Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

core/fmt/
mod.rs

1//! Utilities for formatting and printing strings.
2
3#![stable(feature = "rust1", since = "1.0.0")]
4
5use crate::cell::{Cell, Ref, RefCell, RefMut, SyncUnsafeCell, UnsafeCell};
6use crate::char::{EscapeDebugExtArgs, MAX_LEN_UTF8};
7use crate::hint::assert_unchecked;
8use crate::marker::{PhantomData, PointeeSized};
9use crate::num::fmt as numfmt;
10use crate::ops::Deref;
11use crate::ptr::NonNull;
12use crate::{iter, mem, result, str};
13
14mod builders;
15#[cfg(not(no_fp_fmt_parse))]
16mod float;
17#[cfg(no_fp_fmt_parse)]
18mod nofloat;
19mod num;
20mod num_buffer;
21mod rt;
22
23#[stable(feature = "fmt_flags_align", since = "1.28.0")]
24#[rustc_diagnostic_item = "Alignment"]
25/// Possible alignments returned by `Formatter::align`
26#[derive(Copy, Clone, Debug, PartialEq, Eq)]
27pub enum Alignment {
28    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
29    /// Indication that contents should be left-aligned.
30    Left,
31    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
32    /// Indication that contents should be right-aligned.
33    Right,
34    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
35    /// Indication that contents should be center-aligned.
36    Center,
37}
38
39#[unstable(feature = "int_format_into", issue = "138215")]
40pub use num_buffer::{NumBuffer, NumBufferTrait};
41
42#[stable(feature = "debug_builders", since = "1.2.0")]
43pub use self::builders::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
44#[stable(feature = "fmt_from_fn", since = "CURRENT_RUSTC_VERSION")]
45pub use self::builders::{FromFn, from_fn};
46
47/// The type returned by formatter methods.
48///
49/// # Examples
50///
51/// ```
52/// use std::fmt;
53///
54/// #[derive(Debug)]
55/// struct Triangle {
56///     a: f32,
57///     b: f32,
58///     c: f32
59/// }
60///
61/// impl fmt::Display for Triangle {
62///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
63///         write!(f, "({}, {}, {})", self.a, self.b, self.c)
64///     }
65/// }
66///
67/// let pythagorean_triple = Triangle { a: 3.0, b: 4.0, c: 5.0 };
68///
69/// assert_eq!(format!("{pythagorean_triple}"), "(3, 4, 5)");
70/// ```
71#[stable(feature = "rust1", since = "1.0.0")]
72pub type Result = result::Result<(), Error>;
73
74/// The error type which is returned from formatting a message into a stream.
75///
76/// This type does not support transmission of an error other than that an error
77/// occurred. This is because, despite the existence of this error,
78/// string formatting is considered an infallible operation.
79/// `fmt()` implementors should not return this `Error` unless they received it from their
80/// [`Formatter`]. The only time your code should create a new instance of this
81/// error is when implementing `fmt::Write`, in order to cancel the formatting operation when
82/// writing to the underlying stream fails.
83///
84/// Any extra information must be arranged to be transmitted through some other means,
85/// such as storing it in a field to be consulted after the formatting operation has been
86/// cancelled. (For example, this is how [`std::io::Write::write_fmt()`] propagates IO errors
87/// during writing.)
88///
89/// This type, `fmt::Error`, should not be
90/// confused with [`std::io::Error`] or [`std::error::Error`], which you may also
91/// have in scope.
92///
93/// [`std::io::Error`]: ../../std/io/struct.Error.html
94/// [`std::io::Write::write_fmt()`]: ../../std/io/trait.Write.html#method.write_fmt
95/// [`std::error::Error`]: ../../std/error/trait.Error.html
96///
97/// # Examples
98///
99/// ```rust
100/// use std::fmt::{self, write};
101///
102/// let mut output = String::new();
103/// if let Err(fmt::Error) = write(&mut output, format_args!("Hello {}!", "world")) {
104///     panic!("An error occurred");
105/// }
106/// ```
107#[stable(feature = "rust1", since = "1.0.0")]
108#[derive(Copy, Clone, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
109pub struct Error;
110
111/// A trait for writing or formatting into Unicode-accepting buffers or streams.
112///
113/// This trait only accepts UTF-8–encoded data and is not [flushable]. If you only
114/// want to accept Unicode and you don't need flushing, you should implement this trait;
115/// otherwise you should implement [`std::io::Write`].
116///
117/// [`std::io::Write`]: ../../std/io/trait.Write.html
118/// [flushable]: ../../std/io/trait.Write.html#tymethod.flush
119#[stable(feature = "rust1", since = "1.0.0")]
120#[rustc_diagnostic_item = "FmtWrite"]
121pub trait Write {
122    /// Writes a string slice into this writer, returning whether the write
123    /// succeeded.
124    ///
125    /// This method can only succeed if the entire string slice was successfully
126    /// written, and this method will not return until all data has been
127    /// written or an error occurs.
128    ///
129    /// # Errors
130    ///
131    /// This function will return an instance of [`std::fmt::Error`][Error] on error.
132    ///
133    /// The purpose of that error is to abort the formatting operation when the underlying
134    /// destination encounters some error preventing it from accepting more text;
135    /// in particular, it does not communicate any information about *what* error occurred.
136    /// It should generally be propagated rather than handled, at least when implementing
137    /// formatting traits.
138    ///
139    /// # Examples
140    ///
141    /// ```
142    /// use std::fmt::{Error, Write};
143    ///
144    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
145    ///     f.write_str(s)
146    /// }
147    ///
148    /// let mut buf = String::new();
149    /// writer(&mut buf, "hola")?;
150    /// assert_eq!(&buf, "hola");
151    /// # std::fmt::Result::Ok(())
152    /// ```
153    #[stable(feature = "rust1", since = "1.0.0")]
154    fn write_str(&mut self, s: &str) -> Result;
155
156    /// Writes a [`char`] into this writer, returning whether the write succeeded.
157    ///
158    /// A single [`char`] may be encoded as more than one byte.
159    /// This method can only succeed if the entire byte sequence was successfully
160    /// written, and this method will not return until all data has been
161    /// written or an error occurs.
162    ///
163    /// # Errors
164    ///
165    /// This function will return an instance of [`Error`] on error.
166    ///
167    /// # Examples
168    ///
169    /// ```
170    /// use std::fmt::{Error, Write};
171    ///
172    /// fn writer<W: Write>(f: &mut W, c: char) -> Result<(), Error> {
173    ///     f.write_char(c)
174    /// }
175    ///
176    /// let mut buf = String::new();
177    /// writer(&mut buf, 'a')?;
178    /// writer(&mut buf, 'b')?;
179    /// assert_eq!(&buf, "ab");
180    /// # std::fmt::Result::Ok(())
181    /// ```
182    #[stable(feature = "fmt_write_char", since = "1.1.0")]
183    fn write_char(&mut self, c: char) -> Result {
184        self.write_str(c.encode_utf8(&mut [0; MAX_LEN_UTF8]))
185    }
186
187    /// Glue for usage of the [`write!`] macro with implementors of this trait.
188    ///
189    /// This method should generally not be invoked manually, but rather through
190    /// the [`write!`] macro itself.
191    ///
192    /// # Errors
193    ///
194    /// This function will return an instance of [`Error`] on error. Please see
195    /// [write_str](Write::write_str) for details.
196    ///
197    /// # Examples
198    ///
199    /// ```
200    /// use std::fmt::{Error, Write};
201    ///
202    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
203    ///     f.write_fmt(format_args!("{s}"))
204    /// }
205    ///
206    /// let mut buf = String::new();
207    /// writer(&mut buf, "world")?;
208    /// assert_eq!(&buf, "world");
209    /// # std::fmt::Result::Ok(())
210    /// ```
211    #[stable(feature = "rust1", since = "1.0.0")]
212    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
213        // We use a specialization for `Sized` types to avoid an indirection
214        // through `&mut self`
215        trait SpecWriteFmt {
216            fn spec_write_fmt(self, args: Arguments<'_>) -> Result;
217        }
218
219        impl<W: Write + ?Sized> SpecWriteFmt for &mut W {
220            #[inline]
221            default fn spec_write_fmt(mut self, args: Arguments<'_>) -> Result {
222                if let Some(s) = args.as_statically_known_str() {
223                    self.write_str(s)
224                } else {
225                    write(&mut self, args)
226                }
227            }
228        }
229
230        impl<W: Write> SpecWriteFmt for &mut W {
231            #[inline]
232            fn spec_write_fmt(self, args: Arguments<'_>) -> Result {
233                if let Some(s) = args.as_statically_known_str() {
234                    self.write_str(s)
235                } else {
236                    write(self, args)
237                }
238            }
239        }
240
241        self.spec_write_fmt(args)
242    }
243}
244
245#[stable(feature = "fmt_write_blanket_impl", since = "1.4.0")]
246impl<W: Write + ?Sized> Write for &mut W {
247    fn write_str(&mut self, s: &str) -> Result {
248        (**self).write_str(s)
249    }
250
251    fn write_char(&mut self, c: char) -> Result {
252        (**self).write_char(c)
253    }
254
255    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
256        (**self).write_fmt(args)
257    }
258}
259
260/// The signedness of a [`Formatter`] (or of a [`FormattingOptions`]).
261#[derive(Copy, Clone, Debug, PartialEq, Eq)]
262#[unstable(feature = "formatting_options", issue = "118117")]
263pub enum Sign {
264    /// Represents the `+` flag.
265    Plus,
266    /// Represents the `-` flag.
267    Minus,
268}
269
270/// Specifies whether the [`Debug`] trait should use lower-/upper-case
271/// hexadecimal or normal integers.
272#[derive(Copy, Clone, Debug, PartialEq, Eq)]
273#[unstable(feature = "formatting_options", issue = "118117")]
274pub enum DebugAsHex {
275    /// Use lower-case hexadecimal integers for the `Debug` trait (like [the `x?` type](../../std/fmt/index.html#formatting-traits)).
276    Lower,
277    /// Use upper-case hexadecimal integers for the `Debug` trait (like [the `X?` type](../../std/fmt/index.html#formatting-traits)).
278    Upper,
279}
280
281/// Options for formatting.
282///
283/// `FormattingOptions` is a [`Formatter`] without an attached [`Write`] trait.
284/// It is mainly used to construct `Formatter` instances.
285#[derive(Copy, Clone, Debug, PartialEq, Eq)]
286#[unstable(feature = "formatting_options", issue = "118117")]
287pub struct FormattingOptions {
288    /// Flags, with the following bit fields:
289    ///
290    /// ```text
291    ///   31  30  29  28  27  26  25  24  23  22  21  20                              0
292    /// ┌───┬───────┬───┬───┬───┬───┬───┬───┬───┬───┬──────────────────────────────────┐
293    /// │ 0 │ align │ p │ w │ X?│ x?│'0'│ # │ - │ + │               fill               │
294    /// └───┴───────┴───┴───┴───┴───┴───┴───┴───┴───┴──────────────────────────────────┘
295    ///   │     │     │   │  └─┬───────────────────┘ └─┬──────────────────────────────┘
296    ///   │     │     │   │    │                       └─ The fill character (21 bits char).
297    ///   │     │     │   │    └─ The debug upper/lower hex, zero pad, alternate, and plus/minus flags.
298    ///   │     │     │   └─ Whether a width is set. (The value is stored separately.)
299    ///   │     │     └─ Whether a precision is set. (The value is stored separately.)
300    ///   │     ├─ 0: Align left. (<)
301    ///   │     ├─ 1: Align right. (>)
302    ///   │     ├─ 2: Align center. (^)
303    ///   │     └─ 3: Alignment not set. (default)
304    ///   └─ Always zero.
305    /// ```
306    // Note: This could use a pattern type with range 0x0000_0000..=0x7dd0ffff.
307    // It's unclear if that's useful, though.
308    flags: u32,
309    /// Width if width flag (bit 27) above is set. Otherwise, always 0.
310    width: u16,
311    /// Precision if precision flag (bit 28) above is set. Otherwise, always 0.
312    precision: u16,
313}
314
315// This needs to match with compiler/rustc_ast_lowering/src/format.rs.
316mod flags {
317    pub(super) const SIGN_PLUS_FLAG: u32 = 1 << 21;
318    pub(super) const SIGN_MINUS_FLAG: u32 = 1 << 22;
319    pub(super) const ALTERNATE_FLAG: u32 = 1 << 23;
320    pub(super) const SIGN_AWARE_ZERO_PAD_FLAG: u32 = 1 << 24;
321    pub(super) const DEBUG_LOWER_HEX_FLAG: u32 = 1 << 25;
322    pub(super) const DEBUG_UPPER_HEX_FLAG: u32 = 1 << 26;
323    pub(super) const WIDTH_FLAG: u32 = 1 << 27;
324    pub(super) const PRECISION_FLAG: u32 = 1 << 28;
325    pub(super) const ALIGN_BITS: u32 = 0b11 << 29;
326    pub(super) const ALIGN_LEFT: u32 = 0 << 29;
327    pub(super) const ALIGN_RIGHT: u32 = 1 << 29;
328    pub(super) const ALIGN_CENTER: u32 = 2 << 29;
329    pub(super) const ALIGN_UNKNOWN: u32 = 3 << 29;
330}
331
332impl FormattingOptions {
333    /// Construct a new `FormatterBuilder` with the supplied `Write` trait
334    /// object for output that is equivalent to the `{}` formatting
335    /// specifier:
336    ///
337    /// - no flags,
338    /// - filled with spaces,
339    /// - no alignment,
340    /// - no width,
341    /// - no precision, and
342    /// - no [`DebugAsHex`] output mode.
343    #[unstable(feature = "formatting_options", issue = "118117")]
344    pub const fn new() -> Self {
345        Self { flags: ' ' as u32 | flags::ALIGN_UNKNOWN, width: 0, precision: 0 }
346    }
347
348    /// Sets or removes the sign (the `+` or the `-` flag).
349    ///
350    /// - `+`: This is intended for numeric types and indicates that the sign
351    ///   should always be printed. By default only the negative sign of signed
352    ///   values is printed, and the sign of positive or unsigned values is
353    ///   omitted. This flag indicates that the correct sign (+ or -) should
354    ///   always be printed.
