Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::cmp;
78use core::cmp::Ordering;
79use core::hash::{Hash, Hasher};
80#[cfg(not(no_global_oom_handling))]
81use core::iter;
82use core::marker::PhantomData;
83use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
84use core::ops::{self, Index, IndexMut, Range, RangeBounds};
85use core::ptr::{self, NonNull};
86use core::slice::{self, SliceIndex};
87use core::{fmt, intrinsics, ub_checks};
88
89#[stable(feature = "extract_if", since = "1.87.0")]
90pub use self::extract_if::ExtractIf;
91use crate::alloc::{Allocator, Global};
92use crate::borrow::{Cow, ToOwned};
93use crate::boxed::Box;
94use crate::collections::TryReserveError;
95use crate::raw_vec::RawVec;
96
97mod extract_if;
98
99#[cfg(not(no_global_oom_handling))]
100#[stable(feature = "vec_splice", since = "1.21.0")]
101pub use self::splice::Splice;
102
103#[cfg(not(no_global_oom_handling))]
104mod splice;
105
106#[stable(feature = "drain", since = "1.6.0")]
107pub use self::drain::Drain;
108
109mod drain;
110
111#[cfg(not(no_global_oom_handling))]
112mod cow;
113
114#[cfg(not(no_global_oom_handling))]
115pub(crate) use self::in_place_collect::AsVecIntoIter;
116#[stable(feature = "rust1", since = "1.0.0")]
117pub use self::into_iter::IntoIter;
118
119mod into_iter;
120
121#[cfg(not(no_global_oom_handling))]
122use self::is_zero::IsZero;
123
124#[cfg(not(no_global_oom_handling))]
125mod is_zero;
126
127#[cfg(not(no_global_oom_handling))]
128mod in_place_collect;
129
130mod partial_eq;
131
132#[unstable(feature = "vec_peek_mut", issue = "122742")]
133pub use self::peek_mut::PeekMut;
134
135mod peek_mut;
136
137#[cfg(not(no_global_oom_handling))]
138use self::spec_from_elem::SpecFromElem;
139
140#[cfg(not(no_global_oom_handling))]
141mod spec_from_elem;
142
143#[cfg(not(no_global_oom_handling))]
144use self::set_len_on_drop::SetLenOnDrop;
145
146#[cfg(not(no_global_oom_handling))]
147mod set_len_on_drop;
148
149#[cfg(not(no_global_oom_handling))]
150use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
151
152#[cfg(not(no_global_oom_handling))]
153mod in_place_drop;
154
155#[cfg(not(no_global_oom_handling))]
156use self::spec_from_iter_nested::SpecFromIterNested;
157
158#[cfg(not(no_global_oom_handling))]
159mod spec_from_iter_nested;
160
161#[cfg(not(no_global_oom_handling))]
162use self::spec_from_iter::SpecFromIter;
163
164#[cfg(not(no_global_oom_handling))]
165mod spec_from_iter;
166
167#[cfg(not(no_global_oom_handling))]
168use self::spec_extend::SpecExtend;
169
170#[cfg(not(no_global_oom_handling))]
171mod spec_extend;
172
173/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
174///
175/// # Examples
176///
177/// ```
178/// let mut vec = Vec::new();
179/// vec.push(1);
180/// vec.push(2);
181///
182/// assert_eq!(vec.len(), 2);
183/// assert_eq!(vec[0], 1);
184///
185/// assert_eq!(vec.pop(), Some(2));
186/// assert_eq!(vec.len(), 1);
187///
188/// vec[0] = 7;
189/// assert_eq!(vec[0], 7);
190///
191/// vec.extend([1, 2, 3]);
192///
193/// for x in &vec {
194///     println!("{x}");
195/// }
196/// assert_eq!(vec, [7, 1, 2, 3]);
197/// ```
198///
199/// The [`vec!`] macro is provided for convenient initialization:
200///
201/// ```
202/// let mut vec1 = vec![1, 2, 3];
203/// vec1.push(4);
204/// let vec2 = Vec::from([1, 2, 3, 4]);
205/// assert_eq!(vec1, vec2);
206/// ```
207///
208/// It can also initialize each element of a `Vec<T>` with a given value.
209/// This may be more efficient than performing allocation and initialization
210/// in separate steps, especially when initializing a vector of zeros:
211///
212/// ```
213/// let vec = vec![0; 5];
214/// assert_eq!(vec, [0, 0, 0, 0, 0]);
215///
216/// // The following is equivalent, but potentially slower:
217/// let mut vec = Vec::with_capacity(5);
218/// vec.resize(5, 0);
219/// assert_eq!(vec, [0, 0, 0, 0, 0]);
220/// ```
221///
222/// For more information, see
223/// [Capacity and Reallocation](#capacity-and-reallocation).
224///
225/// Use a `Vec<T>` as an efficient stack:
226///
227/// ```
228/// let mut stack = Vec::new();
229///
230/// stack.push(1);
231/// stack.push(2);
232/// stack.push(3);
233///
234/// while let Some(top) = stack.pop() {
235///     // Prints 3, 2, 1
236///     println!("{top}");
237/// }
238/// ```
239///
240/// # Indexing
241///
242/// The `Vec` type allows access to values by index, because it implements the
243/// [`Index`] trait. An example will be more explicit:
244///
245/// ```
246/// let v = vec![0, 2, 4, 6];
247/// println!("{}", v[1]); // it will display '2'
248/// ```
249///
250/// However be careful: if you try to access an index which isn't in the `Vec`,
251/// your software will panic! You cannot do this:
252///
253/// ```should_panic
254/// let v = vec![0, 2, 4, 6];
255/// println!("{}", v[6]); // it will panic!
256/// ```
257///
258/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
259/// the `Vec`.
260///
261/// # Slicing
262///
263/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
264/// To get a [slice][prim@slice], use [`&`]. Example:
265///
266/// ```
267/// fn read_slice(slice: &[usize]) {
268///     // ...
269/// }
270///
271/// let v = vec![0, 1];
272/// read_slice(&v);
273///
274/// // ... and that's all!
275/// // you can also do it like this:
276/// let u: &[usize] = &v;
277/// // or like this:
278/// let u: &[_] = &v;
279/// ```
280///
281/// In Rust, it's more common to pass slices as arguments rather than vectors
282/// when you just want to provide read access. The same goes for [`String`] and
283/// [`&str`].
284///
285/// # Capacity and reallocation
286///
287/// The capacity of a vector is the amount of space allocated for any future
288/// elements that will be added onto the vector. This is not to be confused with
289/// the *length* of a vector, which specifies the number of actual elements
290/// within the vector. If a vector's length exceeds its capacity, its capacity
291/// will automatically be increased, but its elements will have to be
292/// reallocated.
293///
294/// For example, a vector with capacity 10 and length 0 would be an empty vector
295/// with space for 10 more elements. Pushing 10 or fewer elements onto the
296/// vector will not change its capacity or cause reallocation to occur. However,
297/// if the vector's length is increased to 11, it will have to reallocate, which
298/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
299/// whenever possible to specify how big the vector is expected to get.
300///
301/// # Guarantees
302///
303/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
304/// about its design. This ensures that it's as low-overhead as possible in
305/// the general case, and can be correctly manipulated in primitive ways
306/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
307/// If additional type parameters are added (e.g., to support custom allocators),
308/// overriding their defaults may change the behavior.
309///
310/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
311/// triplet. No more, no less. The order of these fields is completely
312/// unspecified, and you should use the appropriate methods to modify these.
313/// The pointer will never be null, so this type is null-pointer-optimized.
314///
315/// However, the pointer might not actually point to allocated memory. In particular,
316/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
317/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
318/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
319/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
320/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
321/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
322/// details are very subtle --- if you intend to allocate memory using a `Vec`
323/// and use it for something else (either to pass to unsafe code, or to build your
324/// own memory-backed collection), be sure to deallocate this memory by using
325/// `from_raw_parts` to recover the `Vec` and then dropping it.
326///
327/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
328/// (as defined by the allocator Rust is configured to use by default), and its
329/// pointer points to [`len`] initialized, contiguous elements in order (what
330/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
331/// logically uninitialized, contiguous elements.
332///
333/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
334/// visualized as below. The top part is the `Vec` struct, it contains a
335/// pointer to the head of the allocation in the heap, length and capacity.
336/// The bottom part is the allocation on the heap, a contiguous memory block.
337///
338/// ```text
339///             ptr      len  capacity
340///        +--------+--------+--------+
341///        | 0x0123 |      2 |      4 |
342///        +--------+--------+--------+
343///             |
344///             v
345/// Heap   +--------+--------+--------+--------+
346///        |    'a' |    'b' | uninit | uninit |
347///        +--------+--------+--------+--------+
348/// ```
349///
350/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
351/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
352///   layout (including the order of fields).
353///
354/// `Vec` will never perform a "small optimization" where elements are actually
355/// stored on the stack for two reasons:
356///
357/// * It would make it more difficult for unsafe code to correctly manipulate
358///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
359///   only moved, and it would be more difficult to determine if a `Vec` had
360///   actually allocated memory.
361///
362/// * It would penalize the general case, incurring an additional branch
363///   on every access.
364///
365/// `Vec` will never automatically shrink itself, even if completely empty. This
366/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
367/// and then filling it back up to the same [`len`] should incur no calls to
368/// the allocator. If you wish to free up unused memory, use
369/// [`shrink_to_fit`] or [`shrink_to`].
370///
371/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
372/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
373/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
374/// accurate, and can be relied on. It can even be used to manually free the memory
375/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
376/// when not necessary.
377///
378/// `Vec` does not guarantee any particular growth strategy when reallocating
379/// when full, nor when [`reserve`] is called. The current strategy is basic
380/// and it may prove desirable to use a non-constant growth factor. Whatever
381/// strategy is used will of course guarantee *O*(1) amortized [`push`].
382///
383/// It is guaranteed, in order to respect the intentions of the programmer, that
384/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
385/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
386/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
387/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
388///
389/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
390/// and not more than the allocated capacity.
391///
392/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
393/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
394/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
395/// `Vec` exploits this fact as much as reasonable when implementing common conversions
396/// such as [`into_boxed_slice`].
397///
398/// `Vec` will not specifically overwrite any data that is removed from it,
399/// but also won't specifically preserve it. Its uninitialized memory is
400/// scratch space that it may use however it wants. It will generally just do
401/// whatever is most efficient or otherwise easy to implement. Do not rely on
402/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
403/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
404/// first, that might not actually happen because the optimizer does not consider
405/// this a side-effect that must be preserved. There is one case which we will
406/// not break, however: using `unsafe` code to write to the excess capacity,
407/// and then increasing the length to match, is always valid.
408///
409/// Currently, `Vec` does not guarantee the order in which elements are dropped.
410/// The order has changed in the past and may change again.
411///
412/// [`get`]: slice::get
413/// [`get_mut`]: slice::get_mut
414/// [`String`]: crate::string::String
415/// [`&str`]: type@str
416/// [`shrink_to_fit`]: Vec::shrink_to_fit
417/// [`shrink_to`]: Vec::shrink_to
418/// [capacity]: Vec::capacity
419/// [`capacity`]: Vec::capacity
420/// [`Vec::capacity`]: Vec::capacity
421/// [size_of::\<T>]: size_of
422/// [len]: Vec::len
423/// [`len`]: Vec::len
424/// [`push`]: Vec::push
425/// [`insert`]: Vec::insert
426/// [`reserve`]: Vec::reserve
427/// [`Vec::with_capacity(n)`]: Vec::with_capacity
428/// [`MaybeUninit`]: core::mem::MaybeUninit
429/// [owned slice]: Box
430/// [`into_boxed_slice`]: Vec::into_boxed_slice
431#[stable(feature = "rust1", since = "1.0.0")]
432#[rustc_diagnostic_item = "Vec"]
433#[rustc_insignificant_dtor]
434pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
435    buf: RawVec<T, A>,
436    len: usize,
437}
438
439////////////////////////////////////////////////////////////////////////////////
440// Inherent methods
441////////////////////////////////////////////////////////////////////////////////
442
443impl<T> Vec<T> {
444    /// Constructs a new, empty `Vec<T>`.
445    ///
446    /// The vector will not allocate until elements are pushed onto it.
447    ///
448    /// # Examples
449    ///
450    /// ```
451    /// # #![allow(unused_mut)]
452    /// let mut vec: Vec<i32> = Vec::new();
453    /// ```
454    #[inline]
455    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
456    #[rustc_diagnostic_item = "vec_new"]
457    #[stable(feature = "rust1", since = "1.0.0")]
458    #[must_use]
459    pub const fn new() -> Self {
460        Vec { buf: RawVec::new(), len: 0 }
461    }
462
463    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
464    ///
465    /// The vector will be able to hold at least `capacity` elements without
466    /// reallocating. This method is allowed to allocate for more elements than
467    /// `capacity`. If `capacity` is zero, the vector will not allocate.
468    ///
469    /// It is important to note that although the returned vector has the
470    /// minimum *capacity* specified, the vector will have a zero *length*. For
471    /// an explanation of the difference between length and capacity, see
472    /// *[Capacity and reallocation]*.
473    ///
474    /// If it is important to know the exact allocated capacity of a `Vec`,
475    /// always use the [`capacity`] method after construction.
476    ///
477    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
478    /// and the capacity will always be `usize::MAX`.
479    ///
480    /// [Capacity and reallocation]: #capacity-and-reallocation
481    /// [`capacity`]: Vec::capacity
482    ///
483    /// # Panics
484    ///
485    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
486    ///
487    /// # Examples
488    ///
489    /// ```
490    /// let mut vec = Vec::with_capacity(10);
491    ///
492    /// // The vector contains no items, even though it has capacity for more
493    /// assert_eq!(vec.len(), 0);
494    /// assert!(vec.capacity() >= 10);
495    ///
496    /// // These are all done without reallocating...
497    /// for i in 0..10 {
498    ///     vec.push(i);
499    /// }
500    /// assert_eq!(vec.len(), 10);
501    /// assert!(vec.capacity() >= 10);
502    ///
503    /// // ...but this may make the vector reallocate
504    /// vec.push(11);
505    /// assert_eq!(vec.len(), 11);
506    /// assert!(vec.capacity() >= 11);
507    ///
508    /// // A vector of a zero-sized type will always over-allocate, since no
509    /// // allocation is necessary
510    /// let vec_units = Vec::<()>::with_capacity(10);
511    /// assert_eq!(vec_units.capacity(), usize::MAX);
512    /// ```
513    #[cfg(not(no_global_oom_handling))]
514    #[inline]
515    #[stable(feature = "rust1", since = "1.0.0")]
516    #[must_use]
517    #[rustc_diagnostic_item = "vec_with_capacity"]
518    #[track_caller]
519    pub fn with_capacity(capacity: usize) -> Self {
520        Self::with_capacity_in(capacity, Global)
521    }
522
523    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
524    ///
525    /// The vector will be able to hold at least `capacity` elements without
526    /// reallocating. This method is allowed to allocate for more elements than
527    /// `capacity`. If `capacity` is zero, the vector will not allocate.
528    ///
529    /// # Errors
530    ///
531    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
532    /// or if the allocator reports allocation failure.
533    #[inline]
534    #[unstable(feature = "try_with_capacity", issue = "91913")]
535    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
536        Self::try_with_capacity_in(capacity, Global)
537    }
538
539    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
540    ///
541    /// # Safety
542    ///
543    /// This is highly unsafe, due to the number of invariants that aren't
544    /// checked:
545    ///
546    /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
547    ///   been allocated using the global allocator, such as via the [`alloc::alloc`]
548    ///   function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
549    ///   only be non-null and aligned.
550    /// * `T` needs to have the same alignment as what `ptr` was allocated with,
551    ///   if the pointer is required to be allocated.
552    ///   (`T` having a less strict alignment is not sufficient, the alignment really
553    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
554    ///   allocated and deallocated with the same layout.)
555    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
556    ///   nonzero, needs to be the same size as the pointer was allocated with.
557    ///   (Because similar to alignment, [`dealloc`] must be called with the same
558    ///   layout `size`.)
559    /// * `length` needs to be less than or equal to `capacity`.
560    /// * The first `length` values must be properly initialized values of type `T`.
561    /// * `capacity` needs to be the capacity that the pointer was allocated with,
562    ///   if the pointer is required to be allocated.
563    /// * The allocated size in bytes must be no larger than `isize::MAX`.
564    ///   See the safety documentation of [`pointer::offset`].
565    ///
566    /// These requirements are always upheld by any `ptr` that has been allocated
567    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
568    /// upheld.
569    ///
570    /// Violating these may cause problems like corrupting the allocator's
571    /// internal data structures. For example it is normally **not** safe
572    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
573    /// `size_t`, doing so is only safe if the array was initially allocated by
574    /// a `Vec` or `String`.
