alloc/vec/mod.rs
1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::cmp;
78use core::cmp::Ordering;
79use core::hash::{Hash, Hasher};
80#[cfg(not(no_global_oom_handling))]
81use core::iter;
82use core::marker::PhantomData;
83use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
84use core::ops::{self, Index, IndexMut, Range, RangeBounds};
85use core::ptr::{self, NonNull};
86use core::slice::{self, SliceIndex};
87use core::{fmt, intrinsics, ub_checks};
88
89#[stable(feature = "extract_if", since = "1.87.0")]
90pub use self::extract_if::ExtractIf;
91use crate::alloc::{Allocator, Global};
92use crate::borrow::{Cow, ToOwned};
93use crate::boxed::Box;
94use crate::collections::TryReserveError;
95use crate::raw_vec::RawVec;
96
97mod extract_if;
98
99#[cfg(not(no_global_oom_handling))]
100#[stable(feature = "vec_splice", since = "1.21.0")]
101pub use self::splice::Splice;
102
103#[cfg(not(no_global_oom_handling))]
104mod splice;
105
106#[stable(feature = "drain", since = "1.6.0")]
107pub use self::drain::Drain;
108
109mod drain;
110
111#[cfg(not(no_global_oom_handling))]
112mod cow;
113
114#[cfg(not(no_global_oom_handling))]
115pub(crate) use self::in_place_collect::AsVecIntoIter;
116#[stable(feature = "rust1", since = "1.0.0")]
117pub use self::into_iter::IntoIter;
118
119mod into_iter;
120
121#[cfg(not(no_global_oom_handling))]
122use self::is_zero::IsZero;
123
124#[cfg(not(no_global_oom_handling))]
125mod is_zero;
126
127#[cfg(not(no_global_oom_handling))]
128mod in_place_collect;
129
130mod partial_eq;
131
132#[unstable(feature = "vec_peek_mut", issue = "122742")]
133pub use self::peek_mut::PeekMut;
134
135mod peek_mut;
136
137#[cfg(not(no_global_oom_handling))]
138use self::spec_from_elem::SpecFromElem;
139
140#[cfg(not(no_global_oom_handling))]
141mod spec_from_elem;
142
143#[cfg(not(no_global_oom_handling))]
144use self::set_len_on_drop::SetLenOnDrop;
145
146#[cfg(not(no_global_oom_handling))]
147mod set_len_on_drop;
148
149#[cfg(not(no_global_oom_handling))]
150use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
151
152#[cfg(not(no_global_oom_handling))]
153mod in_place_drop;
154
155#[cfg(not(no_global_oom_handling))]
156use self::spec_from_iter_nested::SpecFromIterNested;
157
158#[cfg(not(no_global_oom_handling))]
159mod spec_from_iter_nested;
160
161#[cfg(not(no_global_oom_handling))]
162use self::spec_from_iter::SpecFromIter;
163
164#[cfg(not(no_global_oom_handling))]
165mod spec_from_iter;
166
167#[cfg(not(no_global_oom_handling))]
168use self::spec_extend::SpecExtend;
169
170#[cfg(not(no_global_oom_handling))]
171mod spec_extend;
172
173/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
174///
175/// # Examples
176///
177/// ```
178/// let mut vec = Vec::new();
179/// vec.push(1);
180/// vec.push(2);
181///
182/// assert_eq!(vec.len(), 2);
183/// assert_eq!(vec[0], 1);
184///
185/// assert_eq!(vec.pop(), Some(2));
186/// assert_eq!(vec.len(), 1);
187///
188/// vec[0] = 7;
189/// assert_eq!(vec[0], 7);
190///
191/// vec.extend([1, 2, 3]);
192///
193/// for x in &vec {
194/// println!("{x}");
195/// }
196/// assert_eq!(vec, [7, 1, 2, 3]);
197/// ```
198///
199/// The [`vec!`] macro is provided for convenient initialization:
200///
201/// ```
202/// let mut vec1 = vec![1, 2, 3];
203/// vec1.push(4);
204/// let vec2 = Vec::from([1, 2, 3, 4]);
205/// assert_eq!(vec1, vec2);
206/// ```
207///
208/// It can also initialize each element of a `Vec<T>` with a given value.
209/// This may be more efficient than performing allocation and initialization
210/// in separate steps, especially when initializing a vector of zeros:
211///
212/// ```
213/// let vec = vec![0; 5];
214/// assert_eq!(vec, [0, 0, 0, 0, 0]);
215///
216/// // The following is equivalent, but potentially slower:
217/// let mut vec = Vec::with_capacity(5);
218/// vec.resize(5, 0);
219/// assert_eq!(vec, [0, 0, 0, 0, 0]);
220/// ```
221///
222/// For more information, see
223/// [Capacity and Reallocation](#capacity-and-reallocation).
224///
225/// Use a `Vec<T>` as an efficient stack:
226///
227/// ```
228/// let mut stack = Vec::new();
229///
230/// stack.push(1);
231/// stack.push(2);
232/// stack.push(3);
233///
234/// while let Some(top) = stack.pop() {
235/// // Prints 3, 2, 1
236/// println!("{top}");
237/// }
238/// ```
239///
240/// # Indexing
241///
242/// The `Vec` type allows access to values by index, because it implements the
243/// [`Index`] trait. An example will be more explicit:
244///
245/// ```
246/// let v = vec![0, 2, 4, 6];
247/// println!("{}", v[1]); // it will display '2'
248/// ```
249///
250/// However be careful: if you try to access an index which isn't in the `Vec`,
251/// your software will panic! You cannot do this:
252///
253/// ```should_panic
254/// let v = vec![0, 2, 4, 6];
255/// println!("{}", v[6]); // it will panic!
256/// ```
257///
258/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
259/// the `Vec`.
260///
261/// # Slicing
262///
263/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
264/// To get a [slice][prim@slice], use [`&`]. Example:
265///
266/// ```
267/// fn read_slice(slice: &[usize]) {
268/// // ...
269/// }
270///
271/// let v = vec![0, 1];
272/// read_slice(&v);
273///
274/// // ... and that's all!
275/// // you can also do it like this:
276/// let u: &[usize] = &v;
277/// // or like this:
278/// let u: &[_] = &v;
279/// ```
280///
281/// In Rust, it's more common to pass slices as arguments rather than vectors
282/// when you just want to provide read access. The same goes for [`String`] and
283/// [`&str`].
284///
285/// # Capacity and reallocation
286///
287/// The capacity of a vector is the amount of space allocated for any future
288/// elements that will be added onto the vector. This is not to be confused with
289/// the *length* of a vector, which specifies the number of actual elements
290/// within the vector. If a vector's length exceeds its capacity, its capacity
291/// will automatically be increased, but its elements will have to be
292/// reallocated.
293///
294/// For example, a vector with capacity 10 and length 0 would be an empty vector
295/// with space for 10 more elements. Pushing 10 or fewer elements onto the
296/// vector will not change its capacity or cause reallocation to occur. However,
297/// if the vector's length is increased to 11, it will have to reallocate, which
298/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
299/// whenever possible to specify how big the vector is expected to get.
300///
301/// # Guarantees
302///
303/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
304/// about its design. This ensures that it's as low-overhead as possible in
305/// the general case, and can be correctly manipulated in primitive ways
306/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
307/// If additional type parameters are added (e.g., to support custom allocators),
308/// overriding their defaults may change the behavior.
309///
310/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
311/// triplet. No more, no less. The order of these fields is completely
312/// unspecified, and you should use the appropriate methods to modify these.
313/// The pointer will never be null, so this type is null-pointer-optimized.
314///
315/// However, the pointer might not actually point to allocated memory. In particular,
316/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
317/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
318/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
319/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
320/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
321/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
322/// details are very subtle --- if you intend to allocate memory using a `Vec`
323/// and use it for something else (either to pass to unsafe code, or to build your
324/// own memory-backed collection), be sure to deallocate this memory by using
325/// `from_raw_parts` to recover the `Vec` and then dropping it.
326///
327/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
328/// (as defined by the allocator Rust is configured to use by default), and its
329/// pointer points to [`len`] initialized, contiguous elements in order (what
330/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
331/// logically uninitialized, contiguous elements.
332///
333/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
334/// visualized as below. The top part is the `Vec` struct, it contains a
335/// pointer to the head of the allocation in the heap, length and capacity.
336/// The bottom part is the allocation on the heap, a contiguous memory block.
337///
338/// ```text
339/// ptr len capacity
340/// +--------+--------+--------+
341/// | 0x0123 | 2 | 4 |
342/// +--------+--------+--------+
343/// |
344/// v
345/// Heap +--------+--------+--------+--------+
346/// | 'a' | 'b' | uninit | uninit |
347/// +--------+--------+--------+--------+
348/// ```
349///
350/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
351/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
352/// layout (including the order of fields).
353///
354/// `Vec` will never perform a "small optimization" where elements are actually
355/// stored on the stack for two reasons:
356///
357/// * It would make it more difficult for unsafe code to correctly manipulate
358/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
359/// only moved, and it would be more difficult to determine if a `Vec` had
360/// actually allocated memory.
361///
362/// * It would penalize the general case, incurring an additional branch
363/// on every access.
364///
365/// `Vec` will never automatically shrink itself, even if completely empty. This
366/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
367/// and then filling it back up to the same [`len`] should incur no calls to
368/// the allocator. If you wish to free up unused memory, use
369/// [`shrink_to_fit`] or [`shrink_to`].
370///
371/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
372/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
373/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
374/// accurate, and can be relied on. It can even be used to manually free the memory
375/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
376/// when not necessary.
377///
378/// `Vec` does not guarantee any particular growth strategy when reallocating
379/// when full, nor when [`reserve`] is called. The current strategy is basic
380/// and it may prove desirable to use a non-constant growth factor. Whatever
381/// strategy is used will of course guarantee *O*(1) amortized [`push`].
382///
383/// It is guaranteed, in order to respect the intentions of the programmer, that
384/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
385/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
386/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
387/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
388///
389/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
390/// and not more than the allocated capacity.
391///
392/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
393/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
394/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
395/// `Vec` exploits this fact as much as reasonable when implementing common conversions
396/// such as [`into_boxed_slice`].
397///
398/// `Vec` will not specifically overwrite any data that is removed from it,
399/// but also won't specifically preserve it. Its uninitialized memory is
400/// scratch space that it may use however it wants. It will generally just do
401/// whatever is most efficient or otherwise easy to implement. Do not rely on
402/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
403/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
404/// first, that might not actually happen because the optimizer does not consider
405/// this a side-effect that must be preserved. There is one case which we will
406/// not break, however: using `unsafe` code to write to the excess capacity,
407/// and then increasing the length to match, is always valid.
408///
409/// Currently, `Vec` does not guarantee the order in which elements are dropped.
410/// The order has changed in the past and may change again.
411///
412/// [`get`]: slice::get
413/// [`get_mut`]: slice::get_mut
414/// [`String`]: crate::string::String
415/// [`&str`]: type@str
416/// [`shrink_to_fit`]: Vec::shrink_to_fit
417/// [`shrink_to`]: Vec::shrink_to
418/// [capacity]: Vec::capacity
419/// [`capacity`]: Vec::capacity
420/// [`Vec::capacity`]: Vec::capacity
421/// [size_of::\<T>]: size_of
422/// [len]: Vec::len
423/// [`len`]: Vec::len
424/// [`push`]: Vec::push
425/// [`insert`]: Vec::insert
426/// [`reserve`]: Vec::reserve
427/// [`Vec::with_capacity(n)`]: Vec::with_capacity
428/// [`MaybeUninit`]: core::mem::MaybeUninit
429/// [owned slice]: Box
430/// [`into_boxed_slice`]: Vec::into_boxed_slice
431#[stable(feature = "rust1", since = "1.0.0")]
432#[rustc_diagnostic_item = "Vec"]
433#[rustc_insignificant_dtor]
434pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
435 buf: RawVec<T, A>,
436 len: usize,
437}
438
439////////////////////////////////////////////////////////////////////////////////
440// Inherent methods
441////////////////////////////////////////////////////////////////////////////////
442
443impl<T> Vec<T> {
444 /// Constructs a new, empty `Vec<T>`.
445 ///
446 /// The vector will not allocate until elements are pushed onto it.
447 ///
448 /// # Examples
449 ///
450 /// ```
451 /// # #![allow(unused_mut)]
452 /// let mut vec: Vec<i32> = Vec::new();
453 /// ```
454 #[inline]
455 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
456 #[rustc_diagnostic_item = "vec_new"]
457 #[stable(feature = "rust1", since = "1.0.0")]
458 #[must_use]
459 pub const fn new() -> Self {
460 Vec { buf: RawVec::new(), len: 0 }
461 }
462
463 /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
464 ///
465 /// The vector will be able to hold at least `capacity` elements without
466 /// reallocating. This method is allowed to allocate for more elements than
467 /// `capacity`. If `capacity` is zero, the vector will not allocate.
468 ///
469 /// It is important to note that although the returned vector has the
470 /// minimum *capacity* specified, the vector will have a zero *length*. For
471 /// an explanation of the difference between length and capacity, see
472 /// *[Capacity and reallocation]*.
473 ///
474 /// If it is important to know the exact allocated capacity of a `Vec`,
475 /// always use the [`capacity`] method after construction.
476 ///
477 /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
478 /// and the capacity will always be `usize::MAX`.
479 ///
480 /// [Capacity and reallocation]: #capacity-and-reallocation
481 /// [`capacity`]: Vec::capacity
482 ///
483 /// # Panics
484 ///
485 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
486 ///
487 /// # Examples
488 ///
489 /// ```
490 /// let mut vec = Vec::with_capacity(10);
491 ///
492 /// // The vector contains no items, even though it has capacity for more
493 /// assert_eq!(vec.len(), 0);
494 /// assert!(vec.capacity() >= 10);
495 ///
496 /// // These are all done without reallocating...
497 /// for i in 0..10 {
498 /// vec.push(i);
499 /// }
500 /// assert_eq!(vec.len(), 10);
501 /// assert!(vec.capacity() >= 10);
502 ///
503 /// // ...but this may make the vector reallocate
504 /// vec.push(11);
505 /// assert_eq!(vec.len(), 11);
506 /// assert!(vec.capacity() >= 11);
507 ///
508 /// // A vector of a zero-sized type will always over-allocate, since no
509 /// // allocation is necessary
510 /// let vec_units = Vec::<()>::with_capacity(10);
511 /// assert_eq!(vec_units.capacity(), usize::MAX);
512 /// ```
513 #[cfg(not(no_global_oom_handling))]
514 #[inline]
515 #[stable(feature = "rust1", since = "1.0.0")]
516 #[must_use]
517 #[rustc_diagnostic_item = "vec_with_capacity"]
518 #[track_caller]
519 pub fn with_capacity(capacity: usize) -> Self {
520 Self::with_capacity_in(capacity, Global)
521 }
522
523 /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
524 ///
525 /// The vector will be able to hold at least `capacity` elements without
526 /// reallocating. This method is allowed to allocate for more elements than
527 /// `capacity`. If `capacity` is zero, the vector will not allocate.
528 ///
529 /// # Errors
530 ///
531 /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
532 /// or if the allocator reports allocation failure.
533 #[inline]
534 #[unstable(feature = "try_with_capacity", issue = "91913")]
535 pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
536 Self::try_with_capacity_in(capacity, Global)
537 }
538
539 /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
540 ///
541 /// # Safety
542 ///
543 /// This is highly unsafe, due to the number of invariants that aren't
544 /// checked:
545 ///
546 /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
547 /// been allocated using the global allocator, such as via the [`alloc::alloc`]
548 /// function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
549 /// only be non-null and aligned.
550 /// * `T` needs to have the same alignment as what `ptr` was allocated with,
551 /// if the pointer is required to be allocated.
552 /// (`T` having a less strict alignment is not sufficient, the alignment really
553 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
554 /// allocated and deallocated with the same layout.)
555 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
556 /// nonzero, needs to be the same size as the pointer was allocated with.
557 /// (Because similar to alignment, [`dealloc`] must be called with the same
558 /// layout `size`.)
559 /// * `length` needs to be less than or equal to `capacity`.
560 /// * The first `length` values must be properly initialized values of type `T`.
561 /// * `capacity` needs to be the capacity that the pointer was allocated with,
562 /// if the pointer is required to be allocated.
563 /// * The allocated size in bytes must be no larger than `isize::MAX`.
564 /// See the safety documentation of [`pointer::offset`].
565 ///
566 /// These requirements are always upheld by any `ptr` that has been allocated
567 /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
568 /// upheld.
569 ///
570 /// Violating these may cause problems like corrupting the allocator's
571 /// internal data structures. For example it is normally **not** safe
572 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
573 /// `size_t`, doing so is only safe if the array was initially allocated by
574 /// a `Vec` or `String`.
575 /// It's also not safe to build one from a `Vec<u16>` and its length, because
576 /// the allocator cares about the alignment, and these two types have different
577 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
578 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
579 /// these issues, it is often preferable to do casting/transmuting using
580 /// [`slice::from_raw_parts`] instead.
581 ///
582 /// The ownership of `ptr` is effectively transferred to the
583 /// `Vec<T>` which may then deallocate, reallocate or change the
584 /// contents of memory pointed to by the pointer at will. Ensure
585 /// that nothing else uses the pointer after calling this
586 /// function.
