Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

alloc/
sync.rs

1#![stable(feature = "rust1", since = "1.0.0")]
2
3//! Thread-safe reference-counting pointers.
4//!
5//! See the [`Arc<T>`][Arc] documentation for more details.
6//!
7//! **Note**: This module is only available on platforms that support atomic
8//! loads and stores of pointers. This may be detected at compile time using
9//! `#[cfg(target_has_atomic = "ptr")]`.
10
11use core::any::Any;
12use core::cell::CloneFromCell;
13#[cfg(not(no_global_oom_handling))]
14use core::clone::CloneToUninit;
15use core::clone::UseCloned;
16use core::cmp::Ordering;
17use core::hash::{Hash, Hasher};
18use core::intrinsics::abort;
19#[cfg(not(no_global_oom_handling))]
20use core::iter;
21use core::marker::{PhantomData, Unsize};
22use core::mem::{self, ManuallyDrop, align_of_val_raw};
23use core::num::NonZeroUsize;
24use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
25#[cfg(not(no_global_oom_handling))]
26use core::ops::{Residual, Try};
27use core::panic::{RefUnwindSafe, UnwindSafe};
28use core::pin::{Pin, PinCoerceUnsized};
29use core::ptr::{self, NonNull};
30#[cfg(not(no_global_oom_handling))]
31use core::slice::from_raw_parts_mut;
32use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
33use core::sync::atomic::{self, Atomic};
34use core::{borrow, fmt, hint};
35
36#[cfg(not(no_global_oom_handling))]
37use crate::alloc::handle_alloc_error;
38use crate::alloc::{AllocError, Allocator, Global, Layout};
39use crate::borrow::{Cow, ToOwned};
40use crate::boxed::Box;
41use crate::rc::is_dangling;
42#[cfg(not(no_global_oom_handling))]
43use crate::string::String;
44#[cfg(not(no_global_oom_handling))]
45use crate::vec::Vec;
46
47/// A soft limit on the amount of references that may be made to an `Arc`.
48///
49/// Going above this limit will abort your program (although not
50/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
51/// Trying to go above it might call a `panic` (if not actually going above it).
52///
53/// This is a global invariant, and also applies when using a compare-exchange loop.
54///
55/// See comment in `Arc::clone`.
56const MAX_REFCOUNT: usize = (isize::MAX) as usize;
57
58/// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely.
59const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow";
60
61#[cfg(not(sanitize = "thread"))]
62macro_rules! acquire {
63    ($x:expr) => {
64        atomic::fence(Acquire)
65    };
66}
67
68// ThreadSanitizer does not support memory fences. To avoid false positive
69// reports in Arc / Weak implementation use atomic loads for synchronization
70// instead.
71#[cfg(sanitize = "thread")]
72macro_rules! acquire {
73    ($x:expr) => {
74        $x.load(Acquire)
75    };
76}
77
78/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
79/// Reference Counted'.
80///
81/// The type `Arc<T>` provides shared ownership of a value of type `T`,
82/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
83/// a new `Arc` instance, which points to the same allocation on the heap as the
84/// source `Arc`, while increasing a reference count. When the last `Arc`
85/// pointer to a given allocation is destroyed, the value stored in that allocation (often
86/// referred to as "inner value") is also dropped.
87///
88/// Shared references in Rust disallow mutation by default, and `Arc` is no
89/// exception: you cannot generally obtain a mutable reference to something
90/// inside an `Arc`. If you do need to mutate through an `Arc`, you have several options:
91///
92/// 1. Use interior mutability with synchronization primitives like [`Mutex`][mutex],
93///    [`RwLock`][rwlock], or one of the [`Atomic`][atomic] types.
94///
95/// 2. Use clone-on-write semantics with [`Arc::make_mut`] which provides efficient mutation
96///    without requiring interior mutability. This approach clones the data only when
97///    needed (when there are multiple references) and can be more efficient when mutations
98///    are infrequent.
99///
100/// 3. Use [`Arc::get_mut`] when you know your `Arc` is not shared (has a reference count of 1),
101///    which provides direct mutable access to the inner value without any cloning.
102///
103/// ```
104/// use std::sync::Arc;
105///
106/// let mut data = Arc::new(vec![1, 2, 3]);
107///
108/// // This will clone the vector only if there are other references to it
109/// Arc::make_mut(&mut data).push(4);
110///
111/// assert_eq!(*data, vec![1, 2, 3, 4]);
112/// ```
113///
114/// **Note**: This type is only available on platforms that support atomic
115/// loads and stores of pointers, which includes all platforms that support
116/// the `std` crate but not all those which only support [`alloc`](crate).
117/// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`.
118///
119/// ## Thread Safety
120///
121/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
122/// counting. This means that it is thread-safe. The disadvantage is that
123/// atomic operations are more expensive than ordinary memory accesses. If you
124/// are not sharing reference-counted allocations between threads, consider using
125/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
126/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
127/// However, a library might choose `Arc<T>` in order to give library consumers
128/// more flexibility.
129///
130/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
131/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
132/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
133/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
134/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
135/// data, but it  doesn't add thread safety to its data. Consider
136/// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
137/// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem:
138/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
139/// non-atomic operations.
140///
141/// In the end, this means that you may need to pair `Arc<T>` with some sort of
142/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
143///
144/// ## Breaking cycles with `Weak`
145///
146/// The [`downgrade`][downgrade] method can be used to create a non-owning
147/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
148/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
149/// already been dropped. In other words, `Weak` pointers do not keep the value
150/// inside the allocation alive; however, they *do* keep the allocation
151/// (the backing store for the value) alive.
152///
153/// A cycle between `Arc` pointers will never be deallocated. For this reason,
154/// [`Weak`] is used to break cycles. For example, a tree could have
155/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
156/// pointers from children back to their parents.
157///
158/// # Cloning references
159///
160/// Creating a new reference from an existing reference-counted pointer is done using the
161/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
162///
163/// ```
164/// use std::sync::Arc;
165/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
166/// // The two syntaxes below are equivalent.
167/// let a = foo.clone();
168/// let b = Arc::clone(&foo);
169/// // a, b, and foo are all Arcs that point to the same memory location
170/// ```
171///
172/// ## `Deref` behavior
173///
174/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
175/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
176/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
177/// functions, called using [fully qualified syntax]:
178///
179/// ```
180/// use std::sync::Arc;
181///
182/// let my_arc = Arc::new(());
183/// let my_weak = Arc::downgrade(&my_arc);
184/// ```
185///
186/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
187/// fully qualified syntax. Some people prefer to use fully qualified syntax,
188/// while others prefer using method-call syntax.
189///
190/// ```
191/// use std::sync::Arc;
192///
193/// let arc = Arc::new(());
194/// // Method-call syntax
195/// let arc2 = arc.clone();
196/// // Fully qualified syntax
197/// let arc3 = Arc::clone(&arc);
198/// ```
199///
200/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
201/// already been dropped.
202///
203/// [`Rc<T>`]: crate::rc::Rc
204/// [clone]: Clone::clone
205/// [mutex]: ../../std/sync/struct.Mutex.html
206/// [rwlock]: ../../std/sync/struct.RwLock.html
207/// [atomic]: core::sync::atomic
208/// [downgrade]: Arc::downgrade
209/// [upgrade]: Weak::upgrade
210/// [RefCell\<T>]: core::cell::RefCell
211/// [`RefCell<T>`]: core::cell::RefCell
212/// [`std::sync`]: ../../std/sync/index.html
213/// [`Arc::clone(&from)`]: Arc::clone
214/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
215///
216/// # Examples
217///
218/// Sharing some immutable data between threads:
219///
220/// ```
221/// use std::sync::Arc;
222/// use std::thread;
223///
224/// let five = Arc::new(5);
225///
226/// for _ in 0..10 {
227///     let five = Arc::clone(&five);
228///
229///     thread::spawn(move || {
230///         println!("{five:?}");
231///     });
232/// }
233/// ```
234///
235/// Sharing a mutable [`AtomicUsize`]:
236///
237/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize"
238///
239/// ```
240/// use std::sync::Arc;
241/// use std::sync::atomic::{AtomicUsize, Ordering};
242/// use std::thread;
243///
244/// let val = Arc::new(AtomicUsize::new(5));
245///
246/// for _ in 0..10 {
247///     let val = Arc::clone(&val);
248///
249///     thread::spawn(move || {
250///         let v = val.fetch_add(1, Ordering::Relaxed);
251///         println!("{v:?}");
252///     });
253/// }
254/// ```
255///
256/// See the [`rc` documentation][rc_examples] for more examples of reference
257/// counting in general.
258///
259/// [rc_examples]: crate::rc#examples
260#[doc(search_unbox)]
261#[rustc_diagnostic_item = "Arc"]
262#[stable(feature = "rust1", since = "1.0.0")]
263#[rustc_insignificant_dtor]
264pub struct Arc<
265    T: ?Sized,
266    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
267> {
268    ptr: NonNull<ArcInner<T>>,
269    phantom: PhantomData<ArcInner<T>>,
270    alloc: A,
271}
272
273#[stable(feature = "rust1", since = "1.0.0")]
274unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Arc<T, A> {}
275#[stable(feature = "rust1", since = "1.0.0")]
276unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Arc<T, A> {}
277
278#[stable(feature = "catch_unwind", since = "1.9.0")]
279impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Arc<T, A> {}
280
281#[unstable(feature = "coerce_unsized", issue = "18598")]
282impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Arc<U, A>> for Arc<T, A> {}
283
284#[unstable(feature = "dispatch_from_dyn", issue = "none")]
285impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
286
287// SAFETY: `Arc::clone` doesn't access any `Cell`s which could contain the `Arc` being cloned.
288#[unstable(feature = "cell_get_cloned", issue = "145329")]
289unsafe impl<T: ?Sized> CloneFromCell for Arc<T> {}
290
291impl<T: ?Sized> Arc<T> {
292    unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
293        unsafe { Self::from_inner_in(ptr, Global) }
294    }
295
296    unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
297        unsafe { Self::from_ptr_in(ptr, Global) }
298    }
299}
300
301impl<T: ?Sized, A: Allocator> Arc<T, A> {
302    #[inline]
303    fn into_inner_with_allocator(this: Self) -> (NonNull<ArcInner<T>>, A) {
304        let this = mem::ManuallyDrop::new(this);
305        (this.ptr, unsafe { ptr::read(&this.alloc) })
306    }
307
308    #[inline]
309    unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self {
310        Self { ptr, phantom: PhantomData, alloc }
311    }
312
313    #[inline]
314    unsafe fn from_ptr_in(ptr: *mut ArcInner<T>, alloc: A) -> Self {
315        unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
316    }
317}
318
319/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
320/// managed allocation.
321///
322/// The allocation is accessed by calling [`upgrade`] on the `Weak`
323/// pointer, which returns an <code>[Option]<[Arc]\<T>></code>.
324///
325/// Since a `Weak` reference does not count towards ownership, it will not
326/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
327/// guarantees about the value still being present. Thus it may return [`None`]
328/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
329/// itself (the backing store) from being deallocated.
330///
331/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
332/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
333/// prevent circular references between [`Arc`] pointers, since mutual owning references
334/// would never allow either [`Arc`] to be dropped. For example, a tree could
335/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
336/// pointers from children back to their parents.
337///
338/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
339///
340/// [`upgrade`]: Weak::upgrade
341#[stable(feature = "arc_weak", since = "1.4.0")]
342#[rustc_diagnostic_item = "ArcWeak"]
343pub struct Weak<
344    T: ?Sized,
345    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
346> {
347    // This is a `NonNull` to allow optimizing the size of this type in enums,
348    // but it is not necessarily a valid pointer.
349    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
350    // to allocate space on the heap. That's not a value a real pointer
351    // will ever have because ArcInner has alignment at least 2.
352    ptr: NonNull<ArcInner<T>>,
353    alloc: A,
354}
355
356#[stable(feature = "arc_weak", since = "1.4.0")]
357unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Weak<T, A> {}
358#[stable(feature = "arc_weak", since = "1.4.0")]
359unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Weak<T, A> {}
360
361#[unstable(feature = "coerce_unsized", issue = "18598")]
362impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
363#[unstable(feature = "dispatch_from_dyn", issue = "none")]
364impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
365
366// SAFETY: `Weak::clone` doesn't access any `Cell`s which could contain the `Weak` being cloned.
367#[unstable(feature = "cell_get_cloned", issue = "145329")]
368unsafe impl<T: ?Sized> CloneFromCell for Weak<T> {}
369
370#[stable(feature = "arc_weak", since = "1.4.0")]
371impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
372    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
373        write!(f, "(Weak)")
374    }
375}
376
377// This is repr(C) to future-proof against possible field-reordering, which
378// would interfere with otherwise safe [into|from]_raw() of transmutable
379// inner types.
380// Unlike RcInner, repr(align(2)) is not strictly required because atomic types
381// have the alignment same as its size, but we use it for consistency and clarity.
382#[repr(C, align(2))]
383struct ArcInner<T: ?Sized> {
384    strong: Atomic<usize>,
385
386    // the value usize::MAX acts as a sentinel for temporarily "locking" the
387    // ability to upgrade weak pointers or downgrade strong ones; this is used
388    // to avoid races in `make_mut` and `get_mut`.
389    weak: Atomic<usize>,
390
391    data: T,
392}
393
394/// Calculate layout for `ArcInner<T>` using the inner value's layout
395fn arcinner_layout_for_value_layout(layout: Layout) -> Layout {
396    // Calculate layout using the given value layout.
397    // Previously, layout was calculated on the expression
398    // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
399    // reference (see #54908).
400    Layout::new::<ArcInner<()>>().extend(layout).unwrap().0.pad_to_align()
401}
402
403unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
404unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
405
406impl<T> Arc<T> {
407    /// Constructs a new `Arc<T>`.
408    ///
409    /// # Examples
410    ///
411    /// ```
412    /// use std::sync::Arc;
413    ///
414    /// let five = Arc::new(5);
415    /// ```
416    #[cfg(not(no_global_oom_handling))]
417    #[inline]
418    #[stable(feature = "rust1", since = "1.0.0")]
419    pub fn new(data: T) -> Arc<T> {
420        // Start the weak pointer count as 1 which is the weak pointer that's
421        // held by all the strong pointers (kinda), see std/rc.rs for more info
422        let x: Box<_> = Box::new(ArcInner {
423            strong: atomic::AtomicUsize::new(1),
424            weak: atomic::AtomicUsize::new(1),
425            data,
426        });
427        unsafe { Self::from_inner(Box::leak(x).into()) }
428    }
429
430    /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation,
431    /// to allow you to construct a `T` which holds a weak pointer to itself.
432    ///
433    /// Generally, a structure circularly referencing itself, either directly or
434    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
435    /// Using this function, you get access to the weak pointer during the
436    /// initialization of `T`, before the `Arc<T>` is created, such that you can
437    /// clone and store it inside the `T`.
438    ///
439    /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`,
440    /// then calls your closure, giving it a `Weak<T>` to this allocation,
441    /// and only afterwards completes the construction of the `Arc<T>` by placing
442    /// the `T` returned from your closure into the allocation.
443    ///
444    /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic`
445    /// returns, calling [`upgrade`] on the weak reference inside your closure will
446    /// fail and result in a `None` value.
447    ///
448    /// # Panics
449    ///
450    /// If `data_fn` panics, the panic is propagated to the caller, and the
451    /// temporary [`Weak<T>`] is dropped normally.
452    ///
453    /// # Example
454    ///
455    /// ```
456    /// # #![allow(dead_code)]
457    /// use std::sync::{Arc, Weak};
458    ///
459    /// struct Gadget {
460    ///     me: Weak<Gadget>,
461    /// }
462    ///
463    /// impl Gadget {
464    ///     /// Constructs a reference counted Gadget.
465    ///     fn new() -> Arc<Self> {
466    ///         // `me` is a `Weak<Gadget>` pointing at the new allocation of the
467    ///         // `Arc` we're constructing.
468    ///         Arc::new_cyclic(|me| {
469    ///             // Create the actual struct here.
470    ///             Gadget { me: me.clone() }
471    ///         })
472    ///     }
473    ///
474    ///     /// Returns a reference counted pointer to Self.
475    ///     fn me(&self) -> Arc<Self> {
476    ///         self.me.upgrade().unwrap()
477    ///     }
478    /// }
479    /// ```
480    /// [`upgrade`]: Weak::upgrade
481    #[cfg(not(no_global_oom_handling))]
482    #[inline]
483    #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
484    pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
485    where
486        F: FnOnce(&Weak<T>) -> T,
487    {
488        Self::new_cyclic_in(data_fn, Global)
489    }
490
491    /// Constructs a new `Arc` with uninitialized contents.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// use std::sync::Arc;
497    ///
498    /// let mut five = Arc::<u32>::new_uninit();
499    ///
500    /// // Deferred initialization:
501    /// Arc::get_mut(&mut five).unwrap().write(5);
502    ///
503    /// let five = unsafe { five.assume_init() };
504    ///
505    /// assert_eq!(*five, 5)
506    /// ```
507    #[cfg(not(no_global_oom_handling))]
508    #[inline]
509    #[stable(feature = "new_uninit", since = "1.82.0")]
510    #[must_use]
511    pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
512        unsafe {
513            Arc::from_ptr(Arc::allocate_for_layout(
514                Layout::new::<T>(),
515                |layout| Global.allocate(layout),
516                <*mut u8>::cast,
517            ))
518        }
519    }
520
521    /// Constructs a new `Arc` with uninitialized contents, with the memory
522    /// being filled with `0` bytes.
523    ///
524    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
525    /// of this method.
526    ///
527    /// # Examples
528    ///
529    /// ```
530    /// use std::sync::Arc;
531    ///
532    /// let zero = Arc::<u32>::new_zeroed();
533    /// let zero = unsafe { zero.assume_init() };
534    ///
535    /// assert_eq!(*zero, 0)
536    /// ```
537    ///
538    /// [zeroed]: mem::MaybeUninit::zeroed
539    #[cfg(not(no_global_oom_handling))]
540    #[inline]
541    #[stable(feature = "new_zeroed_alloc", since = "1.92.0")]
542    #[must_use]
543    pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
544        unsafe {
545            Arc::from_ptr(Arc::allocate_for_layout(
546                Layout::new::<T>(),
547                |layout| Global.allocate_zeroed(layout),
548                <*mut u8>::cast,
549            ))
550        }
551    }
552
553    /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
554    /// `data` will be pinned in memory and unable to be moved.
555    #[cfg(not(no_global_oom_handling))]
556    #[stable(feature = "pin", since = "1.33.0")]
557    #[must_use]
558    pub fn pin(data: T) -> Pin<Arc<T>> {
559        unsafe { Pin::new_unchecked(Arc::new(data)) }
560    }
561
562    /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails.
563    #[unstable(feature = "allocator_api", issue = "32838")]
564    #[inline]
565    pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> {
566        unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) }
567    }
568
569    /// Constructs a new `Arc<T>`, returning an error if allocation fails.
570    ///
571    /// # Examples
572    ///
573    /// ```
574    /// #![feature(allocator_api)]
575    /// use std::sync::Arc;
576    ///
577    /// let five = Arc::try_new(5)?;
578    /// # Ok::<(), std::alloc::AllocError>(())
579    /// ```
580    #[unstable(feature = "allocator_api", issue = "32838")]
581    #[inline]
582    pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
583        // Start the weak pointer count as 1 which is the weak pointer that's
584        // held by all the strong pointers (kinda), see std/rc.rs for more info
585        let x: Box<_> = Box::try_new(ArcInner {
586            strong: atomic::AtomicUsize::new(1),
587            weak: atomic::AtomicUsize::new(1),
588            data,
589        })?;
590        unsafe { Ok(Self::from_inner(Box::leak(x).into())) }
591    }
592
593    /// Constructs a new `Arc` with uninitialized contents, returning an error
594    /// if allocation fails.
595    ///
596    /// # Examples
597    ///
598    /// ```
599    /// #![feature(allocator_api)]
600    ///
601    /// use std::sync::Arc;
602    ///
603    /// let mut five = Arc::<u32>::try_new_uninit()?;
604    ///
605    /// // Deferred initialization:
606    /// Arc::get_mut(&mut five).unwrap().write(5);
607    ///
608    /// let five = unsafe { five.assume_init() };
609    ///
610    /// assert_eq!(*five, 5);
611    /// # Ok::<(), std::alloc::AllocError>(())
612    /// ```
613    #[unstable(feature = "allocator_api", issue = "32838")]
614    pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
615        unsafe {
616            Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
617                Layout::new::<T>(),
618                |layout| Global.allocate(layout),
619                <*mut u8>::cast,
620            )?))
621        }
622    }
623
624    /// Constructs a new `Arc` with uninitialized contents, with the memory
625    /// being filled with `0` bytes, returning an error if allocation fails.
626    ///
627    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
628    /// of this method.