575    /// It's also not safe to build one from a `Vec<u16>` and its length, because
576    /// the allocator cares about the alignment, and these two types have different
577    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
578    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
579    /// these issues, it is often preferable to do casting/transmuting using
580    /// [`slice::from_raw_parts`] instead.
581    ///
582    /// The ownership of `ptr` is effectively transferred to the
583    /// `Vec<T>` which may then deallocate, reallocate or change the
584    /// contents of memory pointed to by the pointer at will. Ensure
585    /// that nothing else uses the pointer after calling this
586    /// function.
587    ///
588    /// [`String`]: crate::string::String
589    /// [`alloc::alloc`]: crate::alloc::alloc
590    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
591    ///
592    /// # Examples
593    ///
594    // FIXME Update this when vec_into_raw_parts is stabilized
595    /// ```
596    /// use std::ptr;
597    /// use std::mem;
598    ///
599    /// let v = vec![1, 2, 3];
600    ///
601    /// // Prevent running `v`'s destructor so we are in complete control
602    /// // of the allocation.
603    /// let mut v = mem::ManuallyDrop::new(v);
604    ///
605    /// // Pull out the various important pieces of information about `v`
606    /// let p = v.as_mut_ptr();
607    /// let len = v.len();
608    /// let cap = v.capacity();
609    ///
610    /// unsafe {
611    ///     // Overwrite memory with 4, 5, 6
612    ///     for i in 0..len {
613    ///         ptr::write(p.add(i), 4 + i);
614    ///     }
615    ///
616    ///     // Put everything back together into a Vec
617    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
618    ///     assert_eq!(rebuilt, [4, 5, 6]);
619    /// }
620    /// ```
621    ///
622    /// Using memory that was allocated elsewhere:
623    ///
624    /// ```rust
625    /// use std::alloc::{alloc, Layout};
626    ///
627    /// fn main() {
628    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
629    ///
630    ///     let vec = unsafe {
631    ///         let mem = alloc(layout).cast::<u32>();
632    ///         if mem.is_null() {
633    ///             return;
634    ///         }
635    ///
636    ///         mem.write(1_000_000);
637    ///
638    ///         Vec::from_raw_parts(mem, 1, 16)
639    ///     };
640    ///
641    ///     assert_eq!(vec, &[1_000_000]);
642    ///     assert_eq!(vec.capacity(), 16);
643    /// }
644    /// ```
645    #[inline]
646    #[stable(feature = "rust1", since = "1.0.0")]
647    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
648        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
649    }
650
651    #[doc(alias = "from_non_null_parts")]
652    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
653    ///
654    /// # Safety
655    ///
656    /// This is highly unsafe, due to the number of invariants that aren't
657    /// checked:
658    ///
659    /// * `ptr` must have been allocated using the global allocator, such as via
660    ///   the [`alloc::alloc`] function.
661    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
662    ///   (`T` having a less strict alignment is not sufficient, the alignment really
663    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
664    ///   allocated and deallocated with the same layout.)
665    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
666    ///   to be the same size as the pointer was allocated with. (Because similar to
667    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
668    /// * `length` needs to be less than or equal to `capacity`.
669    /// * The first `length` values must be properly initialized values of type `T`.
670    /// * `capacity` needs to be the capacity that the pointer was allocated with.
671    /// * The allocated size in bytes must be no larger than `isize::MAX`.
672    ///   See the safety documentation of [`pointer::offset`].
673    ///
674    /// These requirements are always upheld by any `ptr` that has been allocated
675    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
676    /// upheld.
677    ///
678    /// Violating these may cause problems like corrupting the allocator's
679    /// internal data structures. For example it is normally **not** safe
680    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
681    /// `size_t`, doing so is only safe if the array was initially allocated by
682    /// a `Vec` or `String`.
683    /// It's also not safe to build one from a `Vec<u16>` and its length, because
684    /// the allocator cares about the alignment, and these two types have different
685    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
686    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
687    /// these issues, it is often preferable to do casting/transmuting using
688    /// [`NonNull::slice_from_raw_parts`] instead.
689    ///
690    /// The ownership of `ptr` is effectively transferred to the
691    /// `Vec<T>` which may then deallocate, reallocate or change the
692    /// contents of memory pointed to by the pointer at will. Ensure
693    /// that nothing else uses the pointer after calling this
694    /// function.
695    ///
696    /// [`String`]: crate::string::String
697    /// [`alloc::alloc`]: crate::alloc::alloc
698    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
699    ///
700    /// # Examples
701    ///
702    // FIXME Update this when vec_into_raw_parts is stabilized
703    /// ```
704    /// #![feature(box_vec_non_null)]
705    ///
706    /// use std::ptr::NonNull;
707    /// use std::mem;
708    ///
709    /// let v = vec![1, 2, 3];
710    ///
711    /// // Prevent running `v`'s destructor so we are in complete control
712    /// // of the allocation.
713    /// let mut v = mem::ManuallyDrop::new(v);
714    ///
715    /// // Pull out the various important pieces of information about `v`
716    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
717    /// let len = v.len();
718    /// let cap = v.capacity();
719    ///
720    /// unsafe {
721    ///     // Overwrite memory with 4, 5, 6
722    ///     for i in 0..len {
723    ///         p.add(i).write(4 + i);
724    ///     }
725    ///
726    ///     // Put everything back together into a Vec
727    ///     let rebuilt = Vec::from_parts(p, len, cap);
728    ///     assert_eq!(rebuilt, [4, 5, 6]);
729    /// }
730    /// ```
731    ///
732    /// Using memory that was allocated elsewhere:
733    ///
734    /// ```rust
735    /// #![feature(box_vec_non_null)]
736    ///
737    /// use std::alloc::{alloc, Layout};
738    /// use std::ptr::NonNull;
739    ///
740    /// fn main() {
741    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
742    ///
743    ///     let vec = unsafe {
744    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
745    ///             return;
746    ///         };
747    ///
748    ///         mem.write(1_000_000);
749    ///
750    ///         Vec::from_parts(mem, 1, 16)
751    ///     };
752    ///
753    ///     assert_eq!(vec, &[1_000_000]);
754    ///     assert_eq!(vec.capacity(), 16);
755    /// }
756    /// ```
757    #[inline]
758    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
759    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
760        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
761    }
762
763    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
764    ///
765    /// Returns the raw pointer to the underlying data, the length of
766    /// the vector (in elements), and the allocated capacity of the
767    /// data (in elements). These are the same arguments in the same
768    /// order as the arguments to [`from_raw_parts`].
769    ///
770    /// After calling this function, the caller is responsible for the
771    /// memory previously managed by the `Vec`. Most often, one does
772    /// this by converting the raw pointer, length, and capacity back
773    /// into a `Vec` with the [`from_raw_parts`] function; more generally,
774    /// if `T` is non-zero-sized and the capacity is nonzero, one may use
775    /// any method that calls [`dealloc`] with a layout of
776    /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
777    /// capacity is zero, nothing needs to be done.
778    ///
779    /// [`from_raw_parts`]: Vec::from_raw_parts
780    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
781    ///
782    /// # Examples
783    ///
784    /// ```
785    /// #![feature(vec_into_raw_parts)]
786    /// let v: Vec<i32> = vec![-1, 0, 1];
787    ///
788    /// let (ptr, len, cap) = v.into_raw_parts();
789    ///
790    /// let rebuilt = unsafe {
791    ///     // We can now make changes to the components, such as
792    ///     // transmuting the raw pointer to a compatible type.
793    ///     let ptr = ptr as *mut u32;
794    ///
795    ///     Vec::from_raw_parts(ptr, len, cap)
796    /// };
797    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
798    /// ```
799    #[must_use = "losing the pointer will leak memory"]
800    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
801    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
802        let mut me = ManuallyDrop::new(self);
803        (me.as_mut_ptr(), me.len(), me.capacity())
804    }
805
806    #[doc(alias = "into_non_null_parts")]
807    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
808    ///
809    /// Returns the `NonNull` pointer to the underlying data, the length of
810    /// the vector (in elements), and the allocated capacity of the
811    /// data (in elements). These are the same arguments in the same
812    /// order as the arguments to [`from_parts`].
813    ///
814    /// After calling this function, the caller is responsible for the
815    /// memory previously managed by the `Vec`. The only way to do
816    /// this is to convert the `NonNull` pointer, length, and capacity back
817    /// into a `Vec` with the [`from_parts`] function, allowing
818    /// the destructor to perform the cleanup.
819    ///
820    /// [`from_parts`]: Vec::from_parts
821    ///
822    /// # Examples
823    ///
824    /// ```
825    /// #![feature(vec_into_raw_parts, box_vec_non_null)]
826    ///
827    /// let v: Vec<i32> = vec![-1, 0, 1];
828    ///
829    /// let (ptr, len, cap) = v.into_parts();
830    ///
831    /// let rebuilt = unsafe {
832    ///     // We can now make changes to the components, such as
833    ///     // transmuting the raw pointer to a compatible type.
834    ///     let ptr = ptr.cast::<u32>();
835    ///
836    ///     Vec::from_parts(ptr, len, cap)
837    /// };
838    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
839    /// ```
840    #[must_use = "losing the pointer will leak memory"]
841    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
842    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
843    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
844        let (ptr, len, capacity) = self.into_raw_parts();
845        // SAFETY: A `Vec` always has a non-null pointer.
846        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
847    }
848}
849
850impl<T, A: Allocator> Vec<T, A> {
851    /// Constructs a new, empty `Vec<T, A>`.
852    ///
853    /// The vector will not allocate until elements are pushed onto it.
854    ///
855    /// # Examples
856    ///
857    /// ```
858    /// #![feature(allocator_api)]
859    ///
860    /// use std::alloc::System;
861    ///
862    /// # #[allow(unused_mut)]
863    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
864    /// ```
865    #[inline]
866    #[unstable(feature = "allocator_api", issue = "32838")]
867    pub const fn new_in(alloc: A) -> Self {
868        Vec { buf: RawVec::new_in(alloc), len: 0 }
869    }
870
871    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
872    /// with the provided allocator.
873    ///
874    /// The vector will be able to hold at least `capacity` elements without
875    /// reallocating. This method is allowed to allocate for more elements than
876    /// `capacity`. If `capacity` is zero, the vector will not allocate.
877    ///
878    /// It is important to note that although the returned vector has the
879    /// minimum *capacity* specified, the vector will have a zero *length*. For
880    /// an explanation of the difference between length and capacity, see
881    /// *[Capacity and reallocation]*.
882    ///
883    /// If it is important to know the exact allocated capacity of a `Vec`,
884    /// always use the [`capacity`] method after construction.
885    ///
886    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
887    /// and the capacity will always be `usize::MAX`.
888    ///
889    /// [Capacity and reallocation]: #capacity-and-reallocation
890    /// [`capacity`]: Vec::capacity
891    ///
892    /// # Panics
893    ///
894    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
895    ///
896    /// # Examples
897    ///
898    /// ```
899    /// #![feature(allocator_api)]
900    ///
901    /// use std::alloc::System;
902    ///
903    /// let mut vec = Vec::with_capacity_in(10, System);
904    ///
905    /// // The vector contains no items, even though it has capacity for more
906    /// assert_eq!(vec.len(), 0);
907    /// assert!(vec.capacity() >= 10);
908    ///
909    /// // These are all done without reallocating...
910    /// for i in 0..10 {
911    ///     vec.push(i);
912    /// }
913    /// assert_eq!(vec.len(), 10);
914    /// assert!(vec.capacity() >= 10);
915    ///
916    /// // ...but this may make the vector reallocate
917    /// vec.push(11);
918    /// assert_eq!(vec.len(), 11);
919    /// assert!(vec.capacity() >= 11);
920    ///
921    /// // A vector of a zero-sized type will always over-allocate, since no
922    /// // allocation is necessary
923    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
924    /// assert_eq!(vec_units.capacity(), usize::MAX);
925    /// ```
926    #[cfg(not(no_global_oom_handling))]
927    #[inline]
928    #[unstable(feature = "allocator_api", issue = "32838")]
929    #[track_caller]
930    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
931        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
932    }
933
934    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
935    /// with the provided allocator.
936    ///
937    /// The vector will be able to hold at least `capacity` elements without
938    /// reallocating. This method is allowed to allocate for more elements than
939    /// `capacity`. If `capacity` is zero, the vector will not allocate.
940    ///
941    /// # Errors
942    ///
943    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
944    /// or if the allocator reports allocation failure.
945    #[inline]
946    #[unstable(feature = "allocator_api", issue = "32838")]
947    // #[unstable(feature = "try_with_capacity", issue = "91913")]
948    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
949        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
950    }
951
952    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
953    /// and an allocator.
954    ///
955    /// # Safety
956    ///
957    /// This is highly unsafe, due to the number of invariants that aren't
958    /// checked:
959    ///
960    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
961    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
962    ///   (`T` having a less strict alignment is not sufficient, the alignment really
963    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
964    ///   allocated and deallocated with the same layout.)
965    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
966    ///   to be the same size as the pointer was allocated with. (Because similar to
967    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
968    /// * `length` needs to be less than or equal to `capacity`.
969    /// * The first `length` values must be properly initialized values of type `T`.
970    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
971    /// * The allocated size in bytes must be no larger than `isize::MAX`.
972    ///   See the safety documentation of [`pointer::offset`].
973    ///
974    /// These requirements are always upheld by any `ptr` that has been allocated
975    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
976    /// upheld.
977    ///
978    /// Violating these may cause problems like corrupting the allocator's
979    /// internal data structures. For example it is **not** safe
980    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
981    /// It's also not safe to build one from a `Vec<u16>` and its length, because
982    /// the allocator cares about the alignment, and these two types have different
983    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
984    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
985    ///
986    /// The ownership of `ptr` is effectively transferred to the
987    /// `Vec<T>` which may then deallocate, reallocate or change the
988    /// contents of memory pointed to by the pointer at will. Ensure
989    /// that nothing else uses the pointer after calling this
990    /// function.
991    ///
992    /// [`String`]: crate::string::String
993    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
994    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
995    /// [*fit*]: crate::alloc::Allocator#memory-fitting
996    ///
997    /// # Examples
998    ///
999    // FIXME Update this when vec_into_raw_parts is stabilized
1000    /// ```
1001    /// #![feature(allocator_api)]
1002    ///
1003    /// use std::alloc::System;
1004    ///
1005    /// use std::ptr;
1006    /// use std::mem;
1007    ///
1008    /// let mut v = Vec::with_capacity_in(3, System);
1009    /// v.push(1);
1010    /// v.push(2);
1011    /// v.push(3);
1012    ///
1013    /// // Prevent running `v`'s destructor so we are in complete control
1014    /// // of the allocation.
1015    /// let mut v = mem::ManuallyDrop::new(v);
1016    ///
1017    /// // Pull out the various important pieces of information about `v`
1018    /// let p = v.as_mut_ptr();
1019    /// let len = v.len();
1020    /// let cap = v.capacity();
1021    /// let alloc = v.allocator();
1022    ///
1023    /// unsafe {
1024    ///     // Overwrite memory with 4, 5, 6
1025    ///     for i in 0..len {
1026    ///         ptr::write(p.add(i), 4 + i);
1027    ///     }
1028    ///
1029    ///     // Put everything back together into a Vec
1030    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1031    ///     assert_eq!(rebuilt, [4, 5, 6]);
1032    /// }
1033    /// ```
1034    ///
1035    /// Using memory that was allocated elsewhere:
1036    ///
1037    /// ```rust
1038    /// #![feature(allocator_api)]
1039    ///
1040    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1041    ///
1042    /// fn main() {
1043    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1044    ///
1045    ///     let vec = unsafe {
1046    ///         let mem = match Global.allocate(layout) {
1047    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1048    ///             Err(AllocError) => return,
1049    ///         };
1050    ///
1051    ///         mem.write(1_000_000);
1052    ///
1053    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1054    ///     };
1055    ///
1056    ///     assert_eq!(vec, &[1_000_000]);
1057    ///     assert_eq!(vec.capacity(), 16);
1058    /// }
1059    /// ```
1060    #[inline]
1061    #[unstable(feature = "allocator_api", issue = "32838")]
1062    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1063        ub_checks::assert_unsafe_precondition!(
1064            check_library_ub,
1065            "Vec::from_raw_parts_in requires that length <= capacity",
1066            (length: usize = length, capacity: usize = capacity) => length <= capacity
1067        );
1068        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1069    }
1070
1071    #[doc(alias = "from_non_null_parts_in")]
1072    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1073    /// and an allocator.
1074    ///
1075    /// # Safety
1076    ///
1077    /// This is highly unsafe, due to the number of invariants that aren't
1078    /// checked:
1079    ///
1080    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1081    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1082    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1083    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1084    ///   allocated and deallocated with the same layout.)
1085    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1086    ///   to be the same size as the pointer was allocated with. (Because similar to
1087    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1088    /// * `length` needs to be less than or equal to `capacity`.
1089    /// * The first `length` values must be properly initialized values of type `T`.