587 ///
588 /// [`String`]: crate::string::String
589 /// [`alloc::alloc`]: crate::alloc::alloc
590 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
591 ///
592 /// # Examples
593 ///
594 // FIXME Update this when vec_into_raw_parts is stabilized
595 /// ```
596 /// use std::ptr;
597 /// use std::mem;
598 ///
599 /// let v = vec![1, 2, 3];
600 ///
601 /// // Prevent running `v`'s destructor so we are in complete control
602 /// // of the allocation.
603 /// let mut v = mem::ManuallyDrop::new(v);
604 ///
605 /// // Pull out the various important pieces of information about `v`
606 /// let p = v.as_mut_ptr();
607 /// let len = v.len();
608 /// let cap = v.capacity();
609 ///
610 /// unsafe {
611 /// // Overwrite memory with 4, 5, 6
612 /// for i in 0..len {
613 /// ptr::write(p.add(i), 4 + i);
614 /// }
615 ///
616 /// // Put everything back together into a Vec
617 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
618 /// assert_eq!(rebuilt, [4, 5, 6]);
619 /// }
620 /// ```
621 ///
622 /// Using memory that was allocated elsewhere:
623 ///
624 /// ```rust
625 /// use std::alloc::{alloc, Layout};
626 ///
627 /// fn main() {
628 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
629 ///
630 /// let vec = unsafe {
631 /// let mem = alloc(layout).cast::<u32>();
632 /// if mem.is_null() {
633 /// return;
634 /// }
635 ///
636 /// mem.write(1_000_000);
637 ///
638 /// Vec::from_raw_parts(mem, 1, 16)
639 /// };
640 ///
641 /// assert_eq!(vec, &[1_000_000]);
642 /// assert_eq!(vec.capacity(), 16);
643 /// }
644 /// ```
645 #[inline]
646 #[stable(feature = "rust1", since = "1.0.0")]
647 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
648 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
649 }
650
651 #[doc(alias = "from_non_null_parts")]
652 /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
653 ///
654 /// # Safety
655 ///
656 /// This is highly unsafe, due to the number of invariants that aren't
657 /// checked:
658 ///
659 /// * `ptr` must have been allocated using the global allocator, such as via
660 /// the [`alloc::alloc`] function.
661 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
662 /// (`T` having a less strict alignment is not sufficient, the alignment really
663 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
664 /// allocated and deallocated with the same layout.)
665 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
666 /// to be the same size as the pointer was allocated with. (Because similar to
667 /// alignment, [`dealloc`] must be called with the same layout `size`.)
668 /// * `length` needs to be less than or equal to `capacity`.
669 /// * The first `length` values must be properly initialized values of type `T`.
670 /// * `capacity` needs to be the capacity that the pointer was allocated with.
671 /// * The allocated size in bytes must be no larger than `isize::MAX`.
672 /// See the safety documentation of [`pointer::offset`].
673 ///
674 /// These requirements are always upheld by any `ptr` that has been allocated
675 /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
676 /// upheld.
677 ///
678 /// Violating these may cause problems like corrupting the allocator's
679 /// internal data structures. For example it is normally **not** safe
680 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
681 /// `size_t`, doing so is only safe if the array was initially allocated by
682 /// a `Vec` or `String`.
683 /// It's also not safe to build one from a `Vec<u16>` and its length, because
684 /// the allocator cares about the alignment, and these two types have different
685 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
686 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
687 /// these issues, it is often preferable to do casting/transmuting using
688 /// [`NonNull::slice_from_raw_parts`] instead.
689 ///
690 /// The ownership of `ptr` is effectively transferred to the
691 /// `Vec<T>` which may then deallocate, reallocate or change the
692 /// contents of memory pointed to by the pointer at will. Ensure
693 /// that nothing else uses the pointer after calling this
694 /// function.
695 ///
696 /// [`String`]: crate::string::String
697 /// [`alloc::alloc`]: crate::alloc::alloc
698 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
699 ///
700 /// # Examples
701 ///
702 // FIXME Update this when vec_into_raw_parts is stabilized
703 /// ```
704 /// #![feature(box_vec_non_null)]
705 ///
706 /// use std::ptr::NonNull;
707 /// use std::mem;
708 ///
709 /// let v = vec![1, 2, 3];
710 ///
711 /// // Prevent running `v`'s destructor so we are in complete control
712 /// // of the allocation.
713 /// let mut v = mem::ManuallyDrop::new(v);
714 ///
715 /// // Pull out the various important pieces of information about `v`
716 /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
717 /// let len = v.len();
718 /// let cap = v.capacity();
719 ///
720 /// unsafe {
721 /// // Overwrite memory with 4, 5, 6
722 /// for i in 0..len {
723 /// p.add(i).write(4 + i);
724 /// }
725 ///
726 /// // Put everything back together into a Vec
727 /// let rebuilt = Vec::from_parts(p, len, cap);
728 /// assert_eq!(rebuilt, [4, 5, 6]);
729 /// }
730 /// ```
731 ///
732 /// Using memory that was allocated elsewhere:
733 ///
734 /// ```rust
735 /// #![feature(box_vec_non_null)]
736 ///
737 /// use std::alloc::{alloc, Layout};
738 /// use std::ptr::NonNull;
739 ///
740 /// fn main() {
741 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
742 ///
743 /// let vec = unsafe {
744 /// let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
745 /// return;
746 /// };
747 ///
748 /// mem.write(1_000_000);
749 ///
750 /// Vec::from_parts(mem, 1, 16)
751 /// };
752 ///
753 /// assert_eq!(vec, &[1_000_000]);
754 /// assert_eq!(vec.capacity(), 16);
755 /// }
756 /// ```
757 #[inline]
758 #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
759 pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
760 unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
761 }
762
763 /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
764 ///
765 /// Returns the raw pointer to the underlying data, the length of
766 /// the vector (in elements), and the allocated capacity of the
767 /// data (in elements). These are the same arguments in the same
768 /// order as the arguments to [`from_raw_parts`].
769 ///
770 /// After calling this function, the caller is responsible for the
771 /// memory previously managed by the `Vec`. Most often, one does
772 /// this by converting the raw pointer, length, and capacity back
773 /// into a `Vec` with the [`from_raw_parts`] function; more generally,
774 /// if `T` is non-zero-sized and the capacity is nonzero, one may use
775 /// any method that calls [`dealloc`] with a layout of
776 /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
777 /// capacity is zero, nothing needs to be done.
778 ///
779 /// [`from_raw_parts`]: Vec::from_raw_parts
780 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
781 ///
782 /// # Examples
783 ///
784 /// ```
785 /// #![feature(vec_into_raw_parts)]
786 /// let v: Vec<i32> = vec![-1, 0, 1];
787 ///
788 /// let (ptr, len, cap) = v.into_raw_parts();
789 ///
790 /// let rebuilt = unsafe {
791 /// // We can now make changes to the components, such as
792 /// // transmuting the raw pointer to a compatible type.
793 /// let ptr = ptr as *mut u32;
794 ///
795 /// Vec::from_raw_parts(ptr, len, cap)
796 /// };
797 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
798 /// ```
799 #[must_use = "losing the pointer will leak memory"]
800 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
801 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
802 let mut me = ManuallyDrop::new(self);
803 (me.as_mut_ptr(), me.len(), me.capacity())
804 }
805
806 #[doc(alias = "into_non_null_parts")]
807 /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
808 ///
809 /// Returns the `NonNull` pointer to the underlying data, the length of
810 /// the vector (in elements), and the allocated capacity of the
811 /// data (in elements). These are the same arguments in the same
812 /// order as the arguments to [`from_parts`].
813 ///
814 /// After calling this function, the caller is responsible for the
815 /// memory previously managed by the `Vec`. The only way to do
816 /// this is to convert the `NonNull` pointer, length, and capacity back
817 /// into a `Vec` with the [`from_parts`] function, allowing
818 /// the destructor to perform the cleanup.
819 ///
820 /// [`from_parts`]: Vec::from_parts
821 ///
822 /// # Examples
823 ///
824 /// ```
825 /// #![feature(vec_into_raw_parts, box_vec_non_null)]
826 ///
827 /// let v: Vec<i32> = vec![-1, 0, 1];
828 ///
829 /// let (ptr, len, cap) = v.into_parts();
830 ///
831 /// let rebuilt = unsafe {
832 /// // We can now make changes to the components, such as
833 /// // transmuting the raw pointer to a compatible type.
834 /// let ptr = ptr.cast::<u32>();
835 ///
836 /// Vec::from_parts(ptr, len, cap)
837 /// };
838 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
839 /// ```
840 #[must_use = "losing the pointer will leak memory"]
841 #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
842 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
843 pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
844 let (ptr, len, capacity) = self.into_raw_parts();
845 // SAFETY: A `Vec` always has a non-null pointer.
846 (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
847 }
848}
849
850impl<T, A: Allocator> Vec<T, A> {
851 /// Constructs a new, empty `Vec<T, A>`.
852 ///
853 /// The vector will not allocate until elements are pushed onto it.
854 ///
855 /// # Examples
856 ///
857 /// ```
858 /// #![feature(allocator_api)]
859 ///
860 /// use std::alloc::System;
861 ///
862 /// # #[allow(unused_mut)]
863 /// let mut vec: Vec<i32, _> = Vec::new_in(System);
864 /// ```
865 #[inline]
866 #[unstable(feature = "allocator_api", issue = "32838")]
867 pub const fn new_in(alloc: A) -> Self {
868 Vec { buf: RawVec::new_in(alloc), len: 0 }
869 }
870
871 /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
872 /// with the provided allocator.
873 ///
874 /// The vector will be able to hold at least `capacity` elements without
875 /// reallocating. This method is allowed to allocate for more elements than
876 /// `capacity`. If `capacity` is zero, the vector will not allocate.
877 ///
878 /// It is important to note that although the returned vector has the
879 /// minimum *capacity* specified, the vector will have a zero *length*. For
880 /// an explanation of the difference between length and capacity, see
881 /// *[Capacity and reallocation]*.
882 ///
883 /// If it is important to know the exact allocated capacity of a `Vec`,
884 /// always use the [`capacity`] method after construction.
885 ///
886 /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
887 /// and the capacity will always be `usize::MAX`.
888 ///
889 /// [Capacity and reallocation]: #capacity-and-reallocation
890 /// [`capacity`]: Vec::capacity
891 ///
892 /// # Panics
893 ///
894 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
895 ///
896 /// # Examples
897 ///
898 /// ```
899 /// #![feature(allocator_api)]
900 ///
901 /// use std::alloc::System;
902 ///
903 /// let mut vec = Vec::with_capacity_in(10, System);
904 ///
905 /// // The vector contains no items, even though it has capacity for more
906 /// assert_eq!(vec.len(), 0);
907 /// assert!(vec.capacity() >= 10);
908 ///
909 /// // These are all done without reallocating...
910 /// for i in 0..10 {
911 /// vec.push(i);
912 /// }
913 /// assert_eq!(vec.len(), 10);
914 /// assert!(vec.capacity() >= 10);
915 ///
916 /// // ...but this may make the vector reallocate
917 /// vec.push(11);
918 /// assert_eq!(vec.len(), 11);
919 /// assert!(vec.capacity() >= 11);
920 ///
921 /// // A vector of a zero-sized type will always over-allocate, since no
922 /// // allocation is necessary
923 /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
924 /// assert_eq!(vec_units.capacity(), usize::MAX);
925 /// ```
926 #[cfg(not(no_global_oom_handling))]
927 #[inline]
928 #[unstable(feature = "allocator_api", issue = "32838")]
929 #[track_caller]
930 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
931 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
932 }
933
934 /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
935 /// with the provided allocator.
936 ///
937 /// The vector will be able to hold at least `capacity` elements without
938 /// reallocating. This method is allowed to allocate for more elements than
939 /// `capacity`. If `capacity` is zero, the vector will not allocate.
940 ///
941 /// # Errors
942 ///
943 /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
944 /// or if the allocator reports allocation failure.
945 #[inline]
946 #[unstable(feature = "allocator_api", issue = "32838")]
947 // #[unstable(feature = "try_with_capacity", issue = "91913")]
948 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
949 Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
950 }
951
952 /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
953 /// and an allocator.
954 ///
955 /// # Safety
956 ///
957 /// This is highly unsafe, due to the number of invariants that aren't
958 /// checked:
959 ///
960 /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
961 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
962 /// (`T` having a less strict alignment is not sufficient, the alignment really
963 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
964 /// allocated and deallocated with the same layout.)
965 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
966 /// to be the same size as the pointer was allocated with. (Because similar to
967 /// alignment, [`dealloc`] must be called with the same layout `size`.)
968 /// * `length` needs to be less than or equal to `capacity`.
969 /// * The first `length` values must be properly initialized values of type `T`.
970 /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
971 /// * The allocated size in bytes must be no larger than `isize::MAX`.
972 /// See the safety documentation of [`pointer::offset`].
973 ///
974 /// These requirements are always upheld by any `ptr` that has been allocated
975 /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
976 /// upheld.
977 ///
978 /// Violating these may cause problems like corrupting the allocator's
979 /// internal data structures. For example it is **not** safe
980 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
981 /// It's also not safe to build one from a `Vec<u16>` and its length, because
982 /// the allocator cares about the alignment, and these two types have different
983 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
984 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
985 ///
986 /// The ownership of `ptr` is effectively transferred to the
987 /// `Vec<T>` which may then deallocate, reallocate or change the
988 /// contents of memory pointed to by the pointer at will. Ensure
989 /// that nothing else uses the pointer after calling this
990 /// function.
991 ///
992 /// [`String`]: crate::string::String
993 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
994 /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
995 /// [*fit*]: crate::alloc::Allocator#memory-fitting
996 ///
997 /// # Examples
998 ///
999 // FIXME Update this when vec_into_raw_parts is stabilized
1000 /// ```
1001 /// #![feature(allocator_api)]
1002 ///
1003 /// use std::alloc::System;
1004 ///
1005 /// use std::ptr;
1006 /// use std::mem;
1007 ///
1008 /// let mut v = Vec::with_capacity_in(3, System);
1009 /// v.push(1);
1010 /// v.push(2);
1011 /// v.push(3);
1012 ///
1013 /// // Prevent running `v`'s destructor so we are in complete control
1014 /// // of the allocation.
1015 /// let mut v = mem::ManuallyDrop::new(v);
1016 ///
1017 /// // Pull out the various important pieces of information about `v`
1018 /// let p = v.as_mut_ptr();
1019 /// let len = v.len();
1020 /// let cap = v.capacity();
1021 /// let alloc = v.allocator();
1022 ///
1023 /// unsafe {
1024 /// // Overwrite memory with 4, 5, 6
1025 /// for i in 0..len {
1026 /// ptr::write(p.add(i), 4 + i);
1027 /// }
1028 ///
1029 /// // Put everything back together into a Vec
1030 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1031 /// assert_eq!(rebuilt, [4, 5, 6]);
1032 /// }
1033 /// ```
1034 ///
1035 /// Using memory that was allocated elsewhere:
1036 ///
1037 /// ```rust
1038 /// #![feature(allocator_api)]
1039 ///
1040 /// use std::alloc::{AllocError, Allocator, Global, Layout};
1041 ///
1042 /// fn main() {
1043 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1044 ///
1045 /// let vec = unsafe {
1046 /// let mem = match Global.allocate(layout) {
1047 /// Ok(mem) => mem.cast::<u32>().as_ptr(),
1048 /// Err(AllocError) => return,
1049 /// };
1050 ///
1051 /// mem.write(1_000_000);
1052 ///
1053 /// Vec::from_raw_parts_in(mem, 1, 16, Global)
1054 /// };
1055 ///
1056 /// assert_eq!(vec, &[1_000_000]);
1057 /// assert_eq!(vec.capacity(), 16);
1058 /// }
1059 /// ```
1060 #[inline]
1061 #[unstable(feature = "allocator_api", issue = "32838")]
1062 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1063 ub_checks::assert_unsafe_precondition!(
1064 check_library_ub,
1065 "Vec::from_raw_parts_in requires that length <= capacity",
1066 (length: usize = length, capacity: usize = capacity) => length <= capacity
1067 );
1068 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1069 }
1070
1071 #[doc(alias = "from_non_null_parts_in")]
1072 /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1073 /// and an allocator.
1074 ///
1075 /// # Safety
1076 ///
1077 /// This is highly unsafe, due to the number of invariants that aren't
1078 /// checked:
1079 ///
1080 /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1081 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1082 /// (`T` having a less strict alignment is not sufficient, the alignment really
1083 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1084 /// allocated and deallocated with the same layout.)
1085 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1086 /// to be the same size as the pointer was allocated with. (Because similar to
1087 /// alignment, [`dealloc`] must be called with the same layout `size`.)
1088 /// * `length` needs to be less than or equal to `capacity`.
1089 /// * The first `length` values must be properly initialized values of type `T`.
1090 /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1091 /// * The allocated size in bytes must be no larger than `isize::MAX`.
1092 /// See the safety documentation of [`pointer::offset`].
1093 ///
1094 /// These requirements are always upheld by any `ptr` that has been allocated
1095 /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1096 /// upheld.
1097 ///
1098 /// Violating these may cause problems like corrupting the allocator's
1099 /// internal data structures. For example it is **not** safe
1100 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1101 /// It's also not safe to build one from a `Vec<u16>` and its length, because
1102 /// the allocator cares about the alignment, and these two types have different
1103 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1104 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1105 ///
1106 /// The ownership of `ptr` is effectively transferred to the
1107 /// `Vec<T>` which may then deallocate, reallocate or change the
1108 /// contents of memory pointed to by the pointer at will. Ensure
1109 /// that nothing else uses the pointer after calling this
1110 /// function.