355    /// - `-`: Currently not used
356    #[unstable(feature = "formatting_options", issue = "118117")]
357    pub const fn sign(&mut self, sign: Option<Sign>) -> &mut Self {
358        let sign = match sign {
359            None => 0,
360            Some(Sign::Plus) => flags::SIGN_PLUS_FLAG,
361            Some(Sign::Minus) => flags::SIGN_MINUS_FLAG,
362        };
363        self.flags = self.flags & !(flags::SIGN_PLUS_FLAG | flags::SIGN_MINUS_FLAG) | sign;
364        self
365    }
366    /// Sets or unsets the `0` flag.
367    ///
368    /// This is used to indicate for integer formats that the padding to width should both be done with a 0 character as well as be sign-aware
369    #[unstable(feature = "formatting_options", issue = "118117")]
370    pub const fn sign_aware_zero_pad(&mut self, sign_aware_zero_pad: bool) -> &mut Self {
371        if sign_aware_zero_pad {
372            self.flags |= flags::SIGN_AWARE_ZERO_PAD_FLAG;
373        } else {
374            self.flags &= !flags::SIGN_AWARE_ZERO_PAD_FLAG;
375        }
376        self
377    }
378    /// Sets or unsets the `#` flag.
379    ///
380    /// This flag indicates that the "alternate" form of printing should be
381    /// used. The alternate forms are:
382    /// - [`Debug`] : pretty-print the [`Debug`] formatting (adds linebreaks and indentation)
383    /// - [`LowerHex`] as well as [`UpperHex`] - precedes the argument with a `0x`
384    /// - [`Octal`] - precedes the argument with a `0o`
385    /// - [`Binary`] - precedes the argument with a `0b`
386    #[unstable(feature = "formatting_options", issue = "118117")]
387    pub const fn alternate(&mut self, alternate: bool) -> &mut Self {
388        if alternate {
389            self.flags |= flags::ALTERNATE_FLAG;
390        } else {
391            self.flags &= !flags::ALTERNATE_FLAG;
392        }
393        self
394    }
395    /// Sets the fill character.
396    ///
397    /// The optional fill character and alignment is provided normally in
398    /// conjunction with the width parameter. This indicates that if the value
399    /// being formatted is smaller than width some extra characters will be
400    /// printed around it.
401    #[unstable(feature = "formatting_options", issue = "118117")]
402    pub const fn fill(&mut self, fill: char) -> &mut Self {
403        self.flags = self.flags & (u32::MAX << 21) | fill as u32;
404        self
405    }
406    /// Sets or removes the alignment.
407    ///
408    /// The alignment specifies how the value being formatted should be
409    /// positioned if it is smaller than the width of the formatter.
410    #[unstable(feature = "formatting_options", issue = "118117")]
411    pub const fn align(&mut self, align: Option<Alignment>) -> &mut Self {
412        let align: u32 = match align {
413            Some(Alignment::Left) => flags::ALIGN_LEFT,
414            Some(Alignment::Right) => flags::ALIGN_RIGHT,
415            Some(Alignment::Center) => flags::ALIGN_CENTER,
416            None => flags::ALIGN_UNKNOWN,
417        };
418        self.flags = self.flags & !flags::ALIGN_BITS | align;
419        self
420    }
421    /// Sets or removes the width.
422    ///
423    /// This is a parameter for the “minimum width” that the format should take
424    /// up. If the value’s string does not fill up this many characters, then
425    /// the padding specified by [`FormattingOptions::fill`]/[`FormattingOptions::align`]
426    /// will be used to take up the required space.
427    #[unstable(feature = "formatting_options", issue = "118117")]
428    pub const fn width(&mut self, width: Option<u16>) -> &mut Self {
429        if let Some(width) = width {
430            self.flags |= flags::WIDTH_FLAG;
431            self.width = width;
432        } else {
433            self.flags &= !flags::WIDTH_FLAG;
434            self.width = 0;
435        }
436        self
437    }
438    /// Sets or removes the precision.
439    ///
440    /// - For non-numeric types, this can be considered a “maximum width”. If
441    ///   the resulting string is longer than this width, then it is truncated
442    ///   down to this many characters and that truncated value is emitted with
443    ///   proper fill, alignment and width if those parameters are set.
444    /// - For integral types, this is ignored.
445    /// - For floating-point types, this indicates how many digits after the
446    /// decimal point should be printed.
447    #[unstable(feature = "formatting_options", issue = "118117")]
448    pub const fn precision(&mut self, precision: Option<u16>) -> &mut Self {
449        if let Some(precision) = precision {
450            self.flags |= flags::PRECISION_FLAG;
451            self.precision = precision;
452        } else {
453            self.flags &= !flags::PRECISION_FLAG;
454            self.precision = 0;
455        }
456        self
457    }
458    /// Specifies whether the [`Debug`] trait should use lower-/upper-case
459    /// hexadecimal or normal integers
460    #[unstable(feature = "formatting_options", issue = "118117")]
461    pub const fn debug_as_hex(&mut self, debug_as_hex: Option<DebugAsHex>) -> &mut Self {
462        let debug_as_hex = match debug_as_hex {
463            None => 0,
464            Some(DebugAsHex::Lower) => flags::DEBUG_LOWER_HEX_FLAG,
465            Some(DebugAsHex::Upper) => flags::DEBUG_UPPER_HEX_FLAG,
466        };
467        self.flags = self.flags & !(flags::DEBUG_LOWER_HEX_FLAG | flags::DEBUG_UPPER_HEX_FLAG)
468            | debug_as_hex;
469        self
470    }
471
472    /// Returns the current sign (the `+` or the `-` flag).
473    #[unstable(feature = "formatting_options", issue = "118117")]
474    pub const fn get_sign(&self) -> Option<Sign> {
475        if self.flags & flags::SIGN_PLUS_FLAG != 0 {
476            Some(Sign::Plus)
477        } else if self.flags & flags::SIGN_MINUS_FLAG != 0 {
478            Some(Sign::Minus)
479        } else {
480            None
481        }
482    }
483    /// Returns the current `0` flag.
484    #[unstable(feature = "formatting_options", issue = "118117")]
485    pub const fn get_sign_aware_zero_pad(&self) -> bool {
486        self.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
487    }
488    /// Returns the current `#` flag.
489    #[unstable(feature = "formatting_options", issue = "118117")]
490    pub const fn get_alternate(&self) -> bool {
491        self.flags & flags::ALTERNATE_FLAG != 0
492    }
493    /// Returns the current fill character.
494    #[unstable(feature = "formatting_options", issue = "118117")]
495    pub const fn get_fill(&self) -> char {
496        // SAFETY: We only ever put a valid `char` in the lower 21 bits of the flags field.
497        unsafe { char::from_u32_unchecked(self.flags & 0x1FFFFF) }
498    }
499    /// Returns the current alignment.
500    #[unstable(feature = "formatting_options", issue = "118117")]
501    pub const fn get_align(&self) -> Option<Alignment> {
502        match self.flags & flags::ALIGN_BITS {
503            flags::ALIGN_LEFT => Some(Alignment::Left),
504            flags::ALIGN_RIGHT => Some(Alignment::Right),
505            flags::ALIGN_CENTER => Some(Alignment::Center),
506            _ => None,
507        }
508    }
509    /// Returns the current width.
510    #[unstable(feature = "formatting_options", issue = "118117")]
511    pub const fn get_width(&self) -> Option<u16> {
512        if self.flags & flags::WIDTH_FLAG != 0 { Some(self.width) } else { None }
513    }
514    /// Returns the current precision.
515    #[unstable(feature = "formatting_options", issue = "118117")]
516    pub const fn get_precision(&self) -> Option<u16> {
517        if self.flags & flags::PRECISION_FLAG != 0 { Some(self.precision) } else { None }
518    }
519    /// Returns the current precision.
520    #[unstable(feature = "formatting_options", issue = "118117")]
521    pub const fn get_debug_as_hex(&self) -> Option<DebugAsHex> {
522        if self.flags & flags::DEBUG_LOWER_HEX_FLAG != 0 {
523            Some(DebugAsHex::Lower)
524        } else if self.flags & flags::DEBUG_UPPER_HEX_FLAG != 0 {
525            Some(DebugAsHex::Upper)
526        } else {
527            None
528        }
529    }
530
531    /// Creates a [`Formatter`] that writes its output to the given [`Write`] trait.
532    ///
533    /// You may alternatively use [`Formatter::new()`].
534    #[unstable(feature = "formatting_options", issue = "118117")]
535    pub const fn create_formatter<'a>(self, write: &'a mut (dyn Write + 'a)) -> Formatter<'a> {
536        Formatter { options: self, buf: write }
537    }
538}
539
540#[unstable(feature = "formatting_options", issue = "118117")]
541impl Default for FormattingOptions {
542    /// Same as [`FormattingOptions::new()`].
543    fn default() -> Self {
544        // The `#[derive(Default)]` implementation would set `fill` to `\0` instead of space.
545        Self::new()
546    }
547}
548
549/// Configuration for formatting.
550///
551/// A `Formatter` represents various options related to formatting. Users do not
552/// construct `Formatter`s directly; a mutable reference to one is passed to
553/// the `fmt` method of all formatting traits, like [`Debug`] and [`Display`].
554///
555/// To interact with a `Formatter`, you'll call various methods to change the
556/// various options related to formatting. For examples, please see the
557/// documentation of the methods defined on `Formatter` below.
558#[allow(missing_debug_implementations)]
559#[stable(feature = "rust1", since = "1.0.0")]
560#[rustc_diagnostic_item = "Formatter"]
561pub struct Formatter<'a> {
562    options: FormattingOptions,
563
564    buf: &'a mut (dyn Write + 'a),
565}
566
567impl<'a> Formatter<'a> {
568    /// Creates a new formatter with given [`FormattingOptions`].
569    ///
570    /// If `write` is a reference to a formatter, it is recommended to use
571    /// [`Formatter::with_options`] instead as this can borrow the underlying
572    /// `write`, thereby bypassing one layer of indirection.
573    ///
574    /// You may alternatively use [`FormattingOptions::create_formatter()`].
575    #[unstable(feature = "formatting_options", issue = "118117")]
576    pub const fn new(write: &'a mut (dyn Write + 'a), options: FormattingOptions) -> Self {
577        Formatter { options, buf: write }
578    }
579
580    /// Creates a new formatter based on this one with given [`FormattingOptions`].
581    #[unstable(feature = "formatting_options", issue = "118117")]
582    pub const fn with_options<'b>(&'b mut self, options: FormattingOptions) -> Formatter<'b> {
583        Formatter { options, buf: self.buf }
584    }
585}
586
587/// This structure represents a safely precompiled version of a format string
588/// and its arguments. This cannot be generated at runtime because it cannot
589/// safely be done, so no constructors are given and the fields are private
590/// to prevent modification.
591///
592/// The [`format_args!`] macro will safely create an instance of this structure.
593/// The macro validates the format string at compile-time so usage of the
594/// [`write()`] and [`format()`] functions can be safely performed.
595///
596/// You can use the `Arguments<'a>` that [`format_args!`] returns in `Debug`
597/// and `Display` contexts as seen below. The example also shows that `Debug`
598/// and `Display` format to the same thing: the interpolated format string
599/// in `format_args!`.
600///
601/// ```rust
602/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
603/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
604/// assert_eq!("1 foo 2", display);
605/// assert_eq!(display, debug);
606/// ```
607///
608/// [`format()`]: ../../std/fmt/fn.format.html
609//
610// Internal representation:
611//
612// fmt::Arguments is represented in one of two ways:
613//
614// 1) String literal representation (e.g. format_args!("hello"))
615//             ┌────────────────────────────────┐
616//   template: │           *const u8            │ ─▷ "hello"
617//             ├──────────────────────────────┬─┤
618//   args:     │             len              │1│ (lowest bit is 1; field contains `len << 1 | 1`)
619//             └──────────────────────────────┴─┘
620//   In this representation, there are no placeholders and `fmt::Arguments::as_str()` returns Some.
621//   The pointer points to the start of a static `str`. The length is given by `args as usize >> 1`.
622//   (The length of a `&str` is isize::MAX at most, so it always fits in a usize minus one bit.)
623//
624//   `fmt::Arguments::from_str()` constructs this representation from a `&'static str`.
625//
626// 2) Placeholders representation (e.g. format_args!("hello {name}\n"))
627//             ┌────────────────────────────────┐
628//   template: │           *const u8            │ ─▷ b"\x06hello \x80\x01\n\x00"
629//             ├────────────────────────────────┤
630//   args:     │     &'a [Argument<'a>; _]     0│ (lower bit is 0 due to alignment of Argument type)
631//             └────────────────────────────────┘
632//   In this representation, the template is a byte sequence encoding both the literal string pieces
633//   and the placeholders (including their options/flags).
634//
635//   The `args` pointer points to an array of `fmt::Argument<'a>` values, of sufficient length to
636//   match the placeholders in the template.
637//
638//   `fmt::Arguments::new()` constructs this representation from a template byte slice and a slice
639//   of arguments. This function is unsafe, as the template is assumed to be valid and the args
640//   slice is assumed to have elements matching the template.
641//
642//   The template byte sequence is the concatenation of parts of the following types:
643//
644//   - Literal string piece:
645//         Pieces that must be formatted verbatim (e.g. "hello " and "\n" in "hello {name}\n")
646//         appear literally in the template byte sequence, prefixed by their length.
647//
648//         For pieces of up to 127 bytes, these are  represented as a single byte containing the
649//         length followed directly by the bytes of the string:
650//         ┌───┬────────────────────────────┐
651//         │len│    `len` bytes (utf-8)     │ (e.g. b"\x06hello ")
652//         └───┴────────────────────────────┘
653//
654//         For larger pieces up to u16::MAX bytes, these are  represented as a 0x80 followed by
655//         their length in 16-bit little endian, followed by the bytes of the string:
656//         ┌────┬─────────┬───────────────────────────┐
657//         │0x80│   len   │   `len` bytes (utf-8)     │ (e.g. b"\x80\x00\x01hello … ")
658//         └────┴─────────┴───────────────────────────┘
659//
660//         Longer pieces are split into multiple pieces of max u16::MAX bytes (at utf-8 boundaries).