1090    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1091    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1092    ///   See the safety documentation of [`pointer::offset`].
1093    ///
1094    /// These requirements are always upheld by any `ptr` that has been allocated
1095    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1096    /// upheld.
1097    ///
1098    /// Violating these may cause problems like corrupting the allocator's
1099    /// internal data structures. For example it is **not** safe
1100    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1101    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1102    /// the allocator cares about the alignment, and these two types have different
1103    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1104    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1105    ///
1106    /// The ownership of `ptr` is effectively transferred to the
1107    /// `Vec<T>` which may then deallocate, reallocate or change the
1108    /// contents of memory pointed to by the pointer at will. Ensure
1109    /// that nothing else uses the pointer after calling this
1110    /// function.
1111    ///
1112    /// [`String`]: crate::string::String
1113    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1114    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1115    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1116    ///
1117    /// # Examples
1118    ///
1119    // FIXME Update this when vec_into_raw_parts is stabilized
1120    /// ```
1121    /// #![feature(allocator_api, box_vec_non_null)]
1122    ///
1123    /// use std::alloc::System;
1124    ///
1125    /// use std::ptr::NonNull;
1126    /// use std::mem;
1127    ///
1128    /// let mut v = Vec::with_capacity_in(3, System);
1129    /// v.push(1);
1130    /// v.push(2);
1131    /// v.push(3);
1132    ///
1133    /// // Prevent running `v`'s destructor so we are in complete control
1134    /// // of the allocation.
1135    /// let mut v = mem::ManuallyDrop::new(v);
1136    ///
1137    /// // Pull out the various important pieces of information about `v`
1138    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
1139    /// let len = v.len();
1140    /// let cap = v.capacity();
1141    /// let alloc = v.allocator();
1142    ///
1143    /// unsafe {
1144    ///     // Overwrite memory with 4, 5, 6
1145    ///     for i in 0..len {
1146    ///         p.add(i).write(4 + i);
1147    ///     }
1148    ///
1149    ///     // Put everything back together into a Vec
1150    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1151    ///     assert_eq!(rebuilt, [4, 5, 6]);
1152    /// }
1153    /// ```
1154    ///
1155    /// Using memory that was allocated elsewhere:
1156    ///
1157    /// ```rust
1158    /// #![feature(allocator_api, box_vec_non_null)]
1159    ///
1160    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1161    ///
1162    /// fn main() {
1163    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1164    ///
1165    ///     let vec = unsafe {
1166    ///         let mem = match Global.allocate(layout) {
1167    ///             Ok(mem) => mem.cast::<u32>(),
1168    ///             Err(AllocError) => return,
1169    ///         };
1170    ///
1171    ///         mem.write(1_000_000);
1172    ///
1173    ///         Vec::from_parts_in(mem, 1, 16, Global)
1174    ///     };
1175    ///
1176    ///     assert_eq!(vec, &[1_000_000]);
1177    ///     assert_eq!(vec.capacity(), 16);
1178    /// }
1179    /// ```
1180    #[inline]
1181    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1182    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1183    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1184        ub_checks::assert_unsafe_precondition!(
1185            check_library_ub,
1186            "Vec::from_parts_in requires that length <= capacity",
1187            (length: usize = length, capacity: usize = capacity) => length <= capacity
1188        );
1189        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1190    }
1191
1192    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1193    ///
1194    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1195    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1196    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1197    ///
1198    /// After calling this function, the caller is responsible for the
1199    /// memory previously managed by the `Vec`. The only way to do
1200    /// this is to convert the raw pointer, length, and capacity back
1201    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1202    /// the destructor to perform the cleanup.
1203    ///
1204    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1205    ///
1206    /// # Examples
1207    ///
1208    /// ```
1209    /// #![feature(allocator_api, vec_into_raw_parts)]
1210    ///
1211    /// use std::alloc::System;
1212    ///
1213    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1214    /// v.push(-1);
1215    /// v.push(0);
1216    /// v.push(1);
1217    ///
1218    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1219    ///
1220    /// let rebuilt = unsafe {
1221    ///     // We can now make changes to the components, such as
1222    ///     // transmuting the raw pointer to a compatible type.
1223    ///     let ptr = ptr as *mut u32;
1224    ///
1225    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1226    /// };
1227    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1228    /// ```
1229    #[must_use = "losing the pointer will leak memory"]
1230    #[unstable(feature = "allocator_api", issue = "32838")]
1231    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1232    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1233        let mut me = ManuallyDrop::new(self);
1234        let len = me.len();
1235        let capacity = me.capacity();
1236        let ptr = me.as_mut_ptr();
1237        let alloc = unsafe { ptr::read(me.allocator()) };
1238        (ptr, len, capacity, alloc)
1239    }
1240
1241    #[doc(alias = "into_non_null_parts_with_alloc")]
1242    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1243    ///
1244    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1245    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1246    /// arguments in the same order as the arguments to [`from_parts_in`].
1247    ///
1248    /// After calling this function, the caller is responsible for the
1249    /// memory previously managed by the `Vec`. The only way to do
1250    /// this is to convert the `NonNull` pointer, length, and capacity back
1251    /// into a `Vec` with the [`from_parts_in`] function, allowing
1252    /// the destructor to perform the cleanup.
1253    ///
1254    /// [`from_parts_in`]: Vec::from_parts_in
1255    ///
1256    /// # Examples
1257    ///
1258    /// ```
1259    /// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)]
1260    ///
1261    /// use std::alloc::System;
1262    ///
1263    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1264    /// v.push(-1);
1265    /// v.push(0);
1266    /// v.push(1);
1267    ///
1268    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1269    ///
1270    /// let rebuilt = unsafe {
1271    ///     // We can now make changes to the components, such as
1272    ///     // transmuting the raw pointer to a compatible type.
1273    ///     let ptr = ptr.cast::<u32>();
1274    ///
1275    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1276    /// };
1277    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1278    /// ```
1279    #[must_use = "losing the pointer will leak memory"]
1280    #[unstable(feature = "allocator_api", issue = "32838")]
1281    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1282    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1283    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1284        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1285        // SAFETY: A `Vec` always has a non-null pointer.
1286        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1287    }
1288
1289    /// Returns the total number of elements the vector can hold without
1290    /// reallocating.
1291    ///
1292    /// # Examples
1293    ///
1294    /// ```
1295    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1296    /// vec.push(42);
1297    /// assert!(vec.capacity() >= 10);
1298    /// ```
1299    ///
1300    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1301    ///
1302    /// ```
1303    /// #[derive(Clone)]
1304    /// struct ZeroSized;
1305    ///
1306    /// fn main() {
1307    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1308    ///     let v = vec![ZeroSized; 0];
1309    ///     assert_eq!(v.capacity(), usize::MAX);
1310    /// }
1311    /// ```
1312    #[inline]
1313    #[stable(feature = "rust1", since = "1.0.0")]
1314    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1315    pub const fn capacity(&self) -> usize {
1316        self.buf.capacity()
1317    }
1318
1319    /// Reserves capacity for at least `additional` more elements to be inserted
1320    /// in the given `Vec<T>`. The collection may reserve more space to
1321    /// speculatively avoid frequent reallocations. After calling `reserve`,
1322    /// capacity will be greater than or equal to `self.len() + additional`.
1323    /// Does nothing if capacity is already sufficient.
1324    ///
1325    /// # Panics
1326    ///
1327    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1328    ///
1329    /// # Examples
1330    ///
1331    /// ```
1332    /// let mut vec = vec![1];
1333    /// vec.reserve(10);
1334    /// assert!(vec.capacity() >= 11);
1335    /// ```
1336    #[cfg(not(no_global_oom_handling))]
1337    #[stable(feature = "rust1", since = "1.0.0")]
1338    #[track_caller]
1339    #[rustc_diagnostic_item = "vec_reserve"]
1340    pub fn reserve(&mut self, additional: usize) {
1341        self.buf.reserve(self.len, additional);
1342    }
1343
1344    /// Reserves the minimum capacity for at least `additional` more elements to
1345    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1346    /// deliberately over-allocate to speculatively avoid frequent allocations.
1347    /// After calling `reserve_exact`, capacity will be greater than or equal to
1348    /// `self.len() + additional`. Does nothing if the capacity is already
1349    /// sufficient.
1350    ///
1351    /// Note that the allocator may give the collection more space than it
1352    /// requests. Therefore, capacity can not be relied upon to be precisely
1353    /// minimal. Prefer [`reserve`] if future insertions are expected.
1354    ///
1355    /// [`reserve`]: Vec::reserve
1356    ///
1357    /// # Panics
1358    ///
1359    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1360    ///
1361    /// # Examples
1362    ///
1363    /// ```
1364    /// let mut vec = vec![1];
1365    /// vec.reserve_exact(10);
1366    /// assert!(vec.capacity() >= 11);
1367    /// ```
1368    #[cfg(not(no_global_oom_handling))]
1369    #[stable(feature = "rust1", since = "1.0.0")]
1370    #[track_caller]
1371    pub fn reserve_exact(&mut self, additional: usize) {
1372        self.buf.reserve_exact(self.len, additional);
1373    }
1374
1375    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1376    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1377    /// frequent reallocations. After calling `try_reserve`, capacity will be
1378    /// greater than or equal to `self.len() + additional` if it returns
1379    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1380    /// preserves the contents even if an error occurs.
1381    ///
1382    /// # Errors
1383    ///
1384    /// If the capacity overflows, or the allocator reports a failure, then an error
1385    /// is returned.
1386    ///
1387    /// # Examples
1388    ///
1389    /// ```
1390    /// use std::collections::TryReserveError;
1391    ///
1392    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1393    ///     let mut output = Vec::new();
1394    ///
1395    ///     // Pre-reserve the memory, exiting if we can't
1396    ///     output.try_reserve(data.len())?;
1397    ///
1398    ///     // Now we know this can't OOM in the middle of our complex work
1399    ///     output.extend(data.iter().map(|&val| {
1400    ///         val * 2 + 5 // very complicated
1401    ///     }));
1402    ///
1403    ///     Ok(output)
1404    /// }
1405    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1406    /// ```
1407    #[stable(feature = "try_reserve", since = "1.57.0")]
1408    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1409        self.buf.try_reserve(self.len, additional)
1410    }
1411
1412    /// Tries to reserve the minimum capacity for at least `additional`
1413    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1414    /// this will not deliberately over-allocate to speculatively avoid frequent
1415    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1416    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1417    /// Does nothing if the capacity is already sufficient.
1418    ///
1419    /// Note that the allocator may give the collection more space than it
1420    /// requests. Therefore, capacity can not be relied upon to be precisely
1421    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1422    ///
1423    /// [`try_reserve`]: Vec::try_reserve
1424    ///
1425    /// # Errors
1426    ///
1427    /// If the capacity overflows, or the allocator reports a failure, then an error
1428    /// is returned.
1429    ///
1430    /// # Examples
1431    ///
1432    /// ```
1433    /// use std::collections::TryReserveError;
1434    ///
1435    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1436    ///     let mut output = Vec::new();
1437    ///
1438    ///     // Pre-reserve the memory, exiting if we can't
1439    ///     output.try_reserve_exact(data.len())?;
1440    ///
1441    ///     // Now we know this can't OOM in the middle of our complex work
1442    ///     output.extend(data.iter().map(|&val| {
1443    ///         val * 2 + 5 // very complicated
1444    ///     }));
1445    ///
1446    ///     Ok(output)
1447    /// }
1448    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1449    /// ```
1450    #[stable(feature = "try_reserve", since = "1.57.0")]
1451    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1452        self.buf.try_reserve_exact(self.len, additional)
1453    }
1454
1455    /// Shrinks the capacity of the vector as much as possible.
1456    ///
1457    /// The behavior of this method depends on the allocator, which may either shrink the vector
1458    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1459    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1460    ///
1461    /// [`with_capacity`]: Vec::with_capacity
1462    ///
1463    /// # Examples
1464    ///
1465    /// ```
1466    /// let mut vec = Vec::with_capacity(10);
1467    /// vec.extend([1, 2, 3]);
1468    /// assert!(vec.capacity() >= 10);
1469    /// vec.shrink_to_fit();
1470    /// assert!(vec.capacity() >= 3);
1471    /// ```
1472    #[cfg(not(no_global_oom_handling))]
1473    #[stable(feature = "rust1", since = "1.0.0")]
1474    #[track_caller]
1475    #[inline]
1476    pub fn shrink_to_fit(&mut self) {
1477        // The capacity is never less than the length, and there's nothing to do when
1478        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1479        // by only calling it with a greater capacity.
1480        if self.capacity() > self.len {
1481            self.buf.shrink_to_fit(self.len);
1482        }
1483    }
1484
1485    /// Shrinks the capacity of the vector with a lower bound.
1486    ///
1487    /// The capacity will remain at least as large as both the length
1488    /// and the supplied value.
1489    ///
1490    /// If the current capacity is less than the lower limit, this is a no-op.
1491    ///
1492    /// # Examples
1493    ///
1494    /// ```
1495    /// let mut vec = Vec::with_capacity(10);
1496    /// vec.extend([1, 2, 3]);
1497    /// assert!(vec.capacity() >= 10);
1498    /// vec.shrink_to(4);
1499    /// assert!(vec.capacity() >= 4);
1500    /// vec.shrink_to(0);
1501    /// assert!(vec.capacity() >= 3);
1502    /// ```
1503    #[cfg(not(no_global_oom_handling))]
1504    #[stable(feature = "shrink_to", since = "1.56.0")]
1505    #[track_caller]
1506    pub fn shrink_to(&mut self, min_capacity: usize) {
1507        if self.capacity() > min_capacity {
1508            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1509        }
1510    }
1511
1512    /// Converts the vector into [`Box<[T]>`][owned slice].
1513    ///
1514    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1515    ///
1516    /// [owned slice]: Box
1517    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1518    ///
1519    /// # Examples
1520    ///
1521    /// ```
1522    /// let v = vec![1, 2, 3];
1523    ///
1524    /// let slice = v.into_boxed_slice();
1525    /// ```
1526    ///
1527    /// Any excess capacity is removed:
1528    ///
1529    /// ```
1530    /// let mut vec = Vec::with_capacity(10);
1531    /// vec.extend([1, 2, 3]);
1532    ///
1533    /// assert!(vec.capacity() >= 10);
1534    /// let slice = vec.into_boxed_slice();
1535    /// assert_eq!(slice.into_vec().capacity(), 3);
1536    /// ```
1537    #[cfg(not(no_global_oom_handling))]
1538    #[stable(feature = "rust1", since = "1.0.0")]
1539    #[track_caller]
1540    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1541        unsafe {
1542            self.shrink_to_fit();
1543            let me = ManuallyDrop::new(self);
1544            let buf = ptr::read(&me.buf);
1545            let len = me.len();
1546            buf.into_box(len).assume_init()
1547        }
1548    }
1549
1550    /// Shortens the vector, keeping the first `len` elements and dropping
1551    /// the rest.
1552    ///
1553    /// If `len` is greater or equal to the vector's current length, this has
1554    /// no effect.
1555    ///
1556    /// The [`drain`] method can emulate `truncate`, but causes the excess
1557    /// elements to be returned instead of dropped.
1558    ///
1559    /// Note that this method has no effect on the allocated capacity
1560    /// of the vector.
1561    ///
1562    /// # Examples
1563    ///
1564    /// Truncating a five element vector to two elements:
1565    ///
1566    /// ```
1567    /// let mut vec = vec![1, 2, 3, 4, 5];
1568    /// vec.truncate(2);
1569    /// assert_eq!(vec, [1, 2]);
1570    /// ```
1571    ///
1572    /// No truncation occurs when `len` is greater than the vector's current
1573    /// length:
1574    ///
1575    /// ```
1576    /// let mut vec = vec![1, 2, 3];
1577    /// vec.truncate(8);
1578    /// assert_eq!(vec, [1, 2, 3]);
1579    /// ```
1580    ///
1581    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1582    /// method.
1583    ///
1584    /// ```
1585    /// let mut vec = vec![1, 2, 3];
1586    /// vec.truncate(0);
1587    /// assert_eq!(vec, []);
1588    /// ```
1589    ///
1590    /// [`clear`]: Vec::clear
1591    /// [`drain`]: Vec::drain
1592    #[stable(feature = "rust1", since = "1.0.0")]
1593    pub fn truncate(&mut self, len: usize) {
1594        // This is safe because:
1595        //
1596        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1597        //   case avoids creating an invalid slice, and
1598        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1599        //   such that no value will be dropped twice in case `drop_in_place`
1600        //   were to panic once (if it panics twice, the program aborts).
1601        unsafe {
1602            // Note: It's intentional that this is `>` and not `>=`.
1603            //       Changing it to `>=` has negative performance
1604            //       implications in some cases. See #78884 for more.
1605            if len > self.len {
1606                return;
1607            }
1608            let remaining_len = self.len - len;
1609            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1610            self.len = len;
1611            ptr::drop_in_place(s);
1612        }
1613    }
1614
1615    /// Extracts a slice containing the entire vector.