1111 ///
1112 /// [`String`]: crate::string::String
1113 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1114 /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1115 /// [*fit*]: crate::alloc::Allocator#memory-fitting
1116 ///
1117 /// # Examples
1118 ///
1119 // FIXME Update this when vec_into_raw_parts is stabilized
1120 /// ```
1121 /// #![feature(allocator_api, box_vec_non_null)]
1122 ///
1123 /// use std::alloc::System;
1124 ///
1125 /// use std::ptr::NonNull;
1126 /// use std::mem;
1127 ///
1128 /// let mut v = Vec::with_capacity_in(3, System);
1129 /// v.push(1);
1130 /// v.push(2);
1131 /// v.push(3);
1132 ///
1133 /// // Prevent running `v`'s destructor so we are in complete control
1134 /// // of the allocation.
1135 /// let mut v = mem::ManuallyDrop::new(v);
1136 ///
1137 /// // Pull out the various important pieces of information about `v`
1138 /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
1139 /// let len = v.len();
1140 /// let cap = v.capacity();
1141 /// let alloc = v.allocator();
1142 ///
1143 /// unsafe {
1144 /// // Overwrite memory with 4, 5, 6
1145 /// for i in 0..len {
1146 /// p.add(i).write(4 + i);
1147 /// }
1148 ///
1149 /// // Put everything back together into a Vec
1150 /// let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1151 /// assert_eq!(rebuilt, [4, 5, 6]);
1152 /// }
1153 /// ```
1154 ///
1155 /// Using memory that was allocated elsewhere:
1156 ///
1157 /// ```rust
1158 /// #![feature(allocator_api, box_vec_non_null)]
1159 ///
1160 /// use std::alloc::{AllocError, Allocator, Global, Layout};
1161 ///
1162 /// fn main() {
1163 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1164 ///
1165 /// let vec = unsafe {
1166 /// let mem = match Global.allocate(layout) {
1167 /// Ok(mem) => mem.cast::<u32>(),
1168 /// Err(AllocError) => return,
1169 /// };
1170 ///
1171 /// mem.write(1_000_000);
1172 ///
1173 /// Vec::from_parts_in(mem, 1, 16, Global)
1174 /// };
1175 ///
1176 /// assert_eq!(vec, &[1_000_000]);
1177 /// assert_eq!(vec.capacity(), 16);
1178 /// }
1179 /// ```
1180 #[inline]
1181 #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1182 // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1183 pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1184 ub_checks::assert_unsafe_precondition!(
1185 check_library_ub,
1186 "Vec::from_parts_in requires that length <= capacity",
1187 (length: usize = length, capacity: usize = capacity) => length <= capacity
1188 );
1189 unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1190 }
1191
1192 /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1193 ///
1194 /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1195 /// the allocated capacity of the data (in elements), and the allocator. These are the same
1196 /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1197 ///
1198 /// After calling this function, the caller is responsible for the
1199 /// memory previously managed by the `Vec`. The only way to do
1200 /// this is to convert the raw pointer, length, and capacity back
1201 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1202 /// the destructor to perform the cleanup.
1203 ///
1204 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1205 ///
1206 /// # Examples
1207 ///
1208 /// ```
1209 /// #![feature(allocator_api, vec_into_raw_parts)]
1210 ///
1211 /// use std::alloc::System;
1212 ///
1213 /// let mut v: Vec<i32, System> = Vec::new_in(System);
1214 /// v.push(-1);
1215 /// v.push(0);
1216 /// v.push(1);
1217 ///
1218 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1219 ///
1220 /// let rebuilt = unsafe {
1221 /// // We can now make changes to the components, such as
1222 /// // transmuting the raw pointer to a compatible type.
1223 /// let ptr = ptr as *mut u32;
1224 ///
1225 /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
1226 /// };
1227 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1228 /// ```
1229 #[must_use = "losing the pointer will leak memory"]
1230 #[unstable(feature = "allocator_api", issue = "32838")]
1231 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1232 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1233 let mut me = ManuallyDrop::new(self);
1234 let len = me.len();
1235 let capacity = me.capacity();
1236 let ptr = me.as_mut_ptr();
1237 let alloc = unsafe { ptr::read(me.allocator()) };
1238 (ptr, len, capacity, alloc)
1239 }
1240
1241 #[doc(alias = "into_non_null_parts_with_alloc")]
1242 /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1243 ///
1244 /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1245 /// the allocated capacity of the data (in elements), and the allocator. These are the same
1246 /// arguments in the same order as the arguments to [`from_parts_in`].
1247 ///
1248 /// After calling this function, the caller is responsible for the
1249 /// memory previously managed by the `Vec`. The only way to do
1250 /// this is to convert the `NonNull` pointer, length, and capacity back
1251 /// into a `Vec` with the [`from_parts_in`] function, allowing
1252 /// the destructor to perform the cleanup.
1253 ///
1254 /// [`from_parts_in`]: Vec::from_parts_in
1255 ///
1256 /// # Examples
1257 ///
1258 /// ```
1259 /// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)]
1260 ///
1261 /// use std::alloc::System;
1262 ///
1263 /// let mut v: Vec<i32, System> = Vec::new_in(System);
1264 /// v.push(-1);
1265 /// v.push(0);
1266 /// v.push(1);
1267 ///
1268 /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1269 ///
1270 /// let rebuilt = unsafe {
1271 /// // We can now make changes to the components, such as
1272 /// // transmuting the raw pointer to a compatible type.
1273 /// let ptr = ptr.cast::<u32>();
1274 ///
1275 /// Vec::from_parts_in(ptr, len, cap, alloc)
1276 /// };
1277 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1278 /// ```
1279 #[must_use = "losing the pointer will leak memory"]
1280 #[unstable(feature = "allocator_api", issue = "32838")]
1281 // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1282 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1283 pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1284 let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1285 // SAFETY: A `Vec` always has a non-null pointer.
1286 (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1287 }
1288
1289 /// Returns the total number of elements the vector can hold without
1290 /// reallocating.
1291 ///
1292 /// # Examples
1293 ///
1294 /// ```
1295 /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1296 /// vec.push(42);
1297 /// assert!(vec.capacity() >= 10);
1298 /// ```
1299 ///
1300 /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1301 ///
1302 /// ```
1303 /// #[derive(Clone)]
1304 /// struct ZeroSized;
1305 ///
1306 /// fn main() {
1307 /// assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1308 /// let v = vec![ZeroSized; 0];
1309 /// assert_eq!(v.capacity(), usize::MAX);
1310 /// }
1311 /// ```
1312 #[inline]
1313 #[stable(feature = "rust1", since = "1.0.0")]
1314 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1315 pub const fn capacity(&self) -> usize {
1316 self.buf.capacity()
1317 }
1318
1319 /// Reserves capacity for at least `additional` more elements to be inserted
1320 /// in the given `Vec<T>`. The collection may reserve more space to
1321 /// speculatively avoid frequent reallocations. After calling `reserve`,
1322 /// capacity will be greater than or equal to `self.len() + additional`.
1323 /// Does nothing if capacity is already sufficient.
1324 ///
1325 /// # Panics
1326 ///
1327 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1328 ///
1329 /// # Examples
1330 ///
1331 /// ```
1332 /// let mut vec = vec![1];
1333 /// vec.reserve(10);
1334 /// assert!(vec.capacity() >= 11);
1335 /// ```
1336 #[cfg(not(no_global_oom_handling))]
1337 #[stable(feature = "rust1", since = "1.0.0")]
1338 #[track_caller]
1339 #[rustc_diagnostic_item = "vec_reserve"]
1340 pub fn reserve(&mut self, additional: usize) {
1341 self.buf.reserve(self.len, additional);
1342 }
1343
1344 /// Reserves the minimum capacity for at least `additional` more elements to
1345 /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1346 /// deliberately over-allocate to speculatively avoid frequent allocations.
1347 /// After calling `reserve_exact`, capacity will be greater than or equal to
1348 /// `self.len() + additional`. Does nothing if the capacity is already
1349 /// sufficient.
1350 ///
1351 /// Note that the allocator may give the collection more space than it
1352 /// requests. Therefore, capacity can not be relied upon to be precisely
1353 /// minimal. Prefer [`reserve`] if future insertions are expected.
1354 ///
1355 /// [`reserve`]: Vec::reserve
1356 ///
1357 /// # Panics
1358 ///
1359 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1360 ///
1361 /// # Examples
1362 ///
1363 /// ```
1364 /// let mut vec = vec![1];
1365 /// vec.reserve_exact(10);
1366 /// assert!(vec.capacity() >= 11);
1367 /// ```
1368 #[cfg(not(no_global_oom_handling))]
1369 #[stable(feature = "rust1", since = "1.0.0")]
1370 #[track_caller]
1371 pub fn reserve_exact(&mut self, additional: usize) {
1372 self.buf.reserve_exact(self.len, additional);
1373 }
1374
1375 /// Tries to reserve capacity for at least `additional` more elements to be inserted
1376 /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1377 /// frequent reallocations. After calling `try_reserve`, capacity will be
1378 /// greater than or equal to `self.len() + additional` if it returns
1379 /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1380 /// preserves the contents even if an error occurs.
1381 ///
1382 /// # Errors
1383 ///
1384 /// If the capacity overflows, or the allocator reports a failure, then an error
1385 /// is returned.
1386 ///
1387 /// # Examples
1388 ///
1389 /// ```
1390 /// use std::collections::TryReserveError;
1391 ///
1392 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1393 /// let mut output = Vec::new();
1394 ///
1395 /// // Pre-reserve the memory, exiting if we can't
1396 /// output.try_reserve(data.len())?;
1397 ///
1398 /// // Now we know this can't OOM in the middle of our complex work
1399 /// output.extend(data.iter().map(|&val| {
1400 /// val * 2 + 5 // very complicated
1401 /// }));
1402 ///
1403 /// Ok(output)
1404 /// }
1405 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1406 /// ```
1407 #[stable(feature = "try_reserve", since = "1.57.0")]
1408 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1409 self.buf.try_reserve(self.len, additional)
1410 }
1411
1412 /// Tries to reserve the minimum capacity for at least `additional`
1413 /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1414 /// this will not deliberately over-allocate to speculatively avoid frequent
1415 /// allocations. After calling `try_reserve_exact`, capacity will be greater
1416 /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1417 /// Does nothing if the capacity is already sufficient.
1418 ///
1419 /// Note that the allocator may give the collection more space than it
1420 /// requests. Therefore, capacity can not be relied upon to be precisely
1421 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1422 ///
1423 /// [`try_reserve`]: Vec::try_reserve
1424 ///
1425 /// # Errors
1426 ///
1427 /// If the capacity overflows, or the allocator reports a failure, then an error
1428 /// is returned.
1429 ///
1430 /// # Examples
1431 ///
1432 /// ```
1433 /// use std::collections::TryReserveError;
1434 ///
1435 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1436 /// let mut output = Vec::new();
1437 ///
1438 /// // Pre-reserve the memory, exiting if we can't
1439 /// output.try_reserve_exact(data.len())?;
1440 ///
1441 /// // Now we know this can't OOM in the middle of our complex work
1442 /// output.extend(data.iter().map(|&val| {
1443 /// val * 2 + 5 // very complicated
1444 /// }));
1445 ///
1446 /// Ok(output)
1447 /// }
1448 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1449 /// ```
1450 #[stable(feature = "try_reserve", since = "1.57.0")]
1451 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1452 self.buf.try_reserve_exact(self.len, additional)
1453 }
1454
1455 /// Shrinks the capacity of the vector as much as possible.
1456 ///
1457 /// The behavior of this method depends on the allocator, which may either shrink the vector
1458 /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1459 /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1460 ///
1461 /// [`with_capacity`]: Vec::with_capacity
1462 ///
1463 /// # Examples
1464 ///
1465 /// ```
1466 /// let mut vec = Vec::with_capacity(10);
1467 /// vec.extend([1, 2, 3]);
1468 /// assert!(vec.capacity() >= 10);
1469 /// vec.shrink_to_fit();
1470 /// assert!(vec.capacity() >= 3);
1471 /// ```
1472 #[cfg(not(no_global_oom_handling))]
1473 #[stable(feature = "rust1", since = "1.0.0")]
1474 #[track_caller]
1475 #[inline]
1476 pub fn shrink_to_fit(&mut self) {
1477 // The capacity is never less than the length, and there's nothing to do when
1478 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1479 // by only calling it with a greater capacity.
1480 if self.capacity() > self.len {
1481 self.buf.shrink_to_fit(self.len);
1482 }
1483 }
1484
1485 /// Shrinks the capacity of the vector with a lower bound.
1486 ///
1487 /// The capacity will remain at least as large as both the length
1488 /// and the supplied value.
1489 ///
1490 /// If the current capacity is less than the lower limit, this is a no-op.
1491 ///
1492 /// # Examples
1493 ///
1494 /// ```
1495 /// let mut vec = Vec::with_capacity(10);
1496 /// vec.extend([1, 2, 3]);
1497 /// assert!(vec.capacity() >= 10);
1498 /// vec.shrink_to(4);
1499 /// assert!(vec.capacity() >= 4);
1500 /// vec.shrink_to(0);
1501 /// assert!(vec.capacity() >= 3);
1502 /// ```
1503 #[cfg(not(no_global_oom_handling))]
1504 #[stable(feature = "shrink_to", since = "1.56.0")]
1505 #[track_caller]
1506 pub fn shrink_to(&mut self, min_capacity: usize) {
1507 if self.capacity() > min_capacity {
1508 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1509 }
1510 }
1511
1512 /// Converts the vector into [`Box<[T]>`][owned slice].
1513 ///
1514 /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1515 ///
1516 /// [owned slice]: Box
1517 /// [`shrink_to_fit`]: Vec::shrink_to_fit
1518 ///
1519 /// # Examples
1520 ///
1521 /// ```
1522 /// let v = vec![1, 2, 3];
1523 ///
1524 /// let slice = v.into_boxed_slice();
1525 /// ```
1526 ///
1527 /// Any excess capacity is removed:
1528 ///
1529 /// ```
1530 /// let mut vec = Vec::with_capacity(10);
1531 /// vec.extend([1, 2, 3]);
1532 ///
1533 /// assert!(vec.capacity() >= 10);
1534 /// let slice = vec.into_boxed_slice();
1535 /// assert_eq!(slice.into_vec().capacity(), 3);
1536 /// ```
1537 #[cfg(not(no_global_oom_handling))]
1538 #[stable(feature = "rust1", since = "1.0.0")]
1539 #[track_caller]
1540 pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1541 unsafe {
1542 self.shrink_to_fit();
1543 let me = ManuallyDrop::new(self);
1544 let buf = ptr::read(&me.buf);
1545 let len = me.len();
1546 buf.into_box(len).assume_init()
1547 }
1548 }
1549
1550 /// Shortens the vector, keeping the first `len` elements and dropping
1551 /// the rest.
1552 ///
1553 /// If `len` is greater or equal to the vector's current length, this has
1554 /// no effect.
1555 ///
1556 /// The [`drain`] method can emulate `truncate`, but causes the excess
1557 /// elements to be returned instead of dropped.
1558 ///
1559 /// Note that this method has no effect on the allocated capacity
1560 /// of the vector.
1561 ///
1562 /// # Examples
1563 ///
1564 /// Truncating a five element vector to two elements:
1565 ///
1566 /// ```
1567 /// let mut vec = vec![1, 2, 3, 4, 5];
1568 /// vec.truncate(2);
1569 /// assert_eq!(vec, [1, 2]);
1570 /// ```
1571 ///
1572 /// No truncation occurs when `len` is greater than the vector's current
1573 /// length:
1574 ///
1575 /// ```
1576 /// let mut vec = vec![1, 2, 3];
1577 /// vec.truncate(8);
1578 /// assert_eq!(vec, [1, 2, 3]);
1579 /// ```
1580 ///
1581 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1582 /// method.
1583 ///
1584 /// ```
1585 /// let mut vec = vec![1, 2, 3];
1586 /// vec.truncate(0);
1587 /// assert_eq!(vec, []);
1588 /// ```
1589 ///
1590 /// [`clear`]: Vec::clear
1591 /// [`drain`]: Vec::drain
1592 #[stable(feature = "rust1", since = "1.0.0")]
1593 pub fn truncate(&mut self, len: usize) {
1594 // This is safe because:
1595 //
1596 // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1597 // case avoids creating an invalid slice, and
1598 // * the `len` of the vector is shrunk before calling `drop_in_place`,
1599 // such that no value will be dropped twice in case `drop_in_place`
1600 // were to panic once (if it panics twice, the program aborts).
1601 unsafe {
1602 // Note: It's intentional that this is `>` and not `>=`.
1603 // Changing it to `>=` has negative performance
1604 // implications in some cases. See #78884 for more.
1605 if len > self.len {
1606 return;
1607 }
1608 let remaining_len = self.len - len;
1609 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1610 self.len = len;
1611 ptr::drop_in_place(s);
1612 }
1613 }
1614
1615 /// Extracts a slice containing the entire vector.
1616 ///
1617 /// Equivalent to `&s[..]`.