629    ///
630    /// # Examples
631    ///
632    /// ```
633    /// #![feature( allocator_api)]
634    ///
635    /// use std::sync::Arc;
636    ///
637    /// let zero = Arc::<u32>::try_new_zeroed()?;
638    /// let zero = unsafe { zero.assume_init() };
639    ///
640    /// assert_eq!(*zero, 0);
641    /// # Ok::<(), std::alloc::AllocError>(())
642    /// ```
643    ///
644    /// [zeroed]: mem::MaybeUninit::zeroed
645    #[unstable(feature = "allocator_api", issue = "32838")]
646    pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
647        unsafe {
648            Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
649                Layout::new::<T>(),
650                |layout| Global.allocate_zeroed(layout),
651                <*mut u8>::cast,
652            )?))
653        }
654    }
655
656    /// Maps the value in an `Arc`, reusing the allocation if possible.
657    ///
658    /// `f` is called on a reference to the value in the `Arc`, and the result is returned, also in
659    /// an `Arc`.
660    ///
661    /// Note: this is an associated function, which means that you have
662    /// to call it as `Arc::map(a, f)` instead of `r.map(a)`. This
663    /// is so that there is no conflict with a method on the inner type.
664    ///
665    /// # Examples
666    ///
667    /// ```
668    /// #![feature(smart_pointer_try_map)]
669    ///
670    /// use std::sync::Arc;
671    ///
672    /// let r = Arc::new(7);
673    /// let new = Arc::map(r, |i| i + 7);
674    /// assert_eq!(*new, 14);
675    /// ```
676    #[cfg(not(no_global_oom_handling))]
677    #[unstable(feature = "smart_pointer_try_map", issue = "144419")]
678    pub fn map<U>(this: Self, f: impl FnOnce(&T) -> U) -> Arc<U> {
679        if size_of::<T>() == size_of::<U>()
680            && align_of::<T>() == align_of::<U>()
681            && Arc::is_unique(&this)
682        {
683            unsafe {
684                let ptr = Arc::into_raw(this);
685                let value = ptr.read();
686                let mut allocation = Arc::from_raw(ptr.cast::<mem::MaybeUninit<U>>());
687
688                Arc::get_mut_unchecked(&mut allocation).write(f(&value));
689                allocation.assume_init()
690            }
691        } else {
692            Arc::new(f(&*this))
693        }
694    }
695
696    /// Attempts to map the value in an `Arc`, reusing the allocation if possible.
697    ///
698    /// `f` is called on a reference to the value in the `Arc`, and if the operation succeeds, the
699    /// result is returned, also in an `Arc`.
700    ///
701    /// Note: this is an associated function, which means that you have
702    /// to call it as `Arc::try_map(a, f)` instead of `a.try_map(f)`. This
703    /// is so that there is no conflict with a method on the inner type.
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// #![feature(smart_pointer_try_map)]
709    ///
710    /// use std::sync::Arc;
711    ///
712    /// let b = Arc::new(7);
713    /// let new = Arc::try_map(b, |&i| u32::try_from(i)).unwrap();
714    /// assert_eq!(*new, 7);
715    /// ```
716    #[cfg(not(no_global_oom_handling))]
717    #[unstable(feature = "smart_pointer_try_map", issue = "144419")]
718    pub fn try_map<R>(
719        this: Self,
720        f: impl FnOnce(&T) -> R,
721    ) -> <R::Residual as Residual<Arc<R::Output>>>::TryType
722    where
723        R: Try,
724        R::Residual: Residual<Arc<R::Output>>,
725    {
726        if size_of::<T>() == size_of::<R::Output>()
727            && align_of::<T>() == align_of::<R::Output>()
728            && Arc::is_unique(&this)
729        {
730            unsafe {
731                let ptr = Arc::into_raw(this);
732                let value = ptr.read();
733                let mut allocation = Arc::from_raw(ptr.cast::<mem::MaybeUninit<R::Output>>());
734
735                Arc::get_mut_unchecked(&mut allocation).write(f(&value)?);
736                try { allocation.assume_init() }
737            }
738        } else {
739            try { Arc::new(f(&*this)?) }
740        }
741    }
742}
743
744impl<T, A: Allocator> Arc<T, A> {
745    /// Constructs a new `Arc<T>` in the provided allocator.
746    ///
747    /// # Examples
748    ///
749    /// ```
750    /// #![feature(allocator_api)]
751    ///
752    /// use std::sync::Arc;
753    /// use std::alloc::System;
754    ///
755    /// let five = Arc::new_in(5, System);
756    /// ```
757    #[inline]
758    #[cfg(not(no_global_oom_handling))]
759    #[unstable(feature = "allocator_api", issue = "32838")]
760    pub fn new_in(data: T, alloc: A) -> Arc<T, A> {
761        // Start the weak pointer count as 1 which is the weak pointer that's
762        // held by all the strong pointers (kinda), see std/rc.rs for more info
763        let x = Box::new_in(
764            ArcInner {
765                strong: atomic::AtomicUsize::new(1),
766                weak: atomic::AtomicUsize::new(1),
767                data,
768            },
769            alloc,
770        );
771        let (ptr, alloc) = Box::into_unique(x);
772        unsafe { Self::from_inner_in(ptr.into(), alloc) }
773    }
774
775    /// Constructs a new `Arc` with uninitialized contents in the provided allocator.
776    ///
777    /// # Examples
778    ///
779    /// ```
780    /// #![feature(get_mut_unchecked)]
781    /// #![feature(allocator_api)]
782    ///
783    /// use std::sync::Arc;
784    /// use std::alloc::System;
785    ///
786    /// let mut five = Arc::<u32, _>::new_uninit_in(System);
787    ///
788    /// let five = unsafe {
789    ///     // Deferred initialization:
790    ///     Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
791    ///
792    ///     five.assume_init()
793    /// };
794    ///
795    /// assert_eq!(*five, 5)
796    /// ```
797    #[cfg(not(no_global_oom_handling))]
798    #[unstable(feature = "allocator_api", issue = "32838")]
799    #[inline]
800    pub fn new_uninit_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
801        unsafe {
802            Arc::from_ptr_in(
803                Arc::allocate_for_layout(
804                    Layout::new::<T>(),
805                    |layout| alloc.allocate(layout),
806                    <*mut u8>::cast,
807                ),
808                alloc,
809            )
810        }
811    }
812
813    /// Constructs a new `Arc` with uninitialized contents, with the memory
814    /// being filled with `0` bytes, in the provided allocator.
815    ///
816    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
817    /// of this method.
818    ///
819    /// # Examples
820    ///
821    /// ```
822    /// #![feature(allocator_api)]
823    ///
824    /// use std::sync::Arc;
825    /// use std::alloc::System;
826    ///
827    /// let zero = Arc::<u32, _>::new_zeroed_in(System);
828    /// let zero = unsafe { zero.assume_init() };
829    ///
830    /// assert_eq!(*zero, 0)
831    /// ```
832    ///
833    /// [zeroed]: mem::MaybeUninit::zeroed
834    #[cfg(not(no_global_oom_handling))]
835    #[unstable(feature = "allocator_api", issue = "32838")]
836    #[inline]
837    pub fn new_zeroed_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
838        unsafe {
839            Arc::from_ptr_in(
840                Arc::allocate_for_layout(
841                    Layout::new::<T>(),
842                    |layout| alloc.allocate_zeroed(layout),
843                    <*mut u8>::cast,
844                ),
845                alloc,
846            )
847        }
848    }
849
850    /// Constructs a new `Arc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
851    /// to allow you to construct a `T` which holds a weak pointer to itself.
852    ///
853    /// Generally, a structure circularly referencing itself, either directly or
854    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
855    /// Using this function, you get access to the weak pointer during the
856    /// initialization of `T`, before the `Arc<T, A>` is created, such that you can
857    /// clone and store it inside the `T`.
858    ///
859    /// `new_cyclic_in` first allocates the managed allocation for the `Arc<T, A>`,
860    /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
861    /// and only afterwards completes the construction of the `Arc<T, A>` by placing
862    /// the `T` returned from your closure into the allocation.
863    ///
864    /// Since the new `Arc<T, A>` is not fully-constructed until `Arc<T, A>::new_cyclic_in`
865    /// returns, calling [`upgrade`] on the weak reference inside your closure will
866    /// fail and result in a `None` value.
867    ///
868    /// # Panics
869    ///
870    /// If `data_fn` panics, the panic is propagated to the caller, and the
871    /// temporary [`Weak<T>`] is dropped normally.
872    ///
873    /// # Example
874    ///
875    /// See [`new_cyclic`]
876    ///
877    /// [`new_cyclic`]: Arc::new_cyclic
878    /// [`upgrade`]: Weak::upgrade
879    #[cfg(not(no_global_oom_handling))]
880    #[inline]
881    #[unstable(feature = "allocator_api", issue = "32838")]
882    pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A>
883    where
884        F: FnOnce(&Weak<T, A>) -> T,
885    {
886        // Construct the inner in the "uninitialized" state with a single
887        // weak reference.
888        let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
889            ArcInner {
890                strong: atomic::AtomicUsize::new(0),
891                weak: atomic::AtomicUsize::new(1),
892                data: mem::MaybeUninit::<T>::uninit(),
893            },
894            alloc,
895        ));
896        let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
897        let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
898
899        let weak = Weak { ptr: init_ptr, alloc };
900
901        // It's important we don't give up ownership of the weak pointer, or
902        // else the memory might be freed by the time `data_fn` returns. If
903        // we really wanted to pass ownership, we could create an additional
904        // weak pointer for ourselves, but this would result in additional
905        // updates to the weak reference count which might not be necessary
906        // otherwise.
907        let data = data_fn(&weak);
908
909        // Now we can properly initialize the inner value and turn our weak
910        // reference into a strong reference.
911        let strong = unsafe {
912            let inner = init_ptr.as_ptr();
913            ptr::write(&raw mut (*inner).data, data);
914
915            // The above write to the data field must be visible to any threads which
916            // observe a non-zero strong count. Therefore we need at least "Release" ordering
917            // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
918            //
919            // "Acquire" ordering is not required. When considering the possible behaviors
920            // of `data_fn` we only need to look at what it could do with a reference to a
921            // non-upgradeable `Weak`:
922            // - It can *clone* the `Weak`, increasing the weak reference count.
923            // - It can drop those clones, decreasing the weak reference count (but never to zero).
924            //
925            // These side effects do not impact us in any way, and no other side effects are
926            // possible with safe code alone.
927            let prev_value = (*inner).strong.fetch_add(1, Release);
928            debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
929
930            // Strong references should collectively own a shared weak reference,
931            // so don't run the destructor for our old weak reference.
932            // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
933            // and forgetting the weak reference.
934            let alloc = weak.into_raw_with_allocator().1;
935
936            Arc::from_inner_in(init_ptr, alloc)
937        };
938
939        strong
940    }
941
942    /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`,
943    /// then `data` will be pinned in memory and unable to be moved.
944    #[cfg(not(no_global_oom_handling))]
945    #[unstable(feature = "allocator_api", issue = "32838")]
946    #[inline]
947    pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>>
948    where
949        A: 'static,
950    {
951        unsafe { Pin::new_unchecked(Arc::new_in(data, alloc)) }
952    }
953
954    /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator, return an error if allocation
955    /// fails.
956    #[inline]
957    #[unstable(feature = "allocator_api", issue = "32838")]
958    pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError>
959    where
960        A: 'static,
961    {
962        unsafe { Ok(Pin::new_unchecked(Arc::try_new_in(data, alloc)?)) }
963    }
964
965    /// Constructs a new `Arc<T, A>` in the provided allocator, returning an error if allocation fails.
966    ///
967    /// # Examples
968    ///
969    /// ```
970    /// #![feature(allocator_api)]
971    ///
972    /// use std::sync::Arc;
973    /// use std::alloc::System;
974    ///
975    /// let five = Arc::try_new_in(5, System)?;
976    /// # Ok::<(), std::alloc::AllocError>(())
977    /// ```
978    #[unstable(feature = "allocator_api", issue = "32838")]
979    #[inline]
980    pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError> {
981        // Start the weak pointer count as 1 which is the weak pointer that's
982        // held by all the strong pointers (kinda), see std/rc.rs for more info
983        let x = Box::try_new_in(
984            ArcInner {
985                strong: atomic::AtomicUsize::new(1),
986                weak: atomic::AtomicUsize::new(1),
987                data,
988            },
989            alloc,
990        )?;
991        let (ptr, alloc) = Box::into_unique(x);
992        Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
993    }
994
995    /// Constructs a new `Arc` with uninitialized contents, in the provided allocator, returning an
996    /// error if allocation fails.
997    ///
998    /// # Examples
999    ///
1000    /// ```
1001    /// #![feature(allocator_api)]
1002    /// #![feature(get_mut_unchecked)]
1003    ///
1004    /// use std::sync::Arc;
1005    /// use std::alloc::System;
1006    ///
1007    /// let mut five = Arc::<u32, _>::try_new_uninit_in(System)?;
1008    ///
1009    /// let five = unsafe {
1010    ///     // Deferred initialization:
1011    ///     Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
1012    ///
1013    ///     five.assume_init()
1014    /// };
1015    ///
1016    /// assert_eq!(*five, 5);
1017    /// # Ok::<(), std::alloc::AllocError>(())
1018    /// ```
1019    #[unstable(feature = "allocator_api", issue = "32838")]
1020    #[inline]
1021    pub fn try_new_uninit_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
1022        unsafe {
1023            Ok(Arc::from_ptr_in(
1024                Arc::try_allocate_for_layout(
1025                    Layout::new::<T>(),
1026                    |layout| alloc.allocate(layout),
1027                    <*mut u8>::cast,
1028                )?,
1029                alloc,
1030            ))
1031        }
1032    }
1033
1034    /// Constructs a new `Arc` with uninitialized contents, with the memory
1035    /// being filled with `0` bytes, in the provided allocator, returning an error if allocation
1036    /// fails.
1037    ///
1038    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
1039    /// of this method.
1040    ///
1041    /// # Examples
1042    ///
1043    /// ```
1044    /// #![feature(allocator_api)]
1045    ///
1046    /// use std::sync::Arc;
1047    /// use std::alloc::System;
1048    ///
1049    /// let zero = Arc::<u32, _>::try_new_zeroed_in(System)?;
1050    /// let zero = unsafe { zero.assume_init() };
1051    ///
1052    /// assert_eq!(*zero, 0);
1053    /// # Ok::<(), std::alloc::AllocError>(())
1054    /// ```
1055    ///
1056    /// [zeroed]: mem::MaybeUninit::zeroed
1057    #[unstable(feature = "allocator_api", issue = "32838")]
1058    #[inline]
1059    pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
1060        unsafe {
1061            Ok(Arc::from_ptr_in(
1062                Arc::try_allocate_for_layout(
1063                    Layout::new::<T>(),
1064                    |layout| alloc.allocate_zeroed(layout),
1065                    <*mut u8>::cast,
1066                )?,
1067                alloc,
1068            ))
1069        }
1070    }
1071    /// Returns the inner value, if the `Arc` has exactly one strong reference.
1072    ///
1073    /// Otherwise, an [`Err`] is returned with the same `Arc` that was
1074    /// passed in.
1075    ///
1076    /// This will succeed even if there are outstanding weak references.
1077    ///
1078    /// It is strongly recommended to use [`Arc::into_inner`] instead if you don't
1079    /// keep the `Arc` in the [`Err`] case.
1080    /// Immediately dropping the [`Err`]-value, as the expression
1081    /// `Arc::try_unwrap(this).ok()` does, can cause the strong count to
1082    /// drop to zero and the inner value of the `Arc` to be dropped.
1083    /// For instance, if two threads execute such an expression in parallel,
1084    /// there is a race condition without the possibility of unsafety:
1085    /// The threads could first both check whether they own the last instance
1086    /// in `Arc::try_unwrap`, determine that they both do not, and then both
1087    /// discard and drop their instance in the call to [`ok`][`Result::ok`].
1088    /// In this scenario, the value inside the `Arc` is safely destroyed
1089    /// by exactly one of the threads, but neither thread will ever be able
1090    /// to use the value.
1091    ///
1092    /// # Examples
1093    ///
1094    /// ```
1095    /// use std::sync::Arc;
1096    ///
1097    /// let x = Arc::new(3);
1098    /// assert_eq!(Arc::try_unwrap(x), Ok(3));
1099    ///
1100    /// let x = Arc::new(4);
1101    /// let _y = Arc::clone(&x);
1102    /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
1103    /// ```
1104    #[inline]
1105    #[stable(feature = "arc_unique", since = "1.4.0")]
1106    pub fn try_unwrap(this: Self) -> Result<T, Self> {
1107        if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
1108            return Err(this);
1109        }
1110
1111        acquire!(this.inner().strong);
1112
1113        let this = ManuallyDrop::new(this);
1114        let elem: T = unsafe { ptr::read(&this.ptr.as_ref().data) };
1115        let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
1116
1117        // Make a weak pointer to clean up the implicit strong-weak reference
1118        let _weak = Weak { ptr: this.ptr, alloc };
1119
1120        Ok(elem)
1121    }
1122
1123    /// Returns the inner value, if the `Arc` has exactly one strong reference.
1124    ///
1125    /// Otherwise, [`None`] is returned and the `Arc` is dropped.
1126    ///
1127    /// This will succeed even if there are outstanding weak references.
1128    ///
1129    /// If `Arc::into_inner` is called on every clone of this `Arc`,
1130    /// it is guaranteed that exactly one of the calls returns the inner value.
1131    /// This means in particular that the inner value is not dropped.
1132    ///
1133    /// [`Arc::try_unwrap`] is conceptually similar to `Arc::into_inner`, but it
1134    /// is meant for different use-cases. If used as a direct replacement
1135    /// for `Arc::into_inner` anyway, such as with the expression
1136    /// <code>[Arc::try_unwrap]\(this).[ok][Result::ok]()</code>, then it does
1137    /// **not** give the same guarantee as described in the previous paragraph.
1138    /// For more information, see the examples below and read the documentation
1139    /// of [`Arc::try_unwrap`].
1140    ///
1141    /// # Examples
1142    ///
1143    /// Minimal example demonstrating the guarantee that `Arc::into_inner` gives.
1144    /// ```
1145    /// use std::sync::Arc;
1146    ///
1147    /// let x = Arc::new(3);
1148    /// let y = Arc::clone(&x);
1149    ///
1150    /// // Two threads calling `Arc::into_inner` on both clones of an `Arc`:
1151    /// let x_thread = std::thread::spawn(|| Arc::into_inner(x));
1152    /// let y_thread = std::thread::spawn(|| Arc::into_inner(y));
1153    ///
1154    /// let x_inner_value = x_thread.join().unwrap();
1155    /// let y_inner_value = y_thread.join().unwrap();
1156    ///
1157    /// // One of the threads is guaranteed to receive the inner value:
1158    /// assert!(matches!(
1159    ///     (x_inner_value, y_inner_value),
1160    ///     (None, Some(3)) | (Some(3), None)
1161    /// ));
1162    /// // The result could also be `(None, None)` if the threads called
1163    /// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead.
1164    /// ```
1165    ///
1166    /// A more practical example demonstrating the need for `Arc::into_inner`:
1167    /// ```
1168    /// use std::sync::Arc;
1169    ///
1170    /// // Definition of a simple singly linked list using `Arc`:
1171    /// #[derive(Clone)]
1172    /// struct LinkedList<T>(Option<Arc<Node<T>>>);
1173    /// struct Node<T>(T, Option<Arc<Node<T>>>);
1174    ///
1175    /// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc`
1176    /// // can cause a stack overflow. To prevent this, we can provide a
1177    /// // manual `Drop` implementation that does the destruction in a loop:
1178    /// impl<T> Drop for LinkedList<T> {
1179    ///     fn drop(&mut self) {
1180    ///         let mut link = self.0.take();
1181    ///         while let Some(arc_node) = link.take() {
1182    ///             if let Some(Node(_value, next)) = Arc::into_inner(arc_node) {
1183    ///                 link = next;
1184    ///             }
1185    ///         }
1186    ///     }
1187    /// }
1188    ///
1189    /// // Implementation of `new` and `push` omitted
1190    /// impl<T> LinkedList<T> {
1191    ///     /* ... */
1192    /// #   fn new() -> Self {
1193    /// #       LinkedList(None)
1194    /// #   }
1195    /// #   fn push(&mut self, x: T) {
1196    /// #       self.0 = Some(Arc::new(Node(x, self.0.take())));
1197    /// #   }
1198    /// }
1199    ///
1200    /// // The following code could have still caused a stack overflow
1201    /// // despite the manual `Drop` impl if that `Drop` impl had used
1202    /// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`.
1203    ///
1204    /// // Create a long list and clone it
1205    /// let mut x = LinkedList::new();
1206    /// let size = 100000;
1207    /// # let size = if cfg!(miri) { 100 } else { size };
1208    /// for i in 0..size {
1209    ///     x.push(i); // Adds i to the front of x
1210    /// }
1211    /// let y = x.clone();
1212    ///
1213    /// // Drop the clones in parallel
1214    /// let x_thread = std::thread::spawn(|| drop(x));
1215    /// let y_thread = std::thread::spawn(|| drop(y));
1216    /// x_thread.join().unwrap();
1217    /// y_thread.join().unwrap();
1218    /// ```
1219    #[inline]
1220    #[stable(feature = "arc_into_inner", since = "1.70.0")]
1221    pub fn into_inner(this: Self) -> Option<T> {
1222        // Make sure that the ordinary `Drop` implementation isn’t called as well
1223        let mut this = mem::ManuallyDrop::new(this);
1224
1225        // Following the implementation of `drop` and `drop_slow`
1226        if this.inner().strong.fetch_sub(1, Release) != 1 {
1227            return None;
1228        }
1229
1230        acquire!(this.inner().strong);
1231
1232        // SAFETY: This mirrors the line
1233        //
1234        //     unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
1235        //
1236        // in `drop_slow`. Instead of dropping the value behind the pointer,
1237        // it is read and eventually returned; `ptr::read` has the same
1238        // safety conditions as `ptr::drop_in_place`.