1616    ///
1617    /// Equivalent to `&s[..]`.
1618    ///
1619    /// # Examples
1620    ///
1621    /// ```
1622    /// use std::io::{self, Write};
1623    /// let buffer = vec![1, 2, 3, 5, 8];
1624    /// io::sink().write(buffer.as_slice()).unwrap();
1625    /// ```
1626    #[inline]
1627    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1628    #[rustc_diagnostic_item = "vec_as_slice"]
1629    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1630    pub const fn as_slice(&self) -> &[T] {
1631        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1632        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1633        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1634        // "wrap" through overflowing memory addresses.
1635        //
1636        // * Vec API guarantees that self.buf:
1637        //      * contains only properly-initialized items within 0..len
1638        //      * is aligned, contiguous, and valid for `len` reads
1639        //      * obeys size and address-wrapping constraints
1640        //
1641        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1642        //   check ensures that it is not possible to mutably alias `self.buf` within the
1643        //   returned lifetime.
1644        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1645    }
1646
1647    /// Extracts a mutable slice of the entire vector.
1648    ///
1649    /// Equivalent to `&mut s[..]`.
1650    ///
1651    /// # Examples
1652    ///
1653    /// ```
1654    /// use std::io::{self, Read};
1655    /// let mut buffer = vec![0; 3];
1656    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1657    /// ```
1658    #[inline]
1659    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1660    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1661    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1662    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1663        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1664        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1665        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1666        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1667        //
1668        // * Vec API guarantees that self.buf:
1669        //      * contains only properly-initialized items within 0..len
1670        //      * is aligned, contiguous, and valid for `len` reads
1671        //      * obeys size and address-wrapping constraints
1672        //
1673        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1674        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1675        //   within the returned lifetime.
1676        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1677    }
1678
1679    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1680    /// valid for zero sized reads if the vector didn't allocate.
1681    ///
1682    /// The caller must ensure that the vector outlives the pointer this
1683    /// function returns, or else it will end up dangling.
1684    /// Modifying the vector may cause its buffer to be reallocated,
1685    /// which would also make any pointers to it invalid.
1686    ///
1687    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1688    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1689    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1690    ///
1691    /// This method guarantees that for the purpose of the aliasing model, this method
1692    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1693    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1694    /// and [`as_non_null`].
1695    /// Note that calling other methods that materialize mutable references to the slice,
1696    /// or mutable references to specific elements you are planning on accessing through this pointer,
1697    /// as well as writing to those elements, may still invalidate this pointer.
1698    /// See the second example below for how this guarantee can be used.
1699    ///
1700    ///
1701    /// # Examples
1702    ///
1703    /// ```
1704    /// let x = vec![1, 2, 4];
1705    /// let x_ptr = x.as_ptr();
1706    ///
1707    /// unsafe {
1708    ///     for i in 0..x.len() {
1709    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1710    ///     }
1711    /// }
1712    /// ```
1713    ///
1714    /// Due to the aliasing guarantee, the following code is legal:
1715    ///
1716    /// ```rust
1717    /// unsafe {
1718    ///     let mut v = vec![0, 1, 2];
1719    ///     let ptr1 = v.as_ptr();
1720    ///     let _ = ptr1.read();
1721    ///     let ptr2 = v.as_mut_ptr().offset(2);
1722    ///     ptr2.write(2);
1723    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1724    ///     // because it mutated a different element:
1725    ///     let _ = ptr1.read();
1726    /// }
1727    /// ```
1728    ///
1729    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1730    /// [`as_ptr`]: Vec::as_ptr
1731    /// [`as_non_null`]: Vec::as_non_null
1732    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1733    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1734    #[rustc_never_returns_null_ptr]
1735    #[rustc_as_ptr]
1736    #[inline]
1737    pub const fn as_ptr(&self) -> *const T {
1738        // We shadow the slice method of the same name to avoid going through
1739        // `deref`, which creates an intermediate reference.
1740        self.buf.ptr()
1741    }
1742
1743    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1744    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1745    ///
1746    /// The caller must ensure that the vector outlives the pointer this
1747    /// function returns, or else it will end up dangling.
1748    /// Modifying the vector may cause its buffer to be reallocated,
1749    /// which would also make any pointers to it invalid.
1750    ///
1751    /// This method guarantees that for the purpose of the aliasing model, this method
1752    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1753    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1754    /// and [`as_non_null`].
1755    /// Note that calling other methods that materialize references to the slice,
1756    /// or references to specific elements you are planning on accessing through this pointer,
1757    /// may still invalidate this pointer.
1758    /// See the second example below for how this guarantee can be used.
1759    ///
1760    /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1761    /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1762    /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1763    /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1764    /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1765    ///
1766    /// # Examples
1767    ///
1768    /// ```
1769    /// // Allocate vector big enough for 4 elements.
1770    /// let size = 4;
1771    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1772    /// let x_ptr = x.as_mut_ptr();
1773    ///
1774    /// // Initialize elements via raw pointer writes, then set length.
1775    /// unsafe {
1776    ///     for i in 0..size {
1777    ///         *x_ptr.add(i) = i as i32;
1778    ///     }
1779    ///     x.set_len(size);
1780    /// }
1781    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1782    /// ```
1783    ///
1784    /// Due to the aliasing guarantee, the following code is legal:
1785    ///
1786    /// ```rust
1787    /// unsafe {
1788    ///     let mut v = vec![0];
1789    ///     let ptr1 = v.as_mut_ptr();
1790    ///     ptr1.write(1);
1791    ///     let ptr2 = v.as_mut_ptr();
1792    ///     ptr2.write(2);
1793    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1794    ///     ptr1.write(3);
1795    /// }
1796    /// ```
1797    ///
1798    /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1799    ///
1800    /// ```
1801    /// use std::mem::{ManuallyDrop, MaybeUninit};
1802    ///
1803    /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1804    /// let ptr = v.as_mut_ptr();
1805    /// let capacity = v.capacity();
1806    /// let slice_ptr: *mut [MaybeUninit<i32>] =
1807    ///     std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1808    /// drop(unsafe { Box::from_raw(slice_ptr) });
1809    /// ```
1810    ///
1811    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1812    /// [`as_ptr`]: Vec::as_ptr
1813    /// [`as_non_null`]: Vec::as_non_null
1814    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1815    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1816    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1817    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1818    #[rustc_never_returns_null_ptr]
1819    #[rustc_as_ptr]
1820    #[inline]
1821    pub const fn as_mut_ptr(&mut self) -> *mut T {
1822        // We shadow the slice method of the same name to avoid going through
1823        // `deref_mut`, which creates an intermediate reference.
1824        self.buf.ptr()
1825    }
1826
1827    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1828    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1829    ///
1830    /// The caller must ensure that the vector outlives the pointer this
1831    /// function returns, or else it will end up dangling.
1832    /// Modifying the vector may cause its buffer to be reallocated,
1833    /// which would also make any pointers to it invalid.
1834    ///
1835    /// This method guarantees that for the purpose of the aliasing model, this method
1836    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1837    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1838    /// and [`as_non_null`].
1839    /// Note that calling other methods that materialize references to the slice,
1840    /// or references to specific elements you are planning on accessing through this pointer,
1841    /// may still invalidate this pointer.
1842    /// See the second example below for how this guarantee can be used.
1843    ///
1844    /// # Examples
1845    ///
1846    /// ```
1847    /// #![feature(box_vec_non_null)]
1848    ///
1849    /// // Allocate vector big enough for 4 elements.
1850    /// let size = 4;
1851    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1852    /// let x_ptr = x.as_non_null();
1853    ///
1854    /// // Initialize elements via raw pointer writes, then set length.
1855    /// unsafe {
1856    ///     for i in 0..size {
1857    ///         x_ptr.add(i).write(i as i32);
1858    ///     }
1859    ///     x.set_len(size);
1860    /// }
1861    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1862    /// ```
1863    ///
1864    /// Due to the aliasing guarantee, the following code is legal:
1865    ///
1866    /// ```rust
1867    /// #![feature(box_vec_non_null)]
1868    ///
1869    /// unsafe {
1870    ///     let mut v = vec![0];
1871    ///     let ptr1 = v.as_non_null();
1872    ///     ptr1.write(1);
1873    ///     let ptr2 = v.as_non_null();
1874    ///     ptr2.write(2);
1875    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1876    ///     ptr1.write(3);
1877    /// }
1878    /// ```
1879    ///
1880    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1881    /// [`as_ptr`]: Vec::as_ptr
1882    /// [`as_non_null`]: Vec::as_non_null
1883    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1884    #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1885    #[inline]
1886    pub const fn as_non_null(&mut self) -> NonNull<T> {
1887        self.buf.non_null()
1888    }
1889
1890    /// Returns a reference to the underlying allocator.
1891    #[unstable(feature = "allocator_api", issue = "32838")]
1892    #[inline]
1893    pub fn allocator(&self) -> &A {
1894        self.buf.allocator()
1895    }
1896
1897    /// Forces the length of the vector to `new_len`.
1898    ///
1899    /// This is a low-level operation that maintains none of the normal
1900    /// invariants of the type. Normally changing the length of a vector
1901    /// is done using one of the safe operations instead, such as
1902    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1903    ///
1904    /// [`truncate`]: Vec::truncate
1905    /// [`resize`]: Vec::resize
1906    /// [`extend`]: Extend::extend
1907    /// [`clear`]: Vec::clear
1908    ///
1909    /// # Safety
1910    ///
1911    /// - `new_len` must be less than or equal to [`capacity()`].
1912    /// - The elements at `old_len..new_len` must be initialized.
1913    ///
1914    /// [`capacity()`]: Vec::capacity
1915    ///
1916    /// # Examples
1917    ///
1918    /// See [`spare_capacity_mut()`] for an example with safe
1919    /// initialization of capacity elements and use of this method.
1920    ///
1921    /// `set_len()` can be useful for situations in which the vector
1922    /// is serving as a buffer for other code, particularly over FFI:
1923    ///
1924    /// ```no_run
1925    /// # #![allow(dead_code)]
1926    /// # // This is just a minimal skeleton for the doc example;
1927    /// # // don't use this as a starting point for a real library.
1928    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1929    /// # const Z_OK: i32 = 0;
1930    /// # unsafe extern "C" {
1931    /// #     fn deflateGetDictionary(
1932    /// #         strm: *mut std::ffi::c_void,
1933    /// #         dictionary: *mut u8,
1934    /// #         dictLength: *mut usize,
1935    /// #     ) -> i32;
1936    /// # }
1937    /// # impl StreamWrapper {
1938    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1939    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1940    ///     let mut dict = Vec::with_capacity(32_768);
1941    ///     let mut dict_length = 0;
1942    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1943    ///     // 1. `dict_length` elements were initialized.
1944    ///     // 2. `dict_length` <= the capacity (32_768)
1945    ///     // which makes `set_len` safe to call.
1946    ///     unsafe {
1947    ///         // Make the FFI call...
1948    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1949    ///         if r == Z_OK {
1950    ///             // ...and update the length to what was initialized.
1951    ///             dict.set_len(dict_length);
1952    ///             Some(dict)
1953    ///         } else {
1954    ///             None
1955    ///         }
1956    ///     }
1957    /// }
1958    /// # }
1959    /// ```
1960    ///
1961    /// While the following example is sound, there is a memory leak since
1962    /// the inner vectors were not freed prior to the `set_len` call:
1963    ///
1964    /// ```
1965    /// let mut vec = vec![vec![1, 0, 0],
1966    ///                    vec![0, 1, 0],
1967    ///                    vec![0, 0, 1]];
1968    /// // SAFETY:
1969    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1970    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1971    /// unsafe {
1972    ///     vec.set_len(0);
1973    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
1974    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1975    /// #   vec.set_len(3);
1976    /// }
1977    /// ```
1978    ///
1979    /// Normally, here, one would use [`clear`] instead to correctly drop
1980    /// the contents and thus not leak memory.
1981    ///
1982    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1983    #[inline]
1984    #[stable(feature = "rust1", since = "1.0.0")]
1985    pub unsafe fn set_len(&mut self, new_len: usize) {
1986        ub_checks::assert_unsafe_precondition!(
1987            check_library_ub,
1988            "Vec::set_len requires that new_len <= capacity()",
1989            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
1990        );
1991
1992        self.len = new_len;
1993    }
1994
1995    /// Removes an element from the vector and returns it.
1996    ///
1997    /// The removed element is replaced by the last element of the vector.
1998    ///
1999    /// This does not preserve ordering of the remaining elements, but is *O*(1).
2000    /// If you need to preserve the element order, use [`remove`] instead.
2001    ///
2002    /// [`remove`]: Vec::remove
2003    ///
2004    /// # Panics
2005    ///
2006    /// Panics if `index` is out of bounds.
2007    ///
2008    /// # Examples
2009    ///
2010    /// ```
2011    /// let mut v = vec!["foo", "bar", "baz", "qux"];
2012    ///
2013    /// assert_eq!(v.swap_remove(1), "bar");
2014    /// assert_eq!(v, ["foo", "qux", "baz"]);
2015    ///
2016    /// assert_eq!(v.swap_remove(0), "foo");
2017    /// assert_eq!(v, ["baz", "qux"]);
2018    /// ```
2019    #[inline]
2020    #[stable(feature = "rust1", since = "1.0.0")]
2021    pub fn swap_remove(&mut self, index: usize) -> T {
2022        #[cold]
2023        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2024        #[track_caller]
2025        #[optimize(size)]
2026        fn assert_failed(index: usize, len: usize) -> ! {
2027            panic!("swap_remove index (is {index}) should be < len (is {len})");
2028        }
2029
2030        let len = self.len();
2031        if index >= len {
2032            assert_failed(index, len);
2033        }
2034        unsafe {
2035            // We replace self[index] with the last element. Note that if the
2036            // bounds check above succeeds there must be a last element (which
2037            // can be self[index] itself).
2038            let value = ptr::read(self.as_ptr().add(index));
2039            let base_ptr = self.as_mut_ptr();
2040            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2041            self.set_len(len - 1);
2042            value
2043        }
2044    }
2045
2046    /// Inserts an element at position `index` within the vector, shifting all
2047    /// elements after it to the right.
2048    ///
2049    /// # Panics
2050    ///
2051    /// Panics if `index > len`.
2052    ///
2053    /// # Examples
2054    ///
2055    /// ```
2056    /// let mut vec = vec!['a', 'b', 'c'];
2057    /// vec.insert(1, 'd');
2058    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2059    /// vec.insert(4, 'e');
2060    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2061    /// ```
2062    ///
2063    /// # Time complexity
2064    ///
2065    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2066    /// shifted to the right. In the worst case, all elements are shifted when
2067    /// the insertion index is 0.
2068    #[cfg(not(no_global_oom_handling))]
2069    #[stable(feature = "rust1", since = "1.0.0")]
2070    #[track_caller]
2071    pub fn insert(&mut self, index: usize, element: T) {
2072        let _ = self.insert_mut(index, element);
2073    }
2074
2075    /// Inserts an element at position `index` within the vector, shifting all
2076    /// elements after it to the right, and returning a reference to the new
2077    /// element.
2078    ///
2079    /// # Panics
2080    ///
2081    /// Panics if `index > len`.
2082    ///
2083    /// # Examples
2084    ///
2085    /// ```
2086    /// #![feature(push_mut)]
2087    /// let mut vec = vec![1, 3, 5, 9];
2088    /// let x = vec.insert_mut(3, 6);
2089    /// *x += 1;
2090    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2091    /// ```
2092    ///
2093    /// # Time complexity
2094    ///
2095    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2096    /// shifted to the right. In the worst case, all elements are shifted when
2097    /// the insertion index is 0.
2098    #[cfg(not(no_global_oom_handling))]
2099    #[inline]
2100    #[unstable(feature = "push_mut", issue = "135974")]
2101    #[track_caller]
2102    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2103    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2104        #[cold]
2105        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2106        #[track_caller]
2107        #[optimize(size)]
2108        fn assert_failed(index: usize, len: usize) -> ! {
2109            panic!("insertion index (is {index}) should be <= len (is {len})");
2110        }
2111
2112        let len = self.len();
2113        if index > len {
2114            assert_failed(index, len);
2115        }
2116
2117        // space for the new element
2118        if len == self.buf.capacity() {
2119            self.buf.grow_one();
2120        }
2121
2122        unsafe {
2123            // infallible
2124            // The spot to put the new value
2125            let p = self.as_mut_ptr().add(index);
2126            {
2127                if index < len {
2128                    // Shift everything over to make space. (Duplicating the
2129                    // `index`th element into two consecutive places.)
2130                    ptr::copy(p, p.add(1), len - index);
2131                }
2132                // Write it in, overwriting the first copy of the `index`th
2133                // element.