661//
662//   - Placeholder:
663//         Placeholders (e.g. `{name}` in "hello {name}") are represented as a byte with the highest
664//         two bits set, followed by zero or more fields depending on the flags in the first byte:
665//         ┌──────────┬┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┬┄┄┄┄┄┄┄┄┄┄┄┬┄┄┄┄┄┄┄┄┄┄┄┬┄┄┄┄┄┄┄┄┄┄┄┐
666//         │0b11______│       flags       ┊   width   ┊ precision ┊ arg_index ┊ (e.g. b"\xC2\x05\0")
667//         └────││││││┴┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┴┄┄┄┄┄┄┄┄┄┄┄┴┄┄┄┄┄┄┄┄┄┄┄┴┄┄┄┄┄┄┄┄┄┄┄┘
668//              ││││││        32 bit          16 bit      16 bit      16 bit
669//              │││││└─ flags present
670//              ││││└─ width present
671//              │││└─ precision present
672//              ││└─ arg_index present
673//              │└─ width indirect
674//              └─ precision indirect
675//
676//         All fields other than the first byte are optional and only present when their
677//         corresponding flag is set in the first byte.
678//
679//         So, a fully default placeholder without any options is just a single byte:
680//         ┌──────────┐
681//         │0b11000000│ (b"\xC0")
682//         └──────────┘
683//
684//         The fields are stored as little endian.
685//
686//         The `flags` fields corresponds to the `flags` field of `FormattingOptions`.
687//         See doc comment of `FormattingOptions::flags` for details.
688//
689//         The `width` and `precision` fields correspond to their respective fields in
690//         `FormattingOptions`. However, if their "indirect" flag is set, the field contains the
691//         index in the `args` array where the dynamic width or precision is stored, rather than the
692//         value directly.
693//
694//         The `arg_index` field is the index into the `args` array for the argument to be
695//         formatted.
696//
697//         If omitted, the flags, width and precision of the default FormattingOptions::new() are
698//         used.
699//
700//         If the `arg_index` is omitted, the next argument in the `args` array is used (starting
701//         at 0).
702//
703//   - End:
704//         A single zero byte marks the end of the template:
705//         ┌───┐
706//         │ 0 │ ("\0")
707//         └───┘
708//
709//         (Note that a zero byte may also occur naturally as part of the string pieces or flags,
710//         width, precision and arg_index fields above. That is, the template byte sequence ends
711//         with a 0 byte, but isn't terminated by the first 0 byte.)
712//
713#[lang = "format_arguments"]
714#[stable(feature = "rust1", since = "1.0.0")]
715#[derive(Copy, Clone)]
716pub struct Arguments<'a> {
717    template: NonNull<u8>,
718    args: NonNull<rt::Argument<'a>>,
719}
720
721/// Used by the format_args!() macro to create a fmt::Arguments object.
722#[doc(hidden)]
723#[rustc_diagnostic_item = "FmtArgumentsNew"]
724#[unstable(feature = "fmt_internals", issue = "none")]
725impl<'a> Arguments<'a> {
726    // SAFETY: The caller must ensure that the provided template and args encode a valid
727    // fmt::Arguments, as documented above.
728    #[inline]
729    pub unsafe fn new<const N: usize, const M: usize>(
730        template: &'a [u8; N],
731        args: &'a [rt::Argument<'a>; M],
732    ) -> Arguments<'a> {
733        // SAFETY: Responsibility of the caller.
734        unsafe { Arguments { template: mem::transmute(template), args: mem::transmute(args) } }
735    }
736
737    #[inline]
738    pub const fn from_str(s: &'static str) -> Arguments<'a> {
739        // SAFETY: This is the "static str" representation of fmt::Arguments; see above.
740        unsafe {
741            Arguments {
742                template: mem::transmute(s.as_ptr()),
743                args: mem::transmute(s.len() << 1 | 1),
744            }
745        }
746    }
747
748    // Same as `from_str`, but not const.
749    // Used by format_args!() expansion when arguments are inlined,
750    // e.g. format_args!("{}", 123), which is not allowed in const.
751    #[inline]
752    pub fn from_str_nonconst(s: &'static str) -> Arguments<'a> {
753        Arguments::from_str(s)
754    }
755}
756
757#[doc(hidden)]
758#[unstable(feature = "fmt_internals", issue = "none")]
759impl<'a> Arguments<'a> {
760    /// Estimates the length of the formatted text.
761    ///
762    /// This is intended to be used for setting initial `String` capacity
763    /// when using `format!`. Note: this is neither the lower nor upper bound.
764    #[inline]
765    pub fn estimated_capacity(&self) -> usize {
766        if let Some(s) = self.as_str() {
767            return s.len();
768        }
769        // Iterate over the template, counting the length of literal pieces.
770        let mut length = 0usize;
771        let mut starts_with_placeholder = false;
772        let mut template = self.template;
773        loop {
774            // SAFETY: We can assume the template is valid.
775            unsafe {
776                let n = template.read();
777                template = template.add(1);
778                if n == 0 {
779                    // End of template.
780                    break;
781                } else if n < 128 {
782                    // Short literal string piece.
783                    length += n as usize;
784                    template = template.add(n as usize);
785                } else if n == 128 {
786                    // Long literal string piece.
787                    let len = usize::from(u16::from_le_bytes(template.cast_array().read()));
788                    length += len;
789                    template = template.add(2 + len);
790                } else {
791                    assert_unchecked(n >= 0xC0);
792                    // Placeholder piece.
793                    if length == 0 {
794                        starts_with_placeholder = true;
795                    }
796                    // Skip remainder of placeholder:
797                    let skip = (n & 1 != 0) as usize * 4 // flags (32 bit)
798                        + (n & 2 != 0) as usize * 2  // width     (16 bit)
799                        + (n & 4 != 0) as usize * 2  // precision (16 bit)
800                        + (n & 8 != 0) as usize * 2; // arg_index (16 bit)
801                    template = template.add(skip as usize);
802                }
803            }
804        }
805
806        if starts_with_placeholder && length < 16 {
807            // If the format string starts with a placeholder,
808            // don't preallocate anything, unless length
809            // of literal pieces is significant.
810            0
811        } else {
812            // There are some placeholders, so any additional push
813            // will reallocate the string. To avoid that,
814            // we're "pre-doubling" the capacity here.
815            length.wrapping_mul(2)
816        }
817    }
818}
819
820impl<'a> Arguments<'a> {
821    /// Gets the formatted string, if it has no arguments to be formatted at runtime.
822    ///
823    /// This can be used to avoid allocations in some cases.
824    ///
825    /// # Guarantees
826    ///
827    /// For `format_args!("just a literal")`, this function is guaranteed to
828    /// return `Some("just a literal")`.
829    ///
830    /// For most cases with placeholders, this function will return `None`.
831    ///
832    /// However, the compiler may perform optimizations that can cause this
833    /// function to return `Some(_)` even if the format string contains
834    /// placeholders. For example, `format_args!("Hello, {}!", "world")` may be
835    /// optimized to `format_args!("Hello, world!")`, such that `as_str()`
836    /// returns `Some("Hello, world!")`.
837    ///
838    /// The behavior for anything but the trivial case (without placeholders)
839    /// is not guaranteed, and should not be relied upon for anything other
840    /// than optimization.
841    ///
842    /// # Examples
843    ///
844    /// ```rust
845    /// use std::fmt::Arguments;
846    ///
847    /// fn write_str(_: &str) { /* ... */ }
848    ///
849    /// fn write_fmt(args: &Arguments<'_>) {
850    ///     if let Some(s) = args.as_str() {
851    ///         write_str(s)
852    ///     } else {
853    ///         write_str(&args.to_string());
854    ///     }
855    /// }
856    /// ```
857    ///
858    /// ```rust
859    /// assert_eq!(format_args!("hello").as_str(), Some("hello"));
860    /// assert_eq!(format_args!("").as_str(), Some(""));
861    /// assert_eq!(format_args!("{:?}", std::env::current_dir()).as_str(), None);
862    /// ```
863    #[stable(feature = "fmt_as_str", since = "1.52.0")]
864    #[rustc_const_stable(feature = "const_arguments_as_str", since = "1.84.0")]
865    #[must_use]
866    #[inline]
867    pub const fn as_str(&self) -> Option<&'static str> {
868        // SAFETY: During const eval, `self.args` must have come from a usize,
869        // not a pointer, because that's the only way to create a fmt::Arguments in const.
870        // (I.e. only fmt::Arguments::from_str is const, fmt::Arguments::new is not.)
871        //
872        // Outside const eval, transmuting a pointer to a usize is fine.
873        let bits: usize = unsafe { mem::transmute(self.args) };
874        if bits & 1 == 1 {
875            // SAFETY: This fmt::Arguments stores a &'static str. See encoding documentation above.
876            Some(unsafe {
877                str::from_utf8_unchecked(crate::slice::from_raw_parts(
878                    self.template.as_ptr(),
879                    bits >> 1,
880                ))
881            })
882        } else {
883            None
884        }
885    }
886
887    /// Same as [`Arguments::as_str`], but will only return `Some(s)` if it can be determined at compile time.
888    #[unstable(feature = "fmt_internals", reason = "internal to standard library", issue = "none")]
889    #[must_use]
890    #[inline]
891    #[doc(hidden)]
892    pub fn as_statically_known_str(&self) -> Option<&'static str> {
893        let s = self.as_str();
894        if core::intrinsics::is_val_statically_known(s.is_some()) { s } else { None }
895    }
896}
897
898// Manually implementing these results in better error messages.
899#[stable(feature = "rust1", since = "1.0.0")]
900impl !Send for Arguments<'_> {}
901#[stable(feature = "rust1", since = "1.0.0")]
902impl !Sync for Arguments<'_> {}
903
904#[stable(feature = "rust1", since = "1.0.0")]
905impl Debug for Arguments<'_> {
906    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
907        Display::fmt(self, fmt)
908    }
909}
910
911#[stable(feature = "rust1", since = "1.0.0")]
912impl Display for Arguments<'_> {
913    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
914        write(fmt.buf, *self)
915    }
916}
917
918/// `?` formatting.
919///
920/// `Debug` should format the output in a programmer-facing, debugging context.
921///
922/// Generally speaking, you should just `derive` a `Debug` implementation.
923///
924/// When used with the alternate format specifier `#?`, the output is pretty-printed.
925///
926/// For more information on formatters, see [the module-level documentation][module].
927///
928/// [module]: ../../std/fmt/index.html
929///
930/// This trait can be used with `#[derive]` if all fields implement `Debug`. When
931/// `derive`d for structs, it will use the name of the `struct`, then `{`, then a
932/// comma-separated list of each field's name and `Debug` value, then `}`. For
933/// `enum`s, it will use the name of the variant and, if applicable, `(`, then the
934/// `Debug` values of the fields, then `)`.
935///
936/// # Stability
937///
938/// Derived `Debug` formats are not stable, and so may change with future Rust
939/// versions. Additionally, `Debug` implementations of types provided by the
940/// standard library (`std`, `core`, `alloc`, etc.) are not stable, and
941/// may also change with future Rust versions.
942///
943/// # Examples
944///
945/// Deriving an implementation:
946///
947/// ```
948/// #[derive(Debug)]
949/// struct Point {
950///     x: i32,
951///     y: i32,
952/// }
953///
954/// let origin = Point { x: 0, y: 0 };
955///
956/// assert_eq!(
957///     format!("The origin is: {origin:?}"),
958///     "The origin is: Point { x: 0, y: 0 }",
959/// );
960/// ```
961///
962/// Manually implementing:
963///
964/// ```
965/// use std::fmt;
966///
967/// struct Point {
968///     x: i32,
969///     y: i32,
970/// }
971///
972/// impl fmt::Debug for Point {
973///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
974///         f.debug_struct("Point")
975///          .field("x", &self.x)
976///          .field("y", &self.y)
977///          .finish()
978///     }
979/// }
980///
981/// let origin = Point { x: 0, y: 0 };
982///
983/// assert_eq!(
984///     format!("The origin is: {origin:?}"),
985///     "The origin is: Point { x: 0, y: 0 }",
986/// );
987/// ```
988///
989/// There are a number of helper methods on the [`Formatter`] struct to help you with manual
990/// implementations, such as [`debug_struct`].
991///
992/// [`debug_struct`]: Formatter::debug_struct
993///
994/// Types that do not wish to use the standard suite of debug representations
995/// provided by the `Formatter` trait (`debug_struct`, `debug_tuple`,
996/// `debug_list`, `debug_set`, `debug_map`) can do something totally custom by
997/// manually writing an arbitrary representation to the `Formatter`.
998///
999/// ```
1000/// # use std::fmt;
1001/// # struct Point {
1002/// #     x: i32,
1003/// #     y: i32,
1004/// # }
1005/// #
1006/// impl fmt::Debug for Point {
1007///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1008///         write!(f, "Point [{} {}]", self.x, self.y)
1009///     }
1010/// }
1011/// ```
1012///
1013/// `Debug` implementations using either `derive` or the debug builder API
1014/// on [`Formatter`] support pretty-printing using the alternate flag: `{:#?}`.
1015///
1016/// Pretty-printing with `#?`:
1017///
1018/// ```
1019/// #[derive(Debug)]
1020/// struct Point {
1021///     x: i32,
1022///     y: i32,
1023/// }
1024///
1025/// let origin = Point { x: 0, y: 0 };
1026///
1027/// let expected = "The origin is: Point {
1028///     x: 0,
1029///     y: 0,
1030/// }";
1031/// assert_eq!(format!("The origin is: {origin:#?}"), expected);
1032/// ```
1033#[stable(feature = "rust1", since = "1.0.0")]
1034#[rustc_on_unimplemented(
1035    on(
1036        crate_local,
1037        note = "add `#[derive(Debug)]` to `{Self}` or manually `impl {This} for {Self}`"
1038    ),
1039    on(
1040        from_desugaring = "FormatLiteral",
1041        label = "`{Self}` cannot be formatted using `{{:?}}` because it doesn't implement `{This}`"
1042    ),
1043    message = "`{Self}` doesn't implement `{This}`"
1044)]
1045#[doc(alias = "{:?}")]
1046#[rustc_diagnostic_item = "Debug"]
1047#[rustc_trivial_field_reads]
1048pub trait Debug: PointeeSized {
1049    #[doc = include_str!("fmt_trait_method_doc.md")]
1050    ///
1051    /// # Examples
1052    ///
1053    /// ```
1054    /// use std::fmt;
1055    ///
1056    /// struct Position {
1057    ///     longitude: f32,
1058    ///     latitude: f32,
1059    /// }
1060    ///
1061    /// impl fmt::Debug for Position {
1062    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1063    ///         f.debug_tuple("")
1064    ///          .field(&self.longitude)
1065    ///          .field(&self.latitude)
1066    ///          .finish()
1067    ///     }
1068    /// }
1069    ///
1070    /// let position = Position { longitude: 1.987, latitude: 2.983 };
1071    /// assert_eq!(format!("{position:?}"), "(1.987, 2.983)");
1072    ///
1073    /// assert_eq!(format!("{position:#?}"), "(
1074    ///     1.987,
1075    ///     2.983,
1076    /// )");
1077    /// ```
1078    #[stable(feature = "rust1", since = "1.0.0")]
1079    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1080}
1081
1082// Separate module to reexport the macro `Debug` from prelude without the trait `Debug`.