1239
1240        let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) };
1241        let alloc = unsafe { ptr::read(&this.alloc) };
1242
1243        drop(Weak { ptr: this.ptr, alloc });
1244
1245        Some(inner)
1246    }
1247}
1248
1249impl<T> Arc<[T]> {
1250    /// Constructs a new atomically reference-counted slice with uninitialized contents.
1251    ///
1252    /// # Examples
1253    ///
1254    /// ```
1255    /// use std::sync::Arc;
1256    ///
1257    /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1258    ///
1259    /// // Deferred initialization:
1260    /// let data = Arc::get_mut(&mut values).unwrap();
1261    /// data[0].write(1);
1262    /// data[1].write(2);
1263    /// data[2].write(3);
1264    ///
1265    /// let values = unsafe { values.assume_init() };
1266    ///
1267    /// assert_eq!(*values, [1, 2, 3])
1268    /// ```
1269    #[cfg(not(no_global_oom_handling))]
1270    #[inline]
1271    #[stable(feature = "new_uninit", since = "1.82.0")]
1272    #[must_use]
1273    pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1274        unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
1275    }
1276
1277    /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1278    /// filled with `0` bytes.
1279    ///
1280    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1281    /// incorrect usage of this method.
1282    ///
1283    /// # Examples
1284    ///
1285    /// ```
1286    /// use std::sync::Arc;
1287    ///
1288    /// let values = Arc::<[u32]>::new_zeroed_slice(3);
1289    /// let values = unsafe { values.assume_init() };
1290    ///
1291    /// assert_eq!(*values, [0, 0, 0])
1292    /// ```
1293    ///
1294    /// [zeroed]: mem::MaybeUninit::zeroed
1295    #[cfg(not(no_global_oom_handling))]
1296    #[inline]
1297    #[stable(feature = "new_zeroed_alloc", since = "1.92.0")]
1298    #[must_use]
1299    pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1300        unsafe {
1301            Arc::from_ptr(Arc::allocate_for_layout(
1302                Layout::array::<T>(len).unwrap(),
1303                |layout| Global.allocate_zeroed(layout),
1304                |mem| {
1305                    ptr::slice_from_raw_parts_mut(mem as *mut T, len)
1306                        as *mut ArcInner<[mem::MaybeUninit<T>]>
1307                },
1308            ))
1309        }
1310    }
1311
1312    /// Converts the reference-counted slice into a reference-counted array.
1313    ///
1314    /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1315    ///
1316    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1317    #[unstable(feature = "slice_as_array", issue = "133508")]
1318    #[inline]
1319    #[must_use]
1320    pub fn into_array<const N: usize>(self) -> Option<Arc<[T; N]>> {
1321        if self.len() == N {
1322            let ptr = Self::into_raw(self) as *const [T; N];
1323
1324            // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1325            let me = unsafe { Arc::from_raw(ptr) };
1326            Some(me)
1327        } else {
1328            None
1329        }
1330    }
1331}
1332
1333impl<T, A: Allocator> Arc<[T], A> {
1334    /// Constructs a new atomically reference-counted slice with uninitialized contents in the
1335    /// provided allocator.
1336    ///
1337    /// # Examples
1338    ///
1339    /// ```
1340    /// #![feature(get_mut_unchecked)]
1341    /// #![feature(allocator_api)]
1342    ///
1343    /// use std::sync::Arc;
1344    /// use std::alloc::System;
1345    ///
1346    /// let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System);
1347    ///
1348    /// let values = unsafe {
1349    ///     // Deferred initialization:
1350    ///     Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1351    ///     Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1352    ///     Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1353    ///
1354    ///     values.assume_init()
1355    /// };
1356    ///
1357    /// assert_eq!(*values, [1, 2, 3])
1358    /// ```
1359    #[cfg(not(no_global_oom_handling))]
1360    #[unstable(feature = "allocator_api", issue = "32838")]
1361    #[inline]
1362    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1363        unsafe { Arc::from_ptr_in(Arc::allocate_for_slice_in(len, &alloc), alloc) }
1364    }
1365
1366    /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1367    /// filled with `0` bytes, in the provided allocator.
1368    ///
1369    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1370    /// incorrect usage of this method.
1371    ///
1372    /// # Examples
1373    ///
1374    /// ```
1375    /// #![feature(allocator_api)]
1376    ///
1377    /// use std::sync::Arc;
1378    /// use std::alloc::System;
1379    ///
1380    /// let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System);
1381    /// let values = unsafe { values.assume_init() };
1382    ///
1383    /// assert_eq!(*values, [0, 0, 0])
1384    /// ```
1385    ///
1386    /// [zeroed]: mem::MaybeUninit::zeroed
1387    #[cfg(not(no_global_oom_handling))]
1388    #[unstable(feature = "allocator_api", issue = "32838")]
1389    #[inline]
1390    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1391        unsafe {
1392            Arc::from_ptr_in(
1393                Arc::allocate_for_layout(
1394                    Layout::array::<T>(len).unwrap(),
1395                    |layout| alloc.allocate_zeroed(layout),
1396                    |mem| {
1397                        ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1398                            as *mut ArcInner<[mem::MaybeUninit<T>]>
1399                    },
1400                ),
1401                alloc,
1402            )
1403        }
1404    }
1405}
1406
1407impl<T, A: Allocator> Arc<mem::MaybeUninit<T>, A> {
1408    /// Converts to `Arc<T>`.
1409    ///
1410    /// # Safety
1411    ///
1412    /// As with [`MaybeUninit::assume_init`],
1413    /// it is up to the caller to guarantee that the inner value
1414    /// really is in an initialized state.
1415    /// Calling this when the content is not yet fully initialized
1416    /// causes immediate undefined behavior.
1417    ///
1418    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1419    ///
1420    /// # Examples
1421    ///
1422    /// ```
1423    /// use std::sync::Arc;
1424    ///
1425    /// let mut five = Arc::<u32>::new_uninit();
1426    ///
1427    /// // Deferred initialization:
1428    /// Arc::get_mut(&mut five).unwrap().write(5);
1429    ///
1430    /// let five = unsafe { five.assume_init() };
1431    ///
1432    /// assert_eq!(*five, 5)
1433    /// ```
1434    #[stable(feature = "new_uninit", since = "1.82.0")]
1435    #[must_use = "`self` will be dropped if the result is not used"]
1436    #[inline]
1437    pub unsafe fn assume_init(self) -> Arc<T, A> {
1438        let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1439        unsafe { Arc::from_inner_in(ptr.cast(), alloc) }
1440    }
1441}
1442
1443impl<T, A: Allocator> Arc<[mem::MaybeUninit<T>], A> {
1444    /// Converts to `Arc<[T]>`.
1445    ///
1446    /// # Safety
1447    ///
1448    /// As with [`MaybeUninit::assume_init`],
1449    /// it is up to the caller to guarantee that the inner value
1450    /// really is in an initialized state.
1451    /// Calling this when the content is not yet fully initialized
1452    /// causes immediate undefined behavior.
1453    ///
1454    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1455    ///
1456    /// # Examples
1457    ///
1458    /// ```
1459    /// use std::sync::Arc;
1460    ///
1461    /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1462    ///
1463    /// // Deferred initialization:
1464    /// let data = Arc::get_mut(&mut values).unwrap();
1465    /// data[0].write(1);
1466    /// data[1].write(2);
1467    /// data[2].write(3);
1468    ///
1469    /// let values = unsafe { values.assume_init() };
1470    ///
1471    /// assert_eq!(*values, [1, 2, 3])
1472    /// ```
1473    #[stable(feature = "new_uninit", since = "1.82.0")]
1474    #[must_use = "`self` will be dropped if the result is not used"]
1475    #[inline]
1476    pub unsafe fn assume_init(self) -> Arc<[T], A> {
1477        let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1478        unsafe { Arc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1479    }
1480}
1481
1482impl<T: ?Sized> Arc<T> {
1483    /// Constructs an `Arc<T>` from a raw pointer.
1484    ///
1485    /// The raw pointer must have been previously returned by a call to
1486    /// [`Arc<U>::into_raw`][into_raw] with the following requirements:
1487    ///
1488    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1489    ///   is trivially true if `U` is `T`.
1490    /// * If `U` is unsized, its data pointer must have the same size and
1491    ///   alignment as `T`. This is trivially true if `Arc<U>` was constructed
1492    ///   through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1493    ///   coercion].
1494    ///
1495    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1496    /// and alignment, this is basically like transmuting references of
1497    /// different types. See [`mem::transmute`][transmute] for more information
1498    /// on what restrictions apply in this case.
1499    ///
1500    /// The raw pointer must point to a block of memory allocated by the global allocator.
1501    ///
1502    /// The user of `from_raw` has to make sure a specific value of `T` is only
1503    /// dropped once.
1504    ///
1505    /// This function is unsafe because improper use may lead to memory unsafety,
1506    /// even if the returned `Arc<T>` is never accessed.
1507    ///
1508    /// [into_raw]: Arc::into_raw
1509    /// [transmute]: core::mem::transmute
1510    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1511    ///
1512    /// # Examples
1513    ///
1514    /// ```
1515    /// use std::sync::Arc;
1516    ///
1517    /// let x = Arc::new("hello".to_owned());
1518    /// let x_ptr = Arc::into_raw(x);
1519    ///
1520    /// unsafe {
1521    ///     // Convert back to an `Arc` to prevent leak.
1522    ///     let x = Arc::from_raw(x_ptr);
1523    ///     assert_eq!(&*x, "hello");
1524    ///
1525    ///     // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1526    /// }
1527    ///
1528    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1529    /// ```
1530    ///
1531    /// Convert a slice back into its original array:
1532    ///
1533    /// ```
1534    /// use std::sync::Arc;
1535    ///
1536    /// let x: Arc<[u32]> = Arc::new([1, 2, 3]);
1537    /// let x_ptr: *const [u32] = Arc::into_raw(x);
1538    ///
1539    /// unsafe {
1540    ///     let x: Arc<[u32; 3]> = Arc::from_raw(x_ptr.cast::<[u32; 3]>());
1541    ///     assert_eq!(&*x, &[1, 2, 3]);
1542    /// }
1543    /// ```
1544    #[inline]
1545    #[stable(feature = "rc_raw", since = "1.17.0")]
1546    pub unsafe fn from_raw(ptr: *const T) -> Self {
1547        unsafe { Arc::from_raw_in(ptr, Global) }
1548    }
1549
1550    /// Consumes the `Arc`, returning the wrapped pointer.
1551    ///
1552    /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1553    /// [`Arc::from_raw`].
1554    ///
1555    /// # Examples
1556    ///
1557    /// ```
1558    /// use std::sync::Arc;
1559    ///
1560    /// let x = Arc::new("hello".to_owned());
1561    /// let x_ptr = Arc::into_raw(x);
1562    /// assert_eq!(unsafe { &*x_ptr }, "hello");
1563    /// # // Prevent leaks for Miri.
1564    /// # drop(unsafe { Arc::from_raw(x_ptr) });
1565    /// ```
1566    #[must_use = "losing the pointer will leak memory"]
1567    #[stable(feature = "rc_raw", since = "1.17.0")]
1568    #[rustc_never_returns_null_ptr]
1569    pub fn into_raw(this: Self) -> *const T {
1570        let this = ManuallyDrop::new(this);
1571        Self::as_ptr(&*this)
1572    }
1573
1574    /// Increments the strong reference count on the `Arc<T>` associated with the
1575    /// provided pointer by one.
1576    ///
1577    /// # Safety
1578    ///
1579    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1580    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1581    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1582    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1583    /// allocated by the global allocator.
1584    ///
1585    /// [from_raw_in]: Arc::from_raw_in
1586    ///
1587    /// # Examples
1588    ///
1589    /// ```
1590    /// use std::sync::Arc;
1591    ///
1592    /// let five = Arc::new(5);
1593    ///
1594    /// unsafe {
1595    ///     let ptr = Arc::into_raw(five);
1596    ///     Arc::increment_strong_count(ptr);
1597    ///
1598    ///     // This assertion is deterministic because we haven't shared
1599    ///     // the `Arc` between threads.
1600    ///     let five = Arc::from_raw(ptr);
1601    ///     assert_eq!(2, Arc::strong_count(&five));
1602    /// #   // Prevent leaks for Miri.
1603    /// #   Arc::decrement_strong_count(ptr);
1604    /// }
1605    /// ```
1606    #[inline]
1607    #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1608    pub unsafe fn increment_strong_count(ptr: *const T) {
1609        unsafe { Arc::increment_strong_count_in(ptr, Global) }
1610    }
1611
1612    /// Decrements the strong reference count on the `Arc<T>` associated with the
1613    /// provided pointer by one.
1614    ///
1615    /// # Safety
1616    ///
1617    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1618    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1619    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1620    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1621    /// allocated by the global allocator. This method can be used to release the final
1622    /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1623    /// released.
1624    ///
1625    /// [from_raw_in]: Arc::from_raw_in
1626    ///
1627    /// # Examples
1628    ///
1629    /// ```
1630    /// use std::sync::Arc;
1631    ///
1632    /// let five = Arc::new(5);
1633    ///
1634    /// unsafe {
1635    ///     let ptr = Arc::into_raw(five);
1636    ///     Arc::increment_strong_count(ptr);
1637    ///
1638    ///     // Those assertions are deterministic because we haven't shared
1639    ///     // the `Arc` between threads.
1640    ///     let five = Arc::from_raw(ptr);
1641    ///     assert_eq!(2, Arc::strong_count(&five));
1642    ///     Arc::decrement_strong_count(ptr);
1643    ///     assert_eq!(1, Arc::strong_count(&five));
1644    /// }
1645    /// ```
1646    #[inline]
1647    #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1648    pub unsafe fn decrement_strong_count(ptr: *const T) {
1649        unsafe { Arc::decrement_strong_count_in(ptr, Global) }
1650    }
1651}
1652
1653impl<T: ?Sized, A: Allocator> Arc<T, A> {
1654    /// Returns a reference to the underlying allocator.
1655    ///
1656    /// Note: this is an associated function, which means that you have
1657    /// to call it as `Arc::allocator(&a)` instead of `a.allocator()`. This
1658    /// is so that there is no conflict with a method on the inner type.
1659    #[inline]
1660    #[unstable(feature = "allocator_api", issue = "32838")]
1661    pub fn allocator(this: &Self) -> &A {
1662        &this.alloc
1663    }
1664
1665    /// Consumes the `Arc`, returning the wrapped pointer and allocator.
1666    ///
1667    /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1668    /// [`Arc::from_raw_in`].
1669    ///
1670    /// # Examples
1671    ///
1672    /// ```
1673    /// #![feature(allocator_api)]
1674    /// use std::sync::Arc;
1675    /// use std::alloc::System;
1676    ///
1677    /// let x = Arc::new_in("hello".to_owned(), System);
1678    /// let (ptr, alloc) = Arc::into_raw_with_allocator(x);
1679    /// assert_eq!(unsafe { &*ptr }, "hello");
1680    /// let x = unsafe { Arc::from_raw_in(ptr, alloc) };
1681    /// assert_eq!(&*x, "hello");
1682    /// ```
1683    #[must_use = "losing the pointer will leak memory"]
1684    #[unstable(feature = "allocator_api", issue = "32838")]
1685    pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1686        let this = mem::ManuallyDrop::new(this);
1687        let ptr = Self::as_ptr(&this);
1688        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1689        let alloc = unsafe { ptr::read(&this.alloc) };
1690        (ptr, alloc)
1691    }
1692
1693    /// Provides a raw pointer to the data.
1694    ///
1695    /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
1696    /// as long as there are strong counts in the `Arc`.
1697    ///
1698    /// # Examples
1699    ///
1700    /// ```
1701    /// use std::sync::Arc;
1702    ///
1703    /// let x = Arc::new("hello".to_owned());
1704    /// let y = Arc::clone(&x);
1705    /// let x_ptr = Arc::as_ptr(&x);
1706    /// assert_eq!(x_ptr, Arc::as_ptr(&y));
1707    /// assert_eq!(unsafe { &*x_ptr }, "hello");
1708    /// ```
1709    #[must_use]
1710    #[stable(feature = "rc_as_ptr", since = "1.45.0")]
1711    #[rustc_never_returns_null_ptr]
1712    pub fn as_ptr(this: &Self) -> *const T {
1713        let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
1714
1715        // SAFETY: This cannot go through Deref::deref or ArcInnerPtr::inner because
1716        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1717        // write through the pointer after the Arc is recovered through `from_raw`.
1718        unsafe { &raw mut (*ptr).data }
1719    }
1720
1721    /// Constructs an `Arc<T, A>` from a raw pointer.
1722    ///
1723    /// The raw pointer must have been previously returned by a call to [`Arc<U,
1724    /// A>::into_raw`][into_raw] with the following requirements:
1725    ///
1726    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1727    ///   is trivially true if `U` is `T`.
1728    /// * If `U` is unsized, its data pointer must have the same size and
1729    ///   alignment as `T`. This is trivially true if `Arc<U>` was constructed
1730    ///   through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1731    ///   coercion].
1732    ///
1733    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1734    /// and alignment, this is basically like transmuting references of
1735    /// different types. See [`mem::transmute`][transmute] for more information
1736    /// on what restrictions apply in this case.
1737    ///
1738    /// The raw pointer must point to a block of memory allocated by `alloc`
1739    ///
1740    /// The user of `from_raw` has to make sure a specific value of `T` is only
1741    /// dropped once.
1742    ///
1743    /// This function is unsafe because improper use may lead to memory unsafety,
1744    /// even if the returned `Arc<T>` is never accessed.
1745    ///
1746    /// [into_raw]: Arc::into_raw
1747    /// [transmute]: core::mem::transmute
1748    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1749    ///
1750    /// # Examples
1751    ///
1752    /// ```
1753    /// #![feature(allocator_api)]
1754    ///
1755    /// use std::sync::Arc;
1756    /// use std::alloc::System;
1757    ///
1758    /// let x = Arc::new_in("hello".to_owned(), System);
1759    /// let (x_ptr, alloc) = Arc::into_raw_with_allocator(x);
1760    ///
1761    /// unsafe {
1762    ///     // Convert back to an `Arc` to prevent leak.
1763    ///     let x = Arc::from_raw_in(x_ptr, System);
1764    ///     assert_eq!(&*x, "hello");
1765    ///
1766    ///     // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1767    /// }
1768    ///
1769    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1770    /// ```
1771    ///
1772    /// Convert a slice back into its original array:
1773    ///
1774    /// ```
1775    /// #![feature(allocator_api)]
1776    ///
1777    /// use std::sync::Arc;
1778    /// use std::alloc::System;
1779    ///
1780    /// let x: Arc<[u32], _> = Arc::new_in([1, 2, 3], System);
1781    /// let x_ptr: *const [u32] = Arc::into_raw_with_allocator(x).0;
1782    ///
1783    /// unsafe {
1784    ///     let x: Arc<[u32; 3], _> = Arc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1785    ///     assert_eq!(&*x, &[1, 2, 3]);
1786    /// }
1787    /// ```
1788    #[inline]
1789    #[unstable(feature = "allocator_api", issue = "32838")]
1790    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1791        unsafe {
1792            let offset = data_offset(ptr);
1793
1794            // Reverse the offset to find the original ArcInner.
1795            let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>;
1796
1797            Self::from_ptr_in(arc_ptr, alloc)
1798        }
1799    }
1800
1801    /// Creates a new [`Weak`] pointer to this allocation.
1802    ///
1803    /// # Examples
1804    ///
1805    /// ```
1806    /// use std::sync::Arc;
1807    ///
1808    /// let five = Arc::new(5);
1809    ///
1810    /// let weak_five = Arc::downgrade(&five);
1811    /// ```
1812    #[must_use = "this returns a new `Weak` pointer, \
1813                  without modifying the original `Arc`"]
1814    #[stable(feature = "arc_weak", since = "1.4.0")]
1815    pub fn downgrade(this: &Self) -> Weak<T, A>
1816    where
1817        A: Clone,
1818    {
1819        // This Relaxed is OK because we're checking the value in the CAS
1820        // below.
1821        let mut cur = this.inner().weak.load(Relaxed);
1822
1823        loop {
1824            // check if the weak counter is currently "locked"; if so, spin.
1825            if cur == usize::MAX {
1826                hint::spin_loop();
1827                cur = this.inner().weak.load(Relaxed);
1828                continue;
1829            }
1830
1831            // We can't allow the refcount to increase much past `MAX_REFCOUNT`.
