core/fmt/mod.rs
1//! Utilities for formatting and printing strings.
2
3#![stable(feature = "rust1", since = "1.0.0")]
4
5use crate::cell::{Cell, Ref, RefCell, RefMut, SyncUnsafeCell, UnsafeCell};
6use crate::char::{EscapeDebugExtArgs, MAX_LEN_UTF8};
7use crate::hint::assert_unchecked;
8use crate::marker::{PhantomData, PointeeSized};
9use crate::num::fmt as numfmt;
10use crate::ops::Deref;
11use crate::ptr::NonNull;
12use crate::{iter, mem, result, str};
13
14mod builders;
15#[cfg(not(no_fp_fmt_parse))]
16mod float;
17#[cfg(no_fp_fmt_parse)]
18mod nofloat;
19mod num;
20mod num_buffer;
21mod rt;
22
23#[stable(feature = "fmt_flags_align", since = "1.28.0")]
24#[rustc_diagnostic_item = "Alignment"]
25/// Possible alignments returned by `Formatter::align`
26#[derive(Copy, Clone, Debug, PartialEq, Eq)]
27pub enum Alignment {
28 #[stable(feature = "fmt_flags_align", since = "1.28.0")]
29 /// Indication that contents should be left-aligned.
30 Left,
31 #[stable(feature = "fmt_flags_align", since = "1.28.0")]
32 /// Indication that contents should be right-aligned.
33 Right,
34 #[stable(feature = "fmt_flags_align", since = "1.28.0")]
35 /// Indication that contents should be center-aligned.
36 Center,
37}
38
39#[unstable(feature = "int_format_into", issue = "138215")]
40pub use num_buffer::{NumBuffer, NumBufferTrait};
41
42#[stable(feature = "debug_builders", since = "1.2.0")]
43pub use self::builders::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
44#[stable(feature = "fmt_from_fn", since = "CURRENT_RUSTC_VERSION")]
45pub use self::builders::{FromFn, from_fn};
46
47/// The type returned by formatter methods.
48///
49/// # Examples
50///
51/// ```
52/// use std::fmt;
53///
54/// #[derive(Debug)]
55/// struct Triangle {
56/// a: f32,
57/// b: f32,
58/// c: f32
59/// }
60///
61/// impl fmt::Display for Triangle {
62/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
63/// write!(f, "({}, {}, {})", self.a, self.b, self.c)
64/// }
65/// }
66///
67/// let pythagorean_triple = Triangle { a: 3.0, b: 4.0, c: 5.0 };
68///
69/// assert_eq!(format!("{pythagorean_triple}"), "(3, 4, 5)");
70/// ```
71#[stable(feature = "rust1", since = "1.0.0")]
72pub type Result = result::Result<(), Error>;
73
74/// The error type which is returned from formatting a message into a stream.
75///
76/// This type does not support transmission of an error other than that an error
77/// occurred. This is because, despite the existence of this error,
78/// string formatting is considered an infallible operation.
79/// `fmt()` implementors should not return this `Error` unless they received it from their
80/// [`Formatter`]. The only time your code should create a new instance of this
81/// error is when implementing `fmt::Write`, in order to cancel the formatting operation when
82/// writing to the underlying stream fails.
83///
84/// Any extra information must be arranged to be transmitted through some other means,
85/// such as storing it in a field to be consulted after the formatting operation has been
86/// cancelled. (For example, this is how [`std::io::Write::write_fmt()`] propagates IO errors
87/// during writing.)
88///
89/// This type, `fmt::Error`, should not be
90/// confused with [`std::io::Error`] or [`std::error::Error`], which you may also
91/// have in scope.
92///
93/// [`std::io::Error`]: ../../std/io/struct.Error.html
94/// [`std::io::Write::write_fmt()`]: ../../std/io/trait.Write.html#method.write_fmt
95/// [`std::error::Error`]: ../../std/error/trait.Error.html
96///
97/// # Examples
98///
99/// ```rust
100/// use std::fmt::{self, write};
101///
102/// let mut output = String::new();
103/// if let Err(fmt::Error) = write(&mut output, format_args!("Hello {}!", "world")) {
104/// panic!("An error occurred");
105/// }
106/// ```
107#[stable(feature = "rust1", since = "1.0.0")]
108#[derive(Copy, Clone, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
109pub struct Error;
110
111/// A trait for writing or formatting into Unicode-accepting buffers or streams.
112///
113/// This trait only accepts UTF-8–encoded data and is not [flushable]. If you only
114/// want to accept Unicode and you don't need flushing, you should implement this trait;
115/// otherwise you should implement [`std::io::Write`].
116///
117/// [`std::io::Write`]: ../../std/io/trait.Write.html
118/// [flushable]: ../../std/io/trait.Write.html#tymethod.flush
119#[stable(feature = "rust1", since = "1.0.0")]
120#[rustc_diagnostic_item = "FmtWrite"]
121pub trait Write {
122 /// Writes a string slice into this writer, returning whether the write
123 /// succeeded.
124 ///
125 /// This method can only succeed if the entire string slice was successfully
126 /// written, and this method will not return until all data has been
127 /// written or an error occurs.
128 ///
129 /// # Errors
130 ///
131 /// This function will return an instance of [`std::fmt::Error`][Error] on error.
132 ///
133 /// The purpose of that error is to abort the formatting operation when the underlying
134 /// destination encounters some error preventing it from accepting more text;
135 /// in particular, it does not communicate any information about *what* error occurred.
136 /// It should generally be propagated rather than handled, at least when implementing
137 /// formatting traits.
138 ///
139 /// # Examples
140 ///
141 /// ```
142 /// use std::fmt::{Error, Write};
143 ///
144 /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
145 /// f.write_str(s)
146 /// }
147 ///
148 /// let mut buf = String::new();
149 /// writer(&mut buf, "hola")?;
150 /// assert_eq!(&buf, "hola");
151 /// # std::fmt::Result::Ok(())
152 /// ```
153 #[stable(feature = "rust1", since = "1.0.0")]
154 fn write_str(&mut self, s: &str) -> Result;
155
156 /// Writes a [`char`] into this writer, returning whether the write succeeded.
157 ///
158 /// A single [`char`] may be encoded as more than one byte.
159 /// This method can only succeed if the entire byte sequence was successfully
160 /// written, and this method will not return until all data has been
161 /// written or an error occurs.
162 ///
163 /// # Errors
164 ///
165 /// This function will return an instance of [`Error`] on error.
166 ///
167 /// # Examples
168 ///
169 /// ```
170 /// use std::fmt::{Error, Write};
171 ///
172 /// fn writer<W: Write>(f: &mut W, c: char) -> Result<(), Error> {
173 /// f.write_char(c)
174 /// }
175 ///
176 /// let mut buf = String::new();
177 /// writer(&mut buf, 'a')?;
178 /// writer(&mut buf, 'b')?;
179 /// assert_eq!(&buf, "ab");
180 /// # std::fmt::Result::Ok(())
181 /// ```
182 #[stable(feature = "fmt_write_char", since = "1.1.0")]
183 fn write_char(&mut self, c: char) -> Result {
184 self.write_str(c.encode_utf8(&mut [0; MAX_LEN_UTF8]))
185 }
186
187 /// Glue for usage of the [`write!`] macro with implementors of this trait.
188 ///
189 /// This method should generally not be invoked manually, but rather through
190 /// the [`write!`] macro itself.
191 ///
192 /// # Errors
193 ///
194 /// This function will return an instance of [`Error`] on error. Please see
195 /// [write_str](Write::write_str) for details.
196 ///
197 /// # Examples
198 ///
199 /// ```
200 /// use std::fmt::{Error, Write};
201 ///
202 /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
203 /// f.write_fmt(format_args!("{s}"))
204 /// }
205 ///
206 /// let mut buf = String::new();
207 /// writer(&mut buf, "world")?;
208 /// assert_eq!(&buf, "world");
209 /// # std::fmt::Result::Ok(())
210 /// ```
211 #[stable(feature = "rust1", since = "1.0.0")]
212 fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
213 // We use a specialization for `Sized` types to avoid an indirection
214 // through `&mut self`
215 trait SpecWriteFmt {
216 fn spec_write_fmt(self, args: Arguments<'_>) -> Result;
217 }
218
219 impl<W: Write + ?Sized> SpecWriteFmt for &mut W {
220 #[inline]
221 default fn spec_write_fmt(mut self, args: Arguments<'_>) -> Result {
222 if let Some(s) = args.as_statically_known_str() {
223 self.write_str(s)
224 } else {
225 write(&mut self, args)
226 }
227 }
228 }
229
230 impl<W: Write> SpecWriteFmt for &mut W {
231 #[inline]
232 fn spec_write_fmt(self, args: Arguments<'_>) -> Result {
233 if let Some(s) = args.as_statically_known_str() {
234 self.write_str(s)
235 } else {
236 write(self, args)
237 }
238 }
239 }
240
241 self.spec_write_fmt(args)
242 }
243}
244
245#[stable(feature = "fmt_write_blanket_impl", since = "1.4.0")]
246impl<W: Write + ?Sized> Write for &mut W {
247 fn write_str(&mut self, s: &str) -> Result {
248 (**self).write_str(s)
249 }
250
251 fn write_char(&mut self, c: char) -> Result {
252 (**self).write_char(c)
253 }
254
255 fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
256 (**self).write_fmt(args)
257 }
258}
259
260/// The signedness of a [`Formatter`] (or of a [`FormattingOptions`]).
261#[derive(Copy, Clone, Debug, PartialEq, Eq)]
262#[unstable(feature = "formatting_options", issue = "118117")]
263pub enum Sign {
264 /// Represents the `+` flag.
265 Plus,
266 /// Represents the `-` flag.
267 Minus,
268}
269
270/// Specifies whether the [`Debug`] trait should use lower-/upper-case
271/// hexadecimal or normal integers.
272#[derive(Copy, Clone, Debug, PartialEq, Eq)]
273#[unstable(feature = "formatting_options", issue = "118117")]
274pub enum DebugAsHex {
275 /// Use lower-case hexadecimal integers for the `Debug` trait (like [the `x?` type](../../std/fmt/index.html#formatting-traits)).