2134                ptr::write(p, element);
2135            }
2136            self.set_len(len + 1);
2137            &mut *p
2138        }
2139    }
2140
2141    /// Removes and returns the element at position `index` within the vector,
2142    /// shifting all elements after it to the left.
2143    ///
2144    /// Note: Because this shifts over the remaining elements, it has a
2145    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2146    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2147    /// elements from the beginning of the `Vec`, consider using
2148    /// [`VecDeque::pop_front`] instead.
2149    ///
2150    /// [`swap_remove`]: Vec::swap_remove
2151    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2152    ///
2153    /// # Panics
2154    ///
2155    /// Panics if `index` is out of bounds.
2156    ///
2157    /// # Examples
2158    ///
2159    /// ```
2160    /// let mut v = vec!['a', 'b', 'c'];
2161    /// assert_eq!(v.remove(1), 'b');
2162    /// assert_eq!(v, ['a', 'c']);
2163    /// ```
2164    #[stable(feature = "rust1", since = "1.0.0")]
2165    #[track_caller]
2166    #[rustc_confusables("delete", "take")]
2167    pub fn remove(&mut self, index: usize) -> T {
2168        #[cold]
2169        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2170        #[track_caller]
2171        #[optimize(size)]
2172        fn assert_failed(index: usize, len: usize) -> ! {
2173            panic!("removal index (is {index}) should be < len (is {len})");
2174        }
2175
2176        match self.try_remove(index) {
2177            Some(elem) => elem,
2178            None => assert_failed(index, self.len()),
2179        }
2180    }
2181
2182    /// Remove and return the element at position `index` within the vector,
2183    /// shifting all elements after it to the left, or [`None`] if it does not
2184    /// exist.
2185    ///
2186    /// Note: Because this shifts over the remaining elements, it has a
2187    /// worst-case performance of *O*(*n*). If you'd like to remove
2188    /// elements from the beginning of the `Vec`, consider using
2189    /// [`VecDeque::pop_front`] instead.
2190    ///
2191    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2192    ///
2193    /// # Examples
2194    ///
2195    /// ```
2196    /// #![feature(vec_try_remove)]
2197    /// let mut v = vec![1, 2, 3];
2198    /// assert_eq!(v.try_remove(0), Some(1));
2199    /// assert_eq!(v.try_remove(2), None);
2200    /// ```
2201    #[unstable(feature = "vec_try_remove", issue = "146954")]
2202    #[rustc_confusables("delete", "take", "remove")]
2203    pub fn try_remove(&mut self, index: usize) -> Option<T> {
2204        let len = self.len();
2205        if index >= len {
2206            return None;
2207        }
2208        unsafe {
2209            // infallible
2210            let ret;
2211            {
2212                // the place we are taking from.
2213                let ptr = self.as_mut_ptr().add(index);
2214                // copy it out, unsafely having a copy of the value on
2215                // the stack and in the vector at the same time.
2216                ret = ptr::read(ptr);
2217
2218                // Shift everything down to fill in that spot.
2219                ptr::copy(ptr.add(1), ptr, len - index - 1);
2220            }
2221            self.set_len(len - 1);
2222            Some(ret)
2223        }
2224    }
2225
2226    /// Retains only the elements specified by the predicate.
2227    ///
2228    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2229    /// This method operates in place, visiting each element exactly once in the
2230    /// original order, and preserves the order of the retained elements.
2231    ///
2232    /// # Examples
2233    ///
2234    /// ```
2235    /// let mut vec = vec![1, 2, 3, 4];
2236    /// vec.retain(|&x| x % 2 == 0);
2237    /// assert_eq!(vec, [2, 4]);
2238    /// ```
2239    ///
2240    /// Because the elements are visited exactly once in the original order,
2241    /// external state may be used to decide which elements to keep.
2242    ///
2243    /// ```
2244    /// let mut vec = vec![1, 2, 3, 4, 5];
2245    /// let keep = [false, true, true, false, true];
2246    /// let mut iter = keep.iter();
2247    /// vec.retain(|_| *iter.next().unwrap());
2248    /// assert_eq!(vec, [2, 3, 5]);
2249    /// ```
2250    #[stable(feature = "rust1", since = "1.0.0")]
2251    pub fn retain<F>(&mut self, mut f: F)
2252    where
2253        F: FnMut(&T) -> bool,
2254    {
2255        self.retain_mut(|elem| f(elem));
2256    }
2257
2258    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2259    ///
2260    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2261    /// This method operates in place, visiting each element exactly once in the
2262    /// original order, and preserves the order of the retained elements.
2263    ///
2264    /// # Examples
2265    ///
2266    /// ```
2267    /// let mut vec = vec![1, 2, 3, 4];
2268    /// vec.retain_mut(|x| if *x <= 3 {
2269    ///     *x += 1;
2270    ///     true
2271    /// } else {
2272    ///     false
2273    /// });
2274    /// assert_eq!(vec, [2, 3, 4]);
2275    /// ```
2276    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2277    pub fn retain_mut<F>(&mut self, mut f: F)
2278    where
2279        F: FnMut(&mut T) -> bool,
2280    {
2281        let original_len = self.len();
2282
2283        if original_len == 0 {
2284            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2285            return;
2286        }
2287
2288        // Avoid double drop if the drop guard is not executed,
2289        // since we may make some holes during the process.
2290        unsafe { self.set_len(0) };
2291
2292        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2293        //      |<-              processed len   ->| ^- next to check
2294        //                  |<-  deleted cnt     ->|
2295        //      |<-              original_len                          ->|
2296        // Kept: Elements which predicate returns true on.
2297        // Hole: Moved or dropped element slot.
2298        // Unchecked: Unchecked valid elements.
2299        //
2300        // This drop guard will be invoked when predicate or `drop` of element panicked.
2301        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2302        // In cases when predicate and `drop` never panick, it will be optimized out.
2303        struct BackshiftOnDrop<'a, T, A: Allocator> {
2304            v: &'a mut Vec<T, A>,
2305            processed_len: usize,
2306            deleted_cnt: usize,
2307            original_len: usize,
2308        }
2309
2310        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2311            fn drop(&mut self) {
2312                if self.deleted_cnt > 0 {
2313                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
2314                    unsafe {
2315                        ptr::copy(
2316                            self.v.as_ptr().add(self.processed_len),
2317                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2318                            self.original_len - self.processed_len,
2319                        );
2320                    }
2321                }
2322                // SAFETY: After filling holes, all items are in contiguous memory.
2323                unsafe {
2324                    self.v.set_len(self.original_len - self.deleted_cnt);
2325                }
2326            }
2327        }
2328
2329        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2330
2331        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2332            original_len: usize,
2333            f: &mut F,
2334            g: &mut BackshiftOnDrop<'_, T, A>,
2335        ) where
2336            F: FnMut(&mut T) -> bool,
2337        {
2338            while g.processed_len != original_len {
2339                // SAFETY: Unchecked element must be valid.
2340                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2341                if !f(cur) {
2342                    // Advance early to avoid double drop if `drop_in_place` panicked.
2343                    g.processed_len += 1;
2344                    g.deleted_cnt += 1;
2345                    // SAFETY: We never touch this element again after dropped.
2346                    unsafe { ptr::drop_in_place(cur) };
2347                    // We already advanced the counter.
2348                    if DELETED {
2349                        continue;
2350                    } else {
2351                        break;
2352                    }
2353                }
2354                if DELETED {
2355                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2356                    // We use copy for move, and never touch this element again.
2357                    unsafe {
2358                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2359                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
2360                    }
2361                }
2362                g.processed_len += 1;
2363            }
2364        }
2365
2366        // Stage 1: Nothing was deleted.
2367        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2368
2369        // Stage 2: Some elements were deleted.
2370        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2371
2372        // All item are processed. This can be optimized to `set_len` by LLVM.
2373        drop(g);
2374    }
2375
2376    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2377    /// key.
2378    ///
2379    /// If the vector is sorted, this removes all duplicates.
2380    ///
2381    /// # Examples
2382    ///
2383    /// ```
2384    /// let mut vec = vec![10, 20, 21, 30, 20];
2385    ///
2386    /// vec.dedup_by_key(|i| *i / 10);
2387    ///
2388    /// assert_eq!(vec, [10, 20, 30, 20]);
2389    /// ```
2390    #[stable(feature = "dedup_by", since = "1.16.0")]
2391    #[inline]
2392    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2393    where
2394        F: FnMut(&mut T) -> K,
2395        K: PartialEq,
2396    {
2397        self.dedup_by(|a, b| key(a) == key(b))
2398    }
2399
2400    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2401    /// relation.
2402    ///
2403    /// The `same_bucket` function is passed references to two elements from the vector and
2404    /// must determine if the elements compare equal. The elements are passed in opposite order
2405    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2406    ///
2407    /// If the vector is sorted, this removes all duplicates.
2408    ///
2409    /// # Examples
2410    ///
2411    /// ```
2412    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2413    ///
2414    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2415    ///
2416    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2417    /// ```
2418    #[stable(feature = "dedup_by", since = "1.16.0")]
2419    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2420    where
2421        F: FnMut(&mut T, &mut T) -> bool,
2422    {
2423        let len = self.len();
2424        if len <= 1 {
2425            return;
2426        }
2427
2428        // Check if we ever want to remove anything.
2429        // This allows to use copy_non_overlapping in next cycle.
2430        // And avoids any memory writes if we don't need to remove anything.
2431        let mut first_duplicate_idx: usize = 1;
2432        let start = self.as_mut_ptr();
2433        while first_duplicate_idx != len {
2434            let found_duplicate = unsafe {
2435                // SAFETY: first_duplicate always in range [1..len)
2436                // Note that we start iteration from 1 so we never overflow.
2437                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2438                let current = start.add(first_duplicate_idx);
2439                // We explicitly say in docs that references are reversed.
2440                same_bucket(&mut *current, &mut *prev)
2441            };
2442            if found_duplicate {
2443                break;
2444            }
2445            first_duplicate_idx += 1;
2446        }
2447        // Don't need to remove anything.
2448        // We cannot get bigger than len.
2449        if first_duplicate_idx == len {
2450            return;
2451        }
2452
2453        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2454        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2455            /* Offset of the element we want to check if it is duplicate */
2456            read: usize,
2457
2458            /* Offset of the place where we want to place the non-duplicate
2459             * when we find it. */
2460            write: usize,
2461
2462            /* The Vec that would need correction if `same_bucket` panicked */
2463            vec: &'a mut Vec<T, A>,
2464        }
2465
2466        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2467            fn drop(&mut self) {
2468                /* This code gets executed when `same_bucket` panics */
2469
2470                /* SAFETY: invariant guarantees that `read - write`
2471                 * and `len - read` never overflow and that the copy is always
2472                 * in-bounds. */
2473                unsafe {
2474                    let ptr = self.vec.as_mut_ptr();
2475                    let len = self.vec.len();
2476
2477                    /* How many items were left when `same_bucket` panicked.
2478                     * Basically vec[read..].len() */
2479                    let items_left = len.wrapping_sub(self.read);
2480
2481                    /* Pointer to first item in vec[write..write+items_left] slice */
2482                    let dropped_ptr = ptr.add(self.write);
2483                    /* Pointer to first item in vec[read..] slice */
2484                    let valid_ptr = ptr.add(self.read);
2485
2486                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2487                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2488                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2489
2490                    /* How many items have been already dropped
2491                     * Basically vec[read..write].len() */
2492                    let dropped = self.read.wrapping_sub(self.write);
2493
2494                    self.vec.set_len(len - dropped);
2495                }
2496            }
2497        }
2498
2499        /* Drop items while going through Vec, it should be more efficient than
2500         * doing slice partition_dedup + truncate */
2501
2502        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2503        let mut gap =
2504            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2505        unsafe {
2506            // SAFETY: we checked that first_duplicate_idx in bounds before.
2507            // If drop panics, `gap` would remove this item without drop.
2508            ptr::drop_in_place(start.add(first_duplicate_idx));
2509        }
2510
2511        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2512         * are always in-bounds and read_ptr never aliases prev_ptr */
2513        unsafe {
2514            while gap.read < len {
2515                let read_ptr = start.add(gap.read);
2516                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2517
2518                // We explicitly say in docs that references are reversed.
2519                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2520                if found_duplicate {
2521                    // Increase `gap.read` now since the drop may panic.
2522                    gap.read += 1;
2523                    /* We have found duplicate, drop it in-place */
2524                    ptr::drop_in_place(read_ptr);
2525                } else {
2526                    let write_ptr = start.add(gap.write);
2527
2528                    /* read_ptr cannot be equal to write_ptr because at this point
2529                     * we guaranteed to skip at least one element (before loop starts).
2530                     */
2531                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2532
2533                    /* We have filled that place, so go further */
2534                    gap.write += 1;
2535                    gap.read += 1;
2536                }
2537            }
2538
2539            /* Technically we could let `gap` clean up with its Drop, but
2540             * when `same_bucket` is guaranteed to not panic, this bloats a little
2541             * the codegen, so we just do it manually */
2542            gap.vec.set_len(gap.write);
2543            mem::forget(gap);
2544        }
2545    }
2546
2547    /// Appends an element to the back of a collection.
2548    ///
2549    /// # Panics
2550    ///
2551    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2552    ///
2553    /// # Examples
2554    ///
2555    /// ```
2556    /// let mut vec = vec![1, 2];
2557    /// vec.push(3);
2558    /// assert_eq!(vec, [1, 2, 3]);
2559    /// ```
2560    ///
2561    /// # Time complexity
2562    ///
2563    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2564    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2565    /// vector's elements to a larger allocation. This expensive operation is
2566    /// offset by the *capacity* *O*(1) insertions it allows.
2567    #[cfg(not(no_global_oom_handling))]
2568    #[inline]
2569    #[stable(feature = "rust1", since = "1.0.0")]
2570    #[rustc_confusables("push_back", "put", "append")]
2571    #[track_caller]
2572    pub fn push(&mut self, value: T) {
2573        let _ = self.push_mut(value);
2574    }
2575
2576    /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
2577    /// with the element.
2578    ///
2579    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2580    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2581    ///
2582    /// [`push`]: Vec::push
2583    /// [`reserve`]: Vec::reserve
2584    /// [`try_reserve`]: Vec::try_reserve
2585    ///
2586    /// # Examples
2587    ///
2588    /// A manual, panic-free alternative to [`FromIterator`]:
2589    ///
2590    /// ```
2591    /// #![feature(vec_push_within_capacity)]
2592    ///
2593    /// use std::collections::TryReserveError;
2594    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2595    ///     let mut vec = Vec::new();
2596    ///     for value in iter {
2597    ///         if let Err(value) = vec.push_within_capacity(value) {
2598    ///             vec.try_reserve(1)?;
2599    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2600    ///             let _ = vec.push_within_capacity(value);
2601    ///         }
2602    ///     }
2603    ///     Ok(vec)
2604    /// }
2605    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2606    /// ```
2607    ///
2608    /// # Time complexity
2609    ///
2610    /// Takes *O*(1) time.
2611    #[inline]
2612    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2613    pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2614        self.push_mut_within_capacity(value).map(|_| ())
2615    }
2616
2617    /// Appends an element to the back of a collection, returning a reference to it.
2618    ///
2619    /// # Panics
2620    ///
2621    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2622    ///
2623    /// # Examples
2624    ///
2625    /// ```
2626    /// #![feature(push_mut)]
2627    ///
2628    ///
2629    /// let mut vec = vec![1, 2];
2630    /// let last = vec.push_mut(3);
2631    /// assert_eq!(*last, 3);
2632    /// assert_eq!(vec, [1, 2, 3]);
2633    ///
2634    /// let last = vec.push_mut(3);
2635    /// *last += 1;
2636    /// assert_eq!(vec, [1, 2, 3, 4]);
2637    /// ```
2638    ///
2639    /// # Time complexity
2640    ///
2641    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2642    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2643    /// vector's elements to a larger allocation. This expensive operation is
2644    /// offset by the *capacity* *O*(1) insertions it allows.
2645    #[cfg(not(no_global_oom_handling))]
2646    #[inline]
2647    #[unstable(feature = "push_mut", issue = "135974")]
2648    #[track_caller]
2649    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2650    pub fn push_mut(&mut self, value: T) -> &mut T {
2651        // Inform codegen that the length does not change across grow_one().
2652        let len = self.len;
2653        // This will panic or abort if we would allocate > isize::MAX bytes
2654        // or if the length increment would overflow for zero-sized types.
2655        if len == self.buf.capacity() {
2656            self.buf.grow_one();
2657        }
2658        unsafe {
2659            let end = self.as_mut_ptr().add(len);
2660            ptr::write(end, value);
2661            self.len = len + 1;
2662            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2663            &mut *end
2664        }
2665    }
2666
2667    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2668    /// otherwise an error is returned with the element.
2669    ///
2670    /// Unlike [`push_mut`] this method will not reallocate when there's insufficient capacity.