1083pub(crate) mod macros {
1084    /// Derive macro generating an impl of the trait `Debug`.
1085    #[rustc_builtin_macro]
1086    #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1087    #[allow_internal_unstable(core_intrinsics, fmt_helpers_for_derive)]
1088    pub macro Debug($item:item) {
1089        /* compiler built-in */
1090    }
1091}
1092#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1093#[doc(inline)]
1094pub use macros::Debug;
1095
1096/// Format trait for an empty format, `{}`.
1097///
1098/// Implementing this trait for a type will automatically implement the
1099/// [`ToString`][tostring] trait for the type, allowing the usage
1100/// of the [`.to_string()`][tostring_function] method. Prefer implementing
1101/// the `Display` trait for a type, rather than [`ToString`][tostring].
1102///
1103/// `Display` is similar to [`Debug`], but `Display` is for user-facing
1104/// output, and so cannot be derived.
1105///
1106/// For more information on formatters, see [the module-level documentation][module].
1107///
1108/// [module]: ../../std/fmt/index.html
1109/// [tostring]: ../../std/string/trait.ToString.html
1110/// [tostring_function]: ../../std/string/trait.ToString.html#tymethod.to_string
1111///
1112/// # Completeness and parseability
1113///
1114/// `Display` for a type might not necessarily be a lossless or complete representation of the type.
1115/// It may omit internal state, precision, or other information the type does not consider important
1116/// for user-facing output, as determined by the type. As such, the output of `Display` might not be
1117/// possible to parse, and even if it is, the result of parsing might not exactly match the original
1118/// value.
1119///
1120/// However, if a type has a lossless `Display` implementation whose output is meant to be
1121/// conveniently machine-parseable and not just meant for human consumption, then the type may wish
1122/// to accept the same format in `FromStr`, and document that usage. Having both `Display` and
1123/// `FromStr` implementations where the result of `Display` cannot be parsed with `FromStr` may
1124/// surprise users.
1125///
1126/// # Internationalization
1127///
1128/// Because a type can only have one `Display` implementation, it is often preferable
1129/// to only implement `Display` when there is a single most "obvious" way that
1130/// values can be formatted as text. This could mean formatting according to the
1131/// "invariant" culture and "undefined" locale, or it could mean that the type
1132/// display is designed for a specific culture/locale, such as developer logs.
1133///
1134/// If not all values have a justifiably canonical textual format or if you want
1135/// to support alternative formats not covered by the standard set of possible
1136/// [formatting traits], the most flexible approach is display adapters: methods
1137/// like [`str::escape_default`] or [`Path::display`] which create a wrapper
1138/// implementing `Display` to output the specific display format.
1139///
1140/// [formatting traits]: ../../std/fmt/index.html#formatting-traits
1141/// [`Path::display`]: ../../std/path/struct.Path.html#method.display
1142///
1143/// # Examples
1144///
1145/// Implementing `Display` on a type:
1146///
1147/// ```
1148/// use std::fmt;
1149///
1150/// struct Point {
1151///     x: i32,
1152///     y: i32,
1153/// }
1154///
1155/// impl fmt::Display for Point {
1156///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1157///         write!(f, "({}, {})", self.x, self.y)
1158///     }
1159/// }
1160///
1161/// let origin = Point { x: 0, y: 0 };
1162///
1163/// assert_eq!(format!("The origin is: {origin}"), "The origin is: (0, 0)");
1164/// ```
1165#[rustc_on_unimplemented(
1166    on(
1167        any(Self = "std::path::Path", Self = "std::path::PathBuf"),
1168        label = "`{Self}` cannot be formatted with the default formatter; call `.display()` on it",
1169        note = "call `.display()` or `.to_string_lossy()` to safely print paths, \
1170                as they may contain non-Unicode data",
1171    ),
1172    on(
1173        from_desugaring = "FormatLiteral",
1174        note = "in format strings you may be able to use `{{:?}}` (or {{:#?}} for pretty-print) instead",
1175        label = "`{Self}` cannot be formatted with the default formatter",
1176    ),
1177    message = "`{Self}` doesn't implement `{This}`"
1178)]
1179#[doc(alias = "{}")]
1180#[rustc_diagnostic_item = "Display"]
1181#[stable(feature = "rust1", since = "1.0.0")]
1182pub trait Display: PointeeSized {
1183    #[doc = include_str!("fmt_trait_method_doc.md")]
1184    ///
1185    /// # Examples
1186    ///
1187    /// ```
1188    /// use std::fmt;
1189    ///
1190    /// struct Position {
1191    ///     longitude: f32,
1192    ///     latitude: f32,
1193    /// }
1194    ///
1195    /// impl fmt::Display for Position {
1196    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1197    ///         write!(f, "({}, {})", self.longitude, self.latitude)
1198    ///     }
1199    /// }
1200    ///
1201    /// assert_eq!(
1202    ///     "(1.987, 2.983)",
1203    ///     format!("{}", Position { longitude: 1.987, latitude: 2.983, }),
1204    /// );
1205    /// ```
1206    #[stable(feature = "rust1", since = "1.0.0")]
1207    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1208}
1209
1210/// `o` formatting.
1211///
1212/// The `Octal` trait should format its output as a number in base-8.
1213///
1214/// For primitive signed integers (`i8` to `i128`, and `isize`),
1215/// negative values are formatted as the two’s complement representation.
1216///
1217/// The alternate flag, `#`, adds a `0o` in front of the output.
1218///
1219/// For more information on formatters, see [the module-level documentation][module].
1220///
1221/// [module]: ../../std/fmt/index.html
1222///
1223/// # Examples
1224///
1225/// Basic usage with `i32`:
1226///
1227/// ```
1228/// let x = 42; // 42 is '52' in octal
1229///
1230/// assert_eq!(format!("{x:o}"), "52");
1231/// assert_eq!(format!("{x:#o}"), "0o52");
1232///
1233/// assert_eq!(format!("{:o}", -16), "37777777760");
1234/// ```
1235///
1236/// Implementing `Octal` on a type:
1237///
1238/// ```
1239/// use std::fmt;
1240///
1241/// struct Length(i32);
1242///
1243/// impl fmt::Octal for Length {
1244///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1245///         let val = self.0;
1246///
1247///         fmt::Octal::fmt(&val, f) // delegate to i32's implementation
1248///     }
1249/// }
1250///
1251/// let l = Length(9);
1252///
1253/// assert_eq!(format!("l as octal is: {l:o}"), "l as octal is: 11");
1254///
1255/// assert_eq!(format!("l as octal is: {l:#06o}"), "l as octal is: 0o0011");
1256/// ```
1257#[stable(feature = "rust1", since = "1.0.0")]
1258pub trait Octal: PointeeSized {
1259    #[doc = include_str!("fmt_trait_method_doc.md")]
1260    #[stable(feature = "rust1", since = "1.0.0")]
1261    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1262}
1263
1264/// `b` formatting.
1265///
1266/// The `Binary` trait should format its output as a number in binary.
1267///
1268/// For primitive signed integers ([`i8`] to [`i128`], and [`isize`]),
1269/// negative values are formatted as the two’s complement representation.
1270///
1271/// The alternate flag, `#`, adds a `0b` in front of the output.
1272///
1273/// For more information on formatters, see [the module-level documentation][module].
1274///
1275/// [module]: ../../std/fmt/index.html
1276///
1277/// # Examples
1278///
1279/// Basic usage with [`i32`]:
1280///
1281/// ```
1282/// let x = 42; // 42 is '101010' in binary
1283///
1284/// assert_eq!(format!("{x:b}"), "101010");
1285/// assert_eq!(format!("{x:#b}"), "0b101010");
1286///
1287/// assert_eq!(format!("{:b}", -16), "11111111111111111111111111110000");
1288/// ```
1289///
1290/// Implementing `Binary` on a type:
1291///
1292/// ```
1293/// use std::fmt;
1294///
1295/// struct Length(i32);
1296///
1297/// impl fmt::Binary for Length {
1298///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1299///         let val = self.0;
1300///
1301///         fmt::Binary::fmt(&val, f) // delegate to i32's implementation
1302///     }
1303/// }
1304///
1305/// let l = Length(107);
1306///
1307/// assert_eq!(format!("l as binary is: {l:b}"), "l as binary is: 1101011");
1308///
1309/// assert_eq!(
1310///     // Note that the `0b` prefix added by `#` is included in the total width, so we
1311///     // need to add two to correctly display all 32 bits.
1312///     format!("l as binary is: {l:#034b}"),
1313///     "l as binary is: 0b00000000000000000000000001101011"
1314/// );
1315/// ```
1316#[stable(feature = "rust1", since = "1.0.0")]
1317pub trait Binary: PointeeSized {
1318    #[doc = include_str!("fmt_trait_method_doc.md")]
1319    #[stable(feature = "rust1", since = "1.0.0")]
1320    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1321}
1322
1323/// `x` formatting.
1324///
1325/// The `LowerHex` trait should format its output as a number in hexadecimal, with `a` through `f`
1326/// in lower case.
1327///
1328/// For primitive signed integers (`i8` to `i128`, and `isize`),
1329/// negative values are formatted as the two’s complement representation.
1330///
1331/// The alternate flag, `#`, adds a `0x` in front of the output.
1332///
1333/// For more information on formatters, see [the module-level documentation][module].
1334///
1335/// [module]: ../../std/fmt/index.html
1336///
1337/// # Examples
1338///
1339/// Basic usage with `i32`:
1340///
1341/// ```
1342/// let y = 42; // 42 is '2a' in hex
1343///
1344/// assert_eq!(format!("{y:x}"), "2a");
1345/// assert_eq!(format!("{y:#x}"), "0x2a");
1346///
1347/// assert_eq!(format!("{:x}", -16), "fffffff0");
1348/// ```
1349///
1350/// Implementing `LowerHex` on a type:
1351///
1352/// ```
1353/// use std::fmt;
1354///
1355/// struct Length(i32);
1356///
1357/// impl fmt::LowerHex for Length {
1358///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1359///         let val = self.0;
1360///
1361///         fmt::LowerHex::fmt(&val, f) // delegate to i32's implementation
1362///     }
1363/// }
1364///
1365/// let l = Length(9);
1366///
1367/// assert_eq!(format!("l as hex is: {l:x}"), "l as hex is: 9");
1368///
1369/// assert_eq!(format!("l as hex is: {l:#010x}"), "l as hex is: 0x00000009");
1370/// ```
1371#[stable(feature = "rust1", since = "1.0.0")]
1372pub trait LowerHex: PointeeSized {
1373    #[doc = include_str!("fmt_trait_method_doc.md")]
1374    #[stable(feature = "rust1", since = "1.0.0")]
1375    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1376}
1377
1378/// `X` formatting.
1379///
1380/// The `UpperHex` trait should format its output as a number in hexadecimal, with `A` through `F`
1381/// in upper case.
1382///
1383/// For primitive signed integers (`i8` to `i128`, and `isize`),
1384/// negative values are formatted as the two’s complement representation.
1385///
1386/// The alternate flag, `#`, adds a `0x` in front of the output.
1387///
1388/// For more information on formatters, see [the module-level documentation][module].
1389///
1390/// [module]: ../../std/fmt/index.html
1391///
1392/// # Examples
1393///
1394/// Basic usage with `i32`:
1395///
1396/// ```
1397/// let y = 42; // 42 is '2A' in hex
1398///
1399/// assert_eq!(format!("{y:X}"), "2A");
1400/// assert_eq!(format!("{y:#X}"), "0x2A");
1401///
1402/// assert_eq!(format!("{:X}", -16), "FFFFFFF0");
1403/// ```
1404///
1405/// Implementing `UpperHex` on a type:
1406///
1407/// ```
1408/// use std::fmt;
1409///
1410/// struct Length(i32);
1411///
1412/// impl fmt::UpperHex for Length {
1413///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1414///         let val = self.0;
1415///
1416///         fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
1417///     }
1418/// }
1419///
1420/// let l = Length(i32::MAX);
1421///
1422/// assert_eq!(format!("l as hex is: {l:X}"), "l as hex is: 7FFFFFFF");
1423///
1424/// assert_eq!(format!("l as hex is: {l:#010X}"), "l as hex is: 0x7FFFFFFF");
1425/// ```
1426#[stable(feature = "rust1", since = "1.0.0")]
1427pub trait UpperHex: PointeeSized {
1428    #[doc = include_str!("fmt_trait_method_doc.md")]
1429    #[stable(feature = "rust1", since = "1.0.0")]
1430    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1431}
1432
1433/// `p` formatting.
1434///
1435/// The `Pointer` trait should format its output as a memory location. This is commonly presented
1436/// as hexadecimal. For more information on formatters, see [the module-level documentation][module].
1437///
1438/// Printing of pointers is not a reliable way to discover how Rust programs are implemented.
1439/// The act of reading an address changes the program itself, and may change how the data is represented
1440/// in memory, and may affect which optimizations are applied to the code.
1441///
1442/// The printed pointer values are not guaranteed to be stable nor unique identifiers of objects.
1443/// Rust allows moving values to different memory locations, and may reuse the same memory locations
1444/// for different purposes.
1445///
1446/// There is no guarantee that the printed value can be converted back to a pointer.