276 Lower,
277 /// Use upper-case hexadecimal integers for the `Debug` trait (like [the `X?` type](../../std/fmt/index.html#formatting-traits)).
278 Upper,
279}
280
281/// Options for formatting.
282///
283/// `FormattingOptions` is a [`Formatter`] without an attached [`Write`] trait.
284/// It is mainly used to construct `Formatter` instances.
285#[derive(Copy, Clone, Debug, PartialEq, Eq)]
286#[unstable(feature = "formatting_options", issue = "118117")]
287pub struct FormattingOptions {
288 /// Flags, with the following bit fields:
289 ///
290 /// ```text
291 /// 31 30 29 28 27 26 25 24 23 22 21 20 0
292 /// ┌───┬───────┬───┬───┬───┬───┬───┬───┬───┬───┬──────────────────────────────────┐
293 /// │ 0 │ align │ p │ w │ X?│ x?│'0'│ # │ - │ + │ fill │
294 /// └───┴───────┴───┴───┴───┴───┴───┴───┴───┴───┴──────────────────────────────────┘
295 /// │ │ │ │ └─┬───────────────────┘ └─┬──────────────────────────────┘
296 /// │ │ │ │ │ └─ The fill character (21 bits char).
297 /// │ │ │ │ └─ The debug upper/lower hex, zero pad, alternate, and plus/minus flags.
298 /// │ │ │ └─ Whether a width is set. (The value is stored separately.)
299 /// │ │ └─ Whether a precision is set. (The value is stored separately.)
300 /// │ ├─ 0: Align left. (<)
301 /// │ ├─ 1: Align right. (>)
302 /// │ ├─ 2: Align center. (^)
303 /// │ └─ 3: Alignment not set. (default)
304 /// └─ Always zero.
305 /// ```
306 // Note: This could use a pattern type with range 0x0000_0000..=0x7dd0ffff.
307 // It's unclear if that's useful, though.
308 flags: u32,
309 /// Width if width flag (bit 27) above is set. Otherwise, always 0.
310 width: u16,
311 /// Precision if precision flag (bit 28) above is set. Otherwise, always 0.
312 precision: u16,
313}
314
315// This needs to match with compiler/rustc_ast_lowering/src/format.rs.
316mod flags {
317 pub(super) const SIGN_PLUS_FLAG: u32 = 1 << 21;
318 pub(super) const SIGN_MINUS_FLAG: u32 = 1 << 22;
319 pub(super) const ALTERNATE_FLAG: u32 = 1 << 23;
320 pub(super) const SIGN_AWARE_ZERO_PAD_FLAG: u32 = 1 << 24;
321 pub(super) const DEBUG_LOWER_HEX_FLAG: u32 = 1 << 25;
322 pub(super) const DEBUG_UPPER_HEX_FLAG: u32 = 1 << 26;
323 pub(super) const WIDTH_FLAG: u32 = 1 << 27;
324 pub(super) const PRECISION_FLAG: u32 = 1 << 28;
325 pub(super) const ALIGN_BITS: u32 = 0b11 << 29;
326 pub(super) const ALIGN_LEFT: u32 = 0 << 29;
327 pub(super) const ALIGN_RIGHT: u32 = 1 << 29;
328 pub(super) const ALIGN_CENTER: u32 = 2 << 29;
329 pub(super) const ALIGN_UNKNOWN: u32 = 3 << 29;
330}
331
332impl FormattingOptions {
333 /// Construct a new `FormatterBuilder` with the supplied `Write` trait
334 /// object for output that is equivalent to the `{}` formatting
335 /// specifier:
336 ///
337 /// - no flags,
338 /// - filled with spaces,
339 /// - no alignment,
340 /// - no width,
341 /// - no precision, and
342 /// - no [`DebugAsHex`] output mode.
343 #[unstable(feature = "formatting_options", issue = "118117")]
344 pub const fn new() -> Self {
345 Self { flags: ' ' as u32 | flags::ALIGN_UNKNOWN, width: 0, precision: 0 }
346 }
347
348 /// Sets or removes the sign (the `+` or the `-` flag).
349 ///
350 /// - `+`: This is intended for numeric types and indicates that the sign
351 /// should always be printed. By default only the negative sign of signed
352 /// values is printed, and the sign of positive or unsigned values is
353 /// omitted. This flag indicates that the correct sign (+ or -) should
354 /// always be printed.
355 /// - `-`: Currently not used
356 #[unstable(feature = "formatting_options", issue = "118117")]
357 pub const fn sign(&mut self, sign: Option<Sign>) -> &mut Self {
358 let sign = match sign {
359 None => 0,
360 Some(Sign::Plus) => flags::SIGN_PLUS_FLAG,
361 Some(Sign::Minus) => flags::SIGN_MINUS_FLAG,
362 };
363 self.flags = self.flags & !(flags::SIGN_PLUS_FLAG | flags::SIGN_MINUS_FLAG) | sign;
364 self
365 }
366 /// Sets or unsets the `0` flag.
367 ///
368 /// This is used to indicate for integer formats that the padding to width should both be done with a 0 character as well as be sign-aware
369 #[unstable(feature = "formatting_options", issue = "118117")]
370 pub const fn sign_aware_zero_pad(&mut self, sign_aware_zero_pad: bool) -> &mut Self {
371 if sign_aware_zero_pad {
372 self.flags |= flags::SIGN_AWARE_ZERO_PAD_FLAG;
373 } else {
374 self.flags &= !flags::SIGN_AWARE_ZERO_PAD_FLAG;
375 }
376 self
377 }
378 /// Sets or unsets the `#` flag.
379 ///
380 /// This flag indicates that the "alternate" form of printing should be
381 /// used. The alternate forms are:
382 /// - [`Debug`] : pretty-print the [`Debug`] formatting (adds linebreaks and indentation)
383 /// - [`LowerHex`] as well as [`UpperHex`] - precedes the argument with a `0x`
384 /// - [`Octal`] - precedes the argument with a `0o`
385 /// - [`Binary`] - precedes the argument with a `0b`
386 #[unstable(feature = "formatting_options", issue = "118117")]
387 pub const fn alternate(&mut self, alternate: bool) -> &mut Self {
388 if alternate {
389 self.flags |= flags::ALTERNATE_FLAG;
390 } else {
391 self.flags &= !flags::ALTERNATE_FLAG;
392 }
393 self
394 }
395 /// Sets the fill character.
396 ///
397 /// The optional fill character and alignment is provided normally in
398 /// conjunction with the width parameter. This indicates that if the value
399 /// being formatted is smaller than width some extra characters will be
400 /// printed around it.
401 #[unstable(feature = "formatting_options", issue = "118117")]
402 pub const fn fill(&mut self, fill: char) -> &mut Self {
403 self.flags = self.flags & (u32::MAX << 21) | fill as u32;
404 self
405 }
406 /// Sets or removes the alignment.
407 ///
408 /// The alignment specifies how the value being formatted should be
409 /// positioned if it is smaller than the width of the formatter.
410 #[unstable(feature = "formatting_options", issue = "118117")]
411 pub const fn align(&mut self, align: Option<Alignment>) -> &mut Self {
412 let align: u32 = match align {
413 Some(Alignment::Left) => flags::ALIGN_LEFT,
414 Some(Alignment::Right) => flags::ALIGN_RIGHT,
415 Some(Alignment::Center) => flags::ALIGN_CENTER,
416 None => flags::ALIGN_UNKNOWN,
417 };
418 self.flags = self.flags & !flags::ALIGN_BITS | align;
419 self
420 }
421 /// Sets or removes the width.
422 ///
423 /// This is a parameter for the “minimum width” that the format should take
424 /// up. If the value’s string does not fill up this many characters, then
425 /// the padding specified by [`FormattingOptions::fill`]/[`FormattingOptions::align`]
426 /// will be used to take up the required space.
427 #[unstable(feature = "formatting_options", issue = "118117")]
428 pub const fn width(&mut self, width: Option<u16>) -> &mut Self {
429 if let Some(width) = width {
430 self.flags |= flags::WIDTH_FLAG;
431 self.width = width;
432 } else {
433 self.flags &= !flags::WIDTH_FLAG;
434 self.width = 0;
435 }
436 self
437 }
438 /// Sets or removes the precision.
439 ///
440 /// - For non-numeric types, this can be considered a “maximum width”. If
441 /// the resulting string is longer than this width, then it is truncated
442 /// down to this many characters and that truncated value is emitted with
443 /// proper fill, alignment and width if those parameters are set.
444 /// - For integral types, this is ignored.
445 /// - For floating-point types, this indicates how many digits after the
446 /// decimal point should be printed.
447 #[unstable(feature = "formatting_options", issue = "118117")]
448 pub const fn precision(&mut self, precision: Option<u16>) -> &mut Self {
449 if let Some(precision) = precision {
450 self.flags |= flags::PRECISION_FLAG;
451 self.precision = precision;
452 } else {
453 self.flags &= !flags::PRECISION_FLAG;
454 self.precision = 0;
455 }
456 self
457 }
458 /// Specifies whether the [`Debug`] trait should use lower-/upper-case
459 /// hexadecimal or normal integers
460 #[unstable(feature = "formatting_options", issue = "118117")]
461 pub const fn debug_as_hex(&mut self, debug_as_hex: Option<DebugAsHex>) -> &mut Self {
462 let debug_as_hex = match debug_as_hex {
463 None => 0,
464 Some(DebugAsHex::Lower) => flags::DEBUG_LOWER_HEX_FLAG,
465 Some(DebugAsHex::Upper) => flags::DEBUG_UPPER_HEX_FLAG,
466 };
467 self.flags = self.flags & !(flags::DEBUG_LOWER_HEX_FLAG | flags::DEBUG_UPPER_HEX_FLAG)
468 | debug_as_hex;
469 self
470 }
471
472 /// Returns the current sign (the `+` or the `-` flag).
473 #[unstable(feature = "formatting_options", issue = "118117")]
474 pub const fn get_sign(&self) -> Option<Sign> {
475 if self.flags & flags::SIGN_PLUS_FLAG != 0 {
476 Some(Sign::Plus)
477 } else if self.flags & flags::SIGN_MINUS_FLAG != 0 {
478 Some(Sign::Minus)
479 } else {
480 None
481 }
482 }
483 /// Returns the current `0` flag.