1618 ///
1619 /// # Examples
1620 ///
1621 /// ```
1622 /// use std::io::{self, Write};
1623 /// let buffer = vec![1, 2, 3, 5, 8];
1624 /// io::sink().write(buffer.as_slice()).unwrap();
1625 /// ```
1626 #[inline]
1627 #[stable(feature = "vec_as_slice", since = "1.7.0")]
1628 #[rustc_diagnostic_item = "vec_as_slice"]
1629 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1630 pub const fn as_slice(&self) -> &[T] {
1631 // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1632 // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1633 // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1634 // "wrap" through overflowing memory addresses.
1635 //
1636 // * Vec API guarantees that self.buf:
1637 // * contains only properly-initialized items within 0..len
1638 // * is aligned, contiguous, and valid for `len` reads
1639 // * obeys size and address-wrapping constraints
1640 //
1641 // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1642 // check ensures that it is not possible to mutably alias `self.buf` within the
1643 // returned lifetime.
1644 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1645 }
1646
1647 /// Extracts a mutable slice of the entire vector.
1648 ///
1649 /// Equivalent to `&mut s[..]`.
1650 ///
1651 /// # Examples
1652 ///
1653 /// ```
1654 /// use std::io::{self, Read};
1655 /// let mut buffer = vec![0; 3];
1656 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1657 /// ```
1658 #[inline]
1659 #[stable(feature = "vec_as_slice", since = "1.7.0")]
1660 #[rustc_diagnostic_item = "vec_as_mut_slice"]
1661 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1662 pub const fn as_mut_slice(&mut self) -> &mut [T] {
1663 // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1664 // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1665 // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1666 // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1667 //
1668 // * Vec API guarantees that self.buf:
1669 // * contains only properly-initialized items within 0..len
1670 // * is aligned, contiguous, and valid for `len` reads
1671 // * obeys size and address-wrapping constraints
1672 //
1673 // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1674 // borrow-check ensures that it is not possible to construct a reference to `self.buf`
1675 // within the returned lifetime.
1676 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1677 }
1678
1679 /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1680 /// valid for zero sized reads if the vector didn't allocate.
1681 ///
1682 /// The caller must ensure that the vector outlives the pointer this
1683 /// function returns, or else it will end up dangling.
1684 /// Modifying the vector may cause its buffer to be reallocated,
1685 /// which would also make any pointers to it invalid.
1686 ///
1687 /// The caller must also ensure that the memory the pointer (non-transitively) points to
1688 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1689 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1690 ///
1691 /// This method guarantees that for the purpose of the aliasing model, this method
1692 /// does not materialize a reference to the underlying slice, and thus the returned pointer
1693 /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1694 /// and [`as_non_null`].
1695 /// Note that calling other methods that materialize mutable references to the slice,
1696 /// or mutable references to specific elements you are planning on accessing through this pointer,
1697 /// as well as writing to those elements, may still invalidate this pointer.
1698 /// See the second example below for how this guarantee can be used.
1699 ///
1700 ///
1701 /// # Examples
1702 ///
1703 /// ```
1704 /// let x = vec![1, 2, 4];
1705 /// let x_ptr = x.as_ptr();
1706 ///
1707 /// unsafe {
1708 /// for i in 0..x.len() {
1709 /// assert_eq!(*x_ptr.add(i), 1 << i);
1710 /// }
1711 /// }
1712 /// ```
1713 ///
1714 /// Due to the aliasing guarantee, the following code is legal:
1715 ///
1716 /// ```rust
1717 /// unsafe {
1718 /// let mut v = vec![0, 1, 2];
1719 /// let ptr1 = v.as_ptr();
1720 /// let _ = ptr1.read();
1721 /// let ptr2 = v.as_mut_ptr().offset(2);
1722 /// ptr2.write(2);
1723 /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1724 /// // because it mutated a different element:
1725 /// let _ = ptr1.read();
1726 /// }
1727 /// ```
1728 ///
1729 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1730 /// [`as_ptr`]: Vec::as_ptr
1731 /// [`as_non_null`]: Vec::as_non_null
1732 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1733 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1734 #[rustc_never_returns_null_ptr]
1735 #[rustc_as_ptr]
1736 #[inline]
1737 pub const fn as_ptr(&self) -> *const T {
1738 // We shadow the slice method of the same name to avoid going through
1739 // `deref`, which creates an intermediate reference.
1740 self.buf.ptr()
1741 }
1742
1743 /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1744 /// raw pointer valid for zero sized reads if the vector didn't allocate.
1745 ///
1746 /// The caller must ensure that the vector outlives the pointer this
1747 /// function returns, or else it will end up dangling.
1748 /// Modifying the vector may cause its buffer to be reallocated,
1749 /// which would also make any pointers to it invalid.
1750 ///
1751 /// This method guarantees that for the purpose of the aliasing model, this method
1752 /// does not materialize a reference to the underlying slice, and thus the returned pointer
1753 /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1754 /// and [`as_non_null`].
1755 /// Note that calling other methods that materialize references to the slice,
1756 /// or references to specific elements you are planning on accessing through this pointer,
1757 /// may still invalidate this pointer.
1758 /// See the second example below for how this guarantee can be used.
1759 ///
1760 /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1761 /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1762 /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1763 /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1764 /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1765 ///
1766 /// # Examples
1767 ///
1768 /// ```
1769 /// // Allocate vector big enough for 4 elements.
1770 /// let size = 4;
1771 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1772 /// let x_ptr = x.as_mut_ptr();
1773 ///
1774 /// // Initialize elements via raw pointer writes, then set length.
1775 /// unsafe {
1776 /// for i in 0..size {
1777 /// *x_ptr.add(i) = i as i32;
1778 /// }
1779 /// x.set_len(size);
1780 /// }
1781 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1782 /// ```
1783 ///
1784 /// Due to the aliasing guarantee, the following code is legal:
1785 ///
1786 /// ```rust
1787 /// unsafe {
1788 /// let mut v = vec![0];
1789 /// let ptr1 = v.as_mut_ptr();
1790 /// ptr1.write(1);
1791 /// let ptr2 = v.as_mut_ptr();
1792 /// ptr2.write(2);
1793 /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1794 /// ptr1.write(3);
1795 /// }
1796 /// ```
1797 ///
1798 /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1799 ///
1800 /// ```
1801 /// use std::mem::{ManuallyDrop, MaybeUninit};
1802 ///
1803 /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1804 /// let ptr = v.as_mut_ptr();
1805 /// let capacity = v.capacity();
1806 /// let slice_ptr: *mut [MaybeUninit<i32>] =
1807 /// std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1808 /// drop(unsafe { Box::from_raw(slice_ptr) });
1809 /// ```
1810 ///
1811 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1812 /// [`as_ptr`]: Vec::as_ptr
1813 /// [`as_non_null`]: Vec::as_non_null
1814 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1815 /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1816 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1817 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1818 #[rustc_never_returns_null_ptr]
1819 #[rustc_as_ptr]
1820 #[inline]
1821 pub const fn as_mut_ptr(&mut self) -> *mut T {
1822 // We shadow the slice method of the same name to avoid going through
1823 // `deref_mut`, which creates an intermediate reference.
1824 self.buf.ptr()
1825 }
1826
1827 /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1828 /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1829 ///
1830 /// The caller must ensure that the vector outlives the pointer this
1831 /// function returns, or else it will end up dangling.
1832 /// Modifying the vector may cause its buffer to be reallocated,
1833 /// which would also make any pointers to it invalid.
1834 ///
1835 /// This method guarantees that for the purpose of the aliasing model, this method
1836 /// does not materialize a reference to the underlying slice, and thus the returned pointer
1837 /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1838 /// and [`as_non_null`].
1839 /// Note that calling other methods that materialize references to the slice,
1840 /// or references to specific elements you are planning on accessing through this pointer,
1841 /// may still invalidate this pointer.
1842 /// See the second example below for how this guarantee can be used.
1843 ///
1844 /// # Examples
1845 ///
1846 /// ```
1847 /// #![feature(box_vec_non_null)]
1848 ///
1849 /// // Allocate vector big enough for 4 elements.
1850 /// let size = 4;
1851 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1852 /// let x_ptr = x.as_non_null();
1853 ///
1854 /// // Initialize elements via raw pointer writes, then set length.
1855 /// unsafe {
1856 /// for i in 0..size {
1857 /// x_ptr.add(i).write(i as i32);
1858 /// }
1859 /// x.set_len(size);
1860 /// }
1861 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1862 /// ```
1863 ///
1864 /// Due to the aliasing guarantee, the following code is legal:
1865 ///
1866 /// ```rust
1867 /// #![feature(box_vec_non_null)]
1868 ///
1869 /// unsafe {
1870 /// let mut v = vec![0];
1871 /// let ptr1 = v.as_non_null();
1872 /// ptr1.write(1);
1873 /// let ptr2 = v.as_non_null();
1874 /// ptr2.write(2);
1875 /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1876 /// ptr1.write(3);
1877 /// }
1878 /// ```
1879 ///
1880 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1881 /// [`as_ptr`]: Vec::as_ptr
1882 /// [`as_non_null`]: Vec::as_non_null
1883 #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1884 #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1885 #[inline]
1886 pub const fn as_non_null(&mut self) -> NonNull<T> {
1887 self.buf.non_null()
1888 }
1889
1890 /// Returns a reference to the underlying allocator.
1891 #[unstable(feature = "allocator_api", issue = "32838")]
1892 #[inline]
1893 pub fn allocator(&self) -> &A {
1894 self.buf.allocator()
1895 }
1896
1897 /// Forces the length of the vector to `new_len`.
1898 ///
1899 /// This is a low-level operation that maintains none of the normal
1900 /// invariants of the type. Normally changing the length of a vector
1901 /// is done using one of the safe operations instead, such as
1902 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1903 ///
1904 /// [`truncate`]: Vec::truncate
1905 /// [`resize`]: Vec::resize
1906 /// [`extend`]: Extend::extend
1907 /// [`clear`]: Vec::clear
1908 ///
1909 /// # Safety
1910 ///
1911 /// - `new_len` must be less than or equal to [`capacity()`].
1912 /// - The elements at `old_len..new_len` must be initialized.
1913 ///
1914 /// [`capacity()`]: Vec::capacity
1915 ///
1916 /// # Examples
1917 ///
1918 /// See [`spare_capacity_mut()`] for an example with safe
1919 /// initialization of capacity elements and use of this method.
1920 ///
1921 /// `set_len()` can be useful for situations in which the vector
1922 /// is serving as a buffer for other code, particularly over FFI:
1923 ///
1924 /// ```no_run
1925 /// # #![allow(dead_code)]
1926 /// # // This is just a minimal skeleton for the doc example;
1927 /// # // don't use this as a starting point for a real library.
1928 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1929 /// # const Z_OK: i32 = 0;
1930 /// # unsafe extern "C" {
1931 /// # fn deflateGetDictionary(
1932 /// # strm: *mut std::ffi::c_void,
1933 /// # dictionary: *mut u8,
1934 /// # dictLength: *mut usize,
1935 /// # ) -> i32;
1936 /// # }
1937 /// # impl StreamWrapper {
1938 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1939 /// // Per the FFI method's docs, "32768 bytes is always enough".
1940 /// let mut dict = Vec::with_capacity(32_768);
1941 /// let mut dict_length = 0;
1942 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1943 /// // 1. `dict_length` elements were initialized.
1944 /// // 2. `dict_length` <= the capacity (32_768)
1945 /// // which makes `set_len` safe to call.
1946 /// unsafe {
1947 /// // Make the FFI call...
1948 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1949 /// if r == Z_OK {
1950 /// // ...and update the length to what was initialized.
1951 /// dict.set_len(dict_length);
1952 /// Some(dict)
1953 /// } else {
1954 /// None
1955 /// }
1956 /// }
1957 /// }
1958 /// # }
1959 /// ```
1960 ///
1961 /// While the following example is sound, there is a memory leak since
1962 /// the inner vectors were not freed prior to the `set_len` call:
1963 ///
1964 /// ```
1965 /// let mut vec = vec![vec![1, 0, 0],
1966 /// vec![0, 1, 0],
1967 /// vec![0, 0, 1]];
1968 /// // SAFETY:
1969 /// // 1. `old_len..0` is empty so no elements need to be initialized.
1970 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1971 /// unsafe {
1972 /// vec.set_len(0);
1973 /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
1974 /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1975 /// # vec.set_len(3);
1976 /// }
1977 /// ```
1978 ///
1979 /// Normally, here, one would use [`clear`] instead to correctly drop
1980 /// the contents and thus not leak memory.
1981 ///
1982 /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1983 #[inline]
1984 #[stable(feature = "rust1", since = "1.0.0")]
1985 pub unsafe fn set_len(&mut self, new_len: usize) {
1986 ub_checks::assert_unsafe_precondition!(
1987 check_library_ub,
1988 "Vec::set_len requires that new_len <= capacity()",
1989 (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
1990 );
1991
1992 self.len = new_len;
1993 }
1994
1995 /// Removes an element from the vector and returns it.
1996 ///
1997 /// The removed element is replaced by the last element of the vector.
1998 ///
1999 /// This does not preserve ordering of the remaining elements, but is *O*(1).
2000 /// If you need to preserve the element order, use [`remove`] instead.
2001 ///
2002 /// [`remove`]: Vec::remove
2003 ///
2004 /// # Panics
2005 ///
2006 /// Panics if `index` is out of bounds.
2007 ///
2008 /// # Examples
2009 ///
2010 /// ```
2011 /// let mut v = vec!["foo", "bar", "baz", "qux"];
2012 ///
2013 /// assert_eq!(v.swap_remove(1), "bar");
2014 /// assert_eq!(v, ["foo", "qux", "baz"]);
2015 ///
2016 /// assert_eq!(v.swap_remove(0), "foo");
2017 /// assert_eq!(v, ["baz", "qux"]);
2018 /// ```
2019 #[inline]
2020 #[stable(feature = "rust1", since = "1.0.0")]
2021 pub fn swap_remove(&mut self, index: usize) -> T {
2022 #[cold]
2023 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2024 #[track_caller]
2025 #[optimize(size)]
2026 fn assert_failed(index: usize, len: usize) -> ! {
2027 panic!("swap_remove index (is {index}) should be < len (is {len})");
2028 }
2029
2030 let len = self.len();
2031 if index >= len {
2032 assert_failed(index, len);
2033 }
2034 unsafe {
2035 // We replace self[index] with the last element. Note that if the
2036 // bounds check above succeeds there must be a last element (which
2037 // can be self[index] itself).
2038 let value = ptr::read(self.as_ptr().add(index));
2039 let base_ptr = self.as_mut_ptr();
2040 ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2041 self.set_len(len - 1);
2042 value
2043 }
2044 }
2045
2046 /// Inserts an element at position `index` within the vector, shifting all
2047 /// elements after it to the right.
2048 ///
2049 /// # Panics
2050 ///
2051 /// Panics if `index > len`.
2052 ///
2053 /// # Examples
2054 ///
2055 /// ```
2056 /// let mut vec = vec!['a', 'b', 'c'];
2057 /// vec.insert(1, 'd');
2058 /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2059 /// vec.insert(4, 'e');
2060 /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2061 /// ```
2062 ///
2063 /// # Time complexity
2064 ///
2065 /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2066 /// shifted to the right. In the worst case, all elements are shifted when
2067 /// the insertion index is 0.
2068 #[cfg(not(no_global_oom_handling))]
2069 #[stable(feature = "rust1", since = "1.0.0")]
2070 #[track_caller]
2071 pub fn insert(&mut self, index: usize, element: T) {
2072 let _ = self.insert_mut(index, element);
2073 }
2074
2075 /// Inserts an element at position `index` within the vector, shifting all
2076 /// elements after it to the right, and returning a reference to the new
2077 /// element.
2078 ///
2079 /// # Panics
2080 ///
2081 /// Panics if `index > len`.
2082 ///
2083 /// # Examples
2084 ///
2085 /// ```
2086 /// #![feature(push_mut)]
2087 /// let mut vec = vec![1, 3, 5, 9];
2088 /// let x = vec.insert_mut(3, 6);
2089 /// *x += 1;
2090 /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2091 /// ```
2092 ///
2093 /// # Time complexity
2094 ///
2095 /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2096 /// shifted to the right. In the worst case, all elements are shifted when
2097 /// the insertion index is 0.
2098 #[cfg(not(no_global_oom_handling))]
2099 #[inline]
2100 #[unstable(feature = "push_mut", issue = "135974")]
2101 #[track_caller]
2102 #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2103 pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2104 #[cold]
2105 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2106 #[track_caller]
2107 #[optimize(size)]
2108 fn assert_failed(index: usize, len: usize) -> ! {
2109 panic!("insertion index (is {index}) should be <= len (is {len})");
2110 }
2111
2112 let len = self.len();
2113 if index > len {
2114 assert_failed(index, len);
2115 }
2116
2117 // space for the new element
2118 if len == self.buf.capacity() {
2119 self.buf.grow_one();
2120 }
2121
2122 unsafe {
2123 // infallible
2124 // The spot to put the new value
2125 let p = self.as_mut_ptr().add(index);
2126 {
2127 if index < len {
2128 // Shift everything over to make space. (Duplicating the
2129 // `index`th element into two consecutive places.)
2130 ptr::copy(p, p.add(1), len - index);
2131 }
2132 // Write it in, overwriting the first copy of the `index`th
2133 // element.
2134 ptr::write(p, element);
2135 }
2136 self.set_len(len + 1);
2137 &mut *p
2138 }
2139 }
2140
2141 /// Removes and returns the element at position `index` within the vector,
2142 /// shifting all elements after it to the left.