2671    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2672    ///
2673    /// [`push_mut`]: Vec::push_mut
2674    /// [`reserve`]: Vec::reserve
2675    /// [`try_reserve`]: Vec::try_reserve
2676    ///
2677    /// # Time complexity
2678    ///
2679    /// Takes *O*(1) time.
2680    #[unstable(feature = "push_mut", issue = "135974")]
2681    // #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2682    #[inline]
2683    #[must_use = "if you don't need a reference to the value, use `Vec::push_within_capacity` instead"]
2684    pub fn push_mut_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2685        if self.len == self.buf.capacity() {
2686            return Err(value);
2687        }
2688        unsafe {
2689            let end = self.as_mut_ptr().add(self.len);
2690            ptr::write(end, value);
2691            self.len += 1;
2692            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2693            Ok(&mut *end)
2694        }
2695    }
2696
2697    /// Removes the last element from a vector and returns it, or [`None`] if it
2698    /// is empty.
2699    ///
2700    /// If you'd like to pop the first element, consider using
2701    /// [`VecDeque::pop_front`] instead.
2702    ///
2703    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2704    ///
2705    /// # Examples
2706    ///
2707    /// ```
2708    /// let mut vec = vec![1, 2, 3];
2709    /// assert_eq!(vec.pop(), Some(3));
2710    /// assert_eq!(vec, [1, 2]);
2711    /// ```
2712    ///
2713    /// # Time complexity
2714    ///
2715    /// Takes *O*(1) time.
2716    #[inline]
2717    #[stable(feature = "rust1", since = "1.0.0")]
2718    #[rustc_diagnostic_item = "vec_pop"]
2719    pub fn pop(&mut self) -> Option<T> {
2720        if self.len == 0 {
2721            None
2722        } else {
2723            unsafe {
2724                self.len -= 1;
2725                core::hint::assert_unchecked(self.len < self.capacity());
2726                Some(ptr::read(self.as_ptr().add(self.len())))
2727            }
2728        }
2729    }
2730
2731    /// Removes and returns the last element from a vector if the predicate
2732    /// returns `true`, or [`None`] if the predicate returns false or the vector
2733    /// is empty (the predicate will not be called in that case).
2734    ///
2735    /// # Examples
2736    ///
2737    /// ```
2738    /// let mut vec = vec![1, 2, 3, 4];
2739    /// let pred = |x: &mut i32| *x % 2 == 0;
2740    ///
2741    /// assert_eq!(vec.pop_if(pred), Some(4));
2742    /// assert_eq!(vec, [1, 2, 3]);
2743    /// assert_eq!(vec.pop_if(pred), None);
2744    /// ```
2745    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2746    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2747        let last = self.last_mut()?;
2748        if predicate(last) { self.pop() } else { None }
2749    }
2750
2751    /// Returns a mutable reference to the last item in the vector, or
2752    /// `None` if it is empty.
2753    ///
2754    /// # Examples
2755    ///
2756    /// Basic usage:
2757    ///
2758    /// ```
2759    /// #![feature(vec_peek_mut)]
2760    /// let mut vec = Vec::new();
2761    /// assert!(vec.peek_mut().is_none());
2762    ///
2763    /// vec.push(1);
2764    /// vec.push(5);
2765    /// vec.push(2);
2766    /// assert_eq!(vec.last(), Some(&2));
2767    /// if let Some(mut val) = vec.peek_mut() {
2768    ///     *val = 0;
2769    /// }
2770    /// assert_eq!(vec.last(), Some(&0));
2771    /// ```
2772    #[inline]
2773    #[unstable(feature = "vec_peek_mut", issue = "122742")]
2774    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2775        PeekMut::new(self)
2776    }
2777
2778    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2779    ///
2780    /// # Panics
2781    ///
2782    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2783    ///
2784    /// # Examples
2785    ///
2786    /// ```
2787    /// let mut vec = vec![1, 2, 3];
2788    /// let mut vec2 = vec![4, 5, 6];
2789    /// vec.append(&mut vec2);
2790    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2791    /// assert_eq!(vec2, []);
2792    /// ```
2793    #[cfg(not(no_global_oom_handling))]
2794    #[inline]
2795    #[stable(feature = "append", since = "1.4.0")]
2796    #[track_caller]
2797    pub fn append(&mut self, other: &mut Self) {
2798        unsafe {
2799            self.append_elements(other.as_slice() as _);
2800            other.set_len(0);
2801        }
2802    }
2803
2804    /// Appends elements to `self` from other buffer.
2805    #[cfg(not(no_global_oom_handling))]
2806    #[inline]
2807    #[track_caller]
2808    unsafe fn append_elements(&mut self, other: *const [T]) {
2809        let count = other.len();
2810        self.reserve(count);
2811        let len = self.len();
2812        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2813        self.len += count;
2814    }
2815
2816    /// Removes the subslice indicated by the given range from the vector,
2817    /// returning a double-ended iterator over the removed subslice.
2818    ///
2819    /// If the iterator is dropped before being fully consumed,
2820    /// it drops the remaining removed elements.
2821    ///
2822    /// The returned iterator keeps a mutable borrow on the vector to optimize
2823    /// its implementation.
2824    ///
2825    /// # Panics
2826    ///
2827    /// Panics if the range has `start_bound > end_bound`, or, if the range is
2828    /// bounded on either end and past the length of the vector.
2829    ///
2830    /// # Leaking
2831    ///
2832    /// If the returned iterator goes out of scope without being dropped (due to
2833    /// [`mem::forget`], for example), the vector may have lost and leaked
2834    /// elements arbitrarily, including elements outside the range.
2835    ///
2836    /// # Examples
2837    ///
2838    /// ```
2839    /// let mut v = vec![1, 2, 3];
2840    /// let u: Vec<_> = v.drain(1..).collect();
2841    /// assert_eq!(v, &[1]);
2842    /// assert_eq!(u, &[2, 3]);
2843    ///
2844    /// // A full range clears the vector, like `clear()` does
2845    /// v.drain(..);
2846    /// assert_eq!(v, &[]);
2847    /// ```
2848    #[stable(feature = "drain", since = "1.6.0")]
2849    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2850    where
2851        R: RangeBounds<usize>,
2852    {
2853        // Memory safety
2854        //
2855        // When the Drain is first created, it shortens the length of
2856        // the source vector to make sure no uninitialized or moved-from elements
2857        // are accessible at all if the Drain's destructor never gets to run.
2858        //
2859        // Drain will ptr::read out the values to remove.
2860        // When finished, remaining tail of the vec is copied back to cover
2861        // the hole, and the vector length is restored to the new length.
2862        //
2863        let len = self.len();
2864        let Range { start, end } = slice::range(range, ..len);
2865
2866        unsafe {
2867            // set self.vec length's to start, to be safe in case Drain is leaked
2868            self.set_len(start);
2869            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2870            Drain {
2871                tail_start: end,
2872                tail_len: len - end,
2873                iter: range_slice.iter(),
2874                vec: NonNull::from(self),
2875            }
2876        }
2877    }
2878
2879    /// Clears the vector, removing all values.
2880    ///
2881    /// Note that this method has no effect on the allocated capacity
2882    /// of the vector.
2883    ///
2884    /// # Examples
2885    ///
2886    /// ```
2887    /// let mut v = vec![1, 2, 3];
2888    ///
2889    /// v.clear();
2890    ///
2891    /// assert!(v.is_empty());
2892    /// ```
2893    #[inline]
2894    #[stable(feature = "rust1", since = "1.0.0")]
2895    pub fn clear(&mut self) {
2896        let elems: *mut [T] = self.as_mut_slice();
2897
2898        // SAFETY:
2899        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2900        // - Setting `self.len` before calling `drop_in_place` means that,
2901        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2902        //   do nothing (leaking the rest of the elements) instead of dropping
2903        //   some twice.
2904        unsafe {
2905            self.len = 0;
2906            ptr::drop_in_place(elems);
2907        }
2908    }
2909
2910    /// Returns the number of elements in the vector, also referred to
2911    /// as its 'length'.
2912    ///
2913    /// # Examples
2914    ///
2915    /// ```
2916    /// let a = vec![1, 2, 3];
2917    /// assert_eq!(a.len(), 3);
2918    /// ```
2919    #[inline]
2920    #[stable(feature = "rust1", since = "1.0.0")]
2921    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2922    #[rustc_confusables("length", "size")]
2923    pub const fn len(&self) -> usize {
2924        let len = self.len;
2925
2926        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2927        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2928        // matches the definition of `T::MAX_SLICE_LEN`.
2929        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2930
2931        len
2932    }
2933
2934    /// Returns `true` if the vector contains no elements.
2935    ///
2936    /// # Examples
2937    ///
2938    /// ```
2939    /// let mut v = Vec::new();
2940    /// assert!(v.is_empty());
2941    ///
2942    /// v.push(1);
2943    /// assert!(!v.is_empty());
2944    /// ```
2945    #[stable(feature = "rust1", since = "1.0.0")]
2946    #[rustc_diagnostic_item = "vec_is_empty"]
2947    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2948    pub const fn is_empty(&self) -> bool {
2949        self.len() == 0
2950    }
2951
2952    /// Splits the collection into two at the given index.
2953    ///
2954    /// Returns a newly allocated vector containing the elements in the range
2955    /// `[at, len)`. After the call, the original vector will be left containing
2956    /// the elements `[0, at)` with its previous capacity unchanged.
2957    ///
2958    /// - If you want to take ownership of the entire contents and capacity of
2959    ///   the vector, see [`mem::take`] or [`mem::replace`].
2960    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2961    /// - If you want to take ownership of an arbitrary subslice, or you don't
2962    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2963    ///
2964    /// # Panics
2965    ///
2966    /// Panics if `at > len`.
2967    ///
2968    /// # Examples
2969    ///
2970    /// ```
2971    /// let mut vec = vec!['a', 'b', 'c'];
2972    /// let vec2 = vec.split_off(1);
2973    /// assert_eq!(vec, ['a']);
2974    /// assert_eq!(vec2, ['b', 'c']);
2975    /// ```
2976    #[cfg(not(no_global_oom_handling))]
2977    #[inline]
2978    #[must_use = "use `.truncate()` if you don't need the other half"]
2979    #[stable(feature = "split_off", since = "1.4.0")]
2980    #[track_caller]
2981    pub fn split_off(&mut self, at: usize) -> Self
2982    where
2983        A: Clone,
2984    {
2985        #[cold]
2986        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2987        #[track_caller]
2988        #[optimize(size)]
2989        fn assert_failed(at: usize, len: usize) -> ! {
2990            panic!("`at` split index (is {at}) should be <= len (is {len})");
2991        }
2992
2993        if at > self.len() {
2994            assert_failed(at, self.len());
2995        }
2996
2997        let other_len = self.len - at;
2998        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2999
3000        // Unsafely `set_len` and copy items to `other`.
3001        unsafe {
3002            self.set_len(at);
3003            other.set_len(other_len);
3004
3005            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
3006        }
3007        other
3008    }
3009
3010    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3011    ///
3012    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3013    /// difference, with each additional slot filled with the result of
3014    /// calling the closure `f`. The return values from `f` will end up
3015    /// in the `Vec` in the order they have been generated.
3016    ///
3017    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3018    ///
3019    /// This method uses a closure to create new values on every push. If
3020    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
3021    /// want to use the [`Default`] trait to generate values, you can
3022    /// pass [`Default::default`] as the second argument.
3023    ///
3024    /// # Panics
3025    ///
3026    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3027    ///
3028    /// # Examples
3029    ///
3030    /// ```
3031    /// let mut vec = vec![1, 2, 3];
3032    /// vec.resize_with(5, Default::default);
3033    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3034    ///
3035    /// let mut vec = vec![];
3036    /// let mut p = 1;
3037    /// vec.resize_with(4, || { p *= 2; p });
3038    /// assert_eq!(vec, [2, 4, 8, 16]);
3039    /// ```
3040    #[cfg(not(no_global_oom_handling))]
3041    #[stable(feature = "vec_resize_with", since = "1.33.0")]
3042    #[track_caller]
3043    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3044    where
3045        F: FnMut() -> T,
3046    {
3047        let len = self.len();
3048        if new_len > len {
3049            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3050        } else {
3051            self.truncate(new_len);
3052        }
3053    }
3054
3055    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3056    /// `&'a mut [T]`.
3057    ///
3058    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3059    /// has only static references, or none at all, then this may be chosen to be
3060    /// `'static`.
3061    ///
3062    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3063    /// so the leaked allocation may include unused capacity that is not part
3064    /// of the returned slice.
3065    ///
3066    /// This function is mainly useful for data that lives for the remainder of
3067    /// the program's life. Dropping the returned reference will cause a memory
3068    /// leak.
3069    ///
3070    /// # Examples
3071    ///
3072    /// Simple usage:
3073    ///
3074    /// ```
3075    /// let x = vec![1, 2, 3];
3076    /// let static_ref: &'static mut [usize] = x.leak();
3077    /// static_ref[0] += 1;
3078    /// assert_eq!(static_ref, &[2, 2, 3]);
3079    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3080    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3081    /// # drop(unsafe { Box::from_raw(static_ref) });
3082    /// ```
3083    #[stable(feature = "vec_leak", since = "1.47.0")]
3084    #[inline]
3085    pub fn leak<'a>(self) -> &'a mut [T]
3086    where
3087        A: 'a,
3088    {
3089        let mut me = ManuallyDrop::new(self);
3090        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3091    }
3092
3093    /// Returns the remaining spare capacity of the vector as a slice of
3094    /// `MaybeUninit<T>`.
3095    ///
3096    /// The returned slice can be used to fill the vector with data (e.g. by
3097    /// reading from a file) before marking the data as initialized using the
3098    /// [`set_len`] method.
3099    ///
3100    /// [`set_len`]: Vec::set_len
3101    ///
3102    /// # Examples
3103    ///
3104    /// ```
3105    /// // Allocate vector big enough for 10 elements.
3106    /// let mut v = Vec::with_capacity(10);
3107    ///
3108    /// // Fill in the first 3 elements.
3109    /// let uninit = v.spare_capacity_mut();
3110    /// uninit[0].write(0);
3111    /// uninit[1].write(1);
3112    /// uninit[2].write(2);
3113    ///
3114    /// // Mark the first 3 elements of the vector as being initialized.
3115    /// unsafe {
3116    ///     v.set_len(3);
3117    /// }
3118    ///
3119    /// assert_eq!(&v, &[0, 1, 2]);
3120    /// ```
3121    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3122    #[inline]
3123    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3124        // Note:
3125        // This method is not implemented in terms of `split_at_spare_mut`,
3126        // to prevent invalidation of pointers to the buffer.
3127        unsafe {
3128            slice::from_raw_parts_mut(
3129                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3130                self.buf.capacity() - self.len,
3131            )
3132        }
3133    }
3134
3135    /// Returns vector content as a slice of `T`, along with the remaining spare
3136    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3137    ///
3138    /// The returned spare capacity slice can be used to fill the vector with data
3139    /// (e.g. by reading from a file) before marking the data as initialized using
3140    /// the [`set_len`] method.
3141    ///
3142    /// [`set_len`]: Vec::set_len
3143    ///
3144    /// Note that this is a low-level API, which should be used with care for
3145    /// optimization purposes. If you need to append data to a `Vec`
3146    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3147    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3148    /// [`resize_with`], depending on your exact needs.
3149    ///
3150    /// [`push`]: Vec::push
3151    /// [`extend`]: Vec::extend
3152    /// [`extend_from_slice`]: Vec::extend_from_slice
3153    /// [`extend_from_within`]: Vec::extend_from_within
3154    /// [`insert`]: Vec::insert
3155    /// [`append`]: Vec::append
3156    /// [`resize`]: Vec::resize
3157    /// [`resize_with`]: Vec::resize_with
3158    ///
3159    /// # Examples
3160    ///
3161    /// ```
3162    /// #![feature(vec_split_at_spare)]
3163    ///
3164    /// let mut v = vec![1, 1, 2];
3165    ///
3166    /// // Reserve additional space big enough for 10 elements.
3167    /// v.reserve(10);
3168    ///
3169    /// let (init, uninit) = v.split_at_spare_mut();
3170    /// let sum = init.iter().copied().sum::<u32>();
3171    ///
3172    /// // Fill in the next 4 elements.
3173    /// uninit[0].write(sum);
3174    /// uninit[1].write(sum * 2);
3175    /// uninit[2].write(sum * 3);
3176    /// uninit[3].write(sum * 4);
3177    ///
3178    /// // Mark the 4 elements of the vector as being initialized.