484 #[unstable(feature = "formatting_options", issue = "118117")]
485 pub const fn get_sign_aware_zero_pad(&self) -> bool {
486 self.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
487 }
488 /// Returns the current `#` flag.
489 #[unstable(feature = "formatting_options", issue = "118117")]
490 pub const fn get_alternate(&self) -> bool {
491 self.flags & flags::ALTERNATE_FLAG != 0
492 }
493 /// Returns the current fill character.
494 #[unstable(feature = "formatting_options", issue = "118117")]
495 pub const fn get_fill(&self) -> char {
496 // SAFETY: We only ever put a valid `char` in the lower 21 bits of the flags field.
497 unsafe { char::from_u32_unchecked(self.flags & 0x1FFFFF) }
498 }
499 /// Returns the current alignment.
500 #[unstable(feature = "formatting_options", issue = "118117")]
501 pub const fn get_align(&self) -> Option<Alignment> {
502 match self.flags & flags::ALIGN_BITS {
503 flags::ALIGN_LEFT => Some(Alignment::Left),
504 flags::ALIGN_RIGHT => Some(Alignment::Right),
505 flags::ALIGN_CENTER => Some(Alignment::Center),
506 _ => None,
507 }
508 }
509 /// Returns the current width.
510 #[unstable(feature = "formatting_options", issue = "118117")]
511 pub const fn get_width(&self) -> Option<u16> {
512 if self.flags & flags::WIDTH_FLAG != 0 { Some(self.width) } else { None }
513 }
514 /// Returns the current precision.
515 #[unstable(feature = "formatting_options", issue = "118117")]
516 pub const fn get_precision(&self) -> Option<u16> {
517 if self.flags & flags::PRECISION_FLAG != 0 { Some(self.precision) } else { None }
518 }
519 /// Returns the current precision.
520 #[unstable(feature = "formatting_options", issue = "118117")]
521 pub const fn get_debug_as_hex(&self) -> Option<DebugAsHex> {
522 if self.flags & flags::DEBUG_LOWER_HEX_FLAG != 0 {
523 Some(DebugAsHex::Lower)
524 } else if self.flags & flags::DEBUG_UPPER_HEX_FLAG != 0 {
525 Some(DebugAsHex::Upper)
526 } else {
527 None
528 }
529 }
530
531 /// Creates a [`Formatter`] that writes its output to the given [`Write`] trait.
532 ///
533 /// You may alternatively use [`Formatter::new()`].
534 #[unstable(feature = "formatting_options", issue = "118117")]
535 pub const fn create_formatter<'a>(self, write: &'a mut (dyn Write + 'a)) -> Formatter<'a> {
536 Formatter { options: self, buf: write }
537 }
538}
539
540#[unstable(feature = "formatting_options", issue = "118117")]
541impl Default for FormattingOptions {
542 /// Same as [`FormattingOptions::new()`].
543 fn default() -> Self {
544 // The `#[derive(Default)]` implementation would set `fill` to `\0` instead of space.
545 Self::new()
546 }
547}
548
549/// Configuration for formatting.
550///
551/// A `Formatter` represents various options related to formatting. Users do not
552/// construct `Formatter`s directly; a mutable reference to one is passed to
553/// the `fmt` method of all formatting traits, like [`Debug`] and [`Display`].
554///
555/// To interact with a `Formatter`, you'll call various methods to change the
556/// various options related to formatting. For examples, please see the
557/// documentation of the methods defined on `Formatter` below.
558#[allow(missing_debug_implementations)]
559#[stable(feature = "rust1", since = "1.0.0")]
560#[rustc_diagnostic_item = "Formatter"]
561pub struct Formatter<'a> {
562 options: FormattingOptions,
563
564 buf: &'a mut (dyn Write + 'a),
565}
566
567impl<'a> Formatter<'a> {
568 /// Creates a new formatter with given [`FormattingOptions`].
569 ///
570 /// If `write` is a reference to a formatter, it is recommended to use
571 /// [`Formatter::with_options`] instead as this can borrow the underlying
572 /// `write`, thereby bypassing one layer of indirection.
573 ///
574 /// You may alternatively use [`FormattingOptions::create_formatter()`].
575 #[unstable(feature = "formatting_options", issue = "118117")]
576 pub const fn new(write: &'a mut (dyn Write + 'a), options: FormattingOptions) -> Self {
577 Formatter { options, buf: write }
578 }
579
580 /// Creates a new formatter based on this one with given [`FormattingOptions`].
581 #[unstable(feature = "formatting_options", issue = "118117")]
582 pub const fn with_options<'b>(&'b mut self, options: FormattingOptions) -> Formatter<'b> {
583 Formatter { options, buf: self.buf }
584 }
585}
586
587/// This structure represents a safely precompiled version of a format string
588/// and its arguments. This cannot be generated at runtime because it cannot
589/// safely be done, so no constructors are given and the fields are private
590/// to prevent modification.
591///
592/// The [`format_args!`] macro will safely create an instance of this structure.
593/// The macro validates the format string at compile-time so usage of the
594/// [`write()`] and [`format()`] functions can be safely performed.
595///
596/// You can use the `Arguments<'a>` that [`format_args!`] returns in `Debug`
597/// and `Display` contexts as seen below. The example also shows that `Debug`
598/// and `Display` format to the same thing: the interpolated format string
599/// in `format_args!`.
600///
601/// ```rust
602/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
603/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
604/// assert_eq!("1 foo 2", display);
605/// assert_eq!(display, debug);
606/// ```
607///
608/// [`format()`]: ../../std/fmt/fn.format.html
609//
610// Internal representation:
611//
612// fmt::Arguments is represented in one of two ways:
613//
614// 1) String literal representation (e.g. format_args!("hello"))
615// ┌────────────────────────────────┐
616// template: │ *const u8 │ ─▷ "hello"
617// ├──────────────────────────────┬─┤
618// args: │ len │1│ (lowest bit is 1; field contains `len << 1 | 1`)
619// └──────────────────────────────┴─┘
620// In this representation, there are no placeholders and `fmt::Arguments::as_str()` returns Some.
621// The pointer points to the start of a static `str`. The length is given by `args as usize >> 1`.
622// (The length of a `&str` is isize::MAX at most, so it always fits in a usize minus one bit.)
623//
624// `fmt::Arguments::from_str()` constructs this representation from a `&'static str`.
625//
626// 2) Placeholders representation (e.g. format_args!("hello {name}\n"))
627// ┌────────────────────────────────┐
628// template: │ *const u8 │ ─▷ b"\x06hello \x80\x01\n\x00"
629// ├────────────────────────────────┤
630// args: │ &'a [Argument<'a>; _] 0│ (lower bit is 0 due to alignment of Argument type)
631// └────────────────────────────────┘
632// In this representation, the template is a byte sequence encoding both the literal string pieces
633// and the placeholders (including their options/flags).
634//
635// The `args` pointer points to an array of `fmt::Argument<'a>` values, of sufficient length to
636// match the placeholders in the template.
637//
638// `fmt::Arguments::new()` constructs this representation from a template byte slice and a slice
639// of arguments. This function is unsafe, as the template is assumed to be valid and the args
640// slice is assumed to have elements matching the template.
641//
642// The template byte sequence is the concatenation of parts of the following types:
643//
644// - Literal string piece:
645// Pieces that must be formatted verbatim (e.g. "hello " and "\n" in "hello {name}\n")
646// appear literally in the template byte sequence, prefixed by their length.
647//
648// For pieces of up to 127 bytes, these are represented as a single byte containing the
649// length followed directly by the bytes of the string:
650// ┌───┬────────────────────────────┐
651// │len│ `len` bytes (utf-8) │ (e.g. b"\x06hello ")
652// └───┴────────────────────────────┘
653//
654// For larger pieces up to u16::MAX bytes, these are represented as a 0x80 followed by
655// their length in 16-bit little endian, followed by the bytes of the string:
656// ┌────┬─────────┬───────────────────────────┐
657// │0x80│ len │ `len` bytes (utf-8) │ (e.g. b"\x80\x00\x01hello … ")
658// └────┴─────────┴───────────────────────────┘
659//
660// Longer pieces are split into multiple pieces of max u16::MAX bytes (at utf-8 boundaries).
661//
662// - Placeholder:
663// Placeholders (e.g. `{name}` in "hello {name}") are represented as a byte with the highest
664// two bits set, followed by zero or more fields depending on the flags in the first byte:
665// ┌──────────┬┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┬┄┄┄┄┄┄┄┄┄┄┄┬┄┄┄┄┄┄┄┄┄┄┄┬┄┄┄┄┄┄┄┄┄┄┄┐
666// │0b11______│ flags ┊ width ┊ precision ┊ arg_index ┊ (e.g. b"\xC2\x05\0")
667// └────││││││┴┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┴┄┄┄┄┄┄┄┄┄┄┄┴┄┄┄┄┄┄┄┄┄┄┄┴┄┄┄┄┄┄┄┄┄┄┄┘
668// ││││││ 32 bit 16 bit 16 bit 16 bit
669// │││││└─ flags present
670// ││││└─ width present
671// │││└─ precision present
672// ││└─ arg_index present
673// │└─ width indirect
674// └─ precision indirect
675//
676// All fields other than the first byte are optional and only present when their
677// corresponding flag is set in the first byte.
678//
679// So, a fully default placeholder without any options is just a single byte:
680// ┌──────────┐
681// │0b11000000│ (b"\xC0")
682// └──────────┘
683//
684// The fields are stored as little endian.
685//
686// The `flags` fields corresponds to the `flags` field of `FormattingOptions`.
687// See doc comment of `FormattingOptions::flags` for details.
688//
689// The `width` and `precision` fields correspond to their respective fields in
690// `FormattingOptions`. However, if their "indirect" flag is set, the field contains the
691// index in the `args` array where the dynamic width or precision is stored, rather than the
692// value directly.
693//
694// The `arg_index` field is the index into the `args` array for the argument to be
695// formatted.
696//
697// If omitted, the flags, width and precision of the default FormattingOptions::new() are
698// used.
699//
700// If the `arg_index` is omitted, the next argument in the `args` array is used (starting
701// at 0).