1447///
1448/// [module]: ../../std/fmt/index.html
1449///
1450/// # Examples
1451///
1452/// Basic usage with `&i32`:
1453///
1454/// ```
1455/// let x = &42;
1456///
1457/// let address = format!("{x:p}"); // this produces something like '0x7f06092ac6d0'
1458/// ```
1459///
1460/// Implementing `Pointer` on a type:
1461///
1462/// ```
1463/// use std::fmt;
1464///
1465/// struct Length(i32);
1466///
1467/// impl fmt::Pointer for Length {
1468///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1469///         // use `as` to convert to a `*const T`, which implements Pointer, which we can use
1470///
1471///         let ptr = self as *const Self;
1472///         fmt::Pointer::fmt(&ptr, f)
1473///     }
1474/// }
1475///
1476/// let l = Length(42);
1477///
1478/// println!("l is in memory here: {l:p}");
1479///
1480/// let l_ptr = format!("{l:018p}");
1481/// assert_eq!(l_ptr.len(), 18);
1482/// assert_eq!(&l_ptr[..2], "0x");
1483/// ```
1484#[stable(feature = "rust1", since = "1.0.0")]
1485#[rustc_diagnostic_item = "Pointer"]
1486pub trait Pointer: PointeeSized {
1487    #[doc = include_str!("fmt_trait_method_doc.md")]
1488    #[stable(feature = "rust1", since = "1.0.0")]
1489    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1490}
1491
1492/// `e` formatting.
1493///
1494/// The `LowerExp` trait should format its output in scientific notation with a lower-case `e`.
1495///
1496/// For more information on formatters, see [the module-level documentation][module].
1497///
1498/// [module]: ../../std/fmt/index.html
1499///
1500/// # Examples
1501///
1502/// Basic usage with `f64`:
1503///
1504/// ```
1505/// let x = 42.0; // 42.0 is '4.2e1' in scientific notation
1506///
1507/// assert_eq!(format!("{x:e}"), "4.2e1");
1508/// ```
1509///
1510/// Implementing `LowerExp` on a type:
1511///
1512/// ```
1513/// use std::fmt;
1514///
1515/// struct Length(i32);
1516///
1517/// impl fmt::LowerExp for Length {
1518///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1519///         let val = f64::from(self.0);
1520///         fmt::LowerExp::fmt(&val, f) // delegate to f64's implementation
1521///     }
1522/// }
1523///
1524/// let l = Length(100);
1525///
1526/// assert_eq!(
1527///     format!("l in scientific notation is: {l:e}"),
1528///     "l in scientific notation is: 1e2"
1529/// );
1530///
1531/// assert_eq!(
1532///     format!("l in scientific notation is: {l:05e}"),
1533///     "l in scientific notation is: 001e2"
1534/// );
1535/// ```
1536#[stable(feature = "rust1", since = "1.0.0")]
1537pub trait LowerExp: PointeeSized {
1538    #[doc = include_str!("fmt_trait_method_doc.md")]
1539    #[stable(feature = "rust1", since = "1.0.0")]
1540    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1541}
1542
1543/// `E` formatting.
1544///
1545/// The `UpperExp` trait should format its output in scientific notation with an upper-case `E`.
1546///
1547/// For more information on formatters, see [the module-level documentation][module].
1548///
1549/// [module]: ../../std/fmt/index.html
1550///
1551/// # Examples
1552///
1553/// Basic usage with `f64`:
1554///
1555/// ```
1556/// let x = 42.0; // 42.0 is '4.2E1' in scientific notation
1557///
1558/// assert_eq!(format!("{x:E}"), "4.2E1");
1559/// ```
1560///
1561/// Implementing `UpperExp` on a type:
1562///
1563/// ```
1564/// use std::fmt;
1565///
1566/// struct Length(i32);
1567///
1568/// impl fmt::UpperExp for Length {
1569///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1570///         let val = f64::from(self.0);
1571///         fmt::UpperExp::fmt(&val, f) // delegate to f64's implementation
1572///     }
1573/// }
1574///
1575/// let l = Length(100);
1576///
1577/// assert_eq!(
1578///     format!("l in scientific notation is: {l:E}"),
1579///     "l in scientific notation is: 1E2"
1580/// );
1581///
1582/// assert_eq!(
1583///     format!("l in scientific notation is: {l:05E}"),
1584///     "l in scientific notation is: 001E2"
1585/// );
1586/// ```
1587#[stable(feature = "rust1", since = "1.0.0")]
1588pub trait UpperExp: PointeeSized {
1589    #[doc = include_str!("fmt_trait_method_doc.md")]
1590    #[stable(feature = "rust1", since = "1.0.0")]
1591    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1592}
1593
1594/// Takes an output stream and an `Arguments` struct that can be precompiled with
1595/// the `format_args!` macro.
1596///
1597/// The arguments will be formatted according to the specified format string
1598/// into the output stream provided.
1599///
1600/// # Examples
1601///
1602/// Basic usage:
1603///
1604/// ```
1605/// use std::fmt;
1606///
1607/// let mut output = String::new();
1608/// fmt::write(&mut output, format_args!("Hello {}!", "world"))
1609///     .expect("Error occurred while trying to write in String");
1610/// assert_eq!(output, "Hello world!");
1611/// ```
1612///
1613/// Please note that using [`write!`] might be preferable. Example:
1614///
1615/// ```
1616/// use std::fmt::Write;
1617///
1618/// let mut output = String::new();
1619/// write!(&mut output, "Hello {}!", "world")
1620///     .expect("Error occurred while trying to write in String");
1621/// assert_eq!(output, "Hello world!");
1622/// ```
1623///
1624/// [`write!`]: crate::write!
1625#[stable(feature = "rust1", since = "1.0.0")]
1626pub fn write(output: &mut dyn Write, fmt: Arguments<'_>) -> Result {
1627    if let Some(s) = fmt.as_str() {
1628        return output.write_str(s);
1629    }
1630
1631    let mut template = fmt.template;
1632    let args = fmt.args;
1633
1634    let mut arg_index = 0;
1635
1636    // See comment on `fmt::Arguments` for the details of how the template is encoded.
1637
1638    // This must match the encoding from `expand_format_args` in
1639    // compiler/rustc_ast_lowering/src/format.rs.
1640    loop {
1641        // SAFETY: We can assume the template is valid.
1642        let n = unsafe {
1643            let n = template.read();
1644            template = template.add(1);
1645            n
1646        };
1647
1648        if n == 0 {
1649            // End of template.
1650            return Ok(());
1651        } else if n < 0x80 {
1652            // Literal string piece of length `n`.
1653
1654            // SAFETY: We can assume the strings in the template are valid.
1655            let s = unsafe {
1656                let s = crate::str::from_raw_parts(template.as_ptr(), n as usize);
1657                template = template.add(n as usize);
1658                s
1659            };
1660            output.write_str(s)?;
1661        } else if n == 0x80 {
1662            // Literal string piece with a 16-bit length.
1663
1664            // SAFETY: We can assume the strings in the template are valid.
1665            let s = unsafe {
1666                let len = usize::from(u16::from_le_bytes(template.cast_array().read()));
1667                template = template.add(2);
1668                let s = crate::str::from_raw_parts(template.as_ptr(), len);
1669                template = template.add(len);
1670                s
1671            };
1672            output.write_str(s)?;
1673        } else if n == 0xC0 {
1674            // Placeholder for next argument with default options.
1675            //
1676            // Having this as a separate case improves performance for the common case.
1677
1678            // SAFETY: We can assume the template only refers to arguments that exist.
1679            unsafe {
1680                args.add(arg_index)
1681                    .as_ref()
1682                    .fmt(&mut Formatter::new(output, FormattingOptions::new()))?;
1683            }
1684            arg_index += 1;
1685        } else {
1686            // SAFETY: We can assume the template is valid.
1687            unsafe { assert_unchecked(n > 0xC0) };
1688
1689            // Placeholder with custom options.
1690
1691            let mut opt = FormattingOptions::new();
1692
1693            // SAFETY: We can assume the template is valid.
1694            unsafe {
1695                if n & 1 != 0 {
1696                    opt.flags = u32::from_le_bytes(template.cast_array().read());
1697                    template = template.add(4);
1698                }
1699                if n & 2 != 0 {
1700                    opt.width = u16::from_le_bytes(template.cast_array().read());
1701                    template = template.add(2);
1702                }
1703                if n & 4 != 0 {
1704                    opt.precision = u16::from_le_bytes(template.cast_array().read());
1705                    template = template.add(2);
1706                }
1707                if n & 8 != 0 {
1708                    arg_index = usize::from(u16::from_le_bytes(template.cast_array().read()));
1709                    template = template.add(2);
1710                }
1711            }
1712            if n & 16 != 0 {
1713                // Dynamic width from a usize argument.
1714                // SAFETY: We can assume the template only refers to arguments that exist.
1715                unsafe {
1716                    opt.width = args.add(opt.width as usize).as_ref().as_u16().unwrap_unchecked();
1717                }
1718            }
1719            if n & 32 != 0 {
1720                // Dynamic precision from a usize argument.
1721                // SAFETY: We can assume the template only refers to arguments that exist.
1722                unsafe {
1723                    opt.precision =
1724                        args.add(opt.precision as usize).as_ref().as_u16().unwrap_unchecked();
1725                }
1726            }
1727
1728            // SAFETY: We can assume the template only refers to arguments that exist.
1729            unsafe {
1730                args.add(arg_index).as_ref().fmt(&mut Formatter::new(output, opt))?;
1731            }
1732            arg_index += 1;
1733        }
1734    }
1735}
1736
1737/// Padding after the end of something. Returned by `Formatter::padding`.
1738#[must_use = "don't forget to write the post padding"]
1739pub(crate) struct PostPadding {
1740    fill: char,
1741    padding: u16,
1742}
1743
1744impl PostPadding {
1745    fn new(fill: char, padding: u16) -> PostPadding {
1746        PostPadding { fill, padding }
1747    }
1748
1749    /// Writes this post padding.
1750    pub(crate) fn write(self, f: &mut Formatter<'_>) -> Result {
1751        for _ in 0..self.padding {
1752            f.buf.write_char(self.fill)?;
1753        }
1754        Ok(())
1755    }
1756}
1757
1758impl<'a> Formatter<'a> {
1759    fn wrap_buf<'b, 'c, F>(&'b mut self, wrap: F) -> Formatter<'c>
1760    where
1761        'b: 'c,
1762        F: FnOnce(&'b mut (dyn Write + 'b)) -> &'c mut (dyn Write + 'c),
1763    {
1764        Formatter {
1765            // We want to change this
1766            buf: wrap(self.buf),
1767
1768            // And preserve these
1769            options: self.options,
1770        }
1771    }
1772
1773    // Helper methods used for padding and processing formatting arguments that
1774    // all formatting traits can use.
1775
1776    /// Performs the correct padding for an integer which has already been
1777    /// emitted into a str. The str should *not* contain the sign for the
1778    /// integer, that will be added by this method.
1779    ///
1780    /// # Arguments
1781    ///
1782    /// * is_nonnegative - whether the original integer was either positive or zero.
1783    /// * prefix - if the '#' character (Alternate) is provided, this
1784    ///   is the prefix to put in front of the number.
1785    /// * buf - the byte array that the number has been formatted into
1786    ///
1787    /// This function will correctly account for the flags provided as well as
1788    /// the minimum width. It will not take precision into account.
1789    ///
1790    /// # Examples
1791    ///
1792    /// ```
1793    /// use std::fmt;
1794    ///
1795    /// struct Foo { nb: i32 }
1796    ///
1797    /// impl Foo {
1798    ///     fn new(nb: i32) -> Foo {
1799    ///         Foo {
1800    ///             nb,
1801    ///         }
1802    ///     }
1803    /// }
1804    ///
1805    /// impl fmt::Display for Foo {
1806    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1807    ///         // We need to remove "-" from the number output.
1808    ///         let tmp = self.nb.abs().to_string();
1809    ///
1810    ///         formatter.pad_integral(self.nb >= 0, "Foo ", &tmp)
1811    ///     }
1812    /// }
1813    ///
1814    /// assert_eq!(format!("{}", Foo::new(2)), "2");
1815    /// assert_eq!(format!("{}", Foo::new(-1)), "-1");
1816    /// assert_eq!(format!("{}", Foo::new(0)), "0");
1817    /// assert_eq!(format!("{:#}", Foo::new(-1)), "-Foo 1");
1818    /// assert_eq!(format!("{:0>#8}", Foo::new(-1)), "00-Foo 1");
1819    /// ```
1820    #[stable(feature = "rust1", since = "1.0.0")]
1821    pub fn pad_integral(&mut self, is_nonnegative: bool, prefix: &str, buf: &str) -> Result {
1822        let mut width = buf.len();
1823
1824        let mut sign = None;
1825        if !is_nonnegative {
1826            sign = Some('-');
1827            width += 1;
1828        } else if self.sign_plus() {
1829            sign = Some('+');
1830            width += 1;
1831        }
1832
1833        let prefix = if self.alternate() {
1834            width += prefix.chars().count();
1835            Some(prefix)
1836        } else {
1837            None
1838        };
1839
1840        // Writes the sign if it exists, and then the prefix if it was requested
1841        #[inline(never)]
1842        fn write_prefix(f: &mut Formatter<'_>, sign: Option<char>, prefix: Option<&str>) -> Result {
1843            if let Some(c) = sign {
1844                f.buf.write_char(c)?;
1845            }
1846            if let Some(prefix) = prefix { f.buf.write_str(prefix) } else { Ok(()) }
1847        }
1848
1849        // The `width` field is more of a `min-width` parameter at this point.
1850        let min = self.options.width;
1851        if width >= usize::from(min) {
1852            // We're over the minimum width, so then we can just write the bytes.
1853            write_prefix(self, sign, prefix)?;
1854            self.buf.write_str(buf)
1855        } else if self.sign_aware_zero_pad() {
1856            // The sign and prefix goes before the padding if the fill character
1857            // is zero
1858            let old_options = self.options;
1859            self.options.fill('0').align(Some(Alignment::Right));
1860            write_prefix(self, sign, prefix)?;
1861            let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1862            self.buf.write_str(buf)?;
1863            post_padding.write(self)?;
1864            self.options = old_options;
1865            Ok(())
1866        } else {
1867            // Otherwise, the sign and prefix goes after the padding
1868            let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1869            write_prefix(self, sign, prefix)?;
1870            self.buf.write_str(buf)?;
1871            post_padding.write(self)
1872        }
1873    }
1874
1875    /// Takes a string slice and emits it to the internal buffer after applying
1876    /// the relevant formatting flags specified.
1877    ///
1878    /// The flags recognized for generic strings are:
1879    ///
1880    /// * width - the minimum width of what to emit
1881    /// * fill/align - what to emit and where to emit it if the string
1882    ///                provided needs to be padded
1883    /// * precision - the maximum length to emit, the string is truncated if it
1884    ///               is longer than this length
1885    ///
1886    /// Notably this function ignores the `flag` parameters.