1832            assert!(cur <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
1833
1834            // NOTE: this code currently ignores the possibility of overflow
1835            // into usize::MAX; in general both Rc and Arc need to be adjusted
1836            // to deal with overflow.
1837
1838            // Unlike with Clone(), we need this to be an Acquire read to
1839            // synchronize with the write coming from `is_unique`, so that the
1840            // events prior to that write happen before this read.
1841            match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
1842                Ok(_) => {
1843                    // Make sure we do not create a dangling Weak
1844                    debug_assert!(!is_dangling(this.ptr.as_ptr()));
1845                    return Weak { ptr: this.ptr, alloc: this.alloc.clone() };
1846                }
1847                Err(old) => cur = old,
1848            }
1849        }
1850    }
1851
1852    /// Gets the number of [`Weak`] pointers to this allocation.
1853    ///
1854    /// # Safety
1855    ///
1856    /// This method by itself is safe, but using it correctly requires extra care.
1857    /// Another thread can change the weak count at any time,
1858    /// including potentially between calling this method and acting on the result.
1859    ///
1860    /// # Examples
1861    ///
1862    /// ```
1863    /// use std::sync::Arc;
1864    ///
1865    /// let five = Arc::new(5);
1866    /// let _weak_five = Arc::downgrade(&five);
1867    ///
1868    /// // This assertion is deterministic because we haven't shared
1869    /// // the `Arc` or `Weak` between threads.
1870    /// assert_eq!(1, Arc::weak_count(&five));
1871    /// ```
1872    #[inline]
1873    #[must_use]
1874    #[stable(feature = "arc_counts", since = "1.15.0")]
1875    pub fn weak_count(this: &Self) -> usize {
1876        let cnt = this.inner().weak.load(Relaxed);
1877        // If the weak count is currently locked, the value of the
1878        // count was 0 just before taking the lock.
1879        if cnt == usize::MAX { 0 } else { cnt - 1 }
1880    }
1881
1882    /// Gets the number of strong (`Arc`) pointers to this allocation.
1883    ///
1884    /// # Safety
1885    ///
1886    /// This method by itself is safe, but using it correctly requires extra care.
1887    /// Another thread can change the strong count at any time,
1888    /// including potentially between calling this method and acting on the result.
1889    ///
1890    /// # Examples
1891    ///
1892    /// ```
1893    /// use std::sync::Arc;
1894    ///
1895    /// let five = Arc::new(5);
1896    /// let _also_five = Arc::clone(&five);
1897    ///
1898    /// // This assertion is deterministic because we haven't shared
1899    /// // the `Arc` between threads.
1900    /// assert_eq!(2, Arc::strong_count(&five));
1901    /// ```
1902    #[inline]
1903    #[must_use]
1904    #[stable(feature = "arc_counts", since = "1.15.0")]
1905    pub fn strong_count(this: &Self) -> usize {
1906        this.inner().strong.load(Relaxed)
1907    }
1908
1909    /// Increments the strong reference count on the `Arc<T>` associated with the
1910    /// provided pointer by one.
1911    ///
1912    /// # Safety
1913    ///
1914    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1915    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1916    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1917    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1918    /// allocated by `alloc`.
1919    ///
1920    /// [from_raw_in]: Arc::from_raw_in
1921    ///
1922    /// # Examples
1923    ///
1924    /// ```
1925    /// #![feature(allocator_api)]
1926    ///
1927    /// use std::sync::Arc;
1928    /// use std::alloc::System;
1929    ///
1930    /// let five = Arc::new_in(5, System);
1931    ///
1932    /// unsafe {
1933    ///     let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1934    ///     Arc::increment_strong_count_in(ptr, System);
1935    ///
1936    ///     // This assertion is deterministic because we haven't shared
1937    ///     // the `Arc` between threads.
1938    ///     let five = Arc::from_raw_in(ptr, System);
1939    ///     assert_eq!(2, Arc::strong_count(&five));
1940    /// #   // Prevent leaks for Miri.
1941    /// #   Arc::decrement_strong_count_in(ptr, System);
1942    /// }
1943    /// ```
1944    #[inline]
1945    #[unstable(feature = "allocator_api", issue = "32838")]
1946    pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1947    where
1948        A: Clone,
1949    {
1950        // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
1951        let arc = unsafe { mem::ManuallyDrop::new(Arc::from_raw_in(ptr, alloc)) };
1952        // Now increase refcount, but don't drop new refcount either
1953        let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
1954    }
1955
1956    /// Decrements the strong reference count on the `Arc<T>` associated with the
1957    /// provided pointer by one.
1958    ///
1959    /// # Safety
1960    ///
1961    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1962    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1963    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1964    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1965    /// allocated by `alloc`. This method can be used to release the final
1966    /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1967    /// released.
1968    ///
1969    /// [from_raw_in]: Arc::from_raw_in
1970    ///
1971    /// # Examples
1972    ///
1973    /// ```
1974    /// #![feature(allocator_api)]
1975    ///
1976    /// use std::sync::Arc;
1977    /// use std::alloc::System;
1978    ///
1979    /// let five = Arc::new_in(5, System);
1980    ///
1981    /// unsafe {
1982    ///     let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1983    ///     Arc::increment_strong_count_in(ptr, System);
1984    ///
1985    ///     // Those assertions are deterministic because we haven't shared
1986    ///     // the `Arc` between threads.
1987    ///     let five = Arc::from_raw_in(ptr, System);
1988    ///     assert_eq!(2, Arc::strong_count(&five));
1989    ///     Arc::decrement_strong_count_in(ptr, System);
1990    ///     assert_eq!(1, Arc::strong_count(&five));
1991    /// }
1992    /// ```
1993    #[inline]
1994    #[unstable(feature = "allocator_api", issue = "32838")]
1995    pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1996        unsafe { drop(Arc::from_raw_in(ptr, alloc)) };
1997    }
1998
1999    #[inline]
2000    fn inner(&self) -> &ArcInner<T> {
2001        // This unsafety is ok because while this arc is alive we're guaranteed
2002        // that the inner pointer is valid. Furthermore, we know that the
2003        // `ArcInner` structure itself is `Sync` because the inner data is
2004        // `Sync` as well, so we're ok loaning out an immutable pointer to these
2005        // contents.
2006        unsafe { self.ptr.as_ref() }
2007    }
2008
2009    // Non-inlined part of `drop`.
2010    #[inline(never)]
2011    unsafe fn drop_slow(&mut self) {
2012        // Drop the weak ref collectively held by all strong references when this
2013        // variable goes out of scope. This ensures that the memory is deallocated
2014        // even if the destructor of `T` panics.
2015        // Take a reference to `self.alloc` instead of cloning because 1. it'll last long
2016        // enough, and 2. you should be able to drop `Arc`s with unclonable allocators
2017        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
2018
2019        // Destroy the data at this time, even though we must not free the box
2020        // allocation itself (there might still be weak pointers lying around).
2021        // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
2022        unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
2023    }
2024
2025    /// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to
2026    /// [`ptr::eq`]. This function ignores the metadata of  `dyn Trait` pointers.
2027    ///
2028    /// # Examples
2029    ///
2030    /// ```
2031    /// use std::sync::Arc;
2032    ///
2033    /// let five = Arc::new(5);
2034    /// let same_five = Arc::clone(&five);
2035    /// let other_five = Arc::new(5);
2036    ///
2037    /// assert!(Arc::ptr_eq(&five, &same_five));
2038    /// assert!(!Arc::ptr_eq(&five, &other_five));
2039    /// ```
2040    ///
2041    /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
2042    #[inline]
2043    #[must_use]
2044    #[stable(feature = "ptr_eq", since = "1.17.0")]
2045    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
2046        ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
2047    }
2048}
2049
2050impl<T: ?Sized> Arc<T> {
2051    /// Allocates an `ArcInner<T>` with sufficient space for
2052    /// a possibly-unsized inner value where the value has the layout provided.
2053    ///
2054    /// The function `mem_to_arcinner` is called with the data pointer
2055    /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
2056    #[cfg(not(no_global_oom_handling))]
2057    unsafe fn allocate_for_layout(
2058        value_layout: Layout,
2059        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2060        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
2061    ) -> *mut ArcInner<T> {
2062        let layout = arcinner_layout_for_value_layout(value_layout);
2063
2064        let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout));
2065
2066        unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) }
2067    }
2068
2069    /// Allocates an `ArcInner<T>` with sufficient space for
2070    /// a possibly-unsized inner value where the value has the layout provided,
2071    /// returning an error if allocation fails.
2072    ///
2073    /// The function `mem_to_arcinner` is called with the data pointer
2074    /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
2075    unsafe fn try_allocate_for_layout(
2076        value_layout: Layout,
2077        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2078        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
2079    ) -> Result<*mut ArcInner<T>, AllocError> {
2080        let layout = arcinner_layout_for_value_layout(value_layout);
2081
2082        let ptr = allocate(layout)?;
2083
2084        let inner = unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) };
2085
2086        Ok(inner)
2087    }
2088
2089    unsafe fn initialize_arcinner(
2090        ptr: NonNull<[u8]>,
2091        layout: Layout,
2092        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
2093    ) -> *mut ArcInner<T> {
2094        let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
2095        debug_assert_eq!(unsafe { Layout::for_value_raw(inner) }, layout);
2096
2097        unsafe {
2098            (&raw mut (*inner).strong).write(atomic::AtomicUsize::new(1));
2099            (&raw mut (*inner).weak).write(atomic::AtomicUsize::new(1));
2100        }
2101
2102        inner
2103    }
2104}
2105
2106impl<T: ?Sized, A: Allocator> Arc<T, A> {
2107    /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
2108    #[inline]
2109    #[cfg(not(no_global_oom_handling))]
2110    unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut ArcInner<T> {
2111        // Allocate for the `ArcInner<T>` using the given value.
2112        unsafe {
2113            Arc::allocate_for_layout(
2114                Layout::for_value_raw(ptr),
2115                |layout| alloc.allocate(layout),
2116                |mem| mem.with_metadata_of(ptr as *const ArcInner<T>),
2117            )
2118        }
2119    }
2120
2121    #[cfg(not(no_global_oom_handling))]
2122    fn from_box_in(src: Box<T, A>) -> Arc<T, A> {
2123        unsafe {
2124            let value_size = size_of_val(&*src);
2125            let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2126
2127            // Copy value as bytes
2128            ptr::copy_nonoverlapping(
2129                (&raw const *src) as *const u8,
2130                (&raw mut (*ptr).data) as *mut u8,
2131                value_size,
2132            );
2133
2134            // Free the allocation without dropping its contents
2135            let (bptr, alloc) = Box::into_raw_with_allocator(src);
2136            let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2137            drop(src);
2138
2139            Self::from_ptr_in(ptr, alloc)
2140        }
2141    }
2142}
2143
2144impl<T> Arc<[T]> {
2145    /// Allocates an `ArcInner<[T]>` with the given length.
2146    #[cfg(not(no_global_oom_handling))]
2147    unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
2148        unsafe {
2149            Self::allocate_for_layout(
2150                Layout::array::<T>(len).unwrap(),
2151                |layout| Global.allocate(layout),
2152                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2153            )
2154        }
2155    }
2156
2157    /// Copy elements from slice into newly allocated `Arc<[T]>`
2158    ///
2159    /// Unsafe because the caller must either take ownership or bind `T: Copy`.
2160    #[cfg(not(no_global_oom_handling))]
2161    unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
2162        unsafe {
2163            let ptr = Self::allocate_for_slice(v.len());
2164
2165            ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).data) as *mut T, v.len());
2166
2167            Self::from_ptr(ptr)
2168        }
2169    }
2170
2171    /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
2172    ///
2173    /// Behavior is undefined should the size be wrong.
2174    #[cfg(not(no_global_oom_handling))]
2175    unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> {
2176        // Panic guard while cloning T elements.
2177        // In the event of a panic, elements that have been written
2178        // into the new ArcInner will be dropped, then the memory freed.
2179        struct Guard<T> {
2180            mem: NonNull<u8>,
2181            elems: *mut T,
2182            layout: Layout,
2183            n_elems: usize,
2184        }
2185
2186        impl<T> Drop for Guard<T> {
2187            fn drop(&mut self) {
2188                unsafe {
2189                    let slice = from_raw_parts_mut(self.elems, self.n_elems);
2190                    ptr::drop_in_place(slice);
2191
2192                    Global.deallocate(self.mem, self.layout);
2193                }
2194            }
2195        }
2196
2197        unsafe {
2198            let ptr = Self::allocate_for_slice(len);
2199
2200            let mem = ptr as *mut _ as *mut u8;
2201            let layout = Layout::for_value_raw(ptr);
2202
2203            // Pointer to first element
2204            let elems = (&raw mut (*ptr).data) as *mut T;
2205
2206            let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2207
2208            for (i, item) in iter.enumerate() {
2209                ptr::write(elems.add(i), item);
2210                guard.n_elems += 1;
2211            }
2212
2213            // All clear. Forget the guard so it doesn't free the new ArcInner.
2214            mem::forget(guard);
2215
2216            Self::from_ptr(ptr)
2217        }
2218    }
2219}
2220
2221impl<T, A: Allocator> Arc<[T], A> {
2222    /// Allocates an `ArcInner<[T]>` with the given length.
2223    #[inline]
2224    #[cfg(not(no_global_oom_handling))]
2225    unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut ArcInner<[T]> {
2226        unsafe {
2227            Arc::allocate_for_layout(
2228                Layout::array::<T>(len).unwrap(),
2229                |layout| alloc.allocate(layout),
2230                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2231            )
2232        }
2233    }
2234}
2235
2236/// Specialization trait used for `From<&[T]>`.
2237#[cfg(not(no_global_oom_handling))]
2238trait ArcFromSlice<T> {
2239    fn from_slice(slice: &[T]) -> Self;
2240}
2241
2242#[cfg(not(no_global_oom_handling))]
2243impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
2244    #[inline]
2245    default fn from_slice(v: &[T]) -> Self {
2246        unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2247    }
2248}
2249
2250#[cfg(not(no_global_oom_handling))]
2251impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
2252    #[inline]
2253    fn from_slice(v: &[T]) -> Self {
2254        unsafe { Arc::copy_from_slice(v) }
2255    }
2256}
2257
2258#[stable(feature = "rust1", since = "1.0.0")]
2259impl<T: ?Sized, A: Allocator + Clone> Clone for Arc<T, A> {
2260    /// Makes a clone of the `Arc` pointer.
2261    ///
2262    /// This creates another pointer to the same allocation, increasing the
2263    /// strong reference count.
2264    ///
2265    /// # Examples
2266    ///
2267    /// ```
2268    /// use std::sync::Arc;
2269    ///
2270    /// let five = Arc::new(5);
2271    ///
2272    /// let _ = Arc::clone(&five);
2273    /// ```
2274    #[inline]
2275    fn clone(&self) -> Arc<T, A> {
2276        // Using a relaxed ordering is alright here, as knowledge of the
2277        // original reference prevents other threads from erroneously deleting
2278        // the object.
2279        //
2280        // As explained in the [Boost documentation][1], Increasing the
2281        // reference counter can always be done with memory_order_relaxed: New
2282        // references to an object can only be formed from an existing
2283        // reference, and passing an existing reference from one thread to
2284        // another must already provide any required synchronization.
2285        //
2286        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2287        let old_size = self.inner().strong.fetch_add(1, Relaxed);
2288
2289        // However we need to guard against massive refcounts in case someone is `mem::forget`ing
2290        // Arcs. If we don't do this the count can overflow and users will use-after free. This
2291        // branch will never be taken in any realistic program. We abort because such a program is
2292        // incredibly degenerate, and we don't care to support it.
2293        //
2294        // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
2295        // But we do that check *after* having done the increment, so there is a chance here that
2296        // the worst already happened and we actually do overflow the `usize` counter. However, that
2297        // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
2298        // above and the `abort` below, which seems exceedingly unlikely.
2299        //
2300        // This is a global invariant, and also applies when using a compare-exchange loop to increment
2301        // counters in other methods.
2302        // Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop,
2303        // and then overflow using a few `fetch_add`s.
2304        if old_size > MAX_REFCOUNT {
2305            abort();
2306        }
2307
2308        unsafe { Self::from_inner_in(self.ptr, self.alloc.clone()) }
2309    }
2310}
2311
2312#[unstable(feature = "ergonomic_clones", issue = "132290")]
2313impl<T: ?Sized, A: Allocator + Clone> UseCloned for Arc<T, A> {}
2314
2315#[stable(feature = "rust1", since = "1.0.0")]
2316impl<T: ?Sized, A: Allocator> Deref for Arc<T, A> {
2317    type Target = T;
2318
2319    #[inline]
2320    fn deref(&self) -> &T {
2321        &self.inner().data
2322    }
2323}
2324
2325#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2326unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Arc<T, A> {}
2327
2328#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2329unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2330
2331#[unstable(feature = "deref_pure_trait", issue = "87121")]
2332unsafe impl<T: ?Sized, A: Allocator> DerefPure for Arc<T, A> {}
2333
2334#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2335impl<T: ?Sized> LegacyReceiver for Arc<T> {}
2336
2337#[cfg(not(no_global_oom_handling))]
2338impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Arc<T, A> {
2339    /// Makes a mutable reference into the given `Arc`.
2340    ///
2341    /// If there are other `Arc` pointers to the same allocation, then `make_mut` will
2342    /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
2343    /// referred to as clone-on-write.
2344    ///
2345    /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`]
2346    /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not
2347    /// be cloned.
2348    ///
2349    /// See also [`get_mut`], which will fail rather than cloning the inner value
2350    /// or dissociating [`Weak`] pointers.
2351    ///
2352    /// [`clone`]: Clone::clone
2353    /// [`get_mut`]: Arc::get_mut
2354    ///
2355    /// # Examples
2356    ///
2357    /// ```
2358    /// use std::sync::Arc;
2359    ///
2360    /// let mut data = Arc::new(5);
2361    ///
2362    /// *Arc::make_mut(&mut data) += 1;         // Won't clone anything
2363    /// let mut other_data = Arc::clone(&data); // Won't clone inner data
2364    /// *Arc::make_mut(&mut data) += 1;         // Clones inner data
2365    /// *Arc::make_mut(&mut data) += 1;         // Won't clone anything
2366    /// *Arc::make_mut(&mut other_data) *= 2;   // Won't clone anything
2367    ///
2368    /// // Now `data` and `other_data` point to different allocations.
2369    /// assert_eq!(*data, 8);
2370    /// assert_eq!(*other_data, 12);
2371    /// ```
2372    ///
2373    /// [`Weak`] pointers will be dissociated:
2374    ///
2375    /// ```
2376    /// use std::sync::Arc;
2377    ///
2378    /// let mut data = Arc::new(75);
2379    /// let weak = Arc::downgrade(&data);
2380    ///
2381    /// assert!(75 == *data);
2382    /// assert!(75 == *weak.upgrade().unwrap());
2383    ///
2384    /// *Arc::make_mut(&mut data) += 1;
2385    ///
2386    /// assert!(76 == *data);
2387    /// assert!(weak.upgrade().is_none());
2388    /// ```
2389    #[inline]
2390    #[stable(feature = "arc_unique", since = "1.4.0")]
2391    pub fn make_mut(this: &mut Self) -> &mut T {
2392        let size_of_val = size_of_val::<T>(&**this);
2393
2394        // Note that we hold both a strong reference and a weak reference.
2395        // Thus, releasing our strong reference only will not, by itself, cause
2396        // the memory to be deallocated.
2397        //
2398        // Use Acquire to ensure that we see any writes to `weak` that happen
2399        // before release writes (i.e., decrements) to `strong`. Since we hold a
2400        // weak count, there's no chance the ArcInner itself could be
2401        // deallocated.
2402        if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
2403            // Another strong pointer exists, so we must clone.
2404
2405            let this_data_ref: &T = &**this;
2406            // `in_progress` drops the allocation if we panic before finishing initializing it.
2407            let mut in_progress: UniqueArcUninit<T, A> =
2408                UniqueArcUninit::new(this_data_ref, this.alloc.clone());
2409
2410            let initialized_clone = unsafe {
2411                // Clone. If the clone panics, `in_progress` will be dropped and clean up.
2412                this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
2413                // Cast type of pointer, now that it is initialized.
2414                in_progress.into_arc()
2415            };
2416            *this = initialized_clone;
2417        } else if this.inner().weak.load(Relaxed) != 1 {
2418            // Relaxed suffices in the above because this is fundamentally an
2419            // optimization: we are always racing with weak pointers being
2420            // dropped. Worst case, we end up allocated a new Arc unnecessarily.
2421
2422            // We removed the last strong ref, but there are additional weak
2423            // refs remaining. We'll move the contents to a new Arc, and
2424            // invalidate the other weak refs.
2425
2426            // Note that it is not possible for the read of `weak` to yield
2427            // usize::MAX (i.e., locked), since the weak count can only be
2428            // locked by a thread with a strong reference.
2429
2430            // Materialize our own implicit weak pointer, so that it can clean
2431            // up the ArcInner as needed.
2432            let _weak = Weak { ptr: this.ptr, alloc: this.alloc.clone() };
2433
2434            // Can just steal the data, all that's left is Weaks
2435            //
2436            // We don't need panic-protection like the above branch does, but we might as well
2437            // use the same mechanism.