702//
703// - End:
704// A single zero byte marks the end of the template:
705// ┌───┐
706// │ 0 │ ("\0")
707// └───┘
708//
709// (Note that a zero byte may also occur naturally as part of the string pieces or flags,
710// width, precision and arg_index fields above. That is, the template byte sequence ends
711// with a 0 byte, but isn't terminated by the first 0 byte.)
712//
713#[lang = "format_arguments"]
714#[stable(feature = "rust1", since = "1.0.0")]
715#[derive(Copy, Clone)]
716pub struct Arguments<'a> {
717 template: NonNull<u8>,
718 args: NonNull<rt::Argument<'a>>,
719}
720
721/// Used by the format_args!() macro to create a fmt::Arguments object.
722#[doc(hidden)]
723#[rustc_diagnostic_item = "FmtArgumentsNew"]
724#[unstable(feature = "fmt_internals", issue = "none")]
725impl<'a> Arguments<'a> {
726 // SAFETY: The caller must ensure that the provided template and args encode a valid
727 // fmt::Arguments, as documented above.
728 #[inline]
729 pub unsafe fn new<const N: usize, const M: usize>(
730 template: &'a [u8; N],
731 args: &'a [rt::Argument<'a>; M],
732 ) -> Arguments<'a> {
733 // SAFETY: Responsibility of the caller.
734 unsafe { Arguments { template: mem::transmute(template), args: mem::transmute(args) } }
735 }
736
737 // Same as `from_str`, but not const.
738 // Used by format_args!() expansion when arguments are inlined,
739 // e.g. format_args!("{}", 123), which is not allowed in const.
740 #[inline]
741 pub fn from_str_nonconst(s: &'static str) -> Arguments<'a> {
742 Arguments::from_str(s)
743 }
744}
745
746#[doc(hidden)]
747#[unstable(feature = "fmt_internals", issue = "none")]
748impl<'a> Arguments<'a> {
749 /// Estimates the length of the formatted text.
750 ///
751 /// This is intended to be used for setting initial `String` capacity
752 /// when using `format!`. Note: this is neither the lower nor upper bound.
753 #[inline]
754 pub fn estimated_capacity(&self) -> usize {
755 if let Some(s) = self.as_str() {
756 return s.len();
757 }
758 // Iterate over the template, counting the length of literal pieces.
759 let mut length = 0usize;
760 let mut starts_with_placeholder = false;
761 let mut template = self.template;
762 loop {
763 // SAFETY: We can assume the template is valid.
764 unsafe {
765 let n = template.read();
766 template = template.add(1);
767 if n == 0 {
768 // End of template.
769 break;
770 } else if n < 128 {
771 // Short literal string piece.
772 length += n as usize;
773 template = template.add(n as usize);
774 } else if n == 128 {
775 // Long literal string piece.
776 let len = usize::from(u16::from_le_bytes(template.cast_array().read()));
777 length += len;
778 template = template.add(2 + len);
779 } else {
780 assert_unchecked(n >= 0xC0);
781 // Placeholder piece.
782 if length == 0 {
783 starts_with_placeholder = true;
784 }
785 // Skip remainder of placeholder:
786 let skip = (n & 1 != 0) as usize * 4 // flags (32 bit)
787 + (n & 2 != 0) as usize * 2 // width (16 bit)
788 + (n & 4 != 0) as usize * 2 // precision (16 bit)
789 + (n & 8 != 0) as usize * 2; // arg_index (16 bit)
790 template = template.add(skip as usize);
791 }
792 }
793 }
794
795 if starts_with_placeholder && length < 16 {
796 // If the format string starts with a placeholder,
797 // don't preallocate anything, unless length
798 // of literal pieces is significant.
799 0
800 } else {
801 // There are some placeholders, so any additional push
802 // will reallocate the string. To avoid that,
803 // we're "pre-doubling" the capacity here.
804 length.wrapping_mul(2)
805 }
806 }
807}
808
809impl<'a> Arguments<'a> {
810 /// Create a `fmt::Arguments` object for a single static string.
811 ///
812 /// Formatting this `fmt::Arguments` will just produce the string as-is.
813 #[inline]
814 #[unstable(feature = "fmt_arguments_from_str", issue = "148905")]
815 pub const fn from_str(s: &'static str) -> Arguments<'a> {
816 // SAFETY: This is the "static str" representation of fmt::Arguments; see above.
817 unsafe {
818 Arguments {
819 template: mem::transmute(s.as_ptr()),
820 args: mem::transmute(s.len() << 1 | 1),
821 }
822 }
823 }
824
825 /// Gets the formatted string, if it has no arguments to be formatted at runtime.
826 ///
827 /// This can be used to avoid allocations in some cases.
828 ///
829 /// # Guarantees
830 ///
831 /// For `format_args!("just a literal")`, this function is guaranteed to
832 /// return `Some("just a literal")`.
833 ///
834 /// For most cases with placeholders, this function will return `None`.
835 ///
836 /// However, the compiler may perform optimizations that can cause this
837 /// function to return `Some(_)` even if the format string contains
838 /// placeholders. For example, `format_args!("Hello, {}!", "world")` may be
839 /// optimized to `format_args!("Hello, world!")`, such that `as_str()`
840 /// returns `Some("Hello, world!")`.
841 ///
842 /// The behavior for anything but the trivial case (without placeholders)
843 /// is not guaranteed, and should not be relied upon for anything other
844 /// than optimization.
845 ///
846 /// # Examples
847 ///
848 /// ```rust
849 /// use std::fmt::Arguments;
850 ///
851 /// fn write_str(_: &str) { /* ... */ }
852 ///
853 /// fn write_fmt(args: &Arguments<'_>) {
854 /// if let Some(s) = args.as_str() {
855 /// write_str(s)
856 /// } else {
857 /// write_str(&args.to_string());
858 /// }
859 /// }
860 /// ```
861 ///
862 /// ```rust
863 /// assert_eq!(format_args!("hello").as_str(), Some("hello"));
864 /// assert_eq!(format_args!("").as_str(), Some(""));
865 /// assert_eq!(format_args!("{:?}", std::env::current_dir()).as_str(), None);
866 /// ```
867 #[stable(feature = "fmt_as_str", since = "1.52.0")]
868 #[rustc_const_stable(feature = "const_arguments_as_str", since = "1.84.0")]
869 #[must_use]
870 #[inline]
871 pub const fn as_str(&self) -> Option<&'static str> {
872 // SAFETY: During const eval, `self.args` must have come from a usize,
873 // not a pointer, because that's the only way to create a fmt::Arguments in const.
874 // (I.e. only fmt::Arguments::from_str is const, fmt::Arguments::new is not.)
875 //
876 // Outside const eval, transmuting a pointer to a usize is fine.
877 let bits: usize = unsafe { mem::transmute(self.args) };
878 if bits & 1 == 1 {
879 // SAFETY: This fmt::Arguments stores a &'static str. See encoding documentation above.
880 Some(unsafe {
881 str::from_utf8_unchecked(crate::slice::from_raw_parts(
882 self.template.as_ptr(),
883 bits >> 1,
884 ))
885 })
886 } else {
887 None
888 }
889 }
890
891 /// Same as [`Arguments::as_str`], but will only return `Some(s)` if it can be determined at compile time.
892 #[unstable(feature = "fmt_internals", reason = "internal to standard library", issue = "none")]
893 #[must_use]
894 #[inline]
895 #[doc(hidden)]
896 pub fn as_statically_known_str(&self) -> Option<&'static str> {
897 let s = self.as_str();
898 if core::intrinsics::is_val_statically_known(s.is_some()) { s } else { None }
899 }
900}
901
902// Manually implementing these results in better error messages.
903#[stable(feature = "rust1", since = "1.0.0")]
904impl !Send for Arguments<'_> {}
905#[stable(feature = "rust1", since = "1.0.0")]
906impl !Sync for Arguments<'_> {}
907
908#[stable(feature = "rust1", since = "1.0.0")]
909impl Debug for Arguments<'_> {
910 fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
911 Display::fmt(self, fmt)
912 }
913}
914
915#[stable(feature = "rust1", since = "1.0.0")]
916impl Display for Arguments<'_> {
917 fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
918 write(fmt.buf, *self)
919 }
920}
921
922/// `?` formatting.
923///
924/// `Debug` should format the output in a programmer-facing, debugging context.
925///
926/// Generally speaking, you should just `derive` a `Debug` implementation.
927///
928/// When used with the alternate format specifier `#?`, the output is pretty-printed.
929///
930/// For more information on formatters, see [the module-level documentation][module].
931///
932/// [module]: ../../std/fmt/index.html
933///
934/// This trait can be used with `#[derive]` if all fields implement `Debug`. When
935/// `derive`d for structs, it will use the name of the `struct`, then `{`, then a
936/// comma-separated list of each field's name and `Debug` value, then `}`. For
937/// `enum`s, it will use the name of the variant and, if applicable, `(`, then the
938/// `Debug` values of the fields, then `)`.
939///
940/// # Stability
941///
942/// Derived `Debug` formats are not stable, and so may change with future Rust
943/// versions. Additionally, `Debug` implementations of types provided by the
944/// standard library (`std`, `core`, `alloc`, etc.) are not stable, and
945/// may also change with future Rust versions.
946///
947/// # Examples
948///
949/// Deriving an implementation:
950///
951/// ```
952/// #[derive(Debug)]
953/// struct Point {
954/// x: i32,
955/// y: i32,
956/// }
957///
958/// let origin = Point { x: 0, y: 0 };
959///
960/// assert_eq!(
961/// format!("The origin is: {origin:?}"),
962/// "The origin is: Point { x: 0, y: 0 }",
963/// );
964/// ```
965///
966/// Manually implementing:
967///
968/// ```
969/// use std::fmt;
970///
971/// struct Point {
972/// x: i32,
973/// y: i32,
974/// }
975///
976/// impl fmt::Debug for Point {
977/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
978/// f.debug_struct("Point")
979/// .field("x", &self.x)
980/// .field("y", &self.y)
981/// .finish()
982/// }
983/// }
984///
985/// let origin = Point { x: 0, y: 0 };
986///
987/// assert_eq!(
988/// format!("The origin is: {origin:?}"),
989/// "The origin is: Point { x: 0, y: 0 }",
990/// );
991/// ```
992///
993/// There are a number of helper methods on the [`Formatter`] struct to help you with manual
994/// implementations, such as [`debug_struct`].