2143 ///
2144 /// Note: Because this shifts over the remaining elements, it has a
2145 /// worst-case performance of *O*(*n*). If you don't need the order of elements
2146 /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2147 /// elements from the beginning of the `Vec`, consider using
2148 /// [`VecDeque::pop_front`] instead.
2149 ///
2150 /// [`swap_remove`]: Vec::swap_remove
2151 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2152 ///
2153 /// # Panics
2154 ///
2155 /// Panics if `index` is out of bounds.
2156 ///
2157 /// # Examples
2158 ///
2159 /// ```
2160 /// let mut v = vec!['a', 'b', 'c'];
2161 /// assert_eq!(v.remove(1), 'b');
2162 /// assert_eq!(v, ['a', 'c']);
2163 /// ```
2164 #[stable(feature = "rust1", since = "1.0.0")]
2165 #[track_caller]
2166 #[rustc_confusables("delete", "take")]
2167 pub fn remove(&mut self, index: usize) -> T {
2168 #[cold]
2169 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2170 #[track_caller]
2171 #[optimize(size)]
2172 fn assert_failed(index: usize, len: usize) -> ! {
2173 panic!("removal index (is {index}) should be < len (is {len})");
2174 }
2175
2176 match self.try_remove(index) {
2177 Some(elem) => elem,
2178 None => assert_failed(index, self.len()),
2179 }
2180 }
2181
2182 /// Remove and return the element at position `index` within the vector,
2183 /// shifting all elements after it to the left, or [`None`] if it does not
2184 /// exist.
2185 ///
2186 /// Note: Because this shifts over the remaining elements, it has a
2187 /// worst-case performance of *O*(*n*). If you'd like to remove
2188 /// elements from the beginning of the `Vec`, consider using
2189 /// [`VecDeque::pop_front`] instead.
2190 ///
2191 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2192 ///
2193 /// # Examples
2194 ///
2195 /// ```
2196 /// #![feature(vec_try_remove)]
2197 /// let mut v = vec![1, 2, 3];
2198 /// assert_eq!(v.try_remove(0), Some(1));
2199 /// assert_eq!(v.try_remove(2), None);
2200 /// ```
2201 #[unstable(feature = "vec_try_remove", issue = "146954")]
2202 #[rustc_confusables("delete", "take", "remove")]
2203 pub fn try_remove(&mut self, index: usize) -> Option<T> {
2204 let len = self.len();
2205 if index >= len {
2206 return None;
2207 }
2208 unsafe {
2209 // infallible
2210 let ret;
2211 {
2212 // the place we are taking from.
2213 let ptr = self.as_mut_ptr().add(index);
2214 // copy it out, unsafely having a copy of the value on
2215 // the stack and in the vector at the same time.
2216 ret = ptr::read(ptr);
2217
2218 // Shift everything down to fill in that spot.
2219 ptr::copy(ptr.add(1), ptr, len - index - 1);
2220 }
2221 self.set_len(len - 1);
2222 Some(ret)
2223 }
2224 }
2225
2226 /// Retains only the elements specified by the predicate.
2227 ///
2228 /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2229 /// This method operates in place, visiting each element exactly once in the
2230 /// original order, and preserves the order of the retained elements.
2231 ///
2232 /// # Examples
2233 ///
2234 /// ```
2235 /// let mut vec = vec![1, 2, 3, 4];
2236 /// vec.retain(|&x| x % 2 == 0);
2237 /// assert_eq!(vec, [2, 4]);
2238 /// ```
2239 ///
2240 /// Because the elements are visited exactly once in the original order,
2241 /// external state may be used to decide which elements to keep.
2242 ///
2243 /// ```
2244 /// let mut vec = vec![1, 2, 3, 4, 5];
2245 /// let keep = [false, true, true, false, true];
2246 /// let mut iter = keep.iter();
2247 /// vec.retain(|_| *iter.next().unwrap());
2248 /// assert_eq!(vec, [2, 3, 5]);
2249 /// ```
2250 #[stable(feature = "rust1", since = "1.0.0")]
2251 pub fn retain<F>(&mut self, mut f: F)
2252 where
2253 F: FnMut(&T) -> bool,
2254 {
2255 self.retain_mut(|elem| f(elem));
2256 }
2257
2258 /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2259 ///
2260 /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2261 /// This method operates in place, visiting each element exactly once in the
2262 /// original order, and preserves the order of the retained elements.
2263 ///
2264 /// # Examples
2265 ///
2266 /// ```
2267 /// let mut vec = vec![1, 2, 3, 4];
2268 /// vec.retain_mut(|x| if *x <= 3 {
2269 /// *x += 1;
2270 /// true
2271 /// } else {
2272 /// false
2273 /// });
2274 /// assert_eq!(vec, [2, 3, 4]);
2275 /// ```
2276 #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2277 pub fn retain_mut<F>(&mut self, mut f: F)
2278 where
2279 F: FnMut(&mut T) -> bool,
2280 {
2281 let original_len = self.len();
2282
2283 if original_len == 0 {
2284 // Empty case: explicit return allows better optimization, vs letting compiler infer it
2285 return;
2286 }
2287
2288 // Avoid double drop if the drop guard is not executed,
2289 // since we may make some holes during the process.
2290 unsafe { self.set_len(0) };
2291
2292 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2293 // |<- processed len ->| ^- next to check
2294 // |<- deleted cnt ->|
2295 // |<- original_len ->|
2296 // Kept: Elements which predicate returns true on.
2297 // Hole: Moved or dropped element slot.
2298 // Unchecked: Unchecked valid elements.
2299 //
2300 // This drop guard will be invoked when predicate or `drop` of element panicked.
2301 // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2302 // In cases when predicate and `drop` never panick, it will be optimized out.
2303 struct BackshiftOnDrop<'a, T, A: Allocator> {
2304 v: &'a mut Vec<T, A>,
2305 processed_len: usize,
2306 deleted_cnt: usize,
2307 original_len: usize,
2308 }
2309
2310 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2311 fn drop(&mut self) {
2312 if self.deleted_cnt > 0 {
2313 // SAFETY: Trailing unchecked items must be valid since we never touch them.
2314 unsafe {
2315 ptr::copy(
2316 self.v.as_ptr().add(self.processed_len),
2317 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2318 self.original_len - self.processed_len,
2319 );
2320 }
2321 }
2322 // SAFETY: After filling holes, all items are in contiguous memory.
2323 unsafe {
2324 self.v.set_len(self.original_len - self.deleted_cnt);
2325 }
2326 }
2327 }
2328
2329 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2330
2331 fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2332 original_len: usize,
2333 f: &mut F,
2334 g: &mut BackshiftOnDrop<'_, T, A>,
2335 ) where
2336 F: FnMut(&mut T) -> bool,
2337 {
2338 while g.processed_len != original_len {
2339 // SAFETY: Unchecked element must be valid.
2340 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2341 if !f(cur) {
2342 // Advance early to avoid double drop if `drop_in_place` panicked.
2343 g.processed_len += 1;
2344 g.deleted_cnt += 1;
2345 // SAFETY: We never touch this element again after dropped.
2346 unsafe { ptr::drop_in_place(cur) };
2347 // We already advanced the counter.
2348 if DELETED {
2349 continue;
2350 } else {
2351 break;
2352 }
2353 }
2354 if DELETED {
2355 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2356 // We use copy for move, and never touch this element again.
2357 unsafe {
2358 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2359 ptr::copy_nonoverlapping(cur, hole_slot, 1);
2360 }
2361 }
2362 g.processed_len += 1;
2363 }
2364 }
2365
2366 // Stage 1: Nothing was deleted.
2367 process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2368
2369 // Stage 2: Some elements were deleted.
2370 process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2371
2372 // All item are processed. This can be optimized to `set_len` by LLVM.
2373 drop(g);
2374 }
2375
2376 /// Removes all but the first of consecutive elements in the vector that resolve to the same
2377 /// key.
2378 ///
2379 /// If the vector is sorted, this removes all duplicates.
2380 ///
2381 /// # Examples
2382 ///
2383 /// ```
2384 /// let mut vec = vec![10, 20, 21, 30, 20];
2385 ///
2386 /// vec.dedup_by_key(|i| *i / 10);
2387 ///
2388 /// assert_eq!(vec, [10, 20, 30, 20]);
2389 /// ```
2390 #[stable(feature = "dedup_by", since = "1.16.0")]
2391 #[inline]
2392 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2393 where
2394 F: FnMut(&mut T) -> K,
2395 K: PartialEq,
2396 {
2397 self.dedup_by(|a, b| key(a) == key(b))
2398 }
2399
2400 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2401 /// relation.
2402 ///
2403 /// The `same_bucket` function is passed references to two elements from the vector and
2404 /// must determine if the elements compare equal. The elements are passed in opposite order
2405 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2406 ///
2407 /// If the vector is sorted, this removes all duplicates.
2408 ///
2409 /// # Examples
2410 ///
2411 /// ```
2412 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2413 ///
2414 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2415 ///
2416 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2417 /// ```
2418 #[stable(feature = "dedup_by", since = "1.16.0")]
2419 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2420 where
2421 F: FnMut(&mut T, &mut T) -> bool,
2422 {
2423 let len = self.len();
2424 if len <= 1 {
2425 return;
2426 }
2427
2428 // Check if we ever want to remove anything.
2429 // This allows to use copy_non_overlapping in next cycle.
2430 // And avoids any memory writes if we don't need to remove anything.
2431 let mut first_duplicate_idx: usize = 1;
2432 let start = self.as_mut_ptr();
2433 while first_duplicate_idx != len {
2434 let found_duplicate = unsafe {
2435 // SAFETY: first_duplicate always in range [1..len)
2436 // Note that we start iteration from 1 so we never overflow.
2437 let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2438 let current = start.add(first_duplicate_idx);
2439 // We explicitly say in docs that references are reversed.
2440 same_bucket(&mut *current, &mut *prev)
2441 };
2442 if found_duplicate {
2443 break;
2444 }
2445 first_duplicate_idx += 1;
2446 }
2447 // Don't need to remove anything.
2448 // We cannot get bigger than len.
2449 if first_duplicate_idx == len {
2450 return;
2451 }
2452
2453 /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2454 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2455 /* Offset of the element we want to check if it is duplicate */
2456 read: usize,
2457
2458 /* Offset of the place where we want to place the non-duplicate
2459 * when we find it. */
2460 write: usize,
2461
2462 /* The Vec that would need correction if `same_bucket` panicked */
2463 vec: &'a mut Vec<T, A>,
2464 }
2465
2466 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2467 fn drop(&mut self) {
2468 /* This code gets executed when `same_bucket` panics */
2469
2470 /* SAFETY: invariant guarantees that `read - write`
2471 * and `len - read` never overflow and that the copy is always
2472 * in-bounds. */
2473 unsafe {
2474 let ptr = self.vec.as_mut_ptr();
2475 let len = self.vec.len();
2476
2477 /* How many items were left when `same_bucket` panicked.
2478 * Basically vec[read..].len() */
2479 let items_left = len.wrapping_sub(self.read);
2480
2481 /* Pointer to first item in vec[write..write+items_left] slice */
2482 let dropped_ptr = ptr.add(self.write);
2483 /* Pointer to first item in vec[read..] slice */
2484 let valid_ptr = ptr.add(self.read);
2485
2486 /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2487 * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2488 ptr::copy(valid_ptr, dropped_ptr, items_left);
2489
2490 /* How many items have been already dropped
2491 * Basically vec[read..write].len() */
2492 let dropped = self.read.wrapping_sub(self.write);
2493
2494 self.vec.set_len(len - dropped);
2495 }
2496 }
2497 }
2498
2499 /* Drop items while going through Vec, it should be more efficient than
2500 * doing slice partition_dedup + truncate */
2501
2502 // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2503 let mut gap =
2504 FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2505 unsafe {
2506 // SAFETY: we checked that first_duplicate_idx in bounds before.
2507 // If drop panics, `gap` would remove this item without drop.
2508 ptr::drop_in_place(start.add(first_duplicate_idx));
2509 }
2510
2511 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2512 * are always in-bounds and read_ptr never aliases prev_ptr */
2513 unsafe {
2514 while gap.read < len {
2515 let read_ptr = start.add(gap.read);
2516 let prev_ptr = start.add(gap.write.wrapping_sub(1));
2517
2518 // We explicitly say in docs that references are reversed.
2519 let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2520 if found_duplicate {
2521 // Increase `gap.read` now since the drop may panic.
2522 gap.read += 1;
2523 /* We have found duplicate, drop it in-place */
2524 ptr::drop_in_place(read_ptr);
2525 } else {
2526 let write_ptr = start.add(gap.write);
2527
2528 /* read_ptr cannot be equal to write_ptr because at this point
2529 * we guaranteed to skip at least one element (before loop starts).
2530 */
2531 ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2532
2533 /* We have filled that place, so go further */
2534 gap.write += 1;
2535 gap.read += 1;
2536 }
2537 }
2538
2539 /* Technically we could let `gap` clean up with its Drop, but
2540 * when `same_bucket` is guaranteed to not panic, this bloats a little
2541 * the codegen, so we just do it manually */
2542 gap.vec.set_len(gap.write);
2543 mem::forget(gap);
2544 }
2545 }
2546
2547 /// Appends an element to the back of a collection.
2548 ///
2549 /// # Panics
2550 ///
2551 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2552 ///
2553 /// # Examples
2554 ///
2555 /// ```
2556 /// let mut vec = vec![1, 2];
2557 /// vec.push(3);
2558 /// assert_eq!(vec, [1, 2, 3]);
2559 /// ```
2560 ///
2561 /// # Time complexity
2562 ///
2563 /// Takes amortized *O*(1) time. If the vector's length would exceed its
2564 /// capacity after the push, *O*(*capacity*) time is taken to copy the
2565 /// vector's elements to a larger allocation. This expensive operation is
2566 /// offset by the *capacity* *O*(1) insertions it allows.
2567 #[cfg(not(no_global_oom_handling))]
2568 #[inline]
2569 #[stable(feature = "rust1", since = "1.0.0")]
2570 #[rustc_confusables("push_back", "put", "append")]
2571 #[track_caller]
2572 pub fn push(&mut self, value: T) {
2573 let _ = self.push_mut(value);
2574 }
2575
2576 /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
2577 /// with the element.
2578 ///
2579 /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2580 /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2581 ///
2582 /// [`push`]: Vec::push
2583 /// [`reserve`]: Vec::reserve
2584 /// [`try_reserve`]: Vec::try_reserve
2585 ///
2586 /// # Examples
2587 ///
2588 /// A manual, panic-free alternative to [`FromIterator`]:
2589 ///
2590 /// ```
2591 /// #![feature(vec_push_within_capacity)]
2592 ///
2593 /// use std::collections::TryReserveError;
2594 /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2595 /// let mut vec = Vec::new();
2596 /// for value in iter {
2597 /// if let Err(value) = vec.push_within_capacity(value) {
2598 /// vec.try_reserve(1)?;
2599 /// // this cannot fail, the previous line either returned or added at least 1 free slot
2600 /// let _ = vec.push_within_capacity(value);
2601 /// }
2602 /// }
2603 /// Ok(vec)
2604 /// }
2605 /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2606 /// ```
2607 ///
2608 /// # Time complexity
2609 ///
2610 /// Takes *O*(1) time.
2611 #[inline]
2612 #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2613 pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2614 self.push_mut_within_capacity(value).map(|_| ())
2615 }
2616
2617 /// Appends an element to the back of a collection, returning a reference to it.
2618 ///
2619 /// # Panics
2620 ///
2621 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2622 ///
2623 /// # Examples
2624 ///
2625 /// ```
2626 /// #![feature(push_mut)]
2627 ///
2628 ///
2629 /// let mut vec = vec![1, 2];
2630 /// let last = vec.push_mut(3);
2631 /// assert_eq!(*last, 3);
2632 /// assert_eq!(vec, [1, 2, 3]);
2633 ///
2634 /// let last = vec.push_mut(3);
2635 /// *last += 1;
2636 /// assert_eq!(vec, [1, 2, 3, 4]);
2637 /// ```
2638 ///
2639 /// # Time complexity
2640 ///
2641 /// Takes amortized *O*(1) time. If the vector's length would exceed its
2642 /// capacity after the push, *O*(*capacity*) time is taken to copy the
2643 /// vector's elements to a larger allocation. This expensive operation is
2644 /// offset by the *capacity* *O*(1) insertions it allows.
2645 #[cfg(not(no_global_oom_handling))]
2646 #[inline]
2647 #[unstable(feature = "push_mut", issue = "135974")]
2648 #[track_caller]
2649 #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2650 pub fn push_mut(&mut self, value: T) -> &mut T {
2651 // Inform codegen that the length does not change across grow_one().
2652 let len = self.len;
2653 // This will panic or abort if we would allocate > isize::MAX bytes
2654 // or if the length increment would overflow for zero-sized types.
2655 if len == self.buf.capacity() {
2656 self.buf.grow_one();
2657 }
2658 unsafe {
2659 let end = self.as_mut_ptr().add(len);
2660 ptr::write(end, value);
2661 self.len = len + 1;
2662 // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2663 &mut *end
2664 }
2665 }
2666
2667 /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2668 /// otherwise an error is returned with the element.
2669 ///
2670 /// Unlike [`push_mut`] this method will not reallocate when there's insufficient capacity.