2438            let mut in_progress: UniqueArcUninit<T, A> =
2439                UniqueArcUninit::new(&**this, this.alloc.clone());
2440            unsafe {
2441                // Initialize `in_progress` with move of **this.
2442                // We have to express this in terms of bytes because `T: ?Sized`; there is no
2443                // operation that just copies a value based on its `size_of_val()`.
2444                ptr::copy_nonoverlapping(
2445                    ptr::from_ref(&**this).cast::<u8>(),
2446                    in_progress.data_ptr().cast::<u8>(),
2447                    size_of_val,
2448                );
2449
2450                ptr::write(this, in_progress.into_arc());
2451            }
2452        } else {
2453            // We were the sole reference of either kind; bump back up the
2454            // strong ref count.
2455            this.inner().strong.store(1, Release);
2456        }
2457
2458        // As with `get_mut()`, the unsafety is ok because our reference was
2459        // either unique to begin with, or became one upon cloning the contents.
2460        unsafe { Self::get_mut_unchecked(this) }
2461    }
2462}
2463
2464impl<T: Clone, A: Allocator> Arc<T, A> {
2465    /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
2466    /// clone.
2467    ///
2468    /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to
2469    /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
2470    ///
2471    /// # Examples
2472    ///
2473    /// ```
2474    /// # use std::{ptr, sync::Arc};
2475    /// let inner = String::from("test");
2476    /// let ptr = inner.as_ptr();
2477    ///
2478    /// let arc = Arc::new(inner);
2479    /// let inner = Arc::unwrap_or_clone(arc);
2480    /// // The inner value was not cloned
2481    /// assert!(ptr::eq(ptr, inner.as_ptr()));
2482    ///
2483    /// let arc = Arc::new(inner);
2484    /// let arc2 = arc.clone();
2485    /// let inner = Arc::unwrap_or_clone(arc);
2486    /// // Because there were 2 references, we had to clone the inner value.
2487    /// assert!(!ptr::eq(ptr, inner.as_ptr()));
2488    /// // `arc2` is the last reference, so when we unwrap it we get back
2489    /// // the original `String`.
2490    /// let inner = Arc::unwrap_or_clone(arc2);
2491    /// assert!(ptr::eq(ptr, inner.as_ptr()));
2492    /// ```
2493    #[inline]
2494    #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
2495    pub fn unwrap_or_clone(this: Self) -> T {
2496        Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone())
2497    }
2498}
2499
2500impl<T: ?Sized, A: Allocator> Arc<T, A> {
2501    /// Returns a mutable reference into the given `Arc`, if there are
2502    /// no other `Arc` or [`Weak`] pointers to the same allocation.
2503    ///
2504    /// Returns [`None`] otherwise, because it is not safe to
2505    /// mutate a shared value.
2506    ///
2507    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
2508    /// the inner value when there are other `Arc` pointers.
2509    ///
2510    /// [make_mut]: Arc::make_mut
2511    /// [clone]: Clone::clone
2512    ///
2513    /// # Examples
2514    ///
2515    /// ```
2516    /// use std::sync::Arc;
2517    ///
2518    /// let mut x = Arc::new(3);
2519    /// *Arc::get_mut(&mut x).unwrap() = 4;
2520    /// assert_eq!(*x, 4);
2521    ///
2522    /// let _y = Arc::clone(&x);
2523    /// assert!(Arc::get_mut(&mut x).is_none());
2524    /// ```
2525    #[inline]
2526    #[stable(feature = "arc_unique", since = "1.4.0")]
2527    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
2528        if Self::is_unique(this) {
2529            // This unsafety is ok because we're guaranteed that the pointer
2530            // returned is the *only* pointer that will ever be returned to T. Our
2531            // reference count is guaranteed to be 1 at this point, and we required
2532            // the Arc itself to be `mut`, so we're returning the only possible
2533            // reference to the inner data.
2534            unsafe { Some(Arc::get_mut_unchecked(this)) }
2535        } else {
2536            None
2537        }
2538    }
2539
2540    /// Returns a mutable reference into the given `Arc`,
2541    /// without any check.
2542    ///
2543    /// See also [`get_mut`], which is safe and does appropriate checks.
2544    ///
2545    /// [`get_mut`]: Arc::get_mut
2546    ///
2547    /// # Safety
2548    ///
2549    /// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then
2550    /// they must not be dereferenced or have active borrows for the duration
2551    /// of the returned borrow, and their inner type must be exactly the same as the
2552    /// inner type of this Arc (including lifetimes). This is trivially the case if no
2553    /// such pointers exist, for example immediately after `Arc::new`.
2554    ///
2555    /// # Examples
2556    ///
2557    /// ```
2558    /// #![feature(get_mut_unchecked)]
2559    ///
2560    /// use std::sync::Arc;
2561    ///
2562    /// let mut x = Arc::new(String::new());
2563    /// unsafe {
2564    ///     Arc::get_mut_unchecked(&mut x).push_str("foo")
2565    /// }
2566    /// assert_eq!(*x, "foo");
2567    /// ```
2568    /// Other `Arc` pointers to the same allocation must be to the same type.
2569    /// ```no_run
2570    /// #![feature(get_mut_unchecked)]
2571    ///
2572    /// use std::sync::Arc;
2573    ///
2574    /// let x: Arc<str> = Arc::from("Hello, world!");
2575    /// let mut y: Arc<[u8]> = x.clone().into();
2576    /// unsafe {
2577    ///     // this is Undefined Behavior, because x's inner type is str, not [u8]
2578    ///     Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
2579    /// }
2580    /// println!("{}", &*x); // Invalid UTF-8 in a str
2581    /// ```
2582    /// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes.
2583    /// ```no_run
2584    /// #![feature(get_mut_unchecked)]
2585    ///
2586    /// use std::sync::Arc;
2587    ///
2588    /// let x: Arc<&str> = Arc::new("Hello, world!");
2589    /// {
2590    ///     let s = String::from("Oh, no!");
2591    ///     let mut y: Arc<&str> = x.clone();
2592    ///     unsafe {
2593    ///         // this is Undefined Behavior, because x's inner type
2594    ///         // is &'long str, not &'short str
2595    ///         *Arc::get_mut_unchecked(&mut y) = &s;
2596    ///     }
2597    /// }
2598    /// println!("{}", &*x); // Use-after-free
2599    /// ```
2600    #[inline]
2601    #[unstable(feature = "get_mut_unchecked", issue = "63292")]
2602    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
2603        // We are careful to *not* create a reference covering the "count" fields, as
2604        // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
2605        unsafe { &mut (*this.ptr.as_ptr()).data }
2606    }
2607
2608    /// Determine whether this is the unique reference to the underlying data.
2609    ///
2610    /// Returns `true` if there are no other `Arc` or [`Weak`] pointers to the same allocation;
2611    /// returns `false` otherwise.
2612    ///
2613    /// If this function returns `true`, then is guaranteed to be safe to call [`get_mut_unchecked`]
2614    /// on this `Arc`, so long as no clones occur in between.
2615    ///
2616    /// # Examples
2617    ///
2618    /// ```
2619    /// #![feature(arc_is_unique)]
2620    ///
2621    /// use std::sync::Arc;
2622    ///
2623    /// let x = Arc::new(3);
2624    /// assert!(Arc::is_unique(&x));
2625    ///
2626    /// let y = Arc::clone(&x);
2627    /// assert!(!Arc::is_unique(&x));
2628    /// drop(y);
2629    ///
2630    /// // Weak references also count, because they could be upgraded at any time.
2631    /// let z = Arc::downgrade(&x);
2632    /// assert!(!Arc::is_unique(&x));
2633    /// ```
2634    ///
2635    /// # Pointer invalidation
2636    ///
2637    /// This function will always return the same value as `Arc::get_mut(arc).is_some()`. However,
2638    /// unlike that operation it does not produce any mutable references to the underlying data,
2639    /// meaning no pointers to the data inside the `Arc` are invalidated by the call. Thus, the
2640    /// following code is valid, even though it would be UB if it used `Arc::get_mut`:
2641    ///
2642    /// ```
2643    /// #![feature(arc_is_unique)]
2644    ///
2645    /// use std::sync::Arc;
2646    ///
2647    /// let arc = Arc::new(5);
2648    /// let pointer: *const i32 = &*arc;
2649    /// assert!(Arc::is_unique(&arc));
2650    /// assert_eq!(unsafe { *pointer }, 5);
2651    /// ```
2652    ///
2653    /// # Atomic orderings
2654    ///
2655    /// Concurrent drops to other `Arc` pointers to the same allocation will synchronize with this
2656    /// call - that is, this call performs an `Acquire` operation on the underlying strong and weak
2657    /// ref counts. This ensures that calling `get_mut_unchecked` is safe.
2658    ///
2659    /// Note that this operation requires locking the weak ref count, so concurrent calls to
2660    /// `downgrade` may spin-loop for a short period of time.
2661    ///
2662    /// [`get_mut_unchecked`]: Self::get_mut_unchecked
2663    #[inline]
2664    #[unstable(feature = "arc_is_unique", issue = "138938")]
2665    pub fn is_unique(this: &Self) -> bool {
2666        // lock the weak pointer count if we appear to be the sole weak pointer
2667        // holder.
2668        //
2669        // The acquire label here ensures a happens-before relationship with any
2670        // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
2671        // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
2672        // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
2673        if this.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
2674            // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
2675            // counter in `drop` -- the only access that happens when any but the last reference
2676            // is being dropped.
2677            let unique = this.inner().strong.load(Acquire) == 1;
2678
2679            // The release write here synchronizes with a read in `downgrade`,
2680            // effectively preventing the above read of `strong` from happening
2681            // after the write.
2682            this.inner().weak.store(1, Release); // release the lock
2683            unique
2684        } else {
2685            false
2686        }
2687    }
2688}
2689
2690#[stable(feature = "rust1", since = "1.0.0")]
2691unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Arc<T, A> {
2692    /// Drops the `Arc`.
2693    ///
2694    /// This will decrement the strong reference count. If the strong reference
2695    /// count reaches zero then the only other references (if any) are
2696    /// [`Weak`], so we `drop` the inner value.
2697    ///
2698    /// # Examples
2699    ///
2700    /// ```
2701    /// use std::sync::Arc;
2702    ///
2703    /// struct Foo;
2704    ///
2705    /// impl Drop for Foo {
2706    ///     fn drop(&mut self) {
2707    ///         println!("dropped!");
2708    ///     }
2709    /// }
2710    ///
2711    /// let foo  = Arc::new(Foo);
2712    /// let foo2 = Arc::clone(&foo);
2713    ///
2714    /// drop(foo);    // Doesn't print anything
2715    /// drop(foo2);   // Prints "dropped!"
2716    /// ```
2717    #[inline]
2718    fn drop(&mut self) {
2719        // Because `fetch_sub` is already atomic, we do not need to synchronize
2720        // with other threads unless we are going to delete the object. This
2721        // same logic applies to the below `fetch_sub` to the `weak` count.
2722        if self.inner().strong.fetch_sub(1, Release) != 1 {
2723            return;
2724        }
2725
2726        // This fence is needed to prevent reordering of use of the data and
2727        // deletion of the data. Because it is marked `Release`, the decreasing
2728        // of the reference count synchronizes with this `Acquire` fence. This
2729        // means that use of the data happens before decreasing the reference
2730        // count, which happens before this fence, which happens before the
2731        // deletion of the data.
2732        //
2733        // As explained in the [Boost documentation][1],
2734        //
2735        // > It is important to enforce any possible access to the object in one
2736        // > thread (through an existing reference) to *happen before* deleting
2737        // > the object in a different thread. This is achieved by a "release"
2738        // > operation after dropping a reference (any access to the object
2739        // > through this reference must obviously happened before), and an
2740        // > "acquire" operation before deleting the object.
2741        //
2742        // In particular, while the contents of an Arc are usually immutable, it's
2743        // possible to have interior writes to something like a Mutex<T>. Since a
2744        // Mutex is not acquired when it is deleted, we can't rely on its
2745        // synchronization logic to make writes in thread A visible to a destructor
2746        // running in thread B.
2747        //
2748        // Also note that the Acquire fence here could probably be replaced with an
2749        // Acquire load, which could improve performance in highly-contended
2750        // situations. See [2].
2751        //
2752        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2753        // [2]: (https://github.com/rust-lang/rust/pull/41714)
2754        acquire!(self.inner().strong);
2755
2756        // Make sure we aren't trying to "drop" the shared static for empty slices
2757        // used by Default::default.
2758        debug_assert!(
2759            !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
2760            "Arcs backed by a static should never reach a strong count of 0. \
2761            Likely decrement_strong_count or from_raw were called too many times.",
2762        );
2763
2764        unsafe {
2765            self.drop_slow();
2766        }
2767    }
2768}
2769
2770impl<A: Allocator> Arc<dyn Any + Send + Sync, A> {
2771    /// Attempts to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
2772    ///
2773    /// # Examples
2774    ///
2775    /// ```
2776    /// use std::any::Any;
2777    /// use std::sync::Arc;
2778    ///
2779    /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
2780    ///     if let Ok(string) = value.downcast::<String>() {
2781    ///         println!("String ({}): {}", string.len(), string);
2782    ///     }
2783    /// }
2784    ///
2785    /// let my_string = "Hello World".to_string();
2786    /// print_if_string(Arc::new(my_string));
2787    /// print_if_string(Arc::new(0i8));
2788    /// ```
2789    #[inline]
2790    #[stable(feature = "rc_downcast", since = "1.29.0")]
2791    pub fn downcast<T>(self) -> Result<Arc<T, A>, Self>
2792    where
2793        T: Any + Send + Sync,
2794    {
2795        if (*self).is::<T>() {
2796            unsafe {
2797                let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2798                Ok(Arc::from_inner_in(ptr.cast(), alloc))
2799            }
2800        } else {
2801            Err(self)
2802        }
2803    }
2804
2805    /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type.
2806    ///
2807    /// For a safe alternative see [`downcast`].
2808    ///
2809    /// # Examples
2810    ///
2811    /// ```
2812    /// #![feature(downcast_unchecked)]
2813    ///
2814    /// use std::any::Any;
2815    /// use std::sync::Arc;
2816    ///
2817    /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);
2818    ///
2819    /// unsafe {
2820    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2821    /// }
2822    /// ```
2823    ///
2824    /// # Safety
2825    ///
2826    /// The contained value must be of type `T`. Calling this method
2827    /// with the incorrect type is *undefined behavior*.
2828    ///
2829    ///
2830    /// [`downcast`]: Self::downcast
2831    #[inline]
2832    #[unstable(feature = "downcast_unchecked", issue = "90850")]
2833    pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A>
2834    where
2835        T: Any + Send + Sync,
2836    {
2837        unsafe {
2838            let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2839            Arc::from_inner_in(ptr.cast(), alloc)
2840        }
2841    }
2842}
2843
2844impl<T> Weak<T> {
2845    /// Constructs a new `Weak<T>`, without allocating any memory.
2846    /// Calling [`upgrade`] on the return value always gives [`None`].
2847    ///
2848    /// [`upgrade`]: Weak::upgrade
2849    ///
2850    /// # Examples
2851    ///
2852    /// ```
2853    /// use std::sync::Weak;
2854    ///
2855    /// let empty: Weak<i64> = Weak::new();
2856    /// assert!(empty.upgrade().is_none());
2857    /// ```
2858    #[inline]
2859    #[stable(feature = "downgraded_weak", since = "1.10.0")]
2860    #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
2861    #[must_use]
2862    pub const fn new() -> Weak<T> {
2863        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
2864    }
2865}
2866
2867impl<T, A: Allocator> Weak<T, A> {
2868    /// Constructs a new `Weak<T, A>`, without allocating any memory, technically in the provided
2869    /// allocator.
2870    /// Calling [`upgrade`] on the return value always gives [`None`].
2871    ///
2872    /// [`upgrade`]: Weak::upgrade
2873    ///
2874    /// # Examples
2875    ///
2876    /// ```
2877    /// #![feature(allocator_api)]
2878    ///
2879    /// use std::sync::Weak;
2880    /// use std::alloc::System;
2881    ///
2882    /// let empty: Weak<i64, _> = Weak::new_in(System);
2883    /// assert!(empty.upgrade().is_none());
2884    /// ```
2885    #[inline]
2886    #[unstable(feature = "allocator_api", issue = "32838")]
2887    pub fn new_in(alloc: A) -> Weak<T, A> {
2888        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
2889    }
2890}
2891
2892/// Helper type to allow accessing the reference counts without
2893/// making any assertions about the data field.
2894struct WeakInner<'a> {
2895    weak: &'a Atomic<usize>,
2896    strong: &'a Atomic<usize>,
2897}
2898
2899impl<T: ?Sized> Weak<T> {
2900    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
2901    ///
2902    /// This can be used to safely get a strong reference (by calling [`upgrade`]
2903    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2904    ///
2905    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2906    /// as these don't own anything; the method still works on them).
2907    ///
2908    /// # Safety
2909    ///
2910    /// The pointer must have originated from the [`into_raw`] and must still own its potential
2911    /// weak reference, and must point to a block of memory allocated by global allocator.
2912    ///
2913    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2914    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2915    /// count is not modified by this operation) and therefore it must be paired with a previous
2916    /// call to [`into_raw`].
2917    /// # Examples
2918    ///
2919    /// ```
2920    /// use std::sync::{Arc, Weak};
2921    ///
2922    /// let strong = Arc::new("hello".to_owned());
2923    ///
2924    /// let raw_1 = Arc::downgrade(&strong).into_raw();
2925    /// let raw_2 = Arc::downgrade(&strong).into_raw();
2926    ///
2927    /// assert_eq!(2, Arc::weak_count(&strong));
2928    ///
2929    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
2930    /// assert_eq!(1, Arc::weak_count(&strong));
2931    ///
2932    /// drop(strong);
2933    ///
2934    /// // Decrement the last weak count.
2935    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
2936    /// ```
2937    ///
2938    /// [`new`]: Weak::new
2939    /// [`into_raw`]: Weak::into_raw
2940    /// [`upgrade`]: Weak::upgrade
2941    #[inline]
2942    #[stable(feature = "weak_into_raw", since = "1.45.0")]
2943    pub unsafe fn from_raw(ptr: *const T) -> Self {
2944        unsafe { Weak::from_raw_in(ptr, Global) }
2945    }
2946
2947    /// Consumes the `Weak<T>` and turns it into a raw pointer.
2948    ///
2949    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2950    /// one weak reference (the weak count is not modified by this operation). It can be turned
2951    /// back into the `Weak<T>` with [`from_raw`].
2952    ///
2953    /// The same restrictions of accessing the target of the pointer as with
2954    /// [`as_ptr`] apply.
2955    ///
2956    /// # Examples
2957    ///
2958    /// ```
2959    /// use std::sync::{Arc, Weak};
2960    ///
2961    /// let strong = Arc::new("hello".to_owned());
2962    /// let weak = Arc::downgrade(&strong);
2963    /// let raw = weak.into_raw();
2964    ///
2965    /// assert_eq!(1, Arc::weak_count(&strong));
2966    /// assert_eq!("hello", unsafe { &*raw });
2967    ///
2968    /// drop(unsafe { Weak::from_raw(raw) });
2969    /// assert_eq!(0, Arc::weak_count(&strong));
2970    /// ```
2971    ///
2972    /// [`from_raw`]: Weak::from_raw
2973    /// [`as_ptr`]: Weak::as_ptr
2974    #[must_use = "losing the pointer will leak memory"]
2975    #[stable(feature = "weak_into_raw", since = "1.45.0")]
2976    pub fn into_raw(self) -> *const T {
2977        ManuallyDrop::new(self).as_ptr()
2978    }
2979}
2980
2981impl<T: ?Sized, A: Allocator> Weak<T, A> {
2982    /// Returns a reference to the underlying allocator.
2983    #[inline]
2984    #[unstable(feature = "allocator_api", issue = "32838")]
2985    pub fn allocator(&self) -> &A {
2986        &self.alloc
2987    }
2988
2989    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
2990    ///
2991    /// The pointer is valid only if there are some strong references. The pointer may be dangling,
2992    /// unaligned or even [`null`] otherwise.
2993    ///
2994    /// # Examples
2995    ///
2996    /// ```
2997    /// use std::sync::Arc;
2998    /// use std::ptr;
2999    ///
3000    /// let strong = Arc::new("hello".to_owned());
3001    /// let weak = Arc::downgrade(&strong);
3002    /// // Both point to the same object
3003    /// assert!(ptr::eq(&*strong, weak.as_ptr()));
3004    /// // The strong here keeps it alive, so we can still access the object.
3005    /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
3006    ///
3007    /// drop(strong);
3008    /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
3009    /// // undefined behavior.
3010    /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
3011    /// ```
3012    ///
3013    /// [`null`]: core::ptr::null "ptr::null"
3014    #[must_use]
3015    #[stable(feature = "weak_into_raw", since = "1.45.0")]
3016    pub fn as_ptr(&self) -> *const T {
3017        let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
3018
3019        if is_dangling(ptr) {
3020            // If the pointer is dangling, we return the sentinel directly. This cannot be
3021            // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
3022            ptr as *const T
3023        } else {
3024            // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
3025            // The payload may be dropped at this point, and we have to maintain provenance,
3026            // so use raw pointer manipulation.