1887    ///
1888    /// # Examples
1889    ///
1890    /// ```
1891    /// use std::fmt;
1892    ///
1893    /// struct Foo;
1894    ///
1895    /// impl fmt::Display for Foo {
1896    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1897    ///         formatter.pad("Foo")
1898    ///     }
1899    /// }
1900    ///
1901    /// assert_eq!(format!("{Foo:<4}"), "Foo ");
1902    /// assert_eq!(format!("{Foo:0>4}"), "0Foo");
1903    /// ```
1904    #[stable(feature = "rust1", since = "1.0.0")]
1905    pub fn pad(&mut self, s: &str) -> Result {
1906        // Make sure there's a fast path up front.
1907        if self.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
1908            return self.buf.write_str(s);
1909        }
1910
1911        // The `precision` field can be interpreted as a maximum width for the
1912        // string being formatted.
1913        let (s, char_count) = if let Some(max_char_count) = self.options.get_precision() {
1914            let mut iter = s.char_indices();
1915            let remaining = match iter.advance_by(usize::from(max_char_count)) {
1916                Ok(()) => 0,
1917                Err(remaining) => remaining.get(),
1918            };
1919            // SAFETY: The offset of `.char_indices()` is guaranteed to be
1920            // in-bounds and between character boundaries.
1921            let truncated = unsafe { s.get_unchecked(..iter.offset()) };
1922            (truncated, usize::from(max_char_count) - remaining)
1923        } else {
1924            // Use the optimized char counting algorithm for the full string.
1925            (s, s.chars().count())
1926        };
1927
1928        // The `width` field is more of a minimum width parameter at this point.
1929        if char_count < usize::from(self.options.width) {
1930            // If we're under the minimum width, then fill up the minimum width
1931            // with the specified string + some alignment.
1932            let post_padding =
1933                self.padding(self.options.width - char_count as u16, Alignment::Left)?;
1934            self.buf.write_str(s)?;
1935            post_padding.write(self)
1936        } else {
1937            // If we're over the minimum width or there is no minimum width, we
1938            // can just emit the string.
1939            self.buf.write_str(s)
1940        }
1941    }
1942
1943    /// Writes the pre-padding and returns the unwritten post-padding.
1944    ///
1945    /// Callers are responsible for ensuring post-padding is written after the
1946    /// thing that is being padded.
1947    pub(crate) fn padding(
1948        &mut self,
1949        padding: u16,
1950        default: Alignment,
1951    ) -> result::Result<PostPadding, Error> {
1952        let align = self.options.get_align().unwrap_or(default);
1953        let fill = self.options.get_fill();
1954
1955        let padding_left = match align {
1956            Alignment::Left => 0,
1957            Alignment::Right => padding,
1958            Alignment::Center => padding / 2,
1959        };
1960
1961        for _ in 0..padding_left {
1962            self.buf.write_char(fill)?;
1963        }
1964
1965        Ok(PostPadding::new(fill, padding - padding_left))
1966    }
1967
1968    /// Takes the formatted parts and applies the padding.
1969    ///
1970    /// Assumes that the caller already has rendered the parts with required precision,
1971    /// so that `self.precision` can be ignored.
1972    ///
1973    /// # Safety
1974    ///
1975    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
1976    unsafe fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
1977        if self.options.width == 0 {
1978            // this is the common case and we take a shortcut
1979            // SAFETY: Per the precondition.
1980            unsafe { self.write_formatted_parts(formatted) }
1981        } else {
1982            // for the sign-aware zero padding, we render the sign first and
1983            // behave as if we had no sign from the beginning.
1984            let mut formatted = formatted.clone();
1985            let mut width = self.options.width;
1986            let old_options = self.options;
1987            if self.sign_aware_zero_pad() {
1988                // a sign always goes first
1989                let sign = formatted.sign;
1990                self.buf.write_str(sign)?;
1991
1992                // remove the sign from the formatted parts
1993                formatted.sign = "";
1994                width = width.saturating_sub(sign.len() as u16);
1995                self.options.fill('0').align(Some(Alignment::Right));
1996            }
1997
1998            // remaining parts go through the ordinary padding process.
1999            let len = formatted.len();
2000            let ret = if usize::from(width) <= len {
2001                // no padding
2002                // SAFETY: Per the precondition.
2003                unsafe { self.write_formatted_parts(&formatted) }
2004            } else {
2005                let post_padding = self.padding(width - len as u16, Alignment::Right)?;
2006                // SAFETY: Per the precondition.
2007                unsafe {
2008                    self.write_formatted_parts(&formatted)?;
2009                }
2010                post_padding.write(self)
2011            };
2012            self.options = old_options;
2013            ret
2014        }
2015    }
2016
2017    /// # Safety
2018    ///
2019    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
2020    unsafe fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
2021        unsafe fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
2022            // SAFETY: This is used for `numfmt::Part::Num` and `numfmt::Part::Copy`.
2023            // It's safe to use for `numfmt::Part::Num` since every char `c` is between
2024            // `b'0'` and `b'9'`, which means `s` is valid UTF-8. It's safe to use for
2025            // `numfmt::Part::Copy` due to this function's precondition.
2026            buf.write_str(unsafe { str::from_utf8_unchecked(s) })
2027        }
2028
2029        if !formatted.sign.is_empty() {
2030            self.buf.write_str(formatted.sign)?;
2031        }
2032        for part in formatted.parts {
2033            match *part {
2034                numfmt::Part::Zero(mut nzeroes) => {
2035                    const ZEROES: &str = // 64 zeroes
2036                        "0000000000000000000000000000000000000000000000000000000000000000";
2037                    while nzeroes > ZEROES.len() {
2038                        self.buf.write_str(ZEROES)?;
2039                        nzeroes -= ZEROES.len();
2040                    }
2041                    if nzeroes > 0 {
2042                        self.buf.write_str(&ZEROES[..nzeroes])?;
2043                    }
2044                }
2045                numfmt::Part::Num(mut v) => {
2046                    let mut s = [0; 5];
2047                    let len = part.len();
2048                    for c in s[..len].iter_mut().rev() {
2049                        *c = b'0' + (v % 10) as u8;
2050                        v /= 10;
2051                    }
2052                    // SAFETY: Per the precondition.
2053                    unsafe {
2054                        write_bytes(self.buf, &s[..len])?;
2055                    }
2056                }
2057                // SAFETY: Per the precondition.
2058                numfmt::Part::Copy(buf) => unsafe {
2059                    write_bytes(self.buf, buf)?;
2060                },
2061            }
2062        }
2063        Ok(())
2064    }
2065
2066    /// Writes some data to the underlying buffer contained within this
2067    /// formatter.
2068    ///
2069    /// # Examples
2070    ///
2071    /// ```
2072    /// use std::fmt;
2073    ///
2074    /// struct Foo;
2075    ///
2076    /// impl fmt::Display for Foo {
2077    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2078    ///         formatter.write_str("Foo")
2079    ///         // This is equivalent to:
2080    ///         // write!(formatter, "Foo")
2081    ///     }
2082    /// }
2083    ///
2084    /// assert_eq!(format!("{Foo}"), "Foo");
2085    /// assert_eq!(format!("{Foo:0>8}"), "Foo");
2086    /// ```
2087    #[stable(feature = "rust1", since = "1.0.0")]
2088    pub fn write_str(&mut self, data: &str) -> Result {
2089        self.buf.write_str(data)
2090    }
2091
2092    /// Glue for usage of the [`write!`] macro with implementors of this trait.
2093    ///
2094    /// This method should generally not be invoked manually, but rather through
2095    /// the [`write!`] macro itself.
2096    ///
2097    /// Writes some formatted information into this instance.
2098    ///
2099    /// # Examples
2100    ///
2101    /// ```
2102    /// use std::fmt;
2103    ///
2104    /// struct Foo(i32);
2105    ///
2106    /// impl fmt::Display for Foo {
2107    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2108    ///         formatter.write_fmt(format_args!("Foo {}", self.0))
2109    ///     }
2110    /// }
2111    ///
2112    /// assert_eq!(format!("{}", Foo(-1)), "Foo -1");
2113    /// assert_eq!(format!("{:0>8}", Foo(2)), "Foo 2");
2114    /// ```
2115    #[stable(feature = "rust1", since = "1.0.0")]
2116    #[inline]
2117    pub fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result {
2118        if let Some(s) = fmt.as_statically_known_str() {
2119            self.buf.write_str(s)
2120        } else {
2121            write(self.buf, fmt)
2122        }
2123    }
2124
2125    /// Returns flags for formatting.
2126    #[must_use]
2127    #[stable(feature = "rust1", since = "1.0.0")]
2128    #[deprecated(
2129        since = "1.24.0",
2130        note = "use the `sign_plus`, `sign_minus`, `alternate`, \
2131                or `sign_aware_zero_pad` methods instead"
2132    )]
2133    pub fn flags(&self) -> u32 {
2134        // Extract the debug upper/lower hex, zero pad, alternate, and plus/minus flags
2135        // to stay compatible with older versions of Rust.
2136        self.options.flags >> 21 & 0x3F
2137    }
2138
2139    /// Returns the character used as 'fill' whenever there is alignment.
2140    ///
2141    /// # Examples
2142    ///
2143    /// ```
2144    /// use std::fmt;
2145    ///
2146    /// struct Foo;
2147    ///
2148    /// impl fmt::Display for Foo {
2149    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2150    ///         let c = formatter.fill();
2151    ///         if let Some(width) = formatter.width() {
2152    ///             for _ in 0..width {
2153    ///                 write!(formatter, "{c}")?;
2154    ///             }
2155    ///             Ok(())
2156    ///         } else {
2157    ///             write!(formatter, "{c}")
2158    ///         }
2159    ///     }
2160    /// }
2161    ///
2162    /// // We set alignment to the right with ">".
2163    /// assert_eq!(format!("{Foo:G>3}"), "GGG");
2164    /// assert_eq!(format!("{Foo:t>6}"), "tttttt");
2165    /// ```
2166    #[must_use]
2167    #[stable(feature = "fmt_flags", since = "1.5.0")]
2168    pub fn fill(&self) -> char {
2169        self.options.get_fill()
2170    }
2171
2172    /// Returns a flag indicating what form of alignment was requested.
2173    ///
2174    /// # Examples
2175    ///
2176    /// ```
2177    /// use std::fmt::{self, Alignment};
2178    ///
2179    /// struct Foo;
2180    ///
2181    /// impl fmt::Display for Foo {
2182    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2183    ///         let s = if let Some(s) = formatter.align() {
2184    ///             match s {
2185    ///                 Alignment::Left    => "left",
2186    ///                 Alignment::Right   => "right",
2187    ///                 Alignment::Center  => "center",
2188    ///             }
2189    ///         } else {
2190    ///             "into the void"
2191    ///         };
2192    ///         write!(formatter, "{s}")
2193    ///     }
2194    /// }
2195    ///
2196    /// assert_eq!(format!("{Foo:<}"), "left");
2197    /// assert_eq!(format!("{Foo:>}"), "right");
2198    /// assert_eq!(format!("{Foo:^}"), "center");
2199    /// assert_eq!(format!("{Foo}"), "into the void");
2200    /// ```
2201    #[must_use]
2202    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
2203    pub fn align(&self) -> Option<Alignment> {
2204        self.options.get_align()
2205    }
2206
2207    /// Returns the optionally specified integer width that the output should be.
2208    ///
2209    /// # Examples
2210    ///
2211    /// ```
2212    /// use std::fmt;
2213    ///
2214    /// struct Foo(i32);
2215    ///
2216    /// impl fmt::Display for Foo {
2217    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2218    ///         if let Some(width) = formatter.width() {
2219    ///             // If we received a width, we use it
2220    ///             write!(formatter, "{:width$}", format!("Foo({})", self.0), width = width)
2221    ///         } else {
2222    ///             // Otherwise we do nothing special
2223    ///             write!(formatter, "Foo({})", self.0)
2224    ///         }
2225    ///     }
2226    /// }
2227    ///
2228    /// assert_eq!(format!("{:10}", Foo(23)), "Foo(23)   ");
2229    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2230    /// ```
2231    #[must_use]
2232    #[stable(feature = "fmt_flags", since = "1.5.0")]
2233    pub fn width(&self) -> Option<usize> {
2234        if self.options.flags & flags::WIDTH_FLAG == 0 {
2235            None
2236        } else {
2237            Some(self.options.width as usize)
2238        }
2239    }
2240
2241    /// Returns the optionally specified precision for numeric types.
2242    /// Alternatively, the maximum width for string types.
2243    ///
2244    /// # Examples
2245    ///
2246    /// ```
2247    /// use std::fmt;
2248    ///
2249    /// struct Foo(f32);
2250    ///
2251    /// impl fmt::Display for Foo {
2252    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2253    ///         if let Some(precision) = formatter.precision() {
2254    ///             // If we received a precision, we use it.
2255    ///             write!(formatter, "Foo({1:.*})", precision, self.0)
2256    ///         } else {
2257    ///             // Otherwise we default to 2.
2258    ///             write!(formatter, "Foo({:.2})", self.0)
2259    ///         }
2260    ///     }
2261    /// }
2262    ///
2263    /// assert_eq!(format!("{:.4}", Foo(23.2)), "Foo(23.2000)");
2264    /// assert_eq!(format!("{}", Foo(23.2)), "Foo(23.20)");
2265    /// ```
2266    #[must_use]
2267    #[stable(feature = "fmt_flags", since = "1.5.0")]
2268    pub fn precision(&self) -> Option<usize> {
2269        if self.options.flags & flags::PRECISION_FLAG == 0 {
2270            None
2271        } else {
2272            Some(self.options.precision as usize)
2273        }
2274    }
2275
2276    /// Determines if the `+` flag was specified.
2277    ///
2278    /// # Examples
2279    ///
2280    /// ```
2281    /// use std::fmt;
2282    ///
2283    /// struct Foo(i32);
2284    ///
2285    /// impl fmt::Display for Foo {
2286    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2287    ///         if formatter.sign_plus() {
2288    ///             write!(formatter,
2289    ///                    "Foo({}{})",
2290    ///                    if self.0 < 0 { '-' } else { '+' },
2291    ///                    self.0.abs())
2292    ///         } else {
2293    ///             write!(formatter, "Foo({})", self.0)
2294    ///         }
2295    ///     }
2296    /// }
2297    ///
2298    /// assert_eq!(format!("{:+}", Foo(23)), "Foo(+23)");
2299    /// assert_eq!(format!("{:+}", Foo(-23)), "Foo(-23)");
2300    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2301    /// ```
2302    #[must_use]
2303    #[stable(feature = "fmt_flags", since = "1.5.0")]
2304    pub fn sign_plus(&self) -> bool {
2305        self.options.flags & flags::SIGN_PLUS_FLAG != 0
2306    }
2307
2308    /// Determines if the `-` flag was specified.