2671 /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2672 ///
2673 /// [`push_mut`]: Vec::push_mut
2674 /// [`reserve`]: Vec::reserve
2675 /// [`try_reserve`]: Vec::try_reserve
2676 ///
2677 /// # Time complexity
2678 ///
2679 /// Takes *O*(1) time.
2680 #[unstable(feature = "push_mut", issue = "135974")]
2681 // #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2682 #[inline]
2683 #[must_use = "if you don't need a reference to the value, use `Vec::push_within_capacity` instead"]
2684 pub fn push_mut_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2685 if self.len == self.buf.capacity() {
2686 return Err(value);
2687 }
2688 unsafe {
2689 let end = self.as_mut_ptr().add(self.len);
2690 ptr::write(end, value);
2691 self.len += 1;
2692 // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2693 Ok(&mut *end)
2694 }
2695 }
2696
2697 /// Removes the last element from a vector and returns it, or [`None`] if it
2698 /// is empty.
2699 ///
2700 /// If you'd like to pop the first element, consider using
2701 /// [`VecDeque::pop_front`] instead.
2702 ///
2703 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2704 ///
2705 /// # Examples
2706 ///
2707 /// ```
2708 /// let mut vec = vec![1, 2, 3];
2709 /// assert_eq!(vec.pop(), Some(3));
2710 /// assert_eq!(vec, [1, 2]);
2711 /// ```
2712 ///
2713 /// # Time complexity
2714 ///
2715 /// Takes *O*(1) time.
2716 #[inline]
2717 #[stable(feature = "rust1", since = "1.0.0")]
2718 #[rustc_diagnostic_item = "vec_pop"]
2719 pub fn pop(&mut self) -> Option<T> {
2720 if self.len == 0 {
2721 None
2722 } else {
2723 unsafe {
2724 self.len -= 1;
2725 core::hint::assert_unchecked(self.len < self.capacity());
2726 Some(ptr::read(self.as_ptr().add(self.len())))
2727 }
2728 }
2729 }
2730
2731 /// Removes and returns the last element from a vector if the predicate
2732 /// returns `true`, or [`None`] if the predicate returns false or the vector
2733 /// is empty (the predicate will not be called in that case).
2734 ///
2735 /// # Examples
2736 ///
2737 /// ```
2738 /// let mut vec = vec![1, 2, 3, 4];
2739 /// let pred = |x: &mut i32| *x % 2 == 0;
2740 ///
2741 /// assert_eq!(vec.pop_if(pred), Some(4));
2742 /// assert_eq!(vec, [1, 2, 3]);
2743 /// assert_eq!(vec.pop_if(pred), None);
2744 /// ```
2745 #[stable(feature = "vec_pop_if", since = "1.86.0")]
2746 pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2747 let last = self.last_mut()?;
2748 if predicate(last) { self.pop() } else { None }
2749 }
2750
2751 /// Returns a mutable reference to the last item in the vector, or
2752 /// `None` if it is empty.
2753 ///
2754 /// # Examples
2755 ///
2756 /// Basic usage:
2757 ///
2758 /// ```
2759 /// #![feature(vec_peek_mut)]
2760 /// let mut vec = Vec::new();
2761 /// assert!(vec.peek_mut().is_none());
2762 ///
2763 /// vec.push(1);
2764 /// vec.push(5);
2765 /// vec.push(2);
2766 /// assert_eq!(vec.last(), Some(&2));
2767 /// if let Some(mut val) = vec.peek_mut() {
2768 /// *val = 0;
2769 /// }
2770 /// assert_eq!(vec.last(), Some(&0));
2771 /// ```
2772 #[inline]
2773 #[unstable(feature = "vec_peek_mut", issue = "122742")]
2774 pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2775 PeekMut::new(self)
2776 }
2777
2778 /// Moves all the elements of `other` into `self`, leaving `other` empty.
2779 ///
2780 /// # Panics
2781 ///
2782 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2783 ///
2784 /// # Examples
2785 ///
2786 /// ```
2787 /// let mut vec = vec![1, 2, 3];
2788 /// let mut vec2 = vec![4, 5, 6];
2789 /// vec.append(&mut vec2);
2790 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2791 /// assert_eq!(vec2, []);
2792 /// ```
2793 #[cfg(not(no_global_oom_handling))]
2794 #[inline]
2795 #[stable(feature = "append", since = "1.4.0")]
2796 #[track_caller]
2797 pub fn append(&mut self, other: &mut Self) {
2798 unsafe {
2799 self.append_elements(other.as_slice() as _);
2800 other.set_len(0);
2801 }
2802 }
2803
2804 /// Appends elements to `self` from other buffer.
2805 #[cfg(not(no_global_oom_handling))]
2806 #[inline]
2807 #[track_caller]
2808 unsafe fn append_elements(&mut self, other: *const [T]) {
2809 let count = other.len();
2810 self.reserve(count);
2811 let len = self.len();
2812 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2813 self.len += count;
2814 }
2815
2816 /// Removes the subslice indicated by the given range from the vector,
2817 /// returning a double-ended iterator over the removed subslice.
2818 ///
2819 /// If the iterator is dropped before being fully consumed,
2820 /// it drops the remaining removed elements.
2821 ///
2822 /// The returned iterator keeps a mutable borrow on the vector to optimize
2823 /// its implementation.
2824 ///
2825 /// # Panics
2826 ///
2827 /// Panics if the range has `start_bound > end_bound`, or, if the range is
2828 /// bounded on either end and past the length of the vector.
2829 ///
2830 /// # Leaking
2831 ///
2832 /// If the returned iterator goes out of scope without being dropped (due to
2833 /// [`mem::forget`], for example), the vector may have lost and leaked
2834 /// elements arbitrarily, including elements outside the range.
2835 ///
2836 /// # Examples
2837 ///
2838 /// ```
2839 /// let mut v = vec![1, 2, 3];
2840 /// let u: Vec<_> = v.drain(1..).collect();
2841 /// assert_eq!(v, &[1]);
2842 /// assert_eq!(u, &[2, 3]);
2843 ///
2844 /// // A full range clears the vector, like `clear()` does
2845 /// v.drain(..);
2846 /// assert_eq!(v, &[]);
2847 /// ```
2848 #[stable(feature = "drain", since = "1.6.0")]
2849 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2850 where
2851 R: RangeBounds<usize>,
2852 {
2853 // Memory safety
2854 //
2855 // When the Drain is first created, it shortens the length of
2856 // the source vector to make sure no uninitialized or moved-from elements
2857 // are accessible at all if the Drain's destructor never gets to run.
2858 //
2859 // Drain will ptr::read out the values to remove.
2860 // When finished, remaining tail of the vec is copied back to cover
2861 // the hole, and the vector length is restored to the new length.
2862 //
2863 let len = self.len();
2864 let Range { start, end } = slice::range(range, ..len);
2865
2866 unsafe {
2867 // set self.vec length's to start, to be safe in case Drain is leaked
2868 self.set_len(start);
2869 let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2870 Drain {
2871 tail_start: end,
2872 tail_len: len - end,
2873 iter: range_slice.iter(),
2874 vec: NonNull::from(self),
2875 }
2876 }
2877 }
2878
2879 /// Clears the vector, removing all values.
2880 ///
2881 /// Note that this method has no effect on the allocated capacity
2882 /// of the vector.
2883 ///
2884 /// # Examples
2885 ///
2886 /// ```
2887 /// let mut v = vec![1, 2, 3];
2888 ///
2889 /// v.clear();
2890 ///
2891 /// assert!(v.is_empty());
2892 /// ```
2893 #[inline]
2894 #[stable(feature = "rust1", since = "1.0.0")]
2895 pub fn clear(&mut self) {
2896 let elems: *mut [T] = self.as_mut_slice();
2897
2898 // SAFETY:
2899 // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2900 // - Setting `self.len` before calling `drop_in_place` means that,
2901 // if an element's `Drop` impl panics, the vector's `Drop` impl will
2902 // do nothing (leaking the rest of the elements) instead of dropping
2903 // some twice.
2904 unsafe {
2905 self.len = 0;
2906 ptr::drop_in_place(elems);
2907 }
2908 }
2909
2910 /// Returns the number of elements in the vector, also referred to
2911 /// as its 'length'.
2912 ///
2913 /// # Examples
2914 ///
2915 /// ```
2916 /// let a = vec![1, 2, 3];
2917 /// assert_eq!(a.len(), 3);
2918 /// ```
2919 #[inline]
2920 #[stable(feature = "rust1", since = "1.0.0")]
2921 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2922 #[rustc_confusables("length", "size")]
2923 pub const fn len(&self) -> usize {
2924 let len = self.len;
2925
2926 // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2927 // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2928 // matches the definition of `T::MAX_SLICE_LEN`.
2929 unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2930
2931 len
2932 }
2933
2934 /// Returns `true` if the vector contains no elements.
2935 ///
2936 /// # Examples
2937 ///
2938 /// ```
2939 /// let mut v = Vec::new();
2940 /// assert!(v.is_empty());
2941 ///
2942 /// v.push(1);
2943 /// assert!(!v.is_empty());
2944 /// ```
2945 #[stable(feature = "rust1", since = "1.0.0")]
2946 #[rustc_diagnostic_item = "vec_is_empty"]
2947 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2948 pub const fn is_empty(&self) -> bool {
2949 self.len() == 0
2950 }
2951
2952 /// Splits the collection into two at the given index.
2953 ///
2954 /// Returns a newly allocated vector containing the elements in the range
2955 /// `[at, len)`. After the call, the original vector will be left containing
2956 /// the elements `[0, at)` with its previous capacity unchanged.
2957 ///
2958 /// - If you want to take ownership of the entire contents and capacity of
2959 /// the vector, see [`mem::take`] or [`mem::replace`].
2960 /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2961 /// - If you want to take ownership of an arbitrary subslice, or you don't
2962 /// necessarily want to store the removed items in a vector, see [`Vec::drain`].
2963 ///
2964 /// # Panics
2965 ///
2966 /// Panics if `at > len`.
2967 ///
2968 /// # Examples
2969 ///
2970 /// ```
2971 /// let mut vec = vec!['a', 'b', 'c'];
2972 /// let vec2 = vec.split_off(1);
2973 /// assert_eq!(vec, ['a']);
2974 /// assert_eq!(vec2, ['b', 'c']);
2975 /// ```
2976 #[cfg(not(no_global_oom_handling))]
2977 #[inline]
2978 #[must_use = "use `.truncate()` if you don't need the other half"]
2979 #[stable(feature = "split_off", since = "1.4.0")]
2980 #[track_caller]
2981 pub fn split_off(&mut self, at: usize) -> Self
2982 where
2983 A: Clone,
2984 {
2985 #[cold]
2986 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2987 #[track_caller]
2988 #[optimize(size)]
2989 fn assert_failed(at: usize, len: usize) -> ! {
2990 panic!("`at` split index (is {at}) should be <= len (is {len})");
2991 }
2992
2993 if at > self.len() {
2994 assert_failed(at, self.len());
2995 }
2996
2997 let other_len = self.len - at;
2998 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2999
3000 // Unsafely `set_len` and copy items to `other`.
3001 unsafe {
3002 self.set_len(at);
3003 other.set_len(other_len);
3004
3005 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
3006 }
3007 other
3008 }
3009
3010 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3011 ///
3012 /// If `new_len` is greater than `len`, the `Vec` is extended by the
3013 /// difference, with each additional slot filled with the result of
3014 /// calling the closure `f`. The return values from `f` will end up
3015 /// in the `Vec` in the order they have been generated.
3016 ///
3017 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3018 ///
3019 /// This method uses a closure to create new values on every push. If
3020 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
3021 /// want to use the [`Default`] trait to generate values, you can
3022 /// pass [`Default::default`] as the second argument.
3023 ///
3024 /// # Panics
3025 ///
3026 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3027 ///
3028 /// # Examples
3029 ///
3030 /// ```
3031 /// let mut vec = vec![1, 2, 3];
3032 /// vec.resize_with(5, Default::default);
3033 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3034 ///
3035 /// let mut vec = vec![];
3036 /// let mut p = 1;
3037 /// vec.resize_with(4, || { p *= 2; p });
3038 /// assert_eq!(vec, [2, 4, 8, 16]);
3039 /// ```
3040 #[cfg(not(no_global_oom_handling))]
3041 #[stable(feature = "vec_resize_with", since = "1.33.0")]
3042 #[track_caller]
3043 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3044 where
3045 F: FnMut() -> T,
3046 {
3047 let len = self.len();
3048 if new_len > len {
3049 self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3050 } else {
3051 self.truncate(new_len);
3052 }
3053 }
3054
3055 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3056 /// `&'a mut [T]`.
3057 ///
3058 /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3059 /// has only static references, or none at all, then this may be chosen to be
3060 /// `'static`.
3061 ///
3062 /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3063 /// so the leaked allocation may include unused capacity that is not part
3064 /// of the returned slice.
3065 ///
3066 /// This function is mainly useful for data that lives for the remainder of
3067 /// the program's life. Dropping the returned reference will cause a memory
3068 /// leak.
3069 ///
3070 /// # Examples
3071 ///
3072 /// Simple usage:
3073 ///
3074 /// ```
3075 /// let x = vec![1, 2, 3];
3076 /// let static_ref: &'static mut [usize] = x.leak();
3077 /// static_ref[0] += 1;
3078 /// assert_eq!(static_ref, &[2, 2, 3]);
3079 /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3080 /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3081 /// # drop(unsafe { Box::from_raw(static_ref) });
3082 /// ```
3083 #[stable(feature = "vec_leak", since = "1.47.0")]
3084 #[inline]
3085 pub fn leak<'a>(self) -> &'a mut [T]
3086 where
3087 A: 'a,
3088 {
3089 let mut me = ManuallyDrop::new(self);
3090 unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3091 }
3092
3093 /// Returns the remaining spare capacity of the vector as a slice of
3094 /// `MaybeUninit<T>`.
3095 ///
3096 /// The returned slice can be used to fill the vector with data (e.g. by
3097 /// reading from a file) before marking the data as initialized using the
3098 /// [`set_len`] method.
3099 ///
3100 /// [`set_len`]: Vec::set_len
3101 ///
3102 /// # Examples
3103 ///
3104 /// ```
3105 /// // Allocate vector big enough for 10 elements.
3106 /// let mut v = Vec::with_capacity(10);
3107 ///
3108 /// // Fill in the first 3 elements.
3109 /// let uninit = v.spare_capacity_mut();
3110 /// uninit[0].write(0);
3111 /// uninit[1].write(1);
3112 /// uninit[2].write(2);
3113 ///
3114 /// // Mark the first 3 elements of the vector as being initialized.
3115 /// unsafe {
3116 /// v.set_len(3);
3117 /// }
3118 ///
3119 /// assert_eq!(&v, &[0, 1, 2]);
3120 /// ```
3121 #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3122 #[inline]
3123 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3124 // Note:
3125 // This method is not implemented in terms of `split_at_spare_mut`,
3126 // to prevent invalidation of pointers to the buffer.
3127 unsafe {
3128 slice::from_raw_parts_mut(
3129 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3130 self.buf.capacity() - self.len,
3131 )
3132 }
3133 }
3134
3135 /// Returns vector content as a slice of `T`, along with the remaining spare
3136 /// capacity of the vector as a slice of `MaybeUninit<T>`.
3137 ///
3138 /// The returned spare capacity slice can be used to fill the vector with data
3139 /// (e.g. by reading from a file) before marking the data as initialized using
3140 /// the [`set_len`] method.
3141 ///
3142 /// [`set_len`]: Vec::set_len
3143 ///
3144 /// Note that this is a low-level API, which should be used with care for
3145 /// optimization purposes. If you need to append data to a `Vec`
3146 /// you can use [`push`], [`extend`], [`extend_from_slice`],
3147 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3148 /// [`resize_with`], depending on your exact needs.
3149 ///
3150 /// [`push`]: Vec::push
3151 /// [`extend`]: Vec::extend
3152 /// [`extend_from_slice`]: Vec::extend_from_slice
3153 /// [`extend_from_within`]: Vec::extend_from_within
3154 /// [`insert`]: Vec::insert
3155 /// [`append`]: Vec::append
3156 /// [`resize`]: Vec::resize
3157 /// [`resize_with`]: Vec::resize_with
3158 ///
3159 /// # Examples
3160 ///
3161 /// ```
3162 /// #![feature(vec_split_at_spare)]
3163 ///
3164 /// let mut v = vec![1, 1, 2];
3165 ///
3166 /// // Reserve additional space big enough for 10 elements.
3167 /// v.reserve(10);
3168 ///
3169 /// let (init, uninit) = v.split_at_spare_mut();
3170 /// let sum = init.iter().copied().sum::<u32>();
3171 ///
3172 /// // Fill in the next 4 elements.
3173 /// uninit[0].write(sum);
3174 /// uninit[1].write(sum * 2);
3175 /// uninit[2].write(sum * 3);
3176 /// uninit[3].write(sum * 4);
3177 ///
3178 /// // Mark the 4 elements of the vector as being initialized.
3179 /// unsafe {
3180 /// let len = v.len();
3181 /// v.set_len(len + 4);
3182 /// }
3183 ///
3184 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3185 /// ```
3186 #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3187 #[inline]
3188 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3189 // SAFETY:
3190 // - len is ignored and so never changed
3191 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3192 (init, spare)
3193 }
3194
3195 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3196 ///
3197 /// This method provides unique access to all vec parts at once in `extend_from_within`.