3179    /// unsafe {
3180    ///     let len = v.len();
3181    ///     v.set_len(len + 4);
3182    /// }
3183    ///
3184    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3185    /// ```
3186    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3187    #[inline]
3188    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3189        // SAFETY:
3190        // - len is ignored and so never changed
3191        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3192        (init, spare)
3193    }
3194
3195    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3196    ///
3197    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3198    unsafe fn split_at_spare_mut_with_len(
3199        &mut self,
3200    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3201        let ptr = self.as_mut_ptr();
3202        // SAFETY:
3203        // - `ptr` is guaranteed to be valid for `self.len` elements
3204        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3205        // uninitialized
3206        let spare_ptr = unsafe { ptr.add(self.len) };
3207        let spare_ptr = spare_ptr.cast_uninit();
3208        let spare_len = self.buf.capacity() - self.len;
3209
3210        // SAFETY:
3211        // - `ptr` is guaranteed to be valid for `self.len` elements
3212        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3213        unsafe {
3214            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3215            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3216
3217            (initialized, spare, &mut self.len)
3218        }
3219    }
3220
3221    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3222    /// elements in the remainder. `N` must be greater than zero.
3223    ///
3224    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3225    /// nearest multiple with a reallocation or deallocation.
3226    ///
3227    /// This function can be used to reverse [`Vec::into_flattened`].
3228    ///
3229    /// # Examples
3230    ///
3231    /// ```
3232    /// #![feature(vec_into_chunks)]
3233    ///
3234    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3235    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3236    ///
3237    /// let vec = vec![0, 1, 2, 3];
3238    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3239    /// assert!(chunks.is_empty());
3240    ///
3241    /// let flat = vec![0; 8 * 8 * 8];
3242    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3243    /// assert_eq!(reshaped.len(), 1);
3244    /// ```
3245    #[cfg(not(no_global_oom_handling))]
3246    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3247    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3248        const {
3249            assert!(N != 0, "chunk size must be greater than zero");
3250        }
3251
3252        let (len, cap) = (self.len(), self.capacity());
3253
3254        let len_remainder = len % N;
3255        if len_remainder != 0 {
3256            self.truncate(len - len_remainder);
3257        }
3258
3259        let cap_remainder = cap % N;
3260        if !T::IS_ZST && cap_remainder != 0 {
3261            self.buf.shrink_to_fit(cap - cap_remainder);
3262        }
3263
3264        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3265
3266        // SAFETY:
3267        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3268        // - `[T; N]` has the same alignment as `T`
3269        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3270        // - `len / N <= cap / N` because `len <= cap`
3271        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3272        // - `cap / N` fits the size of the allocated memory after shrinking
3273        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3274    }
3275}
3276
3277impl<T: Clone, A: Allocator> Vec<T, A> {
3278    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3279    ///
3280    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3281    /// difference, with each additional slot filled with `value`.
3282    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3283    ///
3284    /// This method requires `T` to implement [`Clone`],
3285    /// in order to be able to clone the passed value.
3286    /// If you need more flexibility (or want to rely on [`Default`] instead of
3287    /// [`Clone`]), use [`Vec::resize_with`].
3288    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3289    ///
3290    /// # Panics
3291    ///
3292    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3293    ///
3294    /// # Examples
3295    ///
3296    /// ```
3297    /// let mut vec = vec!["hello"];
3298    /// vec.resize(3, "world");
3299    /// assert_eq!(vec, ["hello", "world", "world"]);
3300    ///
3301    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3302    /// vec.resize(2, '_');
3303    /// assert_eq!(vec, ['a', 'b']);
3304    /// ```
3305    #[cfg(not(no_global_oom_handling))]
3306    #[stable(feature = "vec_resize", since = "1.5.0")]
3307    #[track_caller]
3308    pub fn resize(&mut self, new_len: usize, value: T) {
3309        let len = self.len();
3310
3311        if new_len > len {
3312            self.extend_with(new_len - len, value)
3313        } else {
3314            self.truncate(new_len);
3315        }
3316    }
3317
3318    /// Clones and appends all elements in a slice to the `Vec`.
3319    ///
3320    /// Iterates over the slice `other`, clones each element, and then appends
3321    /// it to this `Vec`. The `other` slice is traversed in-order.
3322    ///
3323    /// Note that this function is the same as [`extend`],
3324    /// except that it also works with slice elements that are Clone but not Copy.
3325    /// If Rust gets specialization this function may be deprecated.
3326    ///
3327    /// # Examples
3328    ///
3329    /// ```
3330    /// let mut vec = vec![1];
3331    /// vec.extend_from_slice(&[2, 3, 4]);
3332    /// assert_eq!(vec, [1, 2, 3, 4]);
3333    /// ```
3334    ///
3335    /// [`extend`]: Vec::extend
3336    #[cfg(not(no_global_oom_handling))]
3337    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3338    #[track_caller]
3339    pub fn extend_from_slice(&mut self, other: &[T]) {
3340        self.spec_extend(other.iter())
3341    }
3342
3343    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3344    ///
3345    /// `src` must be a range that can form a valid subslice of the `Vec`.
3346    ///
3347    /// # Panics
3348    ///
3349    /// Panics if starting index is greater than the end index
3350    /// or if the index is greater than the length of the vector.
3351    ///
3352    /// # Examples
3353    ///
3354    /// ```
3355    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3356    /// characters.extend_from_within(2..);
3357    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3358    ///
3359    /// let mut numbers = vec![0, 1, 2, 3, 4];
3360    /// numbers.extend_from_within(..2);
3361    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3362    ///
3363    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3364    /// strings.extend_from_within(1..=2);
3365    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3366    /// ```
3367    #[cfg(not(no_global_oom_handling))]
3368    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3369    #[track_caller]
3370    pub fn extend_from_within<R>(&mut self, src: R)
3371    where
3372        R: RangeBounds<usize>,
3373    {
3374        let range = slice::range(src, ..self.len());
3375        self.reserve(range.len());
3376
3377        // SAFETY:
3378        // - `slice::range` guarantees that the given range is valid for indexing self
3379        unsafe {
3380            self.spec_extend_from_within(range);
3381        }
3382    }
3383}
3384
3385impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3386    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3387    ///
3388    /// # Panics
3389    ///
3390    /// Panics if the length of the resulting vector would overflow a `usize`.
3391    ///
3392    /// This is only possible when flattening a vector of arrays of zero-sized
3393    /// types, and thus tends to be irrelevant in practice. If
3394    /// `size_of::<T>() > 0`, this will never panic.
3395    ///
3396    /// # Examples
3397    ///
3398    /// ```
3399    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3400    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3401    ///
3402    /// let mut flattened = vec.into_flattened();
3403    /// assert_eq!(flattened.pop(), Some(6));
3404    /// ```
3405    #[stable(feature = "slice_flatten", since = "1.80.0")]
3406    pub fn into_flattened(self) -> Vec<T, A> {
3407        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3408        let (new_len, new_cap) = if T::IS_ZST {
3409            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3410        } else {
3411            // SAFETY:
3412            // - `cap * N` cannot overflow because the allocation is already in
3413            // the address space.
3414            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3415            // valid elements in the allocation.
3416            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3417        };
3418        // SAFETY:
3419        // - `ptr` was allocated by `self`
3420        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3421        // - `new_cap` refers to the same sized allocation as `cap` because
3422        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3423        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3424        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3425    }
3426}
3427
3428impl<T: Clone, A: Allocator> Vec<T, A> {
3429    #[cfg(not(no_global_oom_handling))]
3430    #[track_caller]
3431    /// Extend the vector by `n` clones of value.
3432    fn extend_with(&mut self, n: usize, value: T) {
3433        self.reserve(n);
3434
3435        unsafe {
3436            let mut ptr = self.as_mut_ptr().add(self.len());
3437            // Use SetLenOnDrop to work around bug where compiler
3438            // might not realize the store through `ptr` through self.set_len()
3439            // don't alias.
3440            let mut local_len = SetLenOnDrop::new(&mut self.len);
3441
3442            // Write all elements except the last one
3443            for _ in 1..n {
3444                ptr::write(ptr, value.clone());
3445                ptr = ptr.add(1);
3446                // Increment the length in every step in case clone() panics
3447                local_len.increment_len(1);
3448            }
3449
3450            if n > 0 {
3451                // We can write the last element directly without cloning needlessly
3452                ptr::write(ptr, value);
3453                local_len.increment_len(1);
3454            }
3455
3456            // len set by scope guard
3457        }
3458    }
3459}
3460
3461impl<T: PartialEq, A: Allocator> Vec<T, A> {
3462    /// Removes consecutive repeated elements in the vector according to the
3463    /// [`PartialEq`] trait implementation.
3464    ///
3465    /// If the vector is sorted, this removes all duplicates.
3466    ///
3467    /// # Examples
3468    ///
3469    /// ```
3470    /// let mut vec = vec![1, 2, 2, 3, 2];
3471    ///
3472    /// vec.dedup();
3473    ///
3474    /// assert_eq!(vec, [1, 2, 3, 2]);
3475    /// ```
3476    #[stable(feature = "rust1", since = "1.0.0")]
3477    #[inline]
3478    pub fn dedup(&mut self) {
3479        self.dedup_by(|a, b| a == b)
3480    }
3481}
3482
3483////////////////////////////////////////////////////////////////////////////////
3484// Internal methods and functions
3485////////////////////////////////////////////////////////////////////////////////
3486
3487#[doc(hidden)]
3488#[cfg(not(no_global_oom_handling))]
3489#[stable(feature = "rust1", since = "1.0.0")]
3490#[rustc_diagnostic_item = "vec_from_elem"]
3491#[track_caller]
3492pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3493    <T as SpecFromElem>::from_elem(elem, n, Global)
3494}
3495
3496#[doc(hidden)]
3497#[cfg(not(no_global_oom_handling))]
3498#[unstable(feature = "allocator_api", issue = "32838")]
3499#[track_caller]
3500pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3501    <T as SpecFromElem>::from_elem(elem, n, alloc)
3502}
3503
3504#[cfg(not(no_global_oom_handling))]
3505trait ExtendFromWithinSpec {
3506    /// # Safety
3507    ///
3508    /// - `src` needs to be valid index
3509    /// - `self.capacity() - self.len()` must be `>= src.len()`
3510    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3511}
3512
3513#[cfg(not(no_global_oom_handling))]
3514impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3515    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3516        // SAFETY:
3517        // - len is increased only after initializing elements
3518        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3519
3520        // SAFETY:
3521        // - caller guarantees that src is a valid index
3522        let to_clone = unsafe { this.get_unchecked(src) };
3523
3524        iter::zip(to_clone, spare)
3525            .map(|(src, dst)| dst.write(src.clone()))
3526            // Note:
3527            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3528            // - len is increased after each element to prevent leaks (see issue #82533)
3529            .for_each(|_| *len += 1);
3530    }
3531}
3532
3533#[cfg(not(no_global_oom_handling))]
3534impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3535    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3536        let count = src.len();
3537        {
3538            let (init, spare) = self.split_at_spare_mut();
3539
3540            // SAFETY:
3541            // - caller guarantees that `src` is a valid index
3542            let source = unsafe { init.get_unchecked(src) };
3543
3544            // SAFETY:
3545            // - Both pointers are created from unique slice references (`&mut [_]`)
3546            //   so they are valid and do not overlap.
3547            // - Elements are :Copy so it's OK to copy them, without doing
3548            //   anything with the original values
3549            // - `count` is equal to the len of `source`, so source is valid for
3550            //   `count` reads
3551            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3552            //   is valid for `count` writes
3553            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3554        }
3555
3556        // SAFETY:
3557        // - The elements were just initialized by `copy_nonoverlapping`
3558        self.len += count;
3559    }
3560}
3561
3562////////////////////////////////////////////////////////////////////////////////
3563// Common trait implementations for Vec
3564////////////////////////////////////////////////////////////////////////////////
3565
3566#[stable(feature = "rust1", since = "1.0.0")]
3567impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3568    type Target = [T];
3569
3570    #[inline]
3571    fn deref(&self) -> &[T] {
3572        self.as_slice()
3573    }
3574}
3575
3576#[stable(feature = "rust1", since = "1.0.0")]
3577impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3578    #[inline]
3579    fn deref_mut(&mut self) -> &mut [T] {
3580        self.as_mut_slice()
3581    }
3582}
3583
3584#[unstable(feature = "deref_pure_trait", issue = "87121")]
3585unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3586
3587#[cfg(not(no_global_oom_handling))]
3588#[stable(feature = "rust1", since = "1.0.0")]
3589impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3590    #[track_caller]
3591    fn clone(&self) -> Self {
3592        let alloc = self.allocator().clone();
3593        <[T]>::to_vec_in(&**self, alloc)
3594    }
3595
3596    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3597    ///
3598    /// This method is preferred over simply assigning `source.clone()` to `self`,
3599    /// as it avoids reallocation if possible. Additionally, if the element type
3600    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3601    /// elements as well.
3602    ///
3603    /// # Examples
3604    ///
3605    /// ```
3606    /// let x = vec![5, 6, 7];
3607    /// let mut y = vec![8, 9, 10];
3608    /// let yp: *const i32 = y.as_ptr();
3609    ///
3610    /// y.clone_from(&x);
3611    ///
3612    /// // The value is the same
3613    /// assert_eq!(x, y);
3614    ///
3615    /// // And no reallocation occurred
3616    /// assert_eq!(yp, y.as_ptr());
3617    /// ```
3618    #[track_caller]
3619    fn clone_from(&mut self, source: &Self) {
3620        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3621    }
3622}
3623
3624/// The hash of a vector is the same as that of the corresponding slice,
3625/// as required by the `core::borrow::Borrow` implementation.
3626///
3627/// ```
3628/// use std::hash::BuildHasher;
3629///
3630/// let b = std::hash::RandomState::new();
3631/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3632/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3633/// assert_eq!(b.hash_one(v), b.hash_one(s));
3634/// ```
3635#[stable(feature = "rust1", since = "1.0.0")]
3636impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3637    #[inline]
3638    fn hash<H: Hasher>(&self, state: &mut H) {
3639        Hash::hash(&**self, state)
3640    }
3641}
3642
3643#[stable(feature = "rust1", since = "1.0.0")]
3644impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3645    type Output = I::Output;
3646
3647    #[inline]
3648    fn index(&self, index: I) -> &Self::Output {
3649        Index::index(&**self, index)
3650    }
3651}
3652
3653#[stable(feature = "rust1", since = "1.0.0")]
3654impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3655    #[inline]
3656    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3657        IndexMut::index_mut(&mut **self, index)
3658    }
3659}
3660
3661/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3662///
3663/// # Allocation behavior
3664///
3665/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3666/// That also applies to this trait impl.
3667///
3668/// **Note:** This section covers implementation details and is therefore exempt from
3669/// stability guarantees.
3670///
3671/// Vec may use any or none of the following strategies,
3672/// depending on the supplied iterator:
3673///
3674/// * preallocate based on [`Iterator::size_hint()`]
3675///   * and panic if the number of items is outside the provided lower/upper bounds
3676/// * use an amortized growth strategy similar to `pushing` one item at a time
3677/// * perform the iteration in-place on the original allocation backing the iterator
3678///
3679/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3680/// consumption and improves cache locality. But when big, short-lived allocations are created,
3681/// only a small fraction of their items get collected, no further use is made of the spare capacity
3682/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3683/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3684/// footprint.
3685///
3686/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3687/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3688/// the size of the long-lived struct.
3689///
3690/// [owned slice]: Box
3691///
3692/// ```rust
3693/// # use std::sync::Mutex;
3694/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3695///
3696/// for i in 0..10 {
3697///     let big_temporary: Vec<u16> = (0..1024).collect();
3698///     // discard most items
3699///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3700///     // without this a lot of unused capacity might be moved into the global
3701///     result.shrink_to_fit();
3702///     LONG_LIVED.lock().unwrap().push(result);
3703/// }
3704/// ```
3705#[cfg(not(no_global_oom_handling))]
3706#[stable(feature = "rust1", since = "1.0.0")]
3707impl<T> FromIterator<T> for Vec<T> {
3708    #[inline]
3709    #[track_caller]
3710    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3711        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3712    }
3713}
3714
3715#[stable(feature = "rust1", since = "1.0.0")]
3716impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3717    type Item = T;
3718    type IntoIter = IntoIter<T, A>;
3719
3720    /// Creates a consuming iterator, that is, one that moves each value out of
3721    /// the vector (from start to end). The vector cannot be used after calling
3722    /// this.