995///
996/// [`debug_struct`]: Formatter::debug_struct
997///
998/// Types that do not wish to use the standard suite of debug representations
999/// provided by the `Formatter` trait (`debug_struct`, `debug_tuple`,
1000/// `debug_list`, `debug_set`, `debug_map`) can do something totally custom by
1001/// manually writing an arbitrary representation to the `Formatter`.
1002///
1003/// ```
1004/// # use std::fmt;
1005/// # struct Point {
1006/// # x: i32,
1007/// # y: i32,
1008/// # }
1009/// #
1010/// impl fmt::Debug for Point {
1011/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1012/// write!(f, "Point [{} {}]", self.x, self.y)
1013/// }
1014/// }
1015/// ```
1016///
1017/// `Debug` implementations using either `derive` or the debug builder API
1018/// on [`Formatter`] support pretty-printing using the alternate flag: `{:#?}`.
1019///
1020/// Pretty-printing with `#?`:
1021///
1022/// ```
1023/// #[derive(Debug)]
1024/// struct Point {
1025/// x: i32,
1026/// y: i32,
1027/// }
1028///
1029/// let origin = Point { x: 0, y: 0 };
1030///
1031/// let expected = "The origin is: Point {
1032/// x: 0,
1033/// y: 0,
1034/// }";
1035/// assert_eq!(format!("The origin is: {origin:#?}"), expected);
1036/// ```
1037#[stable(feature = "rust1", since = "1.0.0")]
1038#[rustc_on_unimplemented(
1039 on(
1040 crate_local,
1041 note = "add `#[derive(Debug)]` to `{Self}` or manually `impl {This} for {Self}`"
1042 ),
1043 on(
1044 from_desugaring = "FormatLiteral",
1045 label = "`{Self}` cannot be formatted using `{{:?}}` because it doesn't implement `{This}`"
1046 ),
1047 message = "`{Self}` doesn't implement `{This}`"
1048)]
1049#[doc(alias = "{:?}")]
1050#[rustc_diagnostic_item = "Debug"]
1051#[rustc_trivial_field_reads]
1052pub trait Debug: PointeeSized {
1053 #[doc = include_str!("fmt_trait_method_doc.md")]
1054 ///
1055 /// # Examples
1056 ///
1057 /// ```
1058 /// use std::fmt;
1059 ///
1060 /// struct Position {
1061 /// longitude: f32,
1062 /// latitude: f32,
1063 /// }
1064 ///
1065 /// impl fmt::Debug for Position {
1066 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1067 /// f.debug_tuple("")
1068 /// .field(&self.longitude)
1069 /// .field(&self.latitude)
1070 /// .finish()
1071 /// }
1072 /// }
1073 ///
1074 /// let position = Position { longitude: 1.987, latitude: 2.983 };
1075 /// assert_eq!(format!("{position:?}"), "(1.987, 2.983)");
1076 ///
1077 /// assert_eq!(format!("{position:#?}"), "(
1078 /// 1.987,
1079 /// 2.983,
1080 /// )");
1081 /// ```
1082 #[stable(feature = "rust1", since = "1.0.0")]
1083 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1084}
1085
1086// Separate module to reexport the macro `Debug` from prelude without the trait `Debug`.
1087pub(crate) mod macros {
1088 /// Derive macro generating an impl of the trait `Debug`.
1089 #[rustc_builtin_macro]
1090 #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1091 #[allow_internal_unstable(core_intrinsics, fmt_helpers_for_derive)]
1092 pub macro Debug($item:item) {
1093 /* compiler built-in */
1094 }
1095}
1096#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1097#[doc(inline)]
1098pub use macros::Debug;
1099
1100/// Format trait for an empty format, `{}`.
1101///
1102/// Implementing this trait for a type will automatically implement the
1103/// [`ToString`][tostring] trait for the type, allowing the usage
1104/// of the [`.to_string()`][tostring_function] method. Prefer implementing
1105/// the `Display` trait for a type, rather than [`ToString`][tostring].
1106///
1107/// `Display` is similar to [`Debug`], but `Display` is for user-facing
1108/// output, and so cannot be derived.
1109///
1110/// For more information on formatters, see [the module-level documentation][module].
1111///
1112/// [module]: ../../std/fmt/index.html
1113/// [tostring]: ../../std/string/trait.ToString.html
1114/// [tostring_function]: ../../std/string/trait.ToString.html#tymethod.to_string
1115///
1116/// # Completeness and parseability
1117///
1118/// `Display` for a type might not necessarily be a lossless or complete representation of the type.
1119/// It may omit internal state, precision, or other information the type does not consider important
1120/// for user-facing output, as determined by the type. As such, the output of `Display` might not be
1121/// possible to parse, and even if it is, the result of parsing might not exactly match the original
1122/// value.
1123///
1124/// However, if a type has a lossless `Display` implementation whose output is meant to be
1125/// conveniently machine-parseable and not just meant for human consumption, then the type may wish
1126/// to accept the same format in `FromStr`, and document that usage. Having both `Display` and
1127/// `FromStr` implementations where the result of `Display` cannot be parsed with `FromStr` may
1128/// surprise users.
1129///
1130/// # Internationalization
1131///
1132/// Because a type can only have one `Display` implementation, it is often preferable
1133/// to only implement `Display` when there is a single most "obvious" way that
1134/// values can be formatted as text. This could mean formatting according to the
1135/// "invariant" culture and "undefined" locale, or it could mean that the type
1136/// display is designed for a specific culture/locale, such as developer logs.
1137///
1138/// If not all values have a justifiably canonical textual format or if you want
1139/// to support alternative formats not covered by the standard set of possible
1140/// [formatting traits], the most flexible approach is display adapters: methods
1141/// like [`str::escape_default`] or [`Path::display`] which create a wrapper
1142/// implementing `Display` to output the specific display format.
1143///
1144/// [formatting traits]: ../../std/fmt/index.html#formatting-traits
1145/// [`Path::display`]: ../../std/path/struct.Path.html#method.display
1146///
1147/// # Examples
1148///
1149/// Implementing `Display` on a type:
1150///
1151/// ```
1152/// use std::fmt;
1153///
1154/// struct Point {
1155/// x: i32,
1156/// y: i32,
1157/// }
1158///
1159/// impl fmt::Display for Point {
1160/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1161/// write!(f, "({}, {})", self.x, self.y)
1162/// }
1163/// }
1164///
1165/// let origin = Point { x: 0, y: 0 };
1166///
1167/// assert_eq!(format!("The origin is: {origin}"), "The origin is: (0, 0)");
1168/// ```
1169#[rustc_on_unimplemented(
1170 on(
1171 any(Self = "std::path::Path", Self = "std::path::PathBuf"),
1172 label = "`{Self}` cannot be formatted with the default formatter; call `.display()` on it",
1173 note = "call `.display()` or `.to_string_lossy()` to safely print paths, \
1174 as they may contain non-Unicode data",
1175 ),
1176 on(
1177 from_desugaring = "FormatLiteral",
1178 note = "in format strings you may be able to use `{{:?}}` (or {{:#?}} for pretty-print) instead",
1179 label = "`{Self}` cannot be formatted with the default formatter",
1180 ),
1181 message = "`{Self}` doesn't implement `{This}`"
1182)]
1183#[doc(alias = "{}")]
1184#[rustc_diagnostic_item = "Display"]
1185#[stable(feature = "rust1", since = "1.0.0")]
1186pub trait Display: PointeeSized {
1187 #[doc = include_str!("fmt_trait_method_doc.md")]
1188 ///
1189 /// # Examples
1190 ///
1191 /// ```
1192 /// use std::fmt;
1193 ///
1194 /// struct Position {
1195 /// longitude: f32,
1196 /// latitude: f32,
1197 /// }
1198 ///
1199 /// impl fmt::Display for Position {
1200 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1201 /// write!(f, "({}, {})", self.longitude, self.latitude)
1202 /// }
1203 /// }
1204 ///
1205 /// assert_eq!(
1206 /// "(1.987, 2.983)",
1207 /// format!("{}", Position { longitude: 1.987, latitude: 2.983, }),
1208 /// );
1209 /// ```
1210 #[stable(feature = "rust1", since = "1.0.0")]
1211 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1212}
1213
1214/// `o` formatting.
1215///
1216/// The `Octal` trait should format its output as a number in base-8.
1217///
1218/// For primitive signed integers (`i8` to `i128`, and `isize`),
1219/// negative values are formatted as the two’s complement representation.
1220///
1221/// The alternate flag, `#`, adds a `0o` in front of the output.
1222///
1223/// For more information on formatters, see [the module-level documentation][module].
1224///
1225/// [module]: ../../std/fmt/index.html
1226///
1227/// # Examples
1228///
1229/// Basic usage with `i32`:
1230///
1231/// ```
1232/// let x = 42; // 42 is '52' in octal
1233///
1234/// assert_eq!(format!("{x:o}"), "52");
1235/// assert_eq!(format!("{x:#o}"), "0o52");
1236///
1237/// assert_eq!(format!("{:o}", -16), "37777777760");
1238/// ```
1239///
1240/// Implementing `Octal` on a type:
1241///
1242/// ```
1243/// use std::fmt;
1244///
1245/// struct Length(i32);
1246///
1247/// impl fmt::Octal for Length {
1248/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1249/// let val = self.0;
1250///
1251/// fmt::Octal::fmt(&val, f) // delegate to i32's implementation
1252/// }
1253/// }
1254///
1255/// let l = Length(9);
1256///
1257/// assert_eq!(format!("l as octal is: {l:o}"), "l as octal is: 11");
1258///
1259/// assert_eq!(format!("l as octal is: {l:#06o}"), "l as octal is: 0o0011");
1260/// ```
1261#[stable(feature = "rust1", since = "1.0.0")]
1262pub trait Octal: PointeeSized {
1263 #[doc = include_str!("fmt_trait_method_doc.md")]
1264 #[stable(feature = "rust1", since = "1.0.0")]
1265 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1266}
1267
1268/// `b` formatting.
1269///
1270/// The `Binary` trait should format its output as a number in binary.