3198 unsafe fn split_at_spare_mut_with_len(
3199 &mut self,
3200 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3201 let ptr = self.as_mut_ptr();
3202 // SAFETY:
3203 // - `ptr` is guaranteed to be valid for `self.len` elements
3204 // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3205 // uninitialized
3206 let spare_ptr = unsafe { ptr.add(self.len) };
3207 let spare_ptr = spare_ptr.cast_uninit();
3208 let spare_len = self.buf.capacity() - self.len;
3209
3210 // SAFETY:
3211 // - `ptr` is guaranteed to be valid for `self.len` elements
3212 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3213 unsafe {
3214 let initialized = slice::from_raw_parts_mut(ptr, self.len);
3215 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3216
3217 (initialized, spare, &mut self.len)
3218 }
3219 }
3220
3221 /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3222 /// elements in the remainder. `N` must be greater than zero.
3223 ///
3224 /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3225 /// nearest multiple with a reallocation or deallocation.
3226 ///
3227 /// This function can be used to reverse [`Vec::into_flattened`].
3228 ///
3229 /// # Examples
3230 ///
3231 /// ```
3232 /// #![feature(vec_into_chunks)]
3233 ///
3234 /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3235 /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3236 ///
3237 /// let vec = vec![0, 1, 2, 3];
3238 /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3239 /// assert!(chunks.is_empty());
3240 ///
3241 /// let flat = vec![0; 8 * 8 * 8];
3242 /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3243 /// assert_eq!(reshaped.len(), 1);
3244 /// ```
3245 #[cfg(not(no_global_oom_handling))]
3246 #[unstable(feature = "vec_into_chunks", issue = "142137")]
3247 pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3248 const {
3249 assert!(N != 0, "chunk size must be greater than zero");
3250 }
3251
3252 let (len, cap) = (self.len(), self.capacity());
3253
3254 let len_remainder = len % N;
3255 if len_remainder != 0 {
3256 self.truncate(len - len_remainder);
3257 }
3258
3259 let cap_remainder = cap % N;
3260 if !T::IS_ZST && cap_remainder != 0 {
3261 self.buf.shrink_to_fit(cap - cap_remainder);
3262 }
3263
3264 let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3265
3266 // SAFETY:
3267 // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3268 // - `[T; N]` has the same alignment as `T`
3269 // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3270 // - `len / N <= cap / N` because `len <= cap`
3271 // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3272 // - `cap / N` fits the size of the allocated memory after shrinking
3273 unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3274 }
3275}
3276
3277impl<T: Clone, A: Allocator> Vec<T, A> {
3278 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3279 ///
3280 /// If `new_len` is greater than `len`, the `Vec` is extended by the
3281 /// difference, with each additional slot filled with `value`.
3282 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3283 ///
3284 /// This method requires `T` to implement [`Clone`],
3285 /// in order to be able to clone the passed value.
3286 /// If you need more flexibility (or want to rely on [`Default`] instead of
3287 /// [`Clone`]), use [`Vec::resize_with`].
3288 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3289 ///
3290 /// # Panics
3291 ///
3292 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3293 ///
3294 /// # Examples
3295 ///
3296 /// ```
3297 /// let mut vec = vec!["hello"];
3298 /// vec.resize(3, "world");
3299 /// assert_eq!(vec, ["hello", "world", "world"]);
3300 ///
3301 /// let mut vec = vec!['a', 'b', 'c', 'd'];
3302 /// vec.resize(2, '_');
3303 /// assert_eq!(vec, ['a', 'b']);
3304 /// ```
3305 #[cfg(not(no_global_oom_handling))]
3306 #[stable(feature = "vec_resize", since = "1.5.0")]
3307 #[track_caller]
3308 pub fn resize(&mut self, new_len: usize, value: T) {
3309 let len = self.len();
3310
3311 if new_len > len {
3312 self.extend_with(new_len - len, value)
3313 } else {
3314 self.truncate(new_len);
3315 }
3316 }
3317
3318 /// Clones and appends all elements in a slice to the `Vec`.
3319 ///
3320 /// Iterates over the slice `other`, clones each element, and then appends
3321 /// it to this `Vec`. The `other` slice is traversed in-order.
3322 ///
3323 /// Note that this function is the same as [`extend`],
3324 /// except that it also works with slice elements that are Clone but not Copy.
3325 /// If Rust gets specialization this function may be deprecated.
3326 ///
3327 /// # Examples
3328 ///
3329 /// ```
3330 /// let mut vec = vec![1];
3331 /// vec.extend_from_slice(&[2, 3, 4]);
3332 /// assert_eq!(vec, [1, 2, 3, 4]);
3333 /// ```
3334 ///
3335 /// [`extend`]: Vec::extend
3336 #[cfg(not(no_global_oom_handling))]
3337 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3338 #[track_caller]
3339 pub fn extend_from_slice(&mut self, other: &[T]) {
3340 self.spec_extend(other.iter())
3341 }
3342
3343 /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3344 ///
3345 /// `src` must be a range that can form a valid subslice of the `Vec`.
3346 ///
3347 /// # Panics
3348 ///
3349 /// Panics if starting index is greater than the end index
3350 /// or if the index is greater than the length of the vector.
3351 ///
3352 /// # Examples
3353 ///
3354 /// ```
3355 /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3356 /// characters.extend_from_within(2..);
3357 /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3358 ///
3359 /// let mut numbers = vec![0, 1, 2, 3, 4];
3360 /// numbers.extend_from_within(..2);
3361 /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3362 ///
3363 /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3364 /// strings.extend_from_within(1..=2);
3365 /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3366 /// ```
3367 #[cfg(not(no_global_oom_handling))]
3368 #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3369 #[track_caller]
3370 pub fn extend_from_within<R>(&mut self, src: R)
3371 where
3372 R: RangeBounds<usize>,
3373 {
3374 let range = slice::range(src, ..self.len());
3375 self.reserve(range.len());
3376
3377 // SAFETY:
3378 // - `slice::range` guarantees that the given range is valid for indexing self
3379 unsafe {
3380 self.spec_extend_from_within(range);
3381 }
3382 }
3383}
3384
3385impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3386 /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3387 ///
3388 /// # Panics
3389 ///
3390 /// Panics if the length of the resulting vector would overflow a `usize`.
3391 ///
3392 /// This is only possible when flattening a vector of arrays of zero-sized
3393 /// types, and thus tends to be irrelevant in practice. If
3394 /// `size_of::<T>() > 0`, this will never panic.
3395 ///
3396 /// # Examples
3397 ///
3398 /// ```
3399 /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3400 /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3401 ///
3402 /// let mut flattened = vec.into_flattened();
3403 /// assert_eq!(flattened.pop(), Some(6));
3404 /// ```
3405 #[stable(feature = "slice_flatten", since = "1.80.0")]
3406 pub fn into_flattened(self) -> Vec<T, A> {
3407 let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3408 let (new_len, new_cap) = if T::IS_ZST {
3409 (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3410 } else {
3411 // SAFETY:
3412 // - `cap * N` cannot overflow because the allocation is already in
3413 // the address space.
3414 // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3415 // valid elements in the allocation.
3416 unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3417 };
3418 // SAFETY:
3419 // - `ptr` was allocated by `self`
3420 // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3421 // - `new_cap` refers to the same sized allocation as `cap` because
3422 // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3423 // - `len` <= `cap`, so `len * N` <= `cap * N`.
3424 unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3425 }
3426}
3427
3428impl<T: Clone, A: Allocator> Vec<T, A> {
3429 #[cfg(not(no_global_oom_handling))]
3430 #[track_caller]
3431 /// Extend the vector by `n` clones of value.
3432 fn extend_with(&mut self, n: usize, value: T) {
3433 self.reserve(n);
3434
3435 unsafe {
3436 let mut ptr = self.as_mut_ptr().add(self.len());
3437 // Use SetLenOnDrop to work around bug where compiler
3438 // might not realize the store through `ptr` through self.set_len()
3439 // don't alias.
3440 let mut local_len = SetLenOnDrop::new(&mut self.len);
3441
3442 // Write all elements except the last one
3443 for _ in 1..n {
3444 ptr::write(ptr, value.clone());
3445 ptr = ptr.add(1);
3446 // Increment the length in every step in case clone() panics
3447 local_len.increment_len(1);
3448 }
3449
3450 if n > 0 {
3451 // We can write the last element directly without cloning needlessly
3452 ptr::write(ptr, value);
3453 local_len.increment_len(1);
3454 }
3455
3456 // len set by scope guard
3457 }
3458 }
3459}
3460
3461impl<T: PartialEq, A: Allocator> Vec<T, A> {
3462 /// Removes consecutive repeated elements in the vector according to the
3463 /// [`PartialEq`] trait implementation.
3464 ///
3465 /// If the vector is sorted, this removes all duplicates.
3466 ///
3467 /// # Examples
3468 ///
3469 /// ```
3470 /// let mut vec = vec![1, 2, 2, 3, 2];
3471 ///
3472 /// vec.dedup();
3473 ///
3474 /// assert_eq!(vec, [1, 2, 3, 2]);
3475 /// ```
3476 #[stable(feature = "rust1", since = "1.0.0")]
3477 #[inline]
3478 pub fn dedup(&mut self) {
3479 self.dedup_by(|a, b| a == b)
3480 }
3481}
3482
3483////////////////////////////////////////////////////////////////////////////////
3484// Internal methods and functions
3485////////////////////////////////////////////////////////////////////////////////
3486
3487#[doc(hidden)]
3488#[cfg(not(no_global_oom_handling))]
3489#[stable(feature = "rust1", since = "1.0.0")]
3490#[rustc_diagnostic_item = "vec_from_elem"]
3491#[track_caller]
3492pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3493 <T as SpecFromElem>::from_elem(elem, n, Global)
3494}
3495
3496#[doc(hidden)]
3497#[cfg(not(no_global_oom_handling))]
3498#[unstable(feature = "allocator_api", issue = "32838")]
3499#[track_caller]
3500pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3501 <T as SpecFromElem>::from_elem(elem, n, alloc)
3502}
3503
3504#[cfg(not(no_global_oom_handling))]
3505trait ExtendFromWithinSpec {
3506 /// # Safety
3507 ///
3508 /// - `src` needs to be valid index
3509 /// - `self.capacity() - self.len()` must be `>= src.len()`
3510 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3511}
3512
3513#[cfg(not(no_global_oom_handling))]
3514impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3515 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3516 // SAFETY:
3517 // - len is increased only after initializing elements
3518 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3519
3520 // SAFETY:
3521 // - caller guarantees that src is a valid index
3522 let to_clone = unsafe { this.get_unchecked(src) };
3523
3524 iter::zip(to_clone, spare)
3525 .map(|(src, dst)| dst.write(src.clone()))
3526 // Note:
3527 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3528 // - len is increased after each element to prevent leaks (see issue #82533)
3529 .for_each(|_| *len += 1);
3530 }
3531}
3532
3533#[cfg(not(no_global_oom_handling))]
3534impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3535 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3536 let count = src.len();
3537 {
3538 let (init, spare) = self.split_at_spare_mut();
3539
3540 // SAFETY:
3541 // - caller guarantees that `src` is a valid index
3542 let source = unsafe { init.get_unchecked(src) };
3543
3544 // SAFETY:
3545 // - Both pointers are created from unique slice references (`&mut [_]`)
3546 // so they are valid and do not overlap.
3547 // - Elements are :Copy so it's OK to copy them, without doing
3548 // anything with the original values
3549 // - `count` is equal to the len of `source`, so source is valid for
3550 // `count` reads
3551 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3552 // is valid for `count` writes
3553 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3554 }
3555
3556 // SAFETY:
3557 // - The elements were just initialized by `copy_nonoverlapping`
3558 self.len += count;
3559 }
3560}
3561
3562////////////////////////////////////////////////////////////////////////////////
3563// Common trait implementations for Vec
3564////////////////////////////////////////////////////////////////////////////////
3565
3566#[stable(feature = "rust1", since = "1.0.0")]
3567impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3568 type Target = [T];
3569
3570 #[inline]
3571 fn deref(&self) -> &[T] {
3572 self.as_slice()
3573 }
3574}
3575
3576#[stable(feature = "rust1", since = "1.0.0")]
3577impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3578 #[inline]
3579 fn deref_mut(&mut self) -> &mut [T] {
3580 self.as_mut_slice()
3581 }
3582}
3583
3584#[unstable(feature = "deref_pure_trait", issue = "87121")]
3585unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3586
3587#[cfg(not(no_global_oom_handling))]
3588#[stable(feature = "rust1", since = "1.0.0")]
3589impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3590 #[track_caller]
3591 fn clone(&self) -> Self {
3592 let alloc = self.allocator().clone();
3593 <[T]>::to_vec_in(&**self, alloc)
3594 }
3595
3596 /// Overwrites the contents of `self` with a clone of the contents of `source`.
3597 ///
3598 /// This method is preferred over simply assigning `source.clone()` to `self`,
3599 /// as it avoids reallocation if possible. Additionally, if the element type
3600 /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3601 /// elements as well.
3602 ///
3603 /// # Examples
3604 ///
3605 /// ```
3606 /// let x = vec![5, 6, 7];
3607 /// let mut y = vec![8, 9, 10];
3608 /// let yp: *const i32 = y.as_ptr();
3609 ///
3610 /// y.clone_from(&x);
3611 ///
3612 /// // The value is the same
3613 /// assert_eq!(x, y);
3614 ///
3615 /// // And no reallocation occurred
3616 /// assert_eq!(yp, y.as_ptr());
3617 /// ```
3618 #[track_caller]
3619 fn clone_from(&mut self, source: &Self) {
3620 crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3621 }
3622}
3623
3624/// The hash of a vector is the same as that of the corresponding slice,
3625/// as required by the `core::borrow::Borrow` implementation.
3626///
3627/// ```
3628/// use std::hash::BuildHasher;
3629///
3630/// let b = std::hash::RandomState::new();
3631/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3632/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3633/// assert_eq!(b.hash_one(v), b.hash_one(s));
3634/// ```
3635#[stable(feature = "rust1", since = "1.0.0")]
3636impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3637 #[inline]
3638 fn hash<H: Hasher>(&self, state: &mut H) {
3639 Hash::hash(&**self, state)
3640 }
3641}
3642
3643#[stable(feature = "rust1", since = "1.0.0")]
3644impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3645 type Output = I::Output;
3646
3647 #[inline]
3648 fn index(&self, index: I) -> &Self::Output {
3649 Index::index(&**self, index)
3650 }
3651}
3652
3653#[stable(feature = "rust1", since = "1.0.0")]
3654impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3655 #[inline]
3656 fn index_mut(&mut self, index: I) -> &mut Self::Output {
3657 IndexMut::index_mut(&mut **self, index)
3658 }
3659}
3660
3661/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3662///
3663/// # Allocation behavior
3664///
3665/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3666/// That also applies to this trait impl.
3667///
3668/// **Note:** This section covers implementation details and is therefore exempt from
3669/// stability guarantees.
3670///
3671/// Vec may use any or none of the following strategies,
3672/// depending on the supplied iterator:
3673///
3674/// * preallocate based on [`Iterator::size_hint()`]
3675/// * and panic if the number of items is outside the provided lower/upper bounds
3676/// * use an amortized growth strategy similar to `pushing` one item at a time
3677/// * perform the iteration in-place on the original allocation backing the iterator
3678///
3679/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3680/// consumption and improves cache locality. But when big, short-lived allocations are created,
3681/// only a small fraction of their items get collected, no further use is made of the spare capacity
3682/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3683/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3684/// footprint.
3685///
3686/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3687/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3688/// the size of the long-lived struct.
3689///
3690/// [owned slice]: Box
3691///
3692/// ```rust
3693/// # use std::sync::Mutex;
3694/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3695///
3696/// for i in 0..10 {
3697/// let big_temporary: Vec<u16> = (0..1024).collect();
3698/// // discard most items
3699/// let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3700/// // without this a lot of unused capacity might be moved into the global
3701/// result.shrink_to_fit();
3702/// LONG_LIVED.lock().unwrap().push(result);
3703/// }
3704/// ```
3705#[cfg(not(no_global_oom_handling))]
3706#[stable(feature = "rust1", since = "1.0.0")]
3707impl<T> FromIterator<T> for Vec<T> {
3708 #[inline]
3709 #[track_caller]
3710 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3711 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3712 }
3713}
3714
3715#[stable(feature = "rust1", since = "1.0.0")]
3716impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3717 type Item = T;
3718 type IntoIter = IntoIter<T, A>;
3719
3720 /// Creates a consuming iterator, that is, one that moves each value out of
3721 /// the vector (from start to end). The vector cannot be used after calling
3722 /// this.