2309    ///
2310    /// # Examples
2311    ///
2312    /// ```
2313    /// use std::fmt;
2314    ///
2315    /// struct Foo(i32);
2316    ///
2317    /// impl fmt::Display for Foo {
2318    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2319    ///         if formatter.sign_minus() {
2320    ///             // You want a minus sign? Have one!
2321    ///             write!(formatter, "-Foo({})", self.0)
2322    ///         } else {
2323    ///             write!(formatter, "Foo({})", self.0)
2324    ///         }
2325    ///     }
2326    /// }
2327    ///
2328    /// assert_eq!(format!("{:-}", Foo(23)), "-Foo(23)");
2329    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2330    /// ```
2331    #[must_use]
2332    #[stable(feature = "fmt_flags", since = "1.5.0")]
2333    pub fn sign_minus(&self) -> bool {
2334        self.options.flags & flags::SIGN_MINUS_FLAG != 0
2335    }
2336
2337    /// Determines if the `#` flag was specified.
2338    ///
2339    /// # Examples
2340    ///
2341    /// ```
2342    /// use std::fmt;
2343    ///
2344    /// struct Foo(i32);
2345    ///
2346    /// impl fmt::Display for Foo {
2347    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2348    ///         if formatter.alternate() {
2349    ///             write!(formatter, "Foo({})", self.0)
2350    ///         } else {
2351    ///             write!(formatter, "{}", self.0)
2352    ///         }
2353    ///     }
2354    /// }
2355    ///
2356    /// assert_eq!(format!("{:#}", Foo(23)), "Foo(23)");
2357    /// assert_eq!(format!("{}", Foo(23)), "23");
2358    /// ```
2359    #[must_use]
2360    #[stable(feature = "fmt_flags", since = "1.5.0")]
2361    pub fn alternate(&self) -> bool {
2362        self.options.flags & flags::ALTERNATE_FLAG != 0
2363    }
2364
2365    /// Determines if the `0` flag was specified.
2366    ///
2367    /// # Examples
2368    ///
2369    /// ```
2370    /// use std::fmt;
2371    ///
2372    /// struct Foo(i32);
2373    ///
2374    /// impl fmt::Display for Foo {
2375    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2376    ///         assert!(formatter.sign_aware_zero_pad());
2377    ///         assert_eq!(formatter.width(), Some(4));
2378    ///         // We ignore the formatter's options.
2379    ///         write!(formatter, "{}", self.0)
2380    ///     }
2381    /// }
2382    ///
2383    /// assert_eq!(format!("{:04}", Foo(23)), "23");
2384    /// ```
2385    #[must_use]
2386    #[stable(feature = "fmt_flags", since = "1.5.0")]
2387    pub fn sign_aware_zero_pad(&self) -> bool {
2388        self.options.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
2389    }
2390
2391    // FIXME: Decide what public API we want for these two flags.
2392    // https://github.com/rust-lang/rust/issues/48584
2393    fn debug_lower_hex(&self) -> bool {
2394        self.options.flags & flags::DEBUG_LOWER_HEX_FLAG != 0
2395    }
2396    fn debug_upper_hex(&self) -> bool {
2397        self.options.flags & flags::DEBUG_UPPER_HEX_FLAG != 0
2398    }
2399
2400    /// Creates a [`DebugStruct`] builder designed to assist with creation of
2401    /// [`fmt::Debug`] implementations for structs.
2402    ///
2403    /// [`fmt::Debug`]: self::Debug
2404    ///
2405    /// # Examples
2406    ///
2407    /// ```rust
2408    /// use std::fmt;
2409    /// use std::net::Ipv4Addr;
2410    ///
2411    /// struct Foo {
2412    ///     bar: i32,
2413    ///     baz: String,
2414    ///     addr: Ipv4Addr,
2415    /// }
2416    ///
2417    /// impl fmt::Debug for Foo {
2418    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2419    ///         fmt.debug_struct("Foo")
2420    ///             .field("bar", &self.bar)
2421    ///             .field("baz", &self.baz)
2422    ///             .field("addr", &format_args!("{}", self.addr))
2423    ///             .finish()
2424    ///     }
2425    /// }
2426    ///
2427    /// assert_eq!(
2428    ///     "Foo { bar: 10, baz: \"Hello World\", addr: 127.0.0.1 }",
2429    ///     format!("{:?}", Foo {
2430    ///         bar: 10,
2431    ///         baz: "Hello World".to_string(),
2432    ///         addr: Ipv4Addr::new(127, 0, 0, 1),
2433    ///     })
2434    /// );
2435    /// ```
2436    #[stable(feature = "debug_builders", since = "1.2.0")]
2437    pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
2438        builders::debug_struct_new(self, name)
2439    }
2440
2441    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2442    /// binaries. `debug_struct_fields_finish` is more general, but this is
2443    /// faster for 1 field.
2444    #[doc(hidden)]
2445    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2446    pub fn debug_struct_field1_finish<'b>(
2447        &'b mut self,
2448        name: &str,
2449        name1: &str,
2450        value1: &dyn Debug,
2451    ) -> Result {
2452        let mut builder = builders::debug_struct_new(self, name);
2453        builder.field(name1, value1);
2454        builder.finish()
2455    }
2456
2457    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2458    /// binaries. `debug_struct_fields_finish` is more general, but this is
2459    /// faster for 2 fields.
2460    #[doc(hidden)]
2461    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2462    pub fn debug_struct_field2_finish<'b>(
2463        &'b mut self,
2464        name: &str,
2465        name1: &str,
2466        value1: &dyn Debug,
2467        name2: &str,
2468        value2: &dyn Debug,
2469    ) -> Result {
2470        let mut builder = builders::debug_struct_new(self, name);
2471        builder.field(name1, value1);
2472        builder.field(name2, value2);
2473        builder.finish()
2474    }
2475
2476    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2477    /// binaries. `debug_struct_fields_finish` is more general, but this is
2478    /// faster for 3 fields.
2479    #[doc(hidden)]
2480    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2481    pub fn debug_struct_field3_finish<'b>(
2482        &'b mut self,
2483        name: &str,
2484        name1: &str,
2485        value1: &dyn Debug,
2486        name2: &str,
2487        value2: &dyn Debug,
2488        name3: &str,
2489        value3: &dyn Debug,
2490    ) -> Result {
2491        let mut builder = builders::debug_struct_new(self, name);
2492        builder.field(name1, value1);
2493        builder.field(name2, value2);
2494        builder.field(name3, value3);
2495        builder.finish()
2496    }
2497
2498    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2499    /// binaries. `debug_struct_fields_finish` is more general, but this is
2500    /// faster for 4 fields.
2501    #[doc(hidden)]
2502    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2503    pub fn debug_struct_field4_finish<'b>(
2504        &'b mut self,
2505        name: &str,
2506        name1: &str,
2507        value1: &dyn Debug,
2508        name2: &str,
2509        value2: &dyn Debug,
2510        name3: &str,
2511        value3: &dyn Debug,
2512        name4: &str,
2513        value4: &dyn Debug,
2514    ) -> Result {
2515        let mut builder = builders::debug_struct_new(self, name);
2516        builder.field(name1, value1);
2517        builder.field(name2, value2);
2518        builder.field(name3, value3);
2519        builder.field(name4, value4);
2520        builder.finish()
2521    }
2522
2523    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2524    /// binaries. `debug_struct_fields_finish` is more general, but this is
2525    /// faster for 5 fields.
2526    #[doc(hidden)]
2527    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2528    pub fn debug_struct_field5_finish<'b>(
2529        &'b mut self,
2530        name: &str,
2531        name1: &str,
2532        value1: &dyn Debug,
2533        name2: &str,
2534        value2: &dyn Debug,
2535        name3: &str,
2536        value3: &dyn Debug,
2537        name4: &str,
2538        value4: &dyn Debug,
2539        name5: &str,
2540        value5: &dyn Debug,
2541    ) -> Result {
2542        let mut builder = builders::debug_struct_new(self, name);
2543        builder.field(name1, value1);
2544        builder.field(name2, value2);
2545        builder.field(name3, value3);
2546        builder.field(name4, value4);
2547        builder.field(name5, value5);
2548        builder.finish()
2549    }
2550
2551    /// Shrinks `derive(Debug)` code, for faster compilation and smaller binaries.
2552    /// For the cases not covered by `debug_struct_field[12345]_finish`.
2553    #[doc(hidden)]
2554    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2555    pub fn debug_struct_fields_finish<'b>(
2556        &'b mut self,
2557        name: &str,
2558        names: &[&str],
2559        values: &[&dyn Debug],
2560    ) -> Result {
2561        assert_eq!(names.len(), values.len());
2562        let mut builder = builders::debug_struct_new(self, name);
2563        for (name, value) in iter::zip(names, values) {
2564            builder.field(name, value);
2565        }
2566        builder.finish()
2567    }
2568
2569    /// Creates a `DebugTuple` builder designed to assist with creation of
2570    /// `fmt::Debug` implementations for tuple structs.
2571    ///
2572    /// # Examples
2573    ///
2574    /// ```rust
2575    /// use std::fmt;
2576    /// use std::marker::PhantomData;
2577    ///
2578    /// struct Foo<T>(i32, String, PhantomData<T>);
2579    ///
2580    /// impl<T> fmt::Debug for Foo<T> {
2581    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2582    ///         fmt.debug_tuple("Foo")
2583    ///             .field(&self.0)
2584    ///             .field(&self.1)
2585    ///             .field(&format_args!("_"))
2586    ///             .finish()
2587    ///     }
2588    /// }
2589    ///
2590    /// assert_eq!(
2591    ///     "Foo(10, \"Hello\", _)",
2592    ///     format!("{:?}", Foo(10, "Hello".to_string(), PhantomData::<u8>))
2593    /// );
2594    /// ```
2595    #[stable(feature = "debug_builders", since = "1.2.0")]
2596    pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
2597        builders::debug_tuple_new(self, name)
2598    }
2599
2600    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2601    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2602    /// for 1 field.
2603    #[doc(hidden)]
2604    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2605    pub fn debug_tuple_field1_finish<'b>(&'b mut self, name: &str, value1: &dyn Debug) -> Result {
2606        let mut builder = builders::debug_tuple_new(self, name);
2607        builder.field(value1);
2608        builder.finish()
2609    }
2610
2611    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2612    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2613    /// for 2 fields.
2614    #[doc(hidden)]
2615    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2616    pub fn debug_tuple_field2_finish<'b>(
2617        &'b mut self,
2618        name: &str,
2619        value1: &dyn Debug,
2620        value2: &dyn Debug,
2621    ) -> Result {
2622        let mut builder = builders::debug_tuple_new(self, name);
2623        builder.field(value1);
2624        builder.field(value2);
2625        builder.finish()
2626    }
2627
2628    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2629    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2630    /// for 3 fields.
2631    #[doc(hidden)]
2632    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2633    pub fn debug_tuple_field3_finish<'b>(
2634        &'b mut self,
2635        name: &str,
2636        value1: &dyn Debug,
2637        value2: &dyn Debug,
2638        value3: &dyn Debug,
2639    ) -> Result {
2640        let mut builder = builders::debug_tuple_new(self, name);
2641        builder.field(value1);
2642        builder.field(value2);
2643        builder.field(value3);
2644        builder.finish()
2645    }
2646
2647    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2648    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2649    /// for 4 fields.
2650    #[doc(hidden)]
2651    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2652    pub fn debug_tuple_field4_finish<'b>(
2653        &'b mut self,
2654        name: &str,
2655        value1: &dyn Debug,
2656        value2: &dyn Debug,
2657        value3: &dyn Debug,
2658        value4: &dyn Debug,
2659    ) -> Result {
2660        let mut builder = builders::debug_tuple_new(self, name);
2661        builder.field(value1);
2662        builder.field(value2);
2663        builder.field(value3);
2664        builder.field(value4);
2665        builder.finish()
2666    }
2667
2668    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2669    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2670    /// for 5 fields.
2671    #[doc(hidden)]
2672    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2673    pub fn debug_tuple_field5_finish<'b>(
2674        &'b mut self,
2675        name: &str,
2676        value1: &dyn Debug,
2677        value2: &dyn Debug,
2678        value3: &dyn Debug,
2679        value4: &dyn Debug,
2680        value5: &dyn Debug,
2681    ) -> Result {
2682        let mut builder = builders::debug_tuple_new(self, name);
2683        builder.field(value1);
2684        builder.field(value2);
2685        builder.field(value3);
2686        builder.field(value4);
2687        builder.field(value5);
2688        builder.finish()
2689    }
2690
2691    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2692    /// binaries. For the cases not covered by `debug_tuple_field[12345]_finish`.
2693    #[doc(hidden)]
2694    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2695    pub fn debug_tuple_fields_finish<'b>(
2696        &'b mut self,
2697        name: &str,
2698        values: &[&dyn Debug],
2699    ) -> Result {
2700        let mut builder = builders::debug_tuple_new(self, name);
2701        for value in values {
2702            builder.field(value);
2703        }
2704        builder.finish()
2705    }
2706
2707    /// Creates a `DebugList` builder designed to assist with creation of
2708    /// `fmt::Debug` implementations for list-like structures.
2709    ///
2710    /// # Examples
2711    ///
2712    /// ```rust
2713    /// use std::fmt;
2714    ///
2715    /// struct Foo(Vec<i32>);
2716    ///
2717    /// impl fmt::Debug for Foo {
2718    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2719    ///         fmt.debug_list().entries(self.0.iter()).finish()
2720    ///     }
2721    /// }
2722    ///
2723    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "[10, 11]");
2724    /// ```
2725    #[stable(feature = "debug_builders", since = "1.2.0")]
2726    pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
2727        builders::debug_list_new(self)
2728    }
2729
2730    /// Creates a `DebugSet` builder designed to assist with creation of
2731    /// `fmt::Debug` implementations for set-like structures.