1271///
1272/// For primitive signed integers ([`i8`] to [`i128`], and [`isize`]),
1273/// negative values are formatted as the two’s complement representation.
1274///
1275/// The alternate flag, `#`, adds a `0b` in front of the output.
1276///
1277/// For more information on formatters, see [the module-level documentation][module].
1278///
1279/// [module]: ../../std/fmt/index.html
1280///
1281/// # Examples
1282///
1283/// Basic usage with [`i32`]:
1284///
1285/// ```
1286/// let x = 42; // 42 is '101010' in binary
1287///
1288/// assert_eq!(format!("{x:b}"), "101010");
1289/// assert_eq!(format!("{x:#b}"), "0b101010");
1290///
1291/// assert_eq!(format!("{:b}", -16), "11111111111111111111111111110000");
1292/// ```
1293///
1294/// Implementing `Binary` on a type:
1295///
1296/// ```
1297/// use std::fmt;
1298///
1299/// struct Length(i32);
1300///
1301/// impl fmt::Binary for Length {
1302/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1303/// let val = self.0;
1304///
1305/// fmt::Binary::fmt(&val, f) // delegate to i32's implementation
1306/// }
1307/// }
1308///
1309/// let l = Length(107);
1310///
1311/// assert_eq!(format!("l as binary is: {l:b}"), "l as binary is: 1101011");
1312///
1313/// assert_eq!(
1314/// // Note that the `0b` prefix added by `#` is included in the total width, so we
1315/// // need to add two to correctly display all 32 bits.
1316/// format!("l as binary is: {l:#034b}"),
1317/// "l as binary is: 0b00000000000000000000000001101011"
1318/// );
1319/// ```
1320#[stable(feature = "rust1", since = "1.0.0")]
1321pub trait Binary: PointeeSized {
1322 #[doc = include_str!("fmt_trait_method_doc.md")]
1323 #[stable(feature = "rust1", since = "1.0.0")]
1324 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1325}
1326
1327/// `x` formatting.
1328///
1329/// The `LowerHex` trait should format its output as a number in hexadecimal, with `a` through `f`
1330/// in lower case.
1331///
1332/// For primitive signed integers (`i8` to `i128`, and `isize`),
1333/// negative values are formatted as the two’s complement representation.
1334///
1335/// The alternate flag, `#`, adds a `0x` in front of the output.
1336///
1337/// For more information on formatters, see [the module-level documentation][module].
1338///
1339/// [module]: ../../std/fmt/index.html
1340///
1341/// # Examples
1342///
1343/// Basic usage with `i32`:
1344///
1345/// ```
1346/// let y = 42; // 42 is '2a' in hex
1347///
1348/// assert_eq!(format!("{y:x}"), "2a");
1349/// assert_eq!(format!("{y:#x}"), "0x2a");
1350///
1351/// assert_eq!(format!("{:x}", -16), "fffffff0");
1352/// ```
1353///
1354/// Implementing `LowerHex` on a type:
1355///
1356/// ```
1357/// use std::fmt;
1358///
1359/// struct Length(i32);
1360///
1361/// impl fmt::LowerHex for Length {
1362/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1363/// let val = self.0;
1364///
1365/// fmt::LowerHex::fmt(&val, f) // delegate to i32's implementation
1366/// }
1367/// }
1368///
1369/// let l = Length(9);
1370///
1371/// assert_eq!(format!("l as hex is: {l:x}"), "l as hex is: 9");
1372///
1373/// assert_eq!(format!("l as hex is: {l:#010x}"), "l as hex is: 0x00000009");
1374/// ```
1375#[stable(feature = "rust1", since = "1.0.0")]
1376pub trait LowerHex: PointeeSized {
1377 #[doc = include_str!("fmt_trait_method_doc.md")]
1378 #[stable(feature = "rust1", since = "1.0.0")]
1379 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1380}
1381
1382/// `X` formatting.
1383///
1384/// The `UpperHex` trait should format its output as a number in hexadecimal, with `A` through `F`
1385/// in upper case.
1386///
1387/// For primitive signed integers (`i8` to `i128`, and `isize`),
1388/// negative values are formatted as the two’s complement representation.
1389///
1390/// The alternate flag, `#`, adds a `0x` in front of the output.
1391///
1392/// For more information on formatters, see [the module-level documentation][module].
1393///
1394/// [module]: ../../std/fmt/index.html
1395///
1396/// # Examples
1397///
1398/// Basic usage with `i32`:
1399///
1400/// ```
1401/// let y = 42; // 42 is '2A' in hex
1402///
1403/// assert_eq!(format!("{y:X}"), "2A");
1404/// assert_eq!(format!("{y:#X}"), "0x2A");
1405///
1406/// assert_eq!(format!("{:X}", -16), "FFFFFFF0");
1407/// ```
1408///
1409/// Implementing `UpperHex` on a type:
1410///
1411/// ```
1412/// use std::fmt;
1413///
1414/// struct Length(i32);
1415///
1416/// impl fmt::UpperHex for Length {
1417/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1418/// let val = self.0;
1419///
1420/// fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
1421/// }
1422/// }
1423///
1424/// let l = Length(i32::MAX);
1425///
1426/// assert_eq!(format!("l as hex is: {l:X}"), "l as hex is: 7FFFFFFF");
1427///
1428/// assert_eq!(format!("l as hex is: {l:#010X}"), "l as hex is: 0x7FFFFFFF");
1429/// ```
1430#[stable(feature = "rust1", since = "1.0.0")]
1431pub trait UpperHex: PointeeSized {
1432 #[doc = include_str!("fmt_trait_method_doc.md")]
1433 #[stable(feature = "rust1", since = "1.0.0")]
1434 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1435}
1436
1437/// `p` formatting.
1438///
1439/// The `Pointer` trait should format its output as a memory location. This is commonly presented
1440/// as hexadecimal. For more information on formatters, see [the module-level documentation][module].
1441///
1442/// Printing of pointers is not a reliable way to discover how Rust programs are implemented.
1443/// The act of reading an address changes the program itself, and may change how the data is represented
1444/// in memory, and may affect which optimizations are applied to the code.
1445///
1446/// The printed pointer values are not guaranteed to be stable nor unique identifiers of objects.
1447/// Rust allows moving values to different memory locations, and may reuse the same memory locations
1448/// for different purposes.
1449///
1450/// There is no guarantee that the printed value can be converted back to a pointer.
1451///
1452/// [module]: ../../std/fmt/index.html
1453///
1454/// # Examples
1455///
1456/// Basic usage with `&i32`:
1457///
1458/// ```
1459/// let x = &42;
1460///
1461/// let address = format!("{x:p}"); // this produces something like '0x7f06092ac6d0'
1462/// ```
1463///
1464/// Implementing `Pointer` on a type:
1465///
1466/// ```
1467/// use std::fmt;
1468///
1469/// struct Length(i32);
1470///
1471/// impl fmt::Pointer for Length {
1472/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1473/// // use `as` to convert to a `*const T`, which implements Pointer, which we can use
1474///
1475/// let ptr = self as *const Self;
1476/// fmt::Pointer::fmt(&ptr, f)
1477/// }
1478/// }
1479///
1480/// let l = Length(42);
1481///
1482/// println!("l is in memory here: {l:p}");
1483///
1484/// let l_ptr = format!("{l:018p}");
1485/// assert_eq!(l_ptr.len(), 18);
1486/// assert_eq!(&l_ptr[..2], "0x");
1487/// ```
1488#[stable(feature = "rust1", since = "1.0.0")]
1489#[rustc_diagnostic_item = "Pointer"]
1490pub trait Pointer: PointeeSized {
1491 #[doc = include_str!("fmt_trait_method_doc.md")]
1492 #[stable(feature = "rust1", since = "1.0.0")]
1493 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1494}
1495
1496/// `e` formatting.
1497///
1498/// The `LowerExp` trait should format its output in scientific notation with a lower-case `e`.
1499///
1500/// For more information on formatters, see [the module-level documentation][module].
1501///
1502/// [module]: ../../std/fmt/index.html
1503///
1504/// # Examples
1505///
1506/// Basic usage with `f64`:
1507///
1508/// ```
1509/// let x = 42.0; // 42.0 is '4.2e1' in scientific notation
1510///
1511/// assert_eq!(format!("{x:e}"), "4.2e1");
1512/// ```
1513///
1514/// Implementing `LowerExp` on a type:
1515///
1516/// ```
1517/// use std::fmt;
1518///
1519/// struct Length(i32);
1520///
1521/// impl fmt::LowerExp for Length {
1522/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1523/// let val = f64::from(self.0);
1524/// fmt::LowerExp::fmt(&val, f) // delegate to f64's implementation
1525/// }
1526/// }
1527///
1528/// let l = Length(100);
1529///
1530/// assert_eq!(
1531/// format!("l in scientific notation is: {l:e}"),
1532/// "l in scientific notation is: 1e2"
1533/// );
1534///
1535/// assert_eq!(
1536/// format!("l in scientific notation is: {l:05e}"),
1537/// "l in scientific notation is: 001e2"
1538/// );
1539/// ```
1540#[stable(feature = "rust1", since = "1.0.0")]
1541pub trait LowerExp: PointeeSized {
1542 #[doc = include_str!("fmt_trait_method_doc.md")]
1543 #[stable(feature = "rust1", since = "1.0.0")]
1544 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1545}
1546
1547/// `E` formatting.
1548///
1549/// The `UpperExp` trait should format its output in scientific notation with an upper-case `E`.
1550///
1551/// For more information on formatters, see [the module-level documentation][module].