3723    ///
3724    /// # Examples
3725    ///
3726    /// ```
3727    /// let v = vec!["a".to_string(), "b".to_string()];
3728    /// let mut v_iter = v.into_iter();
3729    ///
3730    /// let first_element: Option<String> = v_iter.next();
3731    ///
3732    /// assert_eq!(first_element, Some("a".to_string()));
3733    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3734    /// assert_eq!(v_iter.next(), None);
3735    /// ```
3736    #[inline]
3737    fn into_iter(self) -> Self::IntoIter {
3738        unsafe {
3739            let me = ManuallyDrop::new(self);
3740            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3741            let buf = me.buf.non_null();
3742            let begin = buf.as_ptr();
3743            let end = if T::IS_ZST {
3744                begin.wrapping_byte_add(me.len())
3745            } else {
3746                begin.add(me.len()) as *const T
3747            };
3748            let cap = me.buf.capacity();
3749            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3750        }
3751    }
3752}
3753
3754#[stable(feature = "rust1", since = "1.0.0")]
3755impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3756    type Item = &'a T;
3757    type IntoIter = slice::Iter<'a, T>;
3758
3759    fn into_iter(self) -> Self::IntoIter {
3760        self.iter()
3761    }
3762}
3763
3764#[stable(feature = "rust1", since = "1.0.0")]
3765impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3766    type Item = &'a mut T;
3767    type IntoIter = slice::IterMut<'a, T>;
3768
3769    fn into_iter(self) -> Self::IntoIter {
3770        self.iter_mut()
3771    }
3772}
3773
3774#[cfg(not(no_global_oom_handling))]
3775#[stable(feature = "rust1", since = "1.0.0")]
3776impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3777    #[inline]
3778    #[track_caller]
3779    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3780        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3781    }
3782
3783    #[inline]
3784    #[track_caller]
3785    fn extend_one(&mut self, item: T) {
3786        self.push(item);
3787    }
3788
3789    #[inline]
3790    #[track_caller]
3791    fn extend_reserve(&mut self, additional: usize) {
3792        self.reserve(additional);
3793    }
3794
3795    #[inline]
3796    unsafe fn extend_one_unchecked(&mut self, item: T) {
3797        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3798        unsafe {
3799            let len = self.len();
3800            ptr::write(self.as_mut_ptr().add(len), item);
3801            self.set_len(len + 1);
3802        }
3803    }
3804}
3805
3806impl<T, A: Allocator> Vec<T, A> {
3807    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3808    // they have no further optimizations to apply
3809    #[cfg(not(no_global_oom_handling))]
3810    #[track_caller]
3811    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3812        // This is the case for a general iterator.
3813        //
3814        // This function should be the moral equivalent of:
3815        //
3816        //      for item in iterator {
3817        //          self.push(item);
3818        //      }
3819        while let Some(element) = iterator.next() {
3820            let len = self.len();
3821            if len == self.capacity() {
3822                let (lower, _) = iterator.size_hint();
3823                self.reserve(lower.saturating_add(1));
3824            }
3825            unsafe {
3826                ptr::write(self.as_mut_ptr().add(len), element);
3827                // Since next() executes user code which can panic we have to bump the length
3828                // after each step.
3829                // NB can't overflow since we would have had to alloc the address space
3830                self.set_len(len + 1);
3831            }
3832        }
3833    }
3834
3835    // specific extend for `TrustedLen` iterators, called both by the specializations
3836    // and internal places where resolving specialization makes compilation slower
3837    #[cfg(not(no_global_oom_handling))]
3838    #[track_caller]
3839    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3840        let (low, high) = iterator.size_hint();
3841        if let Some(additional) = high {
3842            debug_assert_eq!(
3843                low,
3844                additional,
3845                "TrustedLen iterator's size hint is not exact: {:?}",
3846                (low, high)
3847            );
3848            self.reserve(additional);
3849            unsafe {
3850                let ptr = self.as_mut_ptr();
3851                let mut local_len = SetLenOnDrop::new(&mut self.len);
3852                iterator.for_each(move |element| {
3853                    ptr::write(ptr.add(local_len.current_len()), element);
3854                    // Since the loop executes user code which can panic we have to update
3855                    // the length every step to correctly drop what we've written.
3856                    // NB can't overflow since we would have had to alloc the address space
3857                    local_len.increment_len(1);
3858                });
3859            }
3860        } else {
3861            // Per TrustedLen contract a `None` upper bound means that the iterator length
3862            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3863            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3864            // This avoids additional codegen for a fallback code path which would eventually
3865            // panic anyway.
3866            panic!("capacity overflow");
3867        }
3868    }
3869
3870    /// Creates a splicing iterator that replaces the specified range in the vector
3871    /// with the given `replace_with` iterator and yields the removed items.
3872    /// `replace_with` does not need to be the same length as `range`.
3873    ///
3874    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3875    ///
3876    /// It is unspecified how many elements are removed from the vector
3877    /// if the `Splice` value is leaked.
3878    ///
3879    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3880    ///
3881    /// This is optimal if:
3882    ///
3883    /// * The tail (elements in the vector after `range`) is empty,
3884    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3885    /// * or the lower bound of its `size_hint()` is exact.
3886    ///
3887    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3888    ///
3889    /// # Panics
3890    ///
3891    /// Panics if the range has `start_bound > end_bound`, or, if the range is
3892    /// bounded on either end and past the length of the vector.
3893    ///
3894    /// # Examples
3895    ///
3896    /// ```
3897    /// let mut v = vec![1, 2, 3, 4];
3898    /// let new = [7, 8, 9];
3899    /// let u: Vec<_> = v.splice(1..3, new).collect();
3900    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3901    /// assert_eq!(u, [2, 3]);
3902    /// ```
3903    ///
3904    /// Using `splice` to insert new items into a vector efficiently at a specific position
3905    /// indicated by an empty range:
3906    ///
3907    /// ```
3908    /// let mut v = vec![1, 5];
3909    /// let new = [2, 3, 4];
3910    /// v.splice(1..1, new);
3911    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3912    /// ```
3913    #[cfg(not(no_global_oom_handling))]
3914    #[inline]
3915    #[stable(feature = "vec_splice", since = "1.21.0")]
3916    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3917    where
3918        R: RangeBounds<usize>,
3919        I: IntoIterator<Item = T>,
3920    {
3921        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3922    }
3923
3924    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3925    ///
3926    /// If the closure returns `true`, the element is removed from the vector
3927    /// and yielded. If the closure returns `false`, or panics, the element
3928    /// remains in the vector and will not be yielded.
3929    ///
3930    /// Only elements that fall in the provided range are considered for extraction, but any elements
3931    /// after the range will still have to be moved if any element has been extracted.
3932    ///
3933    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3934    /// or the iteration short-circuits, then the remaining elements will be retained.
3935    /// Use [`retain_mut`] with a negated predicate if you do not need the returned iterator.
3936    ///
3937    /// [`retain_mut`]: Vec::retain_mut
3938    ///
3939    /// Using this method is equivalent to the following code:
3940    ///
3941    /// ```
3942    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
3943    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
3944    /// # let mut vec2 = vec.clone();
3945    /// # let range = 1..5;
3946    /// let mut i = range.start;
3947    /// let end_items = vec.len() - range.end;
3948    /// # let mut extracted = vec![];
3949    ///
3950    /// while i < vec.len() - end_items {
3951    ///     if some_predicate(&mut vec[i]) {
3952    ///         let val = vec.remove(i);
3953    ///         // your code here
3954    /// #         extracted.push(val);
3955    ///     } else {
3956    ///         i += 1;
3957    ///     }
3958    /// }
3959    ///
3960    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
3961    /// # assert_eq!(vec, vec2);
3962    /// # assert_eq!(extracted, extracted2);
3963    /// ```
3964    ///
3965    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3966    /// because it can backshift the elements of the array in bulk.
3967    ///
3968    /// The iterator also lets you mutate the value of each element in the
3969    /// closure, regardless of whether you choose to keep or remove it.
3970    ///
3971    /// # Panics
3972    ///
3973    /// If `range` is out of bounds.
3974    ///
3975    /// # Examples
3976    ///
3977    /// Splitting a vector into even and odd values, reusing the original vector:
3978    ///
3979    /// ```
3980    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3981    ///
3982    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
3983    /// let odds = numbers;
3984    ///
3985    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3986    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3987    /// ```
3988    ///
3989    /// Using the range argument to only process a part of the vector:
3990    ///
3991    /// ```
3992    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
3993    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
3994    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
3995    /// assert_eq!(ones.len(), 3);
3996    /// ```
3997    #[stable(feature = "extract_if", since = "1.87.0")]
3998    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
3999    where
4000        F: FnMut(&mut T) -> bool,
4001        R: RangeBounds<usize>,
4002    {
4003        ExtractIf::new(self, filter, range)
4004    }
4005}
4006
4007/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4008///
4009/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4010/// append the entire slice at once.
4011///
4012/// [`copy_from_slice`]: slice::copy_from_slice
4013#[cfg(not(no_global_oom_handling))]
4014#[stable(feature = "extend_ref", since = "1.2.0")]
4015impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4016    #[track_caller]
4017    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4018        self.spec_extend(iter.into_iter())
4019    }
4020
4021    #[inline]
4022    #[track_caller]
4023    fn extend_one(&mut self, &item: &'a T) {
4024        self.push(item);
4025    }
4026
4027    #[inline]
4028    #[track_caller]
4029    fn extend_reserve(&mut self, additional: usize) {
4030        self.reserve(additional);
4031    }
4032
4033    #[inline]
4034    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4035        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4036        unsafe {
4037            let len = self.len();
4038            ptr::write(self.as_mut_ptr().add(len), item);
4039            self.set_len(len + 1);
4040        }
4041    }
4042}
4043
4044/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4045#[stable(feature = "rust1", since = "1.0.0")]
4046impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4047where
4048    T: PartialOrd,
4049    A1: Allocator,
4050    A2: Allocator,
4051{
4052    #[inline]
4053    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4054        PartialOrd::partial_cmp(&**self, &**other)
4055    }
4056}
4057
4058#[stable(feature = "rust1", since = "1.0.0")]
4059impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4060
4061/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4062#[stable(feature = "rust1", since = "1.0.0")]
4063impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4064    #[inline]
4065    fn cmp(&self, other: &Self) -> Ordering {
4066        Ord::cmp(&**self, &**other)
4067    }
4068}
4069
4070#[stable(feature = "rust1", since = "1.0.0")]
4071unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4072    fn drop(&mut self) {
4073        unsafe {
4074            // use drop for [T]
4075            // use a raw slice to refer to the elements of the vector as weakest necessary type;
4076            // could avoid questions of validity in certain cases
4077            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4078        }
4079        // RawVec handles deallocation
4080    }
4081}
4082
4083#[stable(feature = "rust1", since = "1.0.0")]
4084#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4085impl<T> const Default for Vec<T> {
4086    /// Creates an empty `Vec<T>`.
4087    ///
4088    /// The vector will not allocate until elements are pushed onto it.
4089    fn default() -> Vec<T> {
4090        Vec::new()
4091    }
4092}
4093
4094#[stable(feature = "rust1", since = "1.0.0")]
4095impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4096    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4097        fmt::Debug::fmt(&**self, f)
4098    }
4099}
4100
4101#[stable(feature = "rust1", since = "1.0.0")]
4102impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4103    fn as_ref(&self) -> &Vec<T, A> {
4104        self
4105    }
4106}
4107
4108#[stable(feature = "vec_as_mut", since = "1.5.0")]
4109impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4110    fn as_mut(&mut self) -> &mut Vec<T, A> {
4111        self
4112    }
4113}
4114
4115#[stable(feature = "rust1", since = "1.0.0")]
4116impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4117    fn as_ref(&self) -> &[T] {
4118        self
4119    }
4120}
4121
4122#[stable(feature = "vec_as_mut", since = "1.5.0")]
4123impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4124    fn as_mut(&mut self) -> &mut [T] {
4125        self
4126    }
4127}
4128
4129#[cfg(not(no_global_oom_handling))]
4130#[stable(feature = "rust1", since = "1.0.0")]
4131impl<T: Clone> From<&[T]> for Vec<T> {
4132    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4133    ///
4134    /// # Examples
4135    ///
4136    /// ```
4137    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4138    /// ```
4139    #[track_caller]
4140    fn from(s: &[T]) -> Vec<T> {
4141        s.to_vec()
4142    }
4143}
4144
4145#[cfg(not(no_global_oom_handling))]
4146#[stable(feature = "vec_from_mut", since = "1.19.0")]
4147impl<T: Clone> From<&mut [T]> for Vec<T> {
4148    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4149    ///
4150    /// # Examples
4151    ///
4152    /// ```
4153    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4154    /// ```
4155    #[track_caller]
4156    fn from(s: &mut [T]) -> Vec<T> {
4157        s.to_vec()
4158    }
4159}
4160
4161#[cfg(not(no_global_oom_handling))]
4162#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4163impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4164    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4165    ///
4166    /// # Examples
4167    ///
4168    /// ```
4169    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4170    /// ```
4171    #[track_caller]
4172    fn from(s: &[T; N]) -> Vec<T> {
4173        Self::from(s.as_slice())
4174    }
4175}
4176
4177#[cfg(not(no_global_oom_handling))]
4178#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4179impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4180    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4181    ///
4182    /// # Examples
4183    ///
4184    /// ```
4185    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4186    /// ```
4187    #[track_caller]
4188    fn from(s: &mut [T; N]) -> Vec<T> {
4189        Self::from(s.as_mut_slice())
4190    }
4191}
4192
4193#[cfg(not(no_global_oom_handling))]
4194#[stable(feature = "vec_from_array", since = "1.44.0")]
4195impl<T, const N: usize> From<[T; N]> for Vec<T> {
4196    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4197    ///
4198    /// # Examples
4199    ///
4200    /// ```
4201    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4202    /// ```
4203    #[track_caller]
4204    fn from(s: [T; N]) -> Vec<T> {
4205        <[T]>::into_vec(Box::new(s))
4206    }
4207}
4208
4209#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4210impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4211where
4212    [T]: ToOwned<Owned = Vec<T>>,
4213{
4214    /// Converts a clone-on-write slice into a vector.
4215    ///
4216    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4217    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4218    /// filled by cloning `s`'s items into it.
4219    ///
4220    /// # Examples
4221    ///
4222    /// ```
4223    /// # use std::borrow::Cow;
4224    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4225    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4226    /// assert_eq!(Vec::from(o), Vec::from(b));
4227    /// ```
4228    #[track_caller]
4229    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4230        s.into_owned()
4231    }
4232}
4233
4234// note: test pulls in std, which causes errors here
4235#[stable(feature = "vec_from_box", since = "1.18.0")]
4236impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4237    /// Converts a boxed slice into a vector by transferring ownership of
4238    /// the existing heap allocation.
4239    ///
4240    /// # Examples
4241    ///
4242    /// ```
4243    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4244    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4245    /// ```
4246    fn from(s: Box<[T], A>) -> Self {
4247        s.into_vec()
4248    }
4249}
4250
4251// note: test pulls in std, which causes errors here
4252#[cfg(not(no_global_oom_handling))]
4253#[stable(feature = "box_from_vec", since = "1.20.0")]
4254impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4255    /// Converts a vector into a boxed slice.
4256    ///
4257    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4258    ///
4259    /// [owned slice]: Box
4260    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4261    ///
4262    /// # Examples
4263    ///
4264    /// ```
4265    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4266    /// ```
4267    ///
4268    /// Any excess capacity is removed:
4269    /// ```
4270    /// let mut vec = Vec::with_capacity(10);
4271    /// vec.extend([1, 2, 3]);
4272    ///
4273    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4274    /// ```
4275    #[track_caller]
4276    fn from(v: Vec<T, A>) -> Self {
4277        v.into_boxed_slice()
4278    }
4279}
4280
4281#[cfg(not(no_global_oom_handling))]
4282#[stable(feature = "rust1", since = "1.0.0")]
4283impl From<&str> for Vec<u8> {
4284    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4285    ///
4286    /// # Examples
4287    ///
4288    /// ```
4289    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4290    /// ```
4291    #[track_caller]
4292    fn from(s: &str) -> Vec<u8> {
4293        From::from(s.as_bytes())
4294    }
4295}
4296
4297#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4298impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4299    type Error = Vec<T, A>;
4300
4301    /// Gets the entire contents of the `Vec<T>` as an array,
4302    /// if its size exactly matches that of the requested array.
4303    ///
4304    /// # Examples
4305    ///
4306    /// ```
4307    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4308    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4309    /// ```
4310    ///
4311    /// If the length doesn't match, the input comes back in `Err`:
4312    /// ```
4313    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4314    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4315    /// ```
4316    ///
4317    /// If you're fine with just getting a prefix of the `Vec<T>`,
4318    /// you can call [`.truncate(N)`](Vec::truncate) first.
4319    /// ```
4320    /// let mut v = String::from("hello world").into_bytes();
4321    /// v.sort();
4322    /// v.truncate(2);
4323    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4324    /// assert_eq!(a, b' ');
4325    /// assert_eq!(b, b'd');
4326    /// ```
4327    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4328        if vec.len() != N {
4329            return Err(vec);
4330        }
4331
4332        // SAFETY: `.set_len(0)` is always sound.
4333        unsafe { vec.set_len(0) };
4334
4335        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4336        // the alignment the array needs is the same as the items.
4337        // We checked earlier that we have sufficient items.
4338        // The items will not double-drop as the `set_len`
4339        // tells the `Vec` not to also drop them.
4340        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4341        Ok(array)
4342    }
4343}