2732    ///
2733    /// # Examples
2734    ///
2735    /// ```rust
2736    /// use std::fmt;
2737    ///
2738    /// struct Foo(Vec<i32>);
2739    ///
2740    /// impl fmt::Debug for Foo {
2741    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2742    ///         fmt.debug_set().entries(self.0.iter()).finish()
2743    ///     }
2744    /// }
2745    ///
2746    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "{10, 11}");
2747    /// ```
2748    ///
2749    /// [`format_args!`]: crate::format_args
2750    ///
2751    /// In this more complex example, we use [`format_args!`] and `.debug_set()`
2752    /// to build a list of match arms:
2753    ///
2754    /// ```rust
2755    /// use std::fmt;
2756    ///
2757    /// struct Arm<'a, L, R>(&'a (L, R));
2758    /// struct Table<'a, K, V>(&'a [(K, V)], V);
2759    ///
2760    /// impl<'a, L, R> fmt::Debug for Arm<'a, L, R>
2761    /// where
2762    ///     L: 'a + fmt::Debug, R: 'a + fmt::Debug
2763    /// {
2764    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2765    ///         L::fmt(&(self.0).0, fmt)?;
2766    ///         fmt.write_str(" => ")?;
2767    ///         R::fmt(&(self.0).1, fmt)
2768    ///     }
2769    /// }
2770    ///
2771    /// impl<'a, K, V> fmt::Debug for Table<'a, K, V>
2772    /// where
2773    ///     K: 'a + fmt::Debug, V: 'a + fmt::Debug
2774    /// {
2775    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2776    ///         fmt.debug_set()
2777    ///         .entries(self.0.iter().map(Arm))
2778    ///         .entry(&Arm(&(format_args!("_"), &self.1)))
2779    ///         .finish()
2780    ///     }
2781    /// }
2782    /// ```
2783    #[stable(feature = "debug_builders", since = "1.2.0")]
2784    pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
2785        builders::debug_set_new(self)
2786    }
2787
2788    /// Creates a `DebugMap` builder designed to assist with creation of
2789    /// `fmt::Debug` implementations for map-like structures.
2790    ///
2791    /// # Examples
2792    ///
2793    /// ```rust
2794    /// use std::fmt;
2795    ///
2796    /// struct Foo(Vec<(String, i32)>);
2797    ///
2798    /// impl fmt::Debug for Foo {
2799    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2800    ///         fmt.debug_map().entries(self.0.iter().map(|&(ref k, ref v)| (k, v))).finish()
2801    ///     }
2802    /// }
2803    ///
2804    /// assert_eq!(
2805    ///     format!("{:?}",  Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)])),
2806    ///     r#"{"A": 10, "B": 11}"#
2807    ///  );
2808    /// ```
2809    #[stable(feature = "debug_builders", since = "1.2.0")]
2810    pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
2811        builders::debug_map_new(self)
2812    }
2813
2814    /// Returns the sign of this formatter (`+` or `-`).
2815    #[unstable(feature = "formatting_options", issue = "118117")]
2816    pub const fn sign(&self) -> Option<Sign> {
2817        self.options.get_sign()
2818    }
2819
2820    /// Returns the formatting options this formatter corresponds to.
2821    #[unstable(feature = "formatting_options", issue = "118117")]
2822    pub const fn options(&self) -> FormattingOptions {
2823        self.options
2824    }
2825}
2826
2827#[stable(since = "1.2.0", feature = "formatter_write")]
2828impl Write for Formatter<'_> {
2829    fn write_str(&mut self, s: &str) -> Result {
2830        self.buf.write_str(s)
2831    }
2832
2833    fn write_char(&mut self, c: char) -> Result {
2834        self.buf.write_char(c)
2835    }
2836
2837    #[inline]
2838    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
2839        if let Some(s) = args.as_statically_known_str() {
2840            self.buf.write_str(s)
2841        } else {
2842            write(self.buf, args)
2843        }
2844    }
2845}
2846
2847#[stable(feature = "rust1", since = "1.0.0")]
2848impl Display for Error {
2849    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2850        Display::fmt("an error occurred when formatting an argument", f)
2851    }
2852}
2853
2854// Implementations of the core formatting traits
2855
2856macro_rules! fmt_refs {
2857    ($($tr:ident),*) => {
2858        $(
2859        #[stable(feature = "rust1", since = "1.0.0")]
2860        impl<T: PointeeSized + $tr> $tr for &T {
2861            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2862        }
2863        #[stable(feature = "rust1", since = "1.0.0")]
2864        impl<T: PointeeSized + $tr> $tr for &mut T {
2865            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2866        }
2867        )*
2868    }
2869}
2870
2871fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }
2872
2873#[unstable(feature = "never_type", issue = "35121")]
2874impl Debug for ! {
2875    #[inline]
2876    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2877        *self
2878    }
2879}
2880
2881#[unstable(feature = "never_type", issue = "35121")]
2882impl Display for ! {
2883    #[inline]
2884    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2885        *self
2886    }
2887}
2888
2889#[stable(feature = "rust1", since = "1.0.0")]
2890impl Debug for bool {
2891    #[inline]
2892    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2893        Display::fmt(self, f)
2894    }
2895}
2896
2897#[stable(feature = "rust1", since = "1.0.0")]
2898impl Display for bool {
2899    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2900        Display::fmt(if *self { "true" } else { "false" }, f)
2901    }
2902}
2903
2904#[stable(feature = "rust1", since = "1.0.0")]
2905impl Debug for str {
2906    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2907        f.write_char('"')?;
2908
2909        // substring we know is printable
2910        let mut printable_range = 0..0;
2911
2912        fn needs_escape(b: u8) -> bool {
2913            b > 0x7E || b < 0x20 || b == b'\\' || b == b'"'
2914        }
2915
2916        // the loop here first skips over runs of printable ASCII as a fast path.
2917        // other chars (unicode, or ASCII that needs escaping) are then handled per-`char`.
2918        let mut rest = self;
2919        while rest.len() > 0 {
2920            let Some(non_printable_start) = rest.as_bytes().iter().position(|&b| needs_escape(b))
2921            else {
2922                printable_range.end += rest.len();
2923                break;
2924            };
2925
2926            printable_range.end += non_printable_start;
2927            // SAFETY: the position was derived from an iterator, so is known to be within bounds, and at a char boundary
2928            rest = unsafe { rest.get_unchecked(non_printable_start..) };
2929
2930            let mut chars = rest.chars();
2931            if let Some(c) = chars.next() {
2932                let esc = c.escape_debug_ext(EscapeDebugExtArgs {
2933                    escape_grapheme_extended: true,
2934                    escape_single_quote: false,
2935                    escape_double_quote: true,
2936                });
2937                if esc.len() != 1 {
2938                    f.write_str(&self[printable_range.clone()])?;
2939                    Display::fmt(&esc, f)?;
2940                    printable_range.start = printable_range.end + c.len_utf8();
2941                }
2942                printable_range.end += c.len_utf8();
2943            }
2944            rest = chars.as_str();
2945        }
2946
2947        f.write_str(&self[printable_range])?;
2948
2949        f.write_char('"')
2950    }
2951}
2952
2953#[stable(feature = "rust1", since = "1.0.0")]
2954impl Display for str {
2955    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2956        f.pad(self)
2957    }
2958}
2959
2960#[stable(feature = "rust1", since = "1.0.0")]
2961impl Debug for char {
2962    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2963        f.write_char('\'')?;
2964        let esc = self.escape_debug_ext(EscapeDebugExtArgs {
2965            escape_grapheme_extended: true,
2966            escape_single_quote: true,
2967            escape_double_quote: false,
2968        });
2969        Display::fmt(&esc, f)?;
2970        f.write_char('\'')
2971    }
2972}
2973
2974#[stable(feature = "rust1", since = "1.0.0")]
2975impl Display for char {
2976    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2977        if f.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
2978            f.write_char(*self)
2979        } else {
2980            f.pad(self.encode_utf8(&mut [0; MAX_LEN_UTF8]))
2981        }
2982    }
2983}
2984
2985#[stable(feature = "rust1", since = "1.0.0")]
2986impl<T: PointeeSized> Pointer for *const T {
2987    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2988        if <<T as core::ptr::Pointee>::Metadata as core::unit::IsUnit>::is_unit() {
2989            pointer_fmt_inner(self.expose_provenance(), f)
2990        } else {
2991            f.debug_struct("Pointer")
2992                .field_with("addr", |f| pointer_fmt_inner(self.expose_provenance(), f))
2993                .field("metadata", &core::ptr::metadata(*self))
2994                .finish()
2995        }
2996    }
2997}
2998
2999/// Since the formatting will be identical for all pointer types, uses a
3000/// non-monomorphized implementation for the actual formatting to reduce the
3001/// amount of codegen work needed.
3002///
3003/// This uses `ptr_addr: usize` and not `ptr: *const ()` to be able to use this for
3004/// `fn(...) -> ...` without using [problematic] "Oxford Casts".
3005///
3006/// [problematic]: https://github.com/rust-lang/rust/issues/95489
3007pub(crate) fn pointer_fmt_inner(ptr_addr: usize, f: &mut Formatter<'_>) -> Result {
3008    let old_options = f.options;
3009
3010    // The alternate flag is already treated by LowerHex as being special-
3011    // it denotes whether to prefix with 0x. We use it to work out whether
3012    // or not to zero extend, and then unconditionally set it to get the
3013    // prefix.
3014    if f.options.get_alternate() {
3015        f.options.sign_aware_zero_pad(true);
3016
3017        if f.options.get_width().is_none() {
3018            f.options.width(Some((usize::BITS / 4) as u16 + 2));
3019        }
3020    }
3021    f.options.alternate(true);
3022
3023    let ret = LowerHex::fmt(&ptr_addr, f);
3024
3025    f.options = old_options;
3026
3027    ret
3028}
3029
3030#[stable(feature = "rust1", since = "1.0.0")]
3031impl<T: PointeeSized> Pointer for *mut T {
3032    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3033        Pointer::fmt(&(*self as *const T), f)
3034    }
3035}
3036
3037#[stable(feature = "rust1", since = "1.0.0")]
3038impl<T: PointeeSized> Pointer for &T {
3039    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3040        Pointer::fmt(&(*self as *const T), f)
3041    }
3042}
3043
3044#[stable(feature = "rust1", since = "1.0.0")]
3045impl<T: PointeeSized> Pointer for &mut T {
3046    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3047        Pointer::fmt(&(&**self as *const T), f)
3048    }
3049}
3050
3051// Implementation of Display/Debug for various core types
3052
3053#[stable(feature = "rust1", since = "1.0.0")]
3054impl<T: PointeeSized> Debug for *const T {
3055    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3056        Pointer::fmt(self, f)
3057    }
3058}
3059#[stable(feature = "rust1", since = "1.0.0")]
3060impl<T: PointeeSized> Debug for *mut T {
3061    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3062        Pointer::fmt(self, f)
3063    }
3064}
3065
3066macro_rules! peel {
3067    ($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
3068}
3069
3070macro_rules! tuple {
3071    () => ();
3072    ( $($name:ident,)+ ) => (
3073        maybe_tuple_doc! {
3074            $($name)+ @
3075            #[stable(feature = "rust1", since = "1.0.0")]
3076            impl<$($name:Debug),+> Debug for ($($name,)+) {
3077                #[allow(non_snake_case, unused_assignments)]
3078                fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3079                    let mut builder = f.debug_tuple("");
3080                    let ($(ref $name,)+) = *self;
3081                    $(
3082                        builder.field(&$name);
3083                    )+
3084
3085                    builder.finish()
3086                }
3087            }
3088        }
3089        peel! { $($name,)+ }
3090    )
3091}
3092
3093macro_rules! maybe_tuple_doc {
3094    ($a:ident @ #[$meta:meta] $item:item) => {
3095        #[doc(fake_variadic)]
3096        #[doc = "This trait is implemented for tuples up to twelve items long."]
3097        #[$meta]
3098        $item
3099    };
3100    ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
3101        #[doc(hidden)]
3102        #[$meta]
3103        $item
3104    };
3105}
3106
3107tuple! { E, D, C, B, A, Z, Y, X, W, V, U, T, }
3108
3109#[stable(feature = "rust1", since = "1.0.0")]
3110impl<T: Debug> Debug for [T] {
3111    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3112        f.debug_list().entries(self.iter()).finish()
3113    }
3114}
3115
3116#[stable(feature = "rust1", since = "1.0.0")]
3117impl Debug for () {
3118    #[inline]
3119    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3120        f.pad("()")
3121    }
3122}
3123#[stable(feature = "rust1", since = "1.0.0")]
3124impl<T: ?Sized> Debug for PhantomData<T> {
3125    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3126        write!(f, "PhantomData<{}>", crate::any::type_name::<T>())
3127    }
3128}
3129
3130#[stable(feature = "rust1", since = "1.0.0")]
3131impl<T: Copy + Debug> Debug for Cell<T> {
3132    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3133        f.debug_struct("Cell").field("value", &self.get()).finish()
3134    }
3135}
3136
3137#[stable(feature = "rust1", since = "1.0.0")]
3138impl<T: ?Sized + Debug> Debug for RefCell<T> {
3139    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3140        let mut d = f.debug_struct("RefCell");
3141        match self.try_borrow() {
3142            Ok(borrow) => d.field("value", &borrow),
3143            Err(_) => d.field("value", &format_args!("<borrowed>")),
3144        };
3145        d.finish()
3146    }
3147}
3148
3149#[stable(feature = "rust1", since = "1.0.0")]
3150impl<T: ?Sized + Debug> Debug for Ref<'_, T> {
3151    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3152        Debug::fmt(&**self, f)
3153    }
3154}
3155
3156#[stable(feature = "rust1", since = "1.0.0")]
3157impl<T: ?Sized + Debug> Debug for RefMut<'_, T> {
3158    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3159        Debug::fmt(&*(self.deref()), f)
3160    }
3161}
3162
3163#[stable(feature = "core_impl_debug", since = "1.9.0")]
3164impl<T: ?Sized> Debug for UnsafeCell<T> {
3165    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3166        f.debug_struct("UnsafeCell").finish_non_exhaustive()
3167    }
3168}
3169
3170#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
3171impl<T: ?Sized> Debug for SyncUnsafeCell<T> {
3172    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3173        f.debug_struct("SyncUnsafeCell").finish_non_exhaustive()
3174    }
3175}
3176
3177// If you expected tests to be here, look instead at coretests/tests/fmt/;
3178// it's a lot easier than creating all of the rt::Piece structures here.
3179// There are also tests in alloctests/tests/fmt.rs, for those that need allocations.