1552///
1553/// [module]: ../../std/fmt/index.html
1554///
1555/// # Examples
1556///
1557/// Basic usage with `f64`:
1558///
1559/// ```
1560/// let x = 42.0; // 42.0 is '4.2E1' in scientific notation
1561///
1562/// assert_eq!(format!("{x:E}"), "4.2E1");
1563/// ```
1564///
1565/// Implementing `UpperExp` on a type:
1566///
1567/// ```
1568/// use std::fmt;
1569///
1570/// struct Length(i32);
1571///
1572/// impl fmt::UpperExp for Length {
1573/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1574/// let val = f64::from(self.0);
1575/// fmt::UpperExp::fmt(&val, f) // delegate to f64's implementation
1576/// }
1577/// }
1578///
1579/// let l = Length(100);
1580///
1581/// assert_eq!(
1582/// format!("l in scientific notation is: {l:E}"),
1583/// "l in scientific notation is: 1E2"
1584/// );
1585///
1586/// assert_eq!(
1587/// format!("l in scientific notation is: {l:05E}"),
1588/// "l in scientific notation is: 001E2"
1589/// );
1590/// ```
1591#[stable(feature = "rust1", since = "1.0.0")]
1592pub trait UpperExp: PointeeSized {
1593 #[doc = include_str!("fmt_trait_method_doc.md")]
1594 #[stable(feature = "rust1", since = "1.0.0")]
1595 fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1596}
1597
1598/// Takes an output stream and an `Arguments` struct that can be precompiled with
1599/// the `format_args!` macro.
1600///
1601/// The arguments will be formatted according to the specified format string
1602/// into the output stream provided.
1603///
1604/// # Examples
1605///
1606/// Basic usage:
1607///
1608/// ```
1609/// use std::fmt;
1610///
1611/// let mut output = String::new();
1612/// fmt::write(&mut output, format_args!("Hello {}!", "world"))
1613/// .expect("Error occurred while trying to write in String");
1614/// assert_eq!(output, "Hello world!");
1615/// ```
1616///
1617/// Please note that using [`write!`] might be preferable. Example:
1618///
1619/// ```
1620/// use std::fmt::Write;
1621///
1622/// let mut output = String::new();
1623/// write!(&mut output, "Hello {}!", "world")
1624/// .expect("Error occurred while trying to write in String");
1625/// assert_eq!(output, "Hello world!");
1626/// ```
1627///
1628/// [`write!`]: crate::write!
1629#[stable(feature = "rust1", since = "1.0.0")]
1630pub fn write(output: &mut dyn Write, fmt: Arguments<'_>) -> Result {
1631 if let Some(s) = fmt.as_str() {
1632 return output.write_str(s);
1633 }
1634
1635 let mut template = fmt.template;
1636 let args = fmt.args;
1637
1638 let mut arg_index = 0;
1639
1640 // See comment on `fmt::Arguments` for the details of how the template is encoded.
1641
1642 // This must match the encoding from `expand_format_args` in
1643 // compiler/rustc_ast_lowering/src/format.rs.
1644 loop {
1645 // SAFETY: We can assume the template is valid.
1646 let n = unsafe {
1647 let n = template.read();
1648 template = template.add(1);
1649 n
1650 };
1651
1652 if n == 0 {
1653 // End of template.
1654 return Ok(());
1655 } else if n < 0x80 {
1656 // Literal string piece of length `n`.
1657
1658 // SAFETY: We can assume the strings in the template are valid.
1659 let s = unsafe {
1660 let s = crate::str::from_raw_parts(template.as_ptr(), n as usize);
1661 template = template.add(n as usize);
1662 s
1663 };
1664 output.write_str(s)?;
1665 } else if n == 0x80 {
1666 // Literal string piece with a 16-bit length.
1667
1668 // SAFETY: We can assume the strings in the template are valid.
1669 let s = unsafe {
1670 let len = usize::from(u16::from_le_bytes(template.cast_array().read()));
1671 template = template.add(2);
1672 let s = crate::str::from_raw_parts(template.as_ptr(), len);
1673 template = template.add(len);
1674 s
1675 };
1676 output.write_str(s)?;
1677 } else if n == 0xC0 {
1678 // Placeholder for next argument with default options.
1679 //
1680 // Having this as a separate case improves performance for the common case.
1681
1682 // SAFETY: We can assume the template only refers to arguments that exist.
1683 unsafe {
1684 args.add(arg_index)
1685 .as_ref()
1686 .fmt(&mut Formatter::new(output, FormattingOptions::new()))?;
1687 }
1688 arg_index += 1;
1689 } else {
1690 // SAFETY: We can assume the template is valid.
1691 unsafe { assert_unchecked(n > 0xC0) };
1692
1693 // Placeholder with custom options.
1694
1695 let mut opt = FormattingOptions::new();
1696
1697 // SAFETY: We can assume the template is valid.
1698 unsafe {
1699 if n & 1 != 0 {
1700 opt.flags = u32::from_le_bytes(template.cast_array().read());
1701 template = template.add(4);
1702 }
1703 if n & 2 != 0 {
1704 opt.width = u16::from_le_bytes(template.cast_array().read());
1705 template = template.add(2);
1706 }
1707 if n & 4 != 0 {
1708 opt.precision = u16::from_le_bytes(template.cast_array().read());
1709 template = template.add(2);
1710 }
1711 if n & 8 != 0 {
1712 arg_index = usize::from(u16::from_le_bytes(template.cast_array().read()));
1713 template = template.add(2);
1714 }
1715 }
1716 if n & 16 != 0 {
1717 // Dynamic width from a usize argument.
1718 // SAFETY: We can assume the template only refers to arguments that exist.
1719 unsafe {
1720 opt.width = args.add(opt.width as usize).as_ref().as_u16().unwrap_unchecked();
1721 }
1722 }
1723 if n & 32 != 0 {
1724 // Dynamic precision from a usize argument.
1725 // SAFETY: We can assume the template only refers to arguments that exist.
1726 unsafe {
1727 opt.precision =
1728 args.add(opt.precision as usize).as_ref().as_u16().unwrap_unchecked();
1729 }
1730 }
1731
1732 // SAFETY: We can assume the template only refers to arguments that exist.
1733 unsafe {
1734 args.add(arg_index).as_ref().fmt(&mut Formatter::new(output, opt))?;
1735 }
1736 arg_index += 1;
1737 }
1738 }
1739}
1740
1741/// Padding after the end of something. Returned by `Formatter::padding`.
1742#[must_use = "don't forget to write the post padding"]
1743pub(crate) struct PostPadding {
1744 fill: char,
1745 padding: u16,
1746}
1747
1748impl PostPadding {
1749 fn new(fill: char, padding: u16) -> PostPadding {
1750 PostPadding { fill, padding }
1751 }
1752
1753 /// Writes this post padding.
1754 pub(crate) fn write(self, f: &mut Formatter<'_>) -> Result {
1755 for _ in 0..self.padding {
1756 f.buf.write_char(self.fill)?;
1757 }
1758 Ok(())
1759 }
1760}
1761
1762impl<'a> Formatter<'a> {
1763 fn wrap_buf<'b, 'c, F>(&'b mut self, wrap: F) -> Formatter<'c>
1764 where
1765 'b: 'c,
1766 F: FnOnce(&'b mut (dyn Write + 'b)) -> &'c mut (dyn Write + 'c),
1767 {
1768 Formatter {
1769 // We want to change this
1770 buf: wrap(self.buf),
1771
1772 // And preserve these
1773 options: self.options,
1774 }
1775 }
1776
1777 // Helper methods used for padding and processing formatting arguments that
1778 // all formatting traits can use.
1779
1780 /// Performs the correct padding for an integer which has already been
1781 /// emitted into a str. The str should *not* contain the sign for the
1782 /// integer, that will be added by this method.
1783 ///
1784 /// # Arguments
1785 ///
1786 /// * is_nonnegative - whether the original integer was either positive or zero.
1787 /// * prefix - if the '#' character (Alternate) is provided, this
1788 /// is the prefix to put in front of the number.
1789 /// * buf - the byte array that the number has been formatted into
1790 ///
1791 /// This function will correctly account for the flags provided as well as
1792 /// the minimum width. It will not take precision into account.
1793 ///
1794 /// # Examples
1795 ///
1796 /// ```
1797 /// use std::fmt;
1798 ///
1799 /// struct Foo { nb: i32 }
1800 ///
1801 /// impl Foo {
1802 /// fn new(nb: i32) -> Foo {
1803 /// Foo {
1804 /// nb,
1805 /// }
1806 /// }
1807 /// }
1808 ///
1809 /// impl fmt::Display for Foo {
1810 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1811 /// // We need to remove "-" from the number output.
1812 /// let tmp = self.nb.abs().to_string();
1813 ///
1814 /// formatter.pad_integral(self.nb >= 0, "Foo ", &tmp)
1815 /// }
1816 /// }
1817 ///
1818 /// assert_eq!(format!("{}", Foo::new(2)), "2");
1819 /// assert_eq!(format!("{}", Foo::new(-1)), "-1");
1820 /// assert_eq!(format!("{}", Foo::new(0)), "0");
1821 /// assert_eq!(format!("{:#}", Foo::new(-1)), "-Foo 1");
1822 /// assert_eq!(format!("{:0>#8}", Foo::new(-1)), "00-Foo 1");
1823 /// ```
1824 #[stable(feature = "rust1", since = "1.0.0")]
1825 pub fn pad_integral(&mut self, is_nonnegative: bool, prefix: &str, buf: &str) -> Result {
1826 let mut width = buf.len();
1827
1828 let mut sign = None;
1829 if !is_nonnegative {
1830 sign = Some('-');
1831 width += 1;
1832 } else if self.sign_plus() {
1833 sign = Some('+');
1834 width += 1;
1835 }
1836
1837 let prefix = if self.alternate() {
1838 width += prefix.chars().count();
1839 Some(prefix)
1840 } else {
1841 None
1842 };
1843
1844 // Writes the sign if it exists, and then the prefix if it was requested
1845 #[inline(never)]
1846 fn write_prefix(f: &mut Formatter<'_>, sign: Option<char>, prefix: Option<&str>) -> Result {
1847 if let Some(c) = sign {
1848 f.buf.write_char(c)?;
1849 }
1850 if let Some(prefix) = prefix { f.buf.write_str(prefix) } else { Ok(()) }
1851 }
1852
1853 // The `width` field is more of a `min-width` parameter at this point.
1854 let min = self.options.width;
1855 if width >= usize::from(min) {
1856 // We're over the minimum width, so then we can just write the bytes.
