112566")]
4499#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
4500unsafe impl<T: ?Sized> PinCoerceUnsized for UniqueArc<T> {}
4501
4502#[unstable(feature = "unique_rc_arc", issue = "112566")]
4503impl<T: ?Sized, A: Allocator> DerefMut for UniqueArc<T, A> {
4504 fn deref_mut(&mut self) -> &mut T {
4505 // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4506 // have unique ownership and therefore it's safe to make a mutable reference because
4507 // `UniqueArc` owns the only strong reference to itself.
4508 // We also need to be careful to only create a mutable reference to the `data` field,
4509 // as a mutable reference to the entire `ArcInner` would assert uniqueness over the
4510 // ref count fields too, invalidating any attempt by `Weak`s to access the ref count.
4511 unsafe { &mut (*self.ptr.as_ptr()).data }
4512 }
4513}
4514
4515#[unstable(feature = "unique_rc_arc", issue = "112566")]
4516// #[unstable(feature = "deref_pure_trait", issue = "87121")]
4517unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueArc<T, A> {}
4518
4519#[unstable(feature = "unique_rc_arc", issue = "112566")]
4520unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueArc<T, A> {
4521 fn drop(&mut self) {
4522 // See `Arc::drop_slow` which drops an `Arc` with a strong count of 0.
4523 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4524 let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
4525
4526 unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
4527 }
4528}