3723 ///
3724 /// # Examples
3725 ///
3726 /// ```
3727 /// let v = vec!["a".to_string(), "b".to_string()];
3728 /// let mut v_iter = v.into_iter();
3729 ///
3730 /// let first_element: Option<String> = v_iter.next();
3731 ///
3732 /// assert_eq!(first_element, Some("a".to_string()));
3733 /// assert_eq!(v_iter.next(), Some("b".to_string()));
3734 /// assert_eq!(v_iter.next(), None);
3735 /// ```
3736 #[inline]
3737 fn into_iter(self) -> Self::IntoIter {
3738 unsafe {
3739 let me = ManuallyDrop::new(self);
3740 let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3741 let buf = me.buf.non_null();
3742 let begin = buf.as_ptr();
3743 let end = if T::IS_ZST {
3744 begin.wrapping_byte_add(me.len())
3745 } else {
3746 begin.add(me.len()) as *const T
3747 };
3748 let cap = me.buf.capacity();
3749 IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3750 }
3751 }
3752}
3753
3754#[stable(feature = "rust1", since = "1.0.0")]
3755impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3756 type Item = &'a T;
3757 type IntoIter = slice::Iter<'a, T>;
3758
3759 fn into_iter(self) -> Self::IntoIter {
3760 self.iter()
3761 }
3762}
3763
3764#[stable(feature = "rust1", since = "1.0.0")]
3765impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3766 type Item = &'a mut T;
3767 type IntoIter = slice::IterMut<'a, T>;
3768
3769 fn into_iter(self) -> Self::IntoIter {
3770 self.iter_mut()
3771 }
3772}
3773
3774#[cfg(not(no_global_oom_handling))]
3775#[stable(feature = "rust1", since = "1.0.0")]
3776impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3777 #[inline]
3778 #[track_caller]
3779 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3780 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3781 }
3782
3783 #[inline]
3784 #[track_caller]
3785 fn extend_one(&mut self, item: T) {
3786 self.push(item);
3787 }
3788
3789 #[inline]
3790 #[track_caller]
3791 fn extend_reserve(&mut self, additional: usize) {
3792 self.reserve(additional);
3793 }
3794
3795 #[inline]
3796 unsafe fn extend_one_unchecked(&mut self, item: T) {
3797 // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3798 unsafe {
3799 let len = self.len();
3800 ptr::write(self.as_mut_ptr().add(len), item);
3801 self.set_len(len + 1);
3802 }
3803 }
3804}
3805
3806impl<T, A: Allocator> Vec<T, A> {
3807 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3808 // they have no further optimizations to apply
3809 #[cfg(not(no_global_oom_handling))]
3810 #[track_caller]
3811 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3812 // This is the case for a general iterator.
3813 //
3814 // This function should be the moral equivalent of:
3815 //
3816 // for item in iterator {
3817 // self.push(item);
3818 // }
3819 while let Some(element) = iterator.next() {
3820 let len = self.len();
3821 if len == self.capacity() {
3822 let (lower, _) = iterator.size_hint();
3823 self.reserve(lower.saturating_add(1));
3824 }
3825 unsafe {
3826 ptr::write(self.as_mut_ptr().add(len), element);
3827 // Since next() executes user code which can panic we have to bump the length
3828 // after each step.
3829 // NB can't overflow since we would have had to alloc the address space
3830 self.set_len(len + 1);
3831 }
3832 }
3833 }
3834
3835 // specific extend for `TrustedLen` iterators, called both by the specializations
3836 // and internal places where resolving specialization makes compilation slower
3837 #[cfg(not(no_global_oom_handling))]
3838 #[track_caller]
3839 fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3840 let (low, high) = iterator.size_hint();
3841 if let Some(additional) = high {
3842 debug_assert_eq!(
3843 low,
3844 additional,
3845 "TrustedLen iterator's size hint is not exact: {:?}",
3846 (low, high)
3847 );
3848 self.reserve(additional);
3849 unsafe {
3850 let ptr = self.as_mut_ptr();
3851 let mut local_len = SetLenOnDrop::new(&mut self.len);
3852 iterator.for_each(move |element| {
3853 ptr::write(ptr.add(local_len.current_len()), element);
3854 // Since the loop executes user code which can panic we have to update
3855 // the length every step to correctly drop what we've written.
3856 // NB can't overflow since we would have had to alloc the address space
3857 local_len.increment_len(1);
3858 });
3859 }
3860 } else {
3861 // Per TrustedLen contract a `None` upper bound means that the iterator length
3862 // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3863 // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3864 // This avoids additional codegen for a fallback code path which would eventually
3865 // panic anyway.
3866 panic!("capacity overflow");
3867 }
3868 }
3869
3870 /// Creates a splicing iterator that replaces the specified range in the vector
3871 /// with the given `replace_with` iterator and yields the removed items.
3872 /// `replace_with` does not need to be the same length as `range`.
3873 ///
3874 /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3875 ///
3876 /// It is unspecified how many elements are removed from the vector
3877 /// if the `Splice` value is leaked.
3878 ///
3879 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3880 ///
3881 /// This is optimal if:
3882 ///
3883 /// * The tail (elements in the vector after `range`) is empty,
3884 /// * or `replace_with` yields fewer or equal elements than `range`'s length
3885 /// * or the lower bound of its `size_hint()` is exact.
3886 ///
3887 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3888 ///
3889 /// # Panics
3890 ///
3891 /// Panics if the range has `start_bound > end_bound`, or, if the range is
3892 /// bounded on either end and past the length of the vector.
3893 ///
3894 /// # Examples
3895 ///
3896 /// ```
3897 /// let mut v = vec![1, 2, 3, 4];
3898 /// let new = [7, 8, 9];
3899 /// let u: Vec<_> = v.splice(1..3, new).collect();
3900 /// assert_eq!(v, [1, 7, 8, 9, 4]);
3901 /// assert_eq!(u, [2, 3]);
3902 /// ```
3903 ///
3904 /// Using `splice` to insert new items into a vector efficiently at a specific position
3905 /// indicated by an empty range:
3906 ///
3907 /// ```
3908 /// let mut v = vec![1, 5];
3909 /// let new = [2, 3, 4];
3910 /// v.splice(1..1, new);
3911 /// assert_eq!(v, [1, 2, 3, 4, 5]);
3912 /// ```
3913 #[cfg(not(no_global_oom_handling))]
3914 #[inline]
3915 #[stable(feature = "vec_splice", since = "1.21.0")]
3916 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3917 where
3918 R: RangeBounds<usize>,
3919 I: IntoIterator<Item = T>,
3920 {
3921 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3922 }
3923
3924 /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3925 ///
3926 /// If the closure returns `true`, the element is removed from the vector
3927 /// and yielded. If the closure returns `false`, or panics, the element
3928 /// remains in the vector and will not be yielded.
3929 ///
3930 /// Only elements that fall in the provided range are considered for extraction, but any elements
3931 /// after the range will still have to be moved if any element has been extracted.
3932 ///
3933 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3934 /// or the iteration short-circuits, then the remaining elements will be retained.
3935 /// Use [`retain_mut`] with a negated predicate if you do not need the returned iterator.
3936 ///
3937 /// [`retain_mut`]: Vec::retain_mut
3938 ///
3939 /// Using this method is equivalent to the following code:
3940 ///
3941 /// ```
3942 /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
3943 /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
3944 /// # let mut vec2 = vec.clone();
3945 /// # let range = 1..5;
3946 /// let mut i = range.start;
3947 /// let end_items = vec.len() - range.end;
3948 /// # let mut extracted = vec![];
3949 ///
3950 /// while i < vec.len() - end_items {
3951 /// if some_predicate(&mut vec[i]) {
3952 /// let val = vec.remove(i);
3953 /// // your code here
3954 /// # extracted.push(val);
3955 /// } else {
3956 /// i += 1;
3957 /// }
3958 /// }
3959 ///
3960 /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
3961 /// # assert_eq!(vec, vec2);
3962 /// # assert_eq!(extracted, extracted2);
3963 /// ```
3964 ///
3965 /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3966 /// because it can backshift the elements of the array in bulk.
3967 ///
3968 /// The iterator also lets you mutate the value of each element in the
3969 /// closure, regardless of whether you choose to keep or remove it.
3970 ///
3971 /// # Panics
3972 ///
3973 /// If `range` is out of bounds.
3974 ///
3975 /// # Examples
3976 ///
3977 /// Splitting a vector into even and odd values, reusing the original vector:
3978 ///
3979 /// ```
3980 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3981 ///
3982 /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
3983 /// let odds = numbers;
3984 ///
3985 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3986 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3987 /// ```
3988 ///
3989 /// Using the range argument to only process a part of the vector:
3990 ///
3991 /// ```
3992 /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
3993 /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
3994 /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
3995 /// assert_eq!(ones.len(), 3);
3996 /// ```
3997 #[stable(feature = "extract_if", since = "1.87.0")]
3998 pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
3999 where
4000 F: FnMut(&mut T) -> bool,
4001 R: RangeBounds<usize>,
4002 {
4003 ExtractIf::new(self, filter, range)
4004 }
4005}
4006
4007/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4008///
4009/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4010/// append the entire slice at once.
4011///
4012/// [`copy_from_slice`]: slice::copy_from_slice
4013#[cfg(not(no_global_oom_handling))]
4014#[stable(feature = "extend_ref", since = "1.2.0")]
4015impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4016 #[track_caller]
4017 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4018 self.spec_extend(iter.into_iter())
4019 }
4020
4021 #[inline]
4022 #[track_caller]
4023 fn extend_one(&mut self, &item: &'a T) {
4024 self.push(item);
4025 }
4026
4027 #[inline]
4028 #[track_caller]
4029 fn extend_reserve(&mut self, additional: usize) {
4030 self.reserve(additional);
4031 }
4032
4033 #[inline]
4034 unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4035 // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4036 unsafe {
4037 let len = self.len();
4038 ptr::write(self.as_mut_ptr().add(len), item);
4039 self.set_len(len + 1);
4040 }
4041 }
4042}
4043
4044/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4045#[stable(feature = "rust1", since = "1.0.0")]
4046impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4047where
4048 T: PartialOrd,
4049 A1: Allocator,
4050 A2: Allocator,
4051{
4052 #[inline]
4053 fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4054 PartialOrd::partial_cmp(&**self, &**other)
4055 }
4056}
4057
4058#[stable(feature = "rust1", since = "1.0.0")]
4059impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4060
4061/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4062#[stable(feature = "rust1", since = "1.0.0")]
4063impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4064 #[inline]
4065 fn cmp(&self, other: &Self) -> Ordering {
4066 Ord::cmp(&**self, &**other)
4067 }
4068}
4069
4070#[stable(feature = "rust1", since = "1.0.0")]
4071unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4072 fn drop(&mut self) {
4073 unsafe {
4074 // use drop for [T]
4075 // use a raw slice to refer to the elements of the vector as weakest necessary type;
4076 // could avoid questions of validity in certain cases
4077 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4078 }
4079 // RawVec handles deallocation
4080 }
4081}
4082
4083#[stable(feature = "rust1", since = "1.0.0")]
4084#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4085impl<T> const Default for Vec<T> {
4086 /// Creates an empty `Vec<T>`.
4087 ///
4088 /// The vector will not allocate until elements are pushed onto it.
4089 fn default() -> Vec<T> {
4090 Vec::new()
4091 }
4092}
4093
4094#[stable(feature = "rust1", since = "1.0.0")]
4095impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4096 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4097 fmt::Debug::fmt(&**self, f)
4098 }
4099}
4100
4101#[stable(feature = "rust1", since = "1.0.0")]
4102impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4103 fn as_ref(&self) -> &Vec<T, A> {
4104 self
4105 }
4106}
4107
4108#[stable(feature = "vec_as_mut", since = "1.5.0")]
4109impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4110 fn as_mut(&mut self) -> &mut Vec<T, A> {
4111 self
4112 }
4113}
4114
4115#[stable(feature = "rust1", since = "1.0.0")]
4116impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4117 fn as_ref(&self) -> &[T] {
4118 self
4119 }
4120}
4121
4122#[stable(feature = "vec_as_mut", since = "1.5.0")]
4123impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4124 fn as_mut(&mut self) -> &mut [T] {
4125 self
4126 }
4127}
4128
4129#[cfg(not(no_global_oom_handling))]
4130#[stable(feature = "rust1", since = "1.0.0")]
4131impl<T: Clone> From<&[T]> for Vec<T> {
4132 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4133 ///
4134 /// # Examples
4135 ///
4136 /// ```
4137 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4138 /// ```
4139 #[track_caller]
4140 fn from(s: &[T]) -> Vec<T> {
4141 s.to_vec()
4142 }
4143}
4144
4145#[cfg(not(no_global_oom_handling))]
4146#[stable(feature = "vec_from_mut", since = "1.19.0")]
4147impl<T: Clone> From<&mut [T]> for Vec<T> {
4148 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4149 ///
4150 /// # Examples
4151 ///
4152 /// ```
4153 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4154 /// ```
4155 #[track_caller]
4156 fn from(s: &mut [T]) -> Vec<T> {
4157 s.to_vec()
4158 }
4159}
4160
4161#[cfg(not(no_global_oom_handling))]
4162#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4163impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4164 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4165 ///
4166 /// # Examples
4167 ///
4168 /// ```
4169 /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4170 /// ```
4171 #[track_caller]
4172 fn from(s: &[T; N]) -> Vec<T> {
4173 Self::from(s.as_slice())
4174 }
4175}
4176
4177#[cfg(not(no_global_oom_handling))]
4178#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4179impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4180 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4181 ///
4182 /// # Examples
4183 ///
4184 /// ```
4185 /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4186 /// ```
4187 #[track_caller]
4188 fn from(s: &mut [T; N]) -> Vec<T> {
4189 Self::from(s.as_mut_slice())
4190 }
4191}
4192
4193#[cfg(not(no_global_oom_handling))]
4194#[stable(feature = "vec_from_array", since = "1.44.0")]
4195impl<T, const N: usize> From<[T; N]> for Vec<T> {
4196 /// Allocates a `Vec<T>` and moves `s`'s items into it.
4197 ///
4198 /// # Examples
4199 ///
4200 /// ```
4201 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4202 /// ```
4203 #[track_caller]
4204 fn from(s: [T; N]) -> Vec<T> {
4205 <[T]>::into_vec(Box::new(s))
4206 }
4207}
4208
4209#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4210impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4211where
4212 [T]: ToOwned<Owned = Vec<T>>,
4213{
4214 /// Converts a clone-on-write slice into a vector.
4215 ///
4216 /// If `s` already owns a `Vec<T>`, it will be returned directly.
4217 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4218 /// filled by cloning `s`'s items into it.
4219 ///
4220 /// # Examples
4221 ///
4222 /// ```
4223 /// # use std::borrow::Cow;
4224 /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4225 /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4226 /// assert_eq!(Vec::from(o), Vec::from(b));
4227 /// ```
4228 #[track_caller]
4229 fn from(s: Cow<'a, [T]>) -> Vec<T> {
4230 s.into_owned()
4231 }
4232}
4233
4234// note: test pulls in std, which causes errors here
4235#[stable(feature = "vec_from_box", since = "1.18.0")]
4236impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4237 /// Converts a boxed slice into a vector by transferring ownership of
4238 /// the existing heap allocation.
4239 ///
4240 /// # Examples
4241 ///
4242 /// ```
4243 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4244 /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4245 /// ```
4246 fn from(s: Box<[T], A>) -> Self {
4247 s.into_vec()
4248 }
4249}
4250
4251// note: test pulls in std, which causes errors here
4252#[cfg(not(no_global_oom_handling))]
4253#[stable(feature = "box_from_vec", since = "1.20.0")]
4254impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4255 /// Converts a vector into a boxed slice.
4256 ///
4257 /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4258 ///
4259 /// [owned slice]: Box
4260 /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4261 ///
4262 /// # Examples
4263 ///
4264 /// ```
4265 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4266 /// ```
4267 ///
4268 /// Any excess capacity is removed:
4269 /// ```
4270 /// let mut vec = Vec::with_capacity(10);
4271 /// vec.extend([1, 2, 3]);
4272 ///
4273 /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4274 /// ```
4275 #[track_caller]
4276 fn from(v: Vec<T, A>) -> Self {
4277 v.into_boxed_slice()
4278 }
4279}
4280
4281#[cfg(not(no_global_oom_handling))]
4282#[stable(feature = "rust1", since = "1.0.0")]
4283impl From<&str> for Vec<u8> {
4284 /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4285 ///
4286 /// # Examples
4287 ///
4288 /// ```
4289 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4290 /// ```
4291 #[track_caller]
4292 fn from(s: &str) -> Vec<u8> {
4293 From::from(s.as_bytes())
4294 }
4295}
4296
4297#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4298impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4299 type Error = Vec<T, A>;
4300
4301 /// Gets the entire contents of the `Vec<T>` as an array,
4302 /// if its size exactly matches that of the requested array.
4303 ///
4304 /// # Examples
4305 ///
4306 /// ```
4307 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4308 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4309 /// ```
4310 ///
4311 /// If the length doesn't match, the input comes back in `Err`:
4312 /// ```
4313 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4314 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4315 /// ```
4316 ///
4317 /// If you're fine with just getting a prefix of the `Vec<T>`,
4318 /// you can call [`.truncate(N)`](Vec::truncate) first.
4319 /// ```
4320 /// let mut v = String::from("hello world").into_bytes();
4321 /// v.sort();
4322 /// v.truncate(2);
4323 /// let [a, b]: [_; 2] = v.try_into().unwrap();
4324 /// assert_eq!(a, b' ');
4325 /// assert_eq!(b, b'd');
4326 /// ```
4327 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4328 if vec.len() != N {
4329 return Err(vec);
4330 }
4331
4332 // SAFETY: `.set_len(0)` is always sound.
4333 unsafe { vec.set_len(0) };
4334
4335 // SAFETY: A `Vec`'s pointer is always aligned properly, and
4336 // the alignment the array needs is the same as the items.
4337 // We checked earlier that we have sufficient items.
4338 // The items will not double-drop as the `set_len`
4339 // tells the `Vec` not to also drop them.
4340 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4341 Ok(array)
4342 }
4343}