1857 write_prefix(self, sign, prefix)?;
1858 self.buf.write_str(buf)
1859 } else if self.sign_aware_zero_pad() {
1860 // The sign and prefix goes before the padding if the fill character
1861 // is zero
1862 let old_options = self.options;
1863 self.options.fill('0').align(Some(Alignment::Right));
1864 write_prefix(self, sign, prefix)?;
1865 let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1866 self.buf.write_str(buf)?;
1867 post_padding.write(self)?;
1868 self.options = old_options;
1869 Ok(())
1870 } else {
1871 // Otherwise, the sign and prefix goes after the padding
1872 let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1873 write_prefix(self, sign, prefix)?;
1874 self.buf.write_str(buf)?;
1875 post_padding.write(self)
1876 }
1877 }
1878
1879 /// Takes a string slice and emits it to the internal buffer after applying
1880 /// the relevant formatting flags specified.
1881 ///
1882 /// The flags recognized for generic strings are:
1883 ///
1884 /// * width - the minimum width of what to emit
1885 /// * fill/align - what to emit and where to emit it if the string
1886 /// provided needs to be padded
1887 /// * precision - the maximum length to emit, the string is truncated if it
1888 /// is longer than this length
1889 ///
1890 /// Notably this function ignores the `flag` parameters.
1891 ///
1892 /// # Examples
1893 ///
1894 /// ```
1895 /// use std::fmt;
1896 ///
1897 /// struct Foo;
1898 ///
1899 /// impl fmt::Display for Foo {
1900 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1901 /// formatter.pad("Foo")
1902 /// }
1903 /// }
1904 ///
1905 /// assert_eq!(format!("{Foo:<4}"), "Foo ");
1906 /// assert_eq!(format!("{Foo:0>4}"), "0Foo");
1907 /// ```
1908 #[stable(feature = "rust1", since = "1.0.0")]
1909 pub fn pad(&mut self, s: &str) -> Result {
1910 // Make sure there's a fast path up front.
1911 if self.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
1912 return self.buf.write_str(s);
1913 }
1914
1915 // The `precision` field can be interpreted as a maximum width for the
1916 // string being formatted.
1917 let (s, char_count) = if let Some(max_char_count) = self.options.get_precision() {
1918 let mut iter = s.char_indices();
1919 let remaining = match iter.advance_by(usize::from(max_char_count)) {
1920 Ok(()) => 0,
1921 Err(remaining) => remaining.get(),
1922 };
1923 // SAFETY: The offset of `.char_indices()` is guaranteed to be
1924 // in-bounds and between character boundaries.
1925 let truncated = unsafe { s.get_unchecked(..iter.offset()) };
1926 (truncated, usize::from(max_char_count) - remaining)
1927 } else {
1928 // Use the optimized char counting algorithm for the full string.
1929 (s, s.chars().count())
1930 };
1931
1932 // The `width` field is more of a minimum width parameter at this point.
1933 if char_count < usize::from(self.options.width) {
1934 // If we're under the minimum width, then fill up the minimum width
1935 // with the specified string + some alignment.
1936 let post_padding =
1937 self.padding(self.options.width - char_count as u16, Alignment::Left)?;
1938 self.buf.write_str(s)?;
1939 post_padding.write(self)
1940 } else {
1941 // If we're over the minimum width or there is no minimum width, we
1942 // can just emit the string.
1943 self.buf.write_str(s)
1944 }
1945 }
1946
1947 /// Writes the pre-padding and returns the unwritten post-padding.
1948 ///
1949 /// Callers are responsible for ensuring post-padding is written after the
1950 /// thing that is being padded.
1951 pub(crate) fn padding(
1952 &mut self,
1953 padding: u16,
1954 default: Alignment,
1955 ) -> result::Result<PostPadding, Error> {
1956 let align = self.options.get_align().unwrap_or(default);
1957 let fill = self.options.get_fill();
1958
1959 let padding_left = match align {
1960 Alignment::Left => 0,
1961 Alignment::Right => padding,
1962 Alignment::Center => padding / 2,
1963 };
1964
1965 for _ in 0..padding_left {
1966 self.buf.write_char(fill)?;
1967 }
1968
1969 Ok(PostPadding::new(fill, padding - padding_left))
1970 }
1971
1972 /// Takes the formatted parts and applies the padding.
1973 ///
1974 /// Assumes that the caller already has rendered the parts with required precision,
1975 /// so that `self.precision` can be ignored.
1976 ///
1977 /// # Safety
1978 ///
1979 /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
1980 unsafe fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
1981 if self.options.width == 0 {
1982 // this is the common case and we take a shortcut
1983 // SAFETY: Per the precondition.
1984 unsafe { self.write_formatted_parts(formatted) }
1985 } else {
1986 // for the sign-aware zero padding, we render the sign first and
1987 // behave as if we had no sign from the beginning.
1988 let mut formatted = formatted.clone();
1989 let mut width = self.options.width;
1990 let old_options = self.options;
1991 if self.sign_aware_zero_pad() {
1992 // a sign always goes first
1993 let sign = formatted.sign;
1994 self.buf.write_str(sign)?;
1995
1996 // remove the sign from the formatted parts
1997 formatted.sign = "";
1998 width = width.saturating_sub(sign.len() as u16);
1999 self.options.fill('0').align(Some(Alignment::Right));
2000 }
2001
2002 // remaining parts go through the ordinary padding process.
2003 let len = formatted.len();
2004 let ret = if usize::from(width) <= len {
2005 // no padding
2006 // SAFETY: Per the precondition.
2007 unsafe { self.write_formatted_parts(&formatted) }
2008 } else {
2009 let post_padding = self.padding(width - len as u16, Alignment::Right)?;
2010 // SAFETY: Per the precondition.
2011 unsafe {
2012 self.write_formatted_parts(&formatted)?;
2013 }
2014 post_padding.write(self)
2015 };
2016 self.options = old_options;
2017 ret
2018 }
2019 }
2020
2021 /// # Safety
2022 ///
2023 /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
2024 unsafe fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
2025 unsafe fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
2026 // SAFETY: This is used for `numfmt::Part::Num` and `numfmt::Part::Copy`.
2027 // It's safe to use for `numfmt::Part::Num` since every char `c` is between
2028 // `b'0'` and `b'9'`, which means `s` is valid UTF-8. It's safe to use for
2029 // `numfmt::Part::Copy` due to this function's precondition.
2030 buf.write_str(unsafe { str::from_utf8_unchecked(s) })
2031 }
2032
2033 if !formatted.sign.is_empty() {
2034 self.buf.write_str(formatted.sign)?;
2035 }
2036 for part in formatted.parts {
2037 match *part {
2038 numfmt::Part::Zero(mut nzeroes) => {
2039 const ZEROES: &str = // 64 zeroes
2040 "0000000000000000000000000000000000000000000000000000000000000000";
2041 while nzeroes > ZEROES.len() {
2042 self.buf.write_str(ZEROES)?;
2043 nzeroes -= ZEROES.len();
2044 }
2045 if nzeroes > 0 {
2046 self.buf.write_str(&ZEROES[..nzeroes])?;
2047 }
2048 }
2049 numfmt::Part::Num(mut v) => {
2050 let mut s = [0; 5];
2051 let len = part.len();
2052 for c in s[..len].iter_mut().rev() {
2053 *c = b'0' + (v % 10) as u8;
2054 v /= 10;
2055 }
2056 // SAFETY: Per the precondition.
2057 unsafe {
2058 write_bytes(self.buf, &s[..len])?;
2059 }
2060 }
2061 // SAFETY: Per the precondition.
2062 numfmt::Part::Copy(buf) => unsafe {
2063 write_bytes(self.buf, buf)?;
2064 },
2065 }
2066 }
2067 Ok(())
2068 }
2069
2070 /// Writes some data to the underlying buffer contained within this
2071 /// formatter.
2072 ///
2073 /// # Examples
2074 ///
2075 /// ```
2076 /// use std::fmt;
2077 ///
2078 /// struct Foo;
2079 ///
2080 /// impl fmt::Display for Foo {
2081 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2082 /// formatter.write_str("Foo")
2083 /// // This is equivalent to:
2084 /// // write!(formatter, "Foo")
2085 /// }
2086 /// }
2087 ///
2088 /// assert_eq!(format!("{Foo}"), "Foo");
2089 /// assert_eq!(format!("{Foo:0>8}"), "Foo");
2090 /// ```
2091 #[stable(feature = "rust1", since = "1.0.0")]
2092 pub fn write_str(&mut self, data: &str) -> Result {
2093 self.buf.write_str(data)
2094 }
2095
2096 /// Glue for usage of the [`write!`] macro with implementors of this trait.
2097 ///
2098 /// This method should generally not be invoked manually, but rather through
2099 /// the [`write!`] macro itself.
2100 ///
2101 /// Writes some formatted information into this instance.
2102 ///
2103 /// # Examples
2104 ///
2105 /// ```
2106 /// use std::fmt;
2107 ///
2108 /// struct Foo(i32);
2109 ///
2110 /// impl fmt::Display for Foo {
2111 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2112 /// formatter.write_fmt(format_args!("Foo {}", self.0))
2113 /// }
2114 /// }
2115 ///
2116 /// assert_eq!(format!("{}", Foo(-1)), "Foo -1");
2117 /// assert_eq!(format!("{:0>8}", Foo(2)), "Foo 2");
2118 /// ```
2119 #[stable(feature = "rust1", since = "1.0.0")]
2120 #[inline]
2121 pub fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result {
2122 if let Some(s) = fmt.as_statically_known_str() {
2123 self.buf.write_str(s)
2124 } else {
2125 write(self.buf, fmt)
2126 }
2127 }
2128
2129 /// Returns flags for formatting.
2130 #[must_use]
2131 #[stable(feature = "rust1", since = "1.0.0")]
2132 #[deprecated(
2133 since = "1.24.0",
2134 note = "use the `sign_plus`, `sign_minus`, `alternate`, \
2135 or `sign_aware_zero_pad` methods instead"
2136 )]
2137 pub fn flags(&self) -> u32 {
2138 // Extract the debug upper/lower hex, zero pad, alternate, and plus/minus flags
2139 // to stay compatible with older versions of Rust.
2140 self.options.flags >> 21 & 0x3F
2141 }
2142
2143 /// Returns the character used as 'fill' whenever there is alignment.
2144 ///
2145 /// # Examples
2146 ///
2147 /// ```
2148 /// use std::fmt;
2149 ///
2150 /// struct Foo;
2151 ///
2152 /// impl fmt::Display