3027            unsafe { &raw mut (*ptr).data }
3028        }
3029    }
3030
3031    /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
3032    ///
3033    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
3034    /// one weak reference (the weak count is not modified by this operation). It can be turned
3035    /// back into the `Weak<T>` with [`from_raw_in`].
3036    ///
3037    /// The same restrictions of accessing the target of the pointer as with
3038    /// [`as_ptr`] apply.
3039    ///
3040    /// # Examples
3041    ///
3042    /// ```
3043    /// #![feature(allocator_api)]
3044    /// use std::sync::{Arc, Weak};
3045    /// use std::alloc::System;
3046    ///
3047    /// let strong = Arc::new_in("hello".to_owned(), System);
3048    /// let weak = Arc::downgrade(&strong);
3049    /// let (raw, alloc) = weak.into_raw_with_allocator();
3050    ///
3051    /// assert_eq!(1, Arc::weak_count(&strong));
3052    /// assert_eq!("hello", unsafe { &*raw });
3053    ///
3054    /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
3055    /// assert_eq!(0, Arc::weak_count(&strong));
3056    /// ```
3057    ///
3058    /// [`from_raw_in`]: Weak::from_raw_in
3059    /// [`as_ptr`]: Weak::as_ptr
3060    #[must_use = "losing the pointer will leak memory"]
3061    #[unstable(feature = "allocator_api", issue = "32838")]
3062    pub fn into_raw_with_allocator(self) -> (*const T, A) {
3063        let this = mem::ManuallyDrop::new(self);
3064        let result = this.as_ptr();
3065        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
3066        let alloc = unsafe { ptr::read(&this.alloc) };
3067        (result, alloc)
3068    }
3069
3070    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>` in the provided
3071    /// allocator.
3072    ///
3073    /// This can be used to safely get a strong reference (by calling [`upgrade`]
3074    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
3075    ///
3076    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
3077    /// as these don't own anything; the method still works on them).
3078    ///
3079    /// # Safety
3080    ///
3081    /// The pointer must have originated from the [`into_raw`] and must still own its potential
3082    /// weak reference, and must point to a block of memory allocated by `alloc`.
3083    ///
3084    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3085    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3086    /// count is not modified by this operation) and therefore it must be paired with a previous
3087    /// call to [`into_raw`].
3088    /// # Examples
3089    ///
3090    /// ```
3091    /// use std::sync::{Arc, Weak};
3092    ///
3093    /// let strong = Arc::new("hello".to_owned());
3094    ///
3095    /// let raw_1 = Arc::downgrade(&strong).into_raw();
3096    /// let raw_2 = Arc::downgrade(&strong).into_raw();
3097    ///
3098    /// assert_eq!(2, Arc::weak_count(&strong));
3099    ///
3100    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3101    /// assert_eq!(1, Arc::weak_count(&strong));
3102    ///
3103    /// drop(strong);
3104    ///
3105    /// // Decrement the last weak count.
3106    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3107    /// ```
3108    ///
3109    /// [`new`]: Weak::new
3110    /// [`into_raw`]: Weak::into_raw
3111    /// [`upgrade`]: Weak::upgrade
3112    #[inline]
3113    #[unstable(feature = "allocator_api", issue = "32838")]
3114    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3115        // See Weak::as_ptr for context on how the input pointer is derived.
3116
3117        let ptr = if is_dangling(ptr) {
3118            // This is a dangling Weak.
3119            ptr as *mut ArcInner<T>
3120        } else {
3121            // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3122            // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3123            let offset = unsafe { data_offset(ptr) };
3124            // Thus, we reverse the offset to get the whole ArcInner.
3125            // SAFETY: the pointer originated from a Weak, so this offset is safe.
3126            unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> }
3127        };
3128
3129        // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3130        Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3131    }
3132}
3133
3134impl<T: ?Sized, A: Allocator> Weak<T, A> {
3135    /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
3136    /// dropping of the inner value if successful.
3137    ///
3138    /// Returns [`None`] if the inner value has since been dropped.
3139    ///
3140    /// # Examples
3141    ///
3142    /// ```
3143    /// use std::sync::Arc;
3144    ///
3145    /// let five = Arc::new(5);
3146    ///
3147    /// let weak_five = Arc::downgrade(&five);
3148    ///
3149    /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
3150    /// assert!(strong_five.is_some());
3151    ///
3152    /// // Destroy all strong pointers.
3153    /// drop(strong_five);
3154    /// drop(five);
3155    ///
3156    /// assert!(weak_five.upgrade().is_none());
3157    /// ```
3158    #[must_use = "this returns a new `Arc`, \
3159                  without modifying the original weak pointer"]
3160    #[stable(feature = "arc_weak", since = "1.4.0")]
3161    pub fn upgrade(&self) -> Option<Arc<T, A>>
3162    where
3163        A: Clone,
3164    {
3165        #[inline]
3166        fn checked_increment(n: usize) -> Option<usize> {
3167            // Any write of 0 we can observe leaves the field in permanently zero state.
3168            if n == 0 {
3169                return None;
3170            }
3171            // See comments in `Arc::clone` for why we do this (for `mem::forget`).
3172            assert!(n <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
3173            Some(n + 1)
3174        }
3175
3176        // We use a CAS loop to increment the strong count instead of a
3177        // fetch_add as this function should never take the reference count
3178        // from zero to one.
3179        //
3180        // Relaxed is fine for the failure case because we don't have any expectations about the new state.
3181        // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
3182        // value can be initialized after `Weak` references have already been created. In that case, we
3183        // expect to observe the fully initialized value.
3184        if self.inner()?.strong.fetch_update(Acquire, Relaxed, checked_increment).is_ok() {
3185            // SAFETY: pointer is not null, verified in checked_increment
3186            unsafe { Some(Arc::from_inner_in(self.ptr, self.alloc.clone())) }
3187        } else {
3188            None
3189        }
3190    }
3191
3192    /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
3193    ///
3194    /// If `self` was created using [`Weak::new`], this will return 0.
3195    #[must_use]
3196    #[stable(feature = "weak_counts", since = "1.41.0")]
3197    pub fn strong_count(&self) -> usize {
3198        if let Some(inner) = self.inner() { inner.strong.load(Relaxed) } else { 0 }
3199    }
3200
3201    /// Gets an approximation of the number of `Weak` pointers pointing to this
3202    /// allocation.
3203    ///
3204    /// If `self` was created using [`Weak::new`], or if there are no remaining
3205    /// strong pointers, this will return 0.
3206    ///
3207    /// # Accuracy
3208    ///
3209    /// Due to implementation details, the returned value can be off by 1 in
3210    /// either direction when other threads are manipulating any `Arc`s or
3211    /// `Weak`s pointing to the same allocation.
3212    #[must_use]
3213    #[stable(feature = "weak_counts", since = "1.41.0")]
3214    pub fn weak_count(&self) -> usize {
3215        if let Some(inner) = self.inner() {
3216            let weak = inner.weak.load(Acquire);
3217            let strong = inner.strong.load(Relaxed);
3218            if strong == 0 {
3219                0
3220            } else {
3221                // Since we observed that there was at least one strong pointer
3222                // after reading the weak count, we know that the implicit weak
3223                // reference (present whenever any strong references are alive)
3224                // was still around when we observed the weak count, and can
3225                // therefore safely subtract it.
3226                weak - 1
3227            }
3228        } else {
3229            0
3230        }
3231    }
3232
3233    /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
3234    /// (i.e., when this `Weak` was created by `Weak::new`).
3235    #[inline]
3236    fn inner(&self) -> Option<WeakInner<'_>> {
3237        let ptr = self.ptr.as_ptr();
3238        if is_dangling(ptr) {
3239            None
3240        } else {
3241            // We are careful to *not* create a reference covering the "data" field, as
3242            // the field may be mutated concurrently (for example, if the last `Arc`
3243            // is dropped, the data field will be dropped in-place).
3244            Some(unsafe { WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } })
3245        }
3246    }
3247
3248    /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3249    /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3250    /// this function ignores the metadata of  `dyn Trait` pointers.
3251    ///
3252    /// # Notes
3253    ///
3254    /// Since this compares pointers it means that `Weak::new()` will equal each
3255    /// other, even though they don't point to any allocation.
3256    ///
3257    /// # Examples
3258    ///
3259    /// ```
3260    /// use std::sync::Arc;
3261    ///
3262    /// let first_rc = Arc::new(5);
3263    /// let first = Arc::downgrade(&first_rc);
3264    /// let second = Arc::downgrade(&first_rc);
3265    ///
3266    /// assert!(first.ptr_eq(&second));
3267    ///
3268    /// let third_rc = Arc::new(5);
3269    /// let third = Arc::downgrade(&third_rc);
3270    ///
3271    /// assert!(!first.ptr_eq(&third));
3272    /// ```
3273    ///
3274    /// Comparing `Weak::new`.
3275    ///
3276    /// ```
3277    /// use std::sync::{Arc, Weak};
3278    ///
3279    /// let first = Weak::new();
3280    /// let second = Weak::new();
3281    /// assert!(first.ptr_eq(&second));
3282    ///
3283    /// let third_rc = Arc::new(());
3284    /// let third = Arc::downgrade(&third_rc);
3285    /// assert!(!first.ptr_eq(&third));
3286    /// ```
3287    ///
3288    /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
3289    #[inline]
3290    #[must_use]
3291    #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3292    pub fn ptr_eq(&self, other: &Self) -> bool {
3293        ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3294    }
3295}
3296
3297#[stable(feature = "arc_weak", since = "1.4.0")]
3298impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3299    /// Makes a clone of the `Weak` pointer that points to the same allocation.
3300    ///
3301    /// # Examples
3302    ///
3303    /// ```
3304    /// use std::sync::{Arc, Weak};
3305    ///
3306    /// let weak_five = Arc::downgrade(&Arc::new(5));
3307    ///
3308    /// let _ = Weak::clone(&weak_five);
3309    /// ```
3310    #[inline]
3311    fn clone(&self) -> Weak<T, A> {
3312        if let Some(inner) = self.inner() {
3313            // See comments in Arc::clone() for why this is relaxed. This can use a
3314            // fetch_add (ignoring the lock) because the weak count is only locked
3315            // where are *no other* weak pointers in existence. (So we can't be
3316            // running this code in that case).
3317            let old_size = inner.weak.fetch_add(1, Relaxed);
3318
3319            // See comments in Arc::clone() for why we do this (for mem::forget).
3320            if old_size > MAX_REFCOUNT {
3321                abort();
3322            }
3323        }
3324
3325        Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3326    }
3327}
3328
3329#[unstable(feature = "ergonomic_clones", issue = "132290")]
3330impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3331
3332#[stable(feature = "downgraded_weak", since = "1.10.0")]
3333impl<T> Default for Weak<T> {
3334    /// Constructs a new `Weak<T>`, without allocating memory.
3335    /// Calling [`upgrade`] on the return value always
3336    /// gives [`None`].
3337    ///
3338    /// [`upgrade`]: Weak::upgrade
3339    ///
3340    /// # Examples
3341    ///
3342    /// ```
3343    /// use std::sync::Weak;
3344    ///
3345    /// let empty: Weak<i64> = Default::default();
3346    /// assert!(empty.upgrade().is_none());
3347    /// ```
3348    fn default() -> Weak<T> {
3349        Weak::new()
3350    }
3351}
3352
3353#[stable(feature = "arc_weak", since = "1.4.0")]
3354unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3355    /// Drops the `Weak` pointer.
3356    ///
3357    /// # Examples
3358    ///
3359    /// ```
3360    /// use std::sync::{Arc, Weak};
3361    ///
3362    /// struct Foo;
3363    ///
3364    /// impl Drop for Foo {
3365    ///     fn drop(&mut self) {
3366    ///         println!("dropped!");
3367    ///     }
3368    /// }
3369    ///
3370    /// let foo = Arc::new(Foo);
3371    /// let weak_foo = Arc::downgrade(&foo);
3372    /// let other_weak_foo = Weak::clone(&weak_foo);
3373    ///
3374    /// drop(weak_foo);   // Doesn't print anything
3375    /// drop(foo);        // Prints "dropped!"
3376    ///
3377    /// assert!(other_weak_foo.upgrade().is_none());
3378    /// ```
3379    fn drop(&mut self) {
3380        // If we find out that we were the last weak pointer, then its time to
3381        // deallocate the data entirely. See the discussion in Arc::drop() about
3382        // the memory orderings
3383        //
3384        // It's not necessary to check for the locked state here, because the
3385        // weak count can only be locked if there was precisely one weak ref,
3386        // meaning that drop could only subsequently run ON that remaining weak
3387        // ref, which can only happen after the lock is released.
3388        let inner = if let Some(inner) = self.inner() { inner } else { return };
3389
3390        if inner.weak.fetch_sub(1, Release) == 1 {
3391            acquire!(inner.weak);
3392
3393            // Make sure we aren't trying to "deallocate" the shared static for empty slices
3394            // used by Default::default.
3395            debug_assert!(
3396                !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
3397                "Arc/Weaks backed by a static should never be deallocated. \
3398                Likely decrement_strong_count or from_raw were called too many times.",
3399            );
3400
3401            unsafe {
3402                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()))
3403            }
3404        }
3405    }
3406}
3407
3408#[stable(feature = "rust1", since = "1.0.0")]
3409trait ArcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
3410    fn eq(&self, other: &Arc<T, A>) -> bool;
3411    fn ne(&self, other: &Arc<T, A>) -> bool;
3412}
3413
3414#[stable(feature = "rust1", since = "1.0.0")]
3415impl<T: ?Sized + PartialEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3416    #[inline]
3417    default fn eq(&self, other: &Arc<T, A>) -> bool {
3418        **self == **other
3419    }
3420    #[inline]
3421    default fn ne(&self, other: &Arc<T, A>) -> bool {
3422        **self != **other
3423    }
3424}
3425
3426/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
3427/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
3428/// store large values, that are slow to clone, but also heavy to check for equality, causing this
3429/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
3430/// the same value, than two `&T`s.
3431///
3432/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
3433#[stable(feature = "rust1", since = "1.0.0")]
3434impl<T: ?Sized + crate::rc::MarkerEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3435    #[inline]
3436    fn eq(&self, other: &Arc<T, A>) -> bool {
3437        Arc::ptr_eq(self, other) || **self == **other
3438    }
3439
3440    #[inline]
3441    fn ne(&self, other: &Arc<T, A>) -> bool {
3442        !Arc::ptr_eq(self, other) && **self != **other
3443    }
3444}
3445
3446#[stable(feature = "rust1", since = "1.0.0")]
3447impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Arc<T, A> {
3448    /// Equality for two `Arc`s.
3449    ///
3450    /// Two `Arc`s are equal if their inner values are equal, even if they are
3451    /// stored in different allocation.
3452    ///
3453    /// If `T` also implements `Eq` (implying reflexivity of equality),
3454    /// two `Arc`s that point to the same allocation are always equal.
3455    ///
3456    /// # Examples
3457    ///
3458    /// ```
3459    /// use std::sync::Arc;
3460    ///
3461    /// let five = Arc::new(5);
3462    ///
3463    /// assert!(five == Arc::new(5));
3464    /// ```
3465    #[inline]
3466    fn eq(&self, other: &Arc<T, A>) -> bool {
3467        ArcEqIdent::eq(self, other)
3468    }
3469
3470    /// Inequality for two `Arc`s.
3471    ///
3472    /// Two `Arc`s are not equal if their inner values are not equal.
3473    ///
3474    /// If `T` also implements `Eq` (implying reflexivity of equality),
3475    /// two `Arc`s that point to the same value are always equal.
3476    ///
3477    /// # Examples
3478    ///
3479    /// ```
3480    /// use std::sync::Arc;
3481    ///
3482    /// let five = Arc::new(5);
3483    ///
3484    /// assert!(five != Arc::new(6));
3485    /// ```
3486    #[inline]
3487    fn ne(&self, other: &Arc<T, A>) -> bool {
3488        ArcEqIdent::ne(self, other)
3489    }
3490}
3491
3492#[stable(feature = "rust1", since = "1.0.0")]
3493impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Arc<T, A> {
3494    /// Partial comparison for two `Arc`s.
3495    ///
3496    /// The two are compared by calling `partial_cmp()` on their inner values.
3497    ///
3498    /// # Examples
3499    ///
3500    /// ```
3501    /// use std::sync::Arc;
3502    /// use std::cmp::Ordering;
3503    ///
3504    /// let five = Arc::new(5);
3505    ///
3506    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
3507    /// ```
3508    fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering> {
3509        (**self).partial_cmp(&**other)
3510    }
3511
3512    /// Less-than comparison for two `Arc`s.
3513    ///
3514    /// The two are compared by calling `<` on their inner values.
3515    ///
3516    /// # Examples
3517    ///
3518    /// ```
3519    /// use std::sync::Arc;
3520    ///
3521    /// let five = Arc::new(5);
3522    ///
3523    /// assert!(five < Arc::new(6));
3524    /// ```
3525    fn lt(&self, other: &Arc<T, A>) -> bool {
3526        *(*self) < *(*other)
3527    }
3528
3529    /// 'Less than or equal to' comparison for two `Arc`s.
3530    ///
3531    /// The two are compared by calling `<=` on their inner values.
3532    ///
3533    /// # Examples
3534    ///
3535    /// ```
3536    /// use std::sync::Arc;
3537    ///
3538    /// let five = Arc::new(5);
3539    ///
3540    /// assert!(five <= Arc::new(5));
3541    /// ```
3542    fn le(&self, other: &Arc<T, A>) -> bool {
3543        *(*self) <= *(*other)
3544    }
3545
3546    /// Greater-than comparison for two `Arc`s.
3547    ///
3548    /// The two are compared by calling `>` on their inner values.
3549    ///
3550    /// # Examples
3551    ///
3552    /// ```
3553    /// use std::sync::Arc;
3554    ///
3555    /// let five = Arc::new(5);
3556    ///
3557    /// assert!(five > Arc::new(4));
3558    /// ```
3559    fn gt(&self, other: &Arc<T, A>) -> bool {
3560        *(*self) > *(*other)
3561    }
3562
3563    /// 'Greater than or equal to' comparison for two `Arc`s.
3564    ///
3565    /// The two are compared by calling `>=` on their inner values.
3566    ///
3567    /// # Examples
3568    ///
3569    /// ```
3570    /// use std::sync::Arc;
3571    ///
3572    /// let five = Arc::new(5);
3573    ///
3574    /// assert!(five >= Arc::new(5));
3575    /// ```
3576    fn ge(&self, other: &Arc<T, A>) -> bool {
3577        *(*self) >= *(*other)
3578    }
3579}
3580#[stable(feature = "rust1", since = "1.0.0")]
3581impl<T: ?Sized + Ord, A: Allocator> Ord for Arc<T, A> {
3582    /// Comparison for two `Arc`s.
3583    ///
3584    /// The two are compared by calling `cmp()` on their inner values.
3585    ///
3586    /// # Examples
3587    ///
3588    /// ```
3589    /// use std::sync::Arc;
3590    /// use std::cmp::Ordering;
3591    ///
3592    /// let five = Arc::new(5);
3593    ///
3594    /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
3595    /// ```
3596    fn cmp(&self, other: &Arc<T, A>) -> Ordering {
3597        (**self).cmp(&**other)
3598    }
3599}
3600#[stable(feature = "rust1", since = "1.0.0")]
3601impl<T: ?Sized + Eq, A: Allocator> Eq for Arc<T, A> {}
3602
3603#[stable(feature = "rust1", since = "1.0.0")]
3604impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Arc<T, A> {
3605    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3606        fmt::Display::fmt(&**self, f)
3607    }
3608}
3609
3610#[stable(feature = "rust1", since = "1.0.0")]
3611impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Arc<T, A> {
3612    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3613        fmt::Debug::fmt(&**self, f)
3614    }
3615}
3616
3617#[stable(feature = "rust1", since = "1.0.0")]
3618impl<T: ?Sized, A: Allocator> fmt::Pointer for Arc<T, A> {
3619    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3620        fmt::Pointer::fmt(&(&raw const **self), f)
3621    }
3622}
3623
3624#[cfg(not(no_global_oom_handling))]
3625#[stable(feature = "rust1", since = "1.0.0")]
3626impl<T: Default> Default for Arc<T> {
3627    /// Creates a new `Arc<T>`, with the `Default` value for `T`.
3628    ///
3629    /// # Examples
3630    ///
3631    /// ```
3632    /// use std::sync::Arc;
3633    ///
3634    /// let x: Arc<i32> = Default::default();
3635    /// assert_eq!(*x, 0);
3636    /// ```
3637    fn default() -> Arc<T> {
3638        unsafe {
3639            Self::from_inner(
3640                Box::leak(Box::write(
3641                    Box::new_uninit(),
3642                    ArcInner {
3643                        strong: atomic::AtomicUsize::new(1),
3644                        weak: atomic::AtomicUsize::new(1),
3645                        data: T::default(),
3646                    },
3647                ))
3648                .into(),
3649            )
3650        }
3651    }
3652}
3653
3654/// Struct to hold the static `ArcInner` used for empty `Arc<str/CStr/[T]>` as
3655/// returned by `Default::default`.
3656///
3657/// Layout notes:
3658/// * `repr(align(16))` so we can use it for `[T]` with `align_of::<T>() <= 16`.
3659/// * `repr(C)` so `inner` is at offset 0 (and thus guaranteed to actually be aligned to 16).
3660/// * `[u8; 1]` (to be initialized with 0) so it can be used for `Arc<CStr>`.
3661#[repr(C, align(16))]
3662struct SliceArcInnerForStatic {
3663    inner: ArcInner<[u8; 1]>,
3664}
3665#[cfg(not(no_global_oom_handling))]
3666const MAX_STATIC_INNER_SLICE_ALIGNMENT: usize = 16;
3667
3668static STATIC_INNER_SLICE: SliceArcInnerForStatic = SliceArcInnerForStatic {
3669    inner: ArcInner {
3670        strong: atomic::AtomicUsize::new(1),
3671        weak: atomic::AtomicUsize::new(1),
3672        data: [0],
3673    },
3674};
3675
3676#[cfg(not(no_global_oom_handling))]
3677#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3678impl Default for Arc<str> {
3679    /// Creates an empty str inside an Arc
3680    ///
3681    /// This may or may not share an allocation with other Arcs.
3682    #[inline]
3683    fn default() -> Self {
3684        let arc: Arc<[u8]> = Default::default();
3685        debug_assert!(core::str::from_utf8(&*arc).is_ok());
3686        let (ptr, alloc) = Arc::into_inner_with_allocator(arc);
3687        unsafe { Arc::from_ptr_in(ptr.as_ptr() as *mut ArcInner<str>, alloc) }
3688    }
3689}
3690
3691#[cfg(not(no_global_oom_handling))]
3692#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3693impl Default for Arc<core::ffi::CStr> {
3694    /// Creates an empty CStr inside an Arc
3695    ///
3696    /// This may or may not share an allocation with other Arcs.
3697    #[inline]
3698    fn default() -> Self {
3699        use core::ffi::CStr;
3700        let inner: NonNull<ArcInner<[u8]>> = NonNull::from(&STATIC_INNER_SLICE.inner);
3701        let inner: NonNull<ArcInner<CStr>> =
3702            NonNull::new(inner.as_ptr() as *mut ArcInner<CStr>).unwrap();
3703        // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3704        let this: mem::ManuallyDrop<Arc<CStr>> =
3705            unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3706        (*this).clone()
3707    }
3708}
3709
3710#[cfg(not(no_global_oom_handling))]
3711#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3712impl<T> Default for Arc<[T]> {
3713    /// Creates an empty `[T]` inside an Arc
3714    ///
3715    /// This may or may not share an allocation with other Arcs.
3716    #[inline]
3717    fn default() -> Self {
3718        if align_of::<T>() <= MAX_STATIC_INNER_SLICE_ALIGNMENT {
3719            // We take a reference to the whole struct instead of the ArcInner<[u8; 1]> inside it so
3720            // we don't shrink the range of bytes the ptr is allowed to access under Stacked Borrows.
3721            // (Miri complains on 32-bit targets with Arc<[Align16]> otherwise.)
3722            // (Note that NonNull::from(&STATIC_INNER_SLICE.inner) is fine under Tree Borrows.)
3723            let inner: NonNull<SliceArcInnerForStatic> = NonNull::from(&STATIC_INNER_SLICE);
3724            let inner: NonNull<ArcInner<[T; 0]>> = inner.cast();
3725            // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3726            let this: mem::ManuallyDrop<Arc<[T; 0]>> =
3727                unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3728            return (*this).clone();
3729        }
3730
3731        // If T's alignment is too large for the static, make a new unique allocation.
3732        let arr: [T; 0] = [];
3733        Arc::from(arr)
3734    }
3735}
3736
3737#[cfg(not(no_global_oom_handling))]
3738#[stable(feature = "pin_default_impls", since = "1.91.0")]
3739impl<T> Default for Pin<Arc<T>>
3740where
3741    T: ?Sized,
3742    Arc<T>: Default,
3743{
3744    #[inline]
3745    fn default() -> Self {
3746        unsafe { Pin::new_unchecked(Arc::<T>::default()) }
3747    }
3748}
3749
3750#[stable(feature = "rust1", since = "1.0.0")]
3751impl<T: ?Sized + Hash, A: Allocator> Hash for Arc<T, A> {
3752    fn hash<H: Hasher>(&self, state: &mut H) {
3753        (**self).hash(state)
3754    }
3755}
3756
3757#[cfg(not(no_global_oom_handling))]
3758#[stable(feature = "from_for_ptrs", since = "1.6.0")]
3759impl<T> From<T> for Arc<T> {
3760    /// Converts a `T` into an `Arc<T>`
3761    ///
3762    /// The conversion moves the value into a
3763    /// newly allocated `Arc`. It is equivalent to
3764    /// calling `Arc::new(t)`.
3765    ///
3766    /// # Example
3767    /// ```rust
3768    /// # use std::sync::Arc;
3769    /// let x = 5;
3770    /// let arc = Arc::new(5);
3771    ///
3772    /// assert_eq!(Arc::from(x), arc);
3773    /// ```
3774    fn from(t: T) -> Self {
3775        Arc::new(t)
3776    }
3777}
3778
3779#[cfg(not(no_global_oom_handling))]
3780#[stable(feature = "shared_from_array", since = "1.74.0")]
3781impl<T, const N: usize> From<[T; N]> for Arc<[T]> {
3782    /// Converts a [`[T; N]`](prim@array) into an `Arc<[T]>`.
3783    ///
3784    /// The conversion moves the array into a newly allocated `Arc`.
3785    ///
3786    /// # Example
3787    ///
3788    /// ```
3789    /// # use std::sync::Arc;
3790    /// let original: [i32; 3] = [1, 2, 3];
3791    /// let shared: Arc<[i32]> = Arc::from(original);
3792    /// assert_eq!(&[1, 2, 3], &shared[..]);
3793    /// ```
3794    #[inline]
3795    fn from(v: [T; N]) -> Arc<[T]> {
3796        Arc::<[T; N]>::from(v)
3797    }
3798}
3799
3800#[cfg(not(no_global_oom_handling))]
3801#[stable(feature = "shared_from_slice", since = "1.21.0")]
3802impl<T: Clone> From<&[T]> for Arc<[T]> {
3803    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3804    ///
3805    /// # Example
3806    ///
3807    /// ```
3808    /// # use std::sync::Arc;
3809    /// let original: &[i32] = &[1, 2, 3];
3810    /// let shared: Arc<[i32]> = Arc::from(original);
3811    /// assert_eq!(&[1, 2, 3], &shared[..]);
3812    /// ```
3813    #[inline]
3814    fn from(v: &[T]) -> Arc<[T]> {
3815        <Self as ArcFromSlice<T>>::from_slice(v)
3816    }
3817}
3818
3819#[cfg(not(no_global_oom_handling))]
3820#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3821impl<T: Clone> From<&mut [T]> for Arc<[T]> {
3822    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3823    ///
3824    /// # Example
3825    ///
3826    /// ```
3827    /// # use std::sync::Arc;
3828    /// let mut original = [1, 2, 3];
3829    /// let original: &mut [i32] = &mut original;
3830    /// let shared: Arc<[i32]> = Arc::from(original);
3831    /// assert_eq!(&[1, 2, 3], &shared[..]);
3832    /// ```
3833    #[inline]
3834    fn from(v: &mut [T]) -> Arc<[T]> {
3835        Arc::from(&*v)
3836    }
3837}
3838
3839#[cfg(not(no_global_oom_handling))]
3840#[stable(feature = "shared_from_slice", since = "1.21.0")]
3841impl From<&str> for Arc<str> {
3842    /// Allocates a reference-counted `str` and copies `v` into it.
3843    ///
3844    /// # Example
3845    ///
3846    /// ```
3847    /// # use std::sync::Arc;
3848    /// let shared: Arc<str> = Arc::from("eggplant");
3849    /// assert_eq!("eggplant", &shared[..]);
3850    /// ```
3851    #[inline]
3852    fn from(v: &str) -> Arc<str> {
3853        let arc = Arc::<[u8]>::from(v.as_bytes());
3854        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
3855    }
3856}
3857
3858#[cfg(not(no_global_oom_handling))]
3859#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3860impl From<&mut str> for Arc<str> {
3861    /// Allocates a reference-counted `str` and copies `v` into it.
3862    ///
3863    /// # Example
3864    ///
3865    /// ```
3866    /// # use std::sync::Arc;
3867    /// let mut original = String::from("eggplant");
3868    /// let original: &mut str = &mut original;
3869    /// let shared: Arc<str> = Arc::from(original);
3870    /// assert_eq!("eggplant", &shared[..]);
3871    /// ```
3872    #[inline]
3873    fn from(v: &mut str) -> Arc<str> {
3874        Arc::from(&*v)
3875    }
3876}
3877
3878#[cfg(not(no_global_oom_handling))]
3879#[stable(feature = "shared_from_slice", since = "1.21.0")]
3880impl From<String> for Arc<str> {
3881    /// Allocates a reference-counted `str` and copies `v` into it.
3882    ///
3883    /// # Example
3884    ///
3885    /// ```
3886    /// # use std::sync::Arc;
3887    /// let unique: String = "eggplant".to_owned();
3888    /// let shared: Arc<str> = Arc::from(unique);
3889    /// assert_eq!("eggplant", &shared[..]);
3890    /// ```
3891    #[inline]
3892    fn from(v: String) -> Arc<str> {
3893        Arc::from(&v[..])
3894    }
3895}
3896
3897#[cfg(not(no_global_oom_handling))]
3898#[stable(feature = "shared_from_slice", since = "1.21.0")]
3899impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Arc<T, A> {
3900    /// Move a boxed object to a new, reference-counted allocation.
3901    ///
3902    /// # Example
3903    ///
3904    /// ```
3905    /// # use std::sync::Arc;
3906    /// let unique: Box<str> = Box::from("eggplant");
3907    /// let shared: Arc<str> = Arc::from(unique);
3908    /// assert_eq!("eggplant", &shared[..]);
3909    /// ```
3910    #[inline]
3911    fn from(v: Box<T, A>) -> Arc<T, A> {
3912        Arc::from_box_in(v)
3913    }
3914}
3915
3916#[cfg(not(no_global_oom_handling))]
3917#[stable(feature = "shared_from_slice", since = "1.21.0")]
3918impl<T, A: Allocator + Clone> From<Vec<T, A>> for Arc<[T], A> {
3919    /// Allocates a reference-counted slice and moves `v`'s items into it.
3920    ///
3921    /// # Example
3922    ///
3923    /// ```
3924    /// # use std::sync::Arc;
3925    /// let unique: Vec<i32> = vec![1, 2, 3];
3926    /// let shared: Arc<[i32]> = Arc::from(unique);
3927    /// assert_eq!(&[1, 2, 3], &shared[..]);
3928    /// ```
3929    #[inline]
3930    fn from(v: Vec<T, A>) -> Arc<[T], A> {
3931        unsafe {
3932            let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
3933
3934            let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
3935            ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).data) as *mut T, len);
3936
3937            // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
3938            // without dropping its contents or the allocator
3939            let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
3940
3941            Self::from_ptr_in(rc_ptr, alloc)
3942        }
3943    }
3944}
3945
3946#[stable(feature = "shared_from_cow", since = "1.45.0")]
3947impl<'a, B> From<Cow<'a, B>> for Arc<B>
3948where
3949    B: ToOwned + ?Sized,
3950    Arc<B>: From<&'a B> + From<B::Owned>,
3951{
3952    /// Creates an atomically reference-counted pointer from a clone-on-write
3953    /// pointer by copying its content.
3954    ///
3955    /// # Example
3956    ///
3957    /// ```rust
3958    /// # use std::sync::Arc;
3959    /// # use std::borrow::Cow;
3960    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3961    /// let shared: Arc<str> = Arc::from(cow);
3962    /// assert_eq!("eggplant", &shared[..]);
3963    /// ```
3964    #[inline]
3965    fn from(cow: Cow<'a, B>) -> Arc<B> {
3966        match cow {
3967            Cow::Borrowed(s) => Arc::from(s),
3968            Cow::Owned(s) => Arc::from(s),
3969        }
3970    }
3971}
3972
3973#[stable(feature = "shared_from_str", since = "1.62.0")]
3974impl From<Arc<str>> for Arc<[u8]> {
3975    /// Converts an atomically reference-counted string slice into a byte slice.
3976    ///
3977    /// # Example
3978    ///
3979    /// ```
3980    /// # use std::sync::Arc;
3981    /// let string: Arc<str> = Arc::from("eggplant");
3982    /// let bytes: Arc<[u8]> = Arc::from(string);
3983    /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
3984    /// ```
3985    #[inline]
3986    fn from(rc: Arc<str>) -> Self {
3987        // SAFETY: `str` has the same layout as `[u8]`.
3988        unsafe { Arc::from_raw(Arc::into_raw(rc) as *const [u8]) }
3989    }
3990}
3991
3992#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
3993impl<T, A: Allocator, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A> {
3994    type Error = Arc<[T], A>;
3995
3996    fn try_from(boxed_slice: Arc<[T], A>) -> Result<Self, Self::Error> {
3997        if boxed_slice.len() == N {
3998            let (ptr, alloc) = Arc::into_inner_with_allocator(boxed_slice);
3999            Ok(unsafe { Arc::from_inner_in(ptr.cast(), alloc) })
4000        } else {
4001            Err(boxed_slice)
4002        }
4003    }
4004}
4005
4006#[cfg(not(no_global_oom_handling))]
4007#[stable(feature = "shared_from_iter", since = "1.37.0")]
4008impl<T> FromIterator<T> for Arc<[T]> {
4009    /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
4010    ///
4011    /// # Performance characteristics
4012    ///
4013    /// ## The general case
4014    ///
4015    /// In the general case, collecting into `Arc<[T]>` is done by first
4016    /// collecting into a `Vec<T>`. That is, when writing the following:
4017    ///
4018    /// ```rust
4019    /// # use std::sync::Arc;
4020    /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
4021    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
4022    /// ```
4023    ///
4024    /// this behaves as if we wrote:
4025    ///
4026    /// ```rust
4027    /// # use std::sync::Arc;
4028    /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
4029    ///     .collect::<Vec<_>>() // The first set of allocations happens here.
4030    ///     .into(); // A second allocation for `Arc<[T]>` happens here.
4031    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
4032    /// ```
4033    ///
4034    /// This will allocate as many times as needed for constructing the `Vec<T>`
4035    /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
4036    ///
4037    /// ## Iterators of known length
4038    ///
4039    /// When your `Iterator` implements `TrustedLen` and is of an exact size,
4040    /// a single allocation will be made for the `Arc<[T]>`. For example:
4041    ///
4042    /// ```rust
4043    /// # use std::sync::Arc;
4044    /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
4045    /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
4046    /// ```
4047    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
4048        ToArcSlice::to_arc_slice(iter.into_iter())
4049    }
4050}
4051
4052#[cfg(not(no_global_oom_handling))]
4053/// Specialization trait used for collecting into `Arc<[T]>`.
4054trait ToArcSlice<T>: Iterator<Item = T> + Sized {
4055    fn to_arc_slice(self) -> Arc<[T]>;
4056}
4057
4058#[cfg(not(no_global_oom_handling))]
4059impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
4060    default fn to_arc_slice(self) -> Arc<[T]> {
4061        self.collect::<Vec<T>>().into()
4062    }
4063}
4064
4065#[cfg(not(no_global_oom_handling))]
4066impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
4067    fn to_arc_slice(self) -> Arc<[T]> {
4068        // This is the case for a `TrustedLen` iterator.
4069        let (low, high) = self.size_hint();
4070        if let Some(high) = high {
4071            debug_assert_eq!(
4072                low,
4073                high,
4074                "TrustedLen iterator's size hint is not exact: {:?}",
4075                (low, high)
4076            );
4077
4078            unsafe {
4079                // SAFETY: We need to ensure that the iterator has an exact length and we have.
4080                Arc::from_iter_exact(self, low)
4081            }
4082        } else {
4083            // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
4084            // length exceeding `usize::MAX`.
4085            // The default implementation would collect into a vec which would panic.
4086            // Thus we panic here immediately without invoking `Vec` code.
4087            panic!("capacity overflow");
4088        }
4089    }
4090}
4091
4092#[stable(feature = "rust1", since = "1.0.0")]
4093impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Arc<T, A> {
4094    fn borrow(&self) -> &T {
4095        &**self
4096    }
4097}
4098
4099#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
4100impl<T: ?Sized, A: Allocator> AsRef<T> for Arc<T, A> {
4101    fn as_ref(&self) -> &T {
4102        &**self
4103    }
4104}
4105
4106#[stable(feature = "pin", since = "1.33.0")]
4107impl<T: ?Sized, A: Allocator> Unpin for Arc<T, A> {}
4108
4109/// Gets the offset within an `ArcInner` for the payload behind a pointer.
4110///
4111/// # Safety
4112///
4113/// The pointer must point to (and have valid metadata for) a previously
4114/// valid instance of T, but the T is allowed to be dropped.
4115unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
4116    // Align the unsized value to the end of the ArcInner.
4117    // Because ArcInner is repr(C), it will always be the last field in memory.
4118    // SAFETY: since the only unsized types possible are slices, trait objects,
4119    // and extern types, the input safety requirement is currently enough to
4120    // satisfy the requirements of align_of_val_raw; this is an implementation
4121    // detail of the language that must not be relied upon outside of std.
4122    unsafe { data_offset_align(align_of_val_raw(ptr)) }
4123}
4124
4125#[inline]
4126fn data_offset_align(align: usize) -> usize {
4127    let layout = Layout::new::<ArcInner<()>>();
4128    layout.size() + layout.padding_needed_for(align)
4129}
4130
4131/// A unique owning pointer to an [`ArcInner`] **that does not imply the contents are initialized,**
4132/// but will deallocate it (without dropping the value) when dropped.
4133///
4134/// This is a helper for [`Arc::make_mut()`] to ensure correct cleanup on panic.
4135#[cfg(not(no_global_oom_handling))]
4136struct UniqueArcUninit<T: ?Sized, A: Allocator> {
4137    ptr: NonNull<ArcInner<T>>,
4138    layout_for_value: Layout,
4139    alloc: Option<A>,
4140}
4141
4142#[cfg(not(no_global_oom_handling))]
4143impl<T: ?Sized, A: Allocator> UniqueArcUninit<T, A> {
4144    /// Allocates an ArcInner with layout suitable to contain `for_value` or a clone of it.
4145    fn new(for_value: &T, alloc: A) -> UniqueArcUninit<T, A> {
4146        let layout = Layout::for_value(for_value);
4147        let ptr = unsafe {
4148            Arc::allocate_for_layout(
4149                layout,
4150                |layout_for_arcinner| alloc.allocate(layout_for_arcinner),
4151                |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const ArcInner<T>),
4152            )
4153        };
4154        Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4155    }
4156
4157    /// Returns the pointer to be written into to initialize the [`Arc`].
4158    fn data_ptr(&mut self) -> *mut T {
4159        let offset = data_offset_align(self.layout_for_value.align());
4160        unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4161    }
4162
4163    /// Upgrade this into a normal [`Arc`].
4164    ///
4165    /// # Safety
4166    ///
4167    /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4168    unsafe fn into_arc(self) -> Arc<T, A> {
4169        let mut this = ManuallyDrop::new(self);
4170        let ptr = this.ptr.as_ptr();
4171        let alloc = this.alloc.take().unwrap();
4172
4173        // SAFETY: The pointer is valid as per `UniqueArcUninit::new`, and the caller is responsible
4174        // for having initialized the data.
4175        unsafe { Arc::from_ptr_in(ptr, alloc) }
4176    }
4177}
4178
4179#[cfg(not(no_global_oom_handling))]
4180impl<T: ?Sized, A: Allocator> Drop for UniqueArcUninit<T, A> {
4181    fn drop(&mut self) {
4182        // SAFETY:
4183        // * new() produced a pointer safe to deallocate.
4184        // * We own the pointer unless into_arc() was called, which forgets us.
4185        unsafe {
4186            self.alloc.take().unwrap().deallocate(
4187                self.ptr.cast(),
4188                arcinner_layout_for_value_layout(self.layout_for_value),
4189            );
4190        }
4191    }
4192}
4193
4194#[stable(feature = "arc_error", since = "1.52.0")]
4195impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> {
4196    #[allow(deprecated)]
4197    fn cause(&self) -> Option<&dyn core::error::Error> {
4198        core::error::Error::cause(&**self)
4199    }
4200
4201    fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
4202        core::error::Error::source(&**self)
4203    }
4204
4205    fn provide<'a>(&'a self, req: &mut core::error::Request<'a>) {
4206        core::error::Error::provide(&**self, req);
4207    }
4208}
4209
4210/// A uniquely owned [`Arc`].
4211///
4212/// This represents an `Arc` that is known to be uniquely owned -- that is, have exactly one strong
4213/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
4214/// references will fail unless the `UniqueArc` they point to has been converted into a regular `Arc`.
4215///
4216/// Because it is uniquely owned, the contents of a `UniqueArc` can be freely mutated. A common
4217/// use case is to have an object be mutable during its initialization phase but then have it become
4218/// immutable and converted to a normal `Arc`.
4219///
4220/// This can be used as a flexible way to create cyclic data structures, as in the example below.
4221///
4222/// ```
4223/// #![feature(unique_rc_arc)]
4224/// use std::sync::{Arc, Weak, UniqueArc};
4225///
4226/// struct Gadget {
4227///     me: Weak<Gadget>,
4228/// }
4229///
4230/// fn create_gadget() -> Option<Arc<Gadget>> {
4231///     let mut rc = UniqueArc::new(Gadget {
4232///         me: Weak::new(),
4233///     });
4234///     rc.me = UniqueArc::downgrade(&rc);
4235///     Some(UniqueArc::into_arc(rc))
4236/// }
4237///
4238/// create_gadget().unwrap();
4239/// ```
4240///
4241/// An advantage of using `UniqueArc` over [`Arc::new_cyclic`] to build cyclic data structures is that
4242/// [`Arc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
4243/// previous example, `UniqueArc` allows for more flexibility in the construction of cyclic data,
4244/// including fallible or async constructors.
4245#[unstable(feature = "unique_rc_arc", issue = "112566")]
4246pub struct UniqueArc<
4247    T: ?Sized,
4248    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
4249> {
4250    ptr: NonNull<ArcInner<T>>,
4251    // Define the ownership of `ArcInner<T>` for drop-check
4252    _marker: PhantomData<ArcInner<T>>,
4253    // Invariance is necessary for soundness: once other `Weak`
4254    // references exist, we already have a form of shared mutability!
4255    _marker2: PhantomData<*mut T>,
4256    alloc: A,
4257}
4258
4259#[unstable(feature = "unique_rc_arc", issue = "112566")]
4260unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for UniqueArc<T, A> {}
4261
4262#[unstable(feature = "unique_rc_arc", issue = "112566")]
4263unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for UniqueArc<T, A> {}
4264
4265#[unstable(feature = "unique_rc_arc", issue = "112566")]
4266// #[unstable(feature = "coerce_unsized", issue = "18598")]
4267impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueArc<U, A>>
4268    for UniqueArc<T, A>
4269{
4270}
4271
4272//#[unstable(feature = "unique_rc_arc", issue = "112566")]
4273#[unstable(feature = "dispatch_from_dyn", issue = "none")]
4274impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueArc<U>> for UniqueArc<T> {}
4275
4276#[unstable(feature = "unique_rc_arc", issue = "112566")]
4277impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueArc<T, A> {
4278    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4279        fmt::Display::fmt(&**self, f)
4280    }
4281}
4282
4283#[unstable(feature = "unique_rc_arc", issue = "112566")]
4284impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueArc<T, A> {
4285    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4286        fmt::Debug::fmt(&**self, f)
4287    }
4288}
4289
4290#[unstable(feature = "unique_rc_arc", issue = "112566")]
4291impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueArc<T, A> {
4292    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4293        fmt::Pointer::fmt(&(&raw const **self), f)
4294    }
4295}
4296
4297#[unstable(feature = "unique_rc_arc", issue = "112566")]
4298impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueArc<T, A> {
4299    fn borrow(&self) -> &T {
4300        &**self
4301    }
4302}
4303
4304#[unstable(feature = "unique_rc_arc", issue = "112566")]
4305impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueArc<T, A> {
4306    fn borrow_mut(&mut self) -> &mut T {
4307        &mut **self
4308    }
4309}
4310
4311#[unstable(feature = "unique_rc_arc", issue = "112566")]
4312impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueArc<T, A> {
4313    fn as_ref(&self) -> &T {
4314        &**self
4315    }
4316}
4317
4318#[unstable(feature = "unique_rc_arc", issue = "112566")]
4319impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueArc<T, A> {
4320    fn as_mut(&mut self) -> &mut T {
4321        &mut **self
4322    }
4323}
4324
4325#[unstable(feature = "unique_rc_arc", issue = "112566")]
4326impl<T: ?Sized, A: Allocator> Unpin for UniqueArc<T, A> {}
4327
4328#[unstable(feature = "unique_rc_arc", issue = "112566")]
4329impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueArc<T, A> {
4330    /// Equality for two `UniqueArc`s.
4331    ///
4332    /// Two `UniqueArc`s are equal if their inner values are equal.
4333    ///
4334    /// # Examples
4335    ///
4336    /// ```
4337    /// #![feature(unique_rc_arc)]
4338    /// use std::sync::UniqueArc;
4339    ///
4340    /// let five = UniqueArc::new(5);
4341    ///
4342    /// assert!(five == UniqueArc::new(5));
4343    /// ```
4344    #[inline]
4345    fn eq(&self, other: &Self) -> bool {
4346        PartialEq::eq(&**self, &**other)
4347    }
4348}
4349
4350#[unstable(feature = "unique_rc_arc", issue = "112566")]
4351impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueArc<T, A> {
4352    /// Partial comparison for two `UniqueArc`s.
4353    ///
4354    /// The two are compared by calling `partial_cmp()` on their inner values.
4355    ///
4356    /// # Examples
4357    ///
4358    /// ```
4359    /// #![feature(unique_rc_arc)]
4360    /// use std::sync::UniqueArc;
4361    /// use std::cmp::Ordering;
4362    ///
4363    /// let five = UniqueArc::new(5);
4364    ///
4365    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueArc::new(6)));
4366    /// ```
4367    #[inline(always)]
4368    fn partial_cmp(&self, other: &UniqueArc<T, A>) -> Option<Ordering> {
4369        (**self).partial_cmp(&**other)
4370    }
4371
4372    /// Less-than comparison for two `UniqueArc`s.
4373    ///
4374    /// The two are compared by calling `<` on their inner values.
4375    ///
4376    /// # Examples
4377    ///
4378    /// ```
4379    /// #![feature(unique_rc_arc)]
4380    /// use std::sync::UniqueArc;
4381    ///
4382    /// let five = UniqueArc::new(5);
4383    ///
4384    /// assert!(five < UniqueArc::new(6));
4385    /// ```
4386    #[inline(always)]
4387    fn lt(&self, other: &UniqueArc<T, A>) -> bool {
4388        **self < **other
4389    }
4390
4391    /// 'Less than or equal to' comparison for two `UniqueArc`s.
4392    ///
4393    /// The two are compared by calling `<=` on their inner values.
4394    ///
4395    /// # Examples
4396    ///
4397    /// ```
4398    /// #![feature(unique_rc_arc)]
4399    /// use std::sync::UniqueArc;
4400    ///
4401    /// let five = UniqueArc::new(5);
4402    ///
4403    /// assert!(five <= UniqueArc::new(5));
4404    /// ```
4405    #[inline(always)]
4406    fn le(&self, other: &UniqueArc<T, A>) -> bool {
4407        **self <= **other
4408    }
4409
4410    /// Greater-than comparison for two `UniqueArc`s.
4411    ///
4412    /// The two are compared by calling `>` on their inner values.
4413    ///
4414    /// # Examples
4415    ///
4416    /// ```
4417    /// #![feature(unique_rc_arc)]
4418    /// use std::sync::UniqueArc;
4419    ///
4420    /// let five = UniqueArc::new(5);
4421    ///
4422    /// assert!(five > UniqueArc::new(4));
4423    /// ```
4424    #[inline(always)]
4425    fn gt(&self, other: &UniqueArc<T, A>) -> bool {
4426        **self > **other
4427    }
4428
4429    /// 'Greater than or equal to' comparison for two `UniqueArc`s.
4430    ///
4431    /// The two are compared by calling `>=` on their inner values.
4432    ///
4433    /// # Examples
4434    ///
4435    /// ```
4436    /// #![feature(unique_rc_arc)]
4437    /// use std::sync::UniqueArc;
4438    ///
4439    /// let five = UniqueArc::new(5);
4440    ///
4441    /// assert!(five >= UniqueArc::new(5));
4442    /// ```
4443    #[inline(always)]
4444    fn ge(&self, other: &UniqueArc<T, A>) -> bool {
4445        **self >= **other
4446    }
4447}
4448
4449#[unstable(feature = "unique_rc_arc", issue = "112566")]
4450impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueArc<T, A> {
4451    /// Comparison for two `UniqueArc`s.
4452    ///
4453    /// The two are compared by calling `cmp()` on their inner values.
4454    ///
4455    /// # Examples
4456    ///
4457    /// ```
4458    /// #![feature(unique_rc_arc)]
4459    /// use std::sync::UniqueArc;
4460    /// use std::cmp::Ordering;
4461    ///
4462    /// let five = UniqueArc::new(5);
4463    ///
4464    /// assert_eq!(Ordering::Less, five.cmp(&UniqueArc::new(6)));
4465    /// ```
4466    #[inline]
4467    fn cmp(&self, other: &UniqueArc<T, A>) -> Ordering {
4468        (**self).cmp(&**other)
4469    }
4470}
4471
4472#[unstable(feature = "unique_rc_arc", issue = "112566")]
4473impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueArc<T, A> {}
4474
4475#[unstable(feature = "unique_rc_arc", issue = "112566")]
4476impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueArc<T, A> {
4477    fn hash<H: Hasher>(&self, state: &mut H) {
4478        (**self).hash(state);
4479    }
4480}
4481
4482impl<T> UniqueArc<T, Global> {
4483    /// Creates a new `UniqueArc`.
4484    ///
4485    /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4486    /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4487    /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4488    /// point to the new [`Arc`].
4489    #[cfg(not(no_global_oom_handling))]
4490    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4491    #[must_use]
4492    pub fn new(value: T) -> Self {
4493        Self::new_in(value, Global)
4494    }
4495
4496    /// Maps the value in a `UniqueArc`, reusing the allocation if possible.
4497    ///
4498    /// `f` is called on a reference to the value in the `UniqueArc`, and the result is returned,
4499    /// also in a `UniqueArc`.
4500    ///
4501    /// Note: this is an associated function, which means that you have
4502    /// to call it as `UniqueArc::map(u, f)` instead of `u.map(f)`. This
4503    /// is so that there is no conflict with a method on the inner type.
4504    ///
4505    /// # Examples
4506    ///
4507    /// ```
4508    /// #![feature(smart_pointer_try_map)]
4509    /// #![feature(unique_rc_arc)]
4510    ///
4511    /// use std::sync::UniqueArc;
4512    ///
4513    /// let r = UniqueArc::new(7);
4514    /// let new = UniqueArc::map(r, |i| i + 7);
4515    /// assert_eq!(*new, 14);
4516    /// ```
4517    #[cfg(not(no_global_oom_handling))]
4518    #[unstable(feature = "smart_pointer_try_map", issue = "144419")]
4519    pub fn map<U>(this: Self, f: impl FnOnce(T) -> U) -> UniqueArc<U> {
4520        if size_of::<T>() == size_of::<U>()
4521            && align_of::<T>() == align_of::<U>()
4522            && UniqueArc::weak_count(&this) == 0
4523        {
4524            unsafe {
4525                let ptr = UniqueArc::into_raw(this);
4526                let value = ptr.read();
4527                let mut allocation = UniqueArc::from_raw(ptr.cast::<mem::MaybeUninit<U>>());
4528
4529                allocation.write(f(value));
4530                allocation.assume_init()
4531            }
4532        } else {
4533            UniqueArc::new(f(UniqueArc::unwrap(this)))
4534        }
4535    }
4536
4537    /// Attempts to map the value in a `UniqueArc`, reusing the allocation if possible.
4538    ///
4539    /// `f` is called on a reference to the value in the `UniqueArc`, and if the operation succeeds,
4540    /// the result is returned, also in a `UniqueArc`.
4541    ///
4542    /// Note: this is an associated function, which means that you have
4543    /// to call it as `UniqueArc::try_map(u, f)` instead of `u.try_map(f)`. This
4544    /// is so that there is no conflict with a method on the inner type.
4545    ///
4546    /// # Examples
4547    ///
4548    /// ```
4549    /// #![feature(smart_pointer_try_map)]
4550    /// #![feature(unique_rc_arc)]
4551    ///
4552    /// use std::sync::UniqueArc;
4553    ///
4554    /// let b = UniqueArc::new(7);
4555    /// let new = UniqueArc::try_map(b, u32::try_from).unwrap();
4556    /// assert_eq!(*new, 7);
4557    /// ```
4558    #[cfg(not(no_global_oom_handling))]
4559    #[unstable(feature = "smart_pointer_try_map", issue = "144419")]
4560    pub fn try_map<R>(
4561        this: Self,
4562        f: impl FnOnce(T) -> R,
4563    ) -> <R::Residual as Residual<UniqueArc<R::Output>>>::TryType
4564    where
4565        R: Try,
4566        R::Residual: Residual<UniqueArc<R::Output>>,
4567    {
4568        if size_of::<T>() == size_of::<R::Output>()
4569            && align_of::<T>() == align_of::<R::Output>()
4570            && UniqueArc::weak_count(&this) == 0
4571        {
4572            unsafe {
4573                let ptr = UniqueArc::into_raw(this);
4574                let value = ptr.read();
4575                let mut allocation = UniqueArc::from_raw(ptr.cast::<mem::MaybeUninit<R::Output>>());
4576
4577                allocation.write(f(value)?);
4578                try { allocation.assume_init() }
4579            }
4580        } else {
4581            try { UniqueArc::new(f(UniqueArc::unwrap(this))?) }
4582        }
4583    }
4584
4585    #[cfg(not(no_global_oom_handling))]
4586    fn unwrap(this: Self) -> T {
4587        let this = ManuallyDrop::new(this);
4588        let val: T = unsafe { ptr::read(&**this) };
4589
4590        let _weak = Weak { ptr: this.ptr, alloc: Global };
4591
4592        val
4593    }
4594}
4595
4596impl<T: ?Sized> UniqueArc<T> {
4597    #[cfg(not(no_global_oom_handling))]
4598    unsafe fn from_raw(ptr: *const T) -> Self {
4599        let offset = unsafe { data_offset(ptr) };
4600
4601        // Reverse the offset to find the original ArcInner.
4602        let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> };
4603
4604        Self {
4605            ptr: unsafe { NonNull::new_unchecked(rc_ptr) },
4606            _marker: PhantomData,
4607            _marker2: PhantomData,
4608            alloc: Global,
4609        }
4610    }
4611
4612    #[cfg(not(no_global_oom_handling))]
4613    fn into_raw(this: Self) -> *const T {
4614        let this = ManuallyDrop::new(this);
4615        Self::as_ptr(&*this)
4616    }
4617}
4618
4619impl<T, A: Allocator> UniqueArc<T, A> {
4620    /// Creates a new `UniqueArc` in the provided allocator.
4621    ///
4622    /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4623    /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4624    /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4625    /// point to the new [`Arc`].
4626    #[cfg(not(no_global_oom_handling))]
4627    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4628    #[must_use]
4629    // #[unstable(feature = "allocator_api", issue = "32838")]
4630    pub fn new_in(data: T, alloc: A) -> Self {
4631        let (ptr, alloc) = Box::into_unique(Box::new_in(
4632            ArcInner {
4633                strong: atomic::AtomicUsize::new(0),
4634                // keep one weak reference so if all the weak pointers that are created are dropped
4635                // the UniqueArc still stays valid.
4636                weak: atomic::AtomicUsize::new(1),
4637                data,
4638            },
4639            alloc,
4640        ));
4641        Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4642    }
4643}
4644
4645impl<T: ?Sized, A: Allocator> UniqueArc<T, A> {
4646    /// Converts the `UniqueArc` into a regular [`Arc`].
4647    ///
4648    /// This consumes the `UniqueArc` and returns a regular [`Arc`] that contains the `value` that
4649    /// is passed to `into_arc`.
4650    ///
4651    /// Any weak references created before this method is called can now be upgraded to strong
4652    /// references.
4653    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4654    #[must_use]
4655    pub fn into_arc(this: Self) -> Arc<T, A> {
4656        let this = ManuallyDrop::new(this);
4657
4658        // Move the allocator out.
4659        // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4660        // a `ManuallyDrop`.
4661        let alloc: A = unsafe { ptr::read(&this.alloc) };
4662
4663        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4664        unsafe {
4665            // Convert our weak reference into a strong reference
4666            (*this.ptr.as_ptr()).strong.store(1, Release);
4667            Arc::from_inner_in(this.ptr, alloc)
4668        }
4669    }
4670
4671    #[cfg(not(no_global_oom_handling))]
4672    fn weak_count(this: &Self) -> usize {
4673        this.inner().weak.load(Acquire) - 1
4674    }
4675
4676    #[cfg(not(no_global_oom_handling))]
4677    fn inner(&self) -> &ArcInner<T> {
4678        // SAFETY: while this UniqueArc is alive we're guaranteed that the inner pointer is valid.
4679        unsafe { self.ptr.as_ref() }
4680    }
4681
4682    #[cfg(not(no_global_oom_handling))]
4683    fn as_ptr(this: &Self) -> *const T {
4684        let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
4685
4686        // SAFETY: This cannot go through Deref::deref or UniqueArc::inner because
4687        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
4688        // write through the pointer after the Rc is recovered through `from_raw`.
4689        unsafe { &raw mut (*ptr).data }
4690    }
4691
4692    #[inline]
4693    #[cfg(not(no_global_oom_handling))]
4694    fn into_inner_with_allocator(this: Self) -> (NonNull<ArcInner<T>>, A) {
4695        let this = mem::ManuallyDrop::new(this);
4696        (this.ptr, unsafe { ptr::read(&this.alloc) })
4697    }
4698
4699    #[inline]
4700    #[cfg(not(no_global_oom_handling))]
4701    unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self {
4702        Self { ptr, _marker: PhantomData, _marker2: PhantomData, alloc }
4703    }
4704}
4705
4706impl<T: ?Sized, A: Allocator + Clone> UniqueArc<T, A> {
4707    /// Creates a new weak reference to the `UniqueArc`.
4708    ///
4709    /// Attempting to upgrade this weak reference will fail before the `UniqueArc` has been converted
4710    /// to a [`Arc`] using [`UniqueArc::into_arc`].
4711    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4712    #[must_use]
4713    pub fn downgrade(this: &Self) -> Weak<T, A> {
4714        // Using a relaxed ordering is alright here, as knowledge of the
4715        // original reference prevents other threads from erroneously deleting
4716        // the object or converting the object to a normal `Arc<T, A>`.
4717        //
4718        // Note that we don't need to test if the weak counter is locked because there
4719        // are no such operations like `Arc::get_mut` or `Arc::make_mut` that will lock
4720        // the weak counter.
4721        //
4722        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4723        let old_size = unsafe { (*this.ptr.as_ptr()).weak.fetch_add(1, Relaxed) };
4724
4725        // See comments in Arc::clone() for why we do this (for mem::forget).
4726        if old_size > MAX_REFCOUNT {
4727            abort();
4728        }
4729
4730        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4731    }
4732}
4733
4734#[cfg(not(no_global_oom_handling))]
4735impl<T, A: Allocator> UniqueArc<mem::MaybeUninit<T>, A> {
4736    unsafe fn assume_init(self) -> UniqueArc<T, A> {
4737        let (ptr, alloc) = UniqueArc::into_inner_with_allocator(self);
4738        unsafe { UniqueArc::from_inner_in(ptr.cast(), alloc) }
4739    }
4740}
4741
4742#[unstable(feature = "unique_rc_arc", issue = "112566")]
4743impl<T: ?Sized, A: Allocator> Deref for UniqueArc<T, A> {
4744    type Target = T;
4745
4746    fn deref(&self) -> &T {
4747        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4748        unsafe { &self.ptr.as_ref().data }
4749    }
4750}
4751
4752// #[unstable(feature = "unique_rc_arc", issue = "112566")]
4753#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
4754unsafe impl<T: ?Sized> PinCoerceUnsized for UniqueArc<T> {}
4755
4756#[unstable(feature = "unique_rc_arc", issue = "112566")]
4757impl<T: ?Sized, A: Allocator> DerefMut for UniqueArc<T, A> {
4758    fn deref_mut(&mut self) -> &mut T {
4759        // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4760        // have unique ownership and therefore it's safe to make a mutable reference because
4761        // `UniqueArc` owns the only strong reference to itself.
4762        // We also need to be careful to only create a mutable reference to the `data` field,
4763        // as a mutable reference to the entire `ArcInner` would assert uniqueness over the
4764        // ref count fields too, invalidating any attempt by `Weak`s to access the ref count.
4765        unsafe { &mut (*self.ptr.as_ptr()).data }
4766    }
4767}
4768
4769#[unstable(feature = "unique_rc_arc", issue = "112566")]
4770// #[unstable(feature = "deref_pure_trait", issue = "87121")]
4771unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueArc<T, A> {}
4772
4773#[unstable(feature = "unique_rc_arc", issue = "112566")]
4774unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueArc<T, A> {
4775    fn drop(&mut self) {
4776        // See `Arc::drop_slow` which drops an `Arc` with a strong count of 0.
4777        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4778        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
4779
4780        unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
4781    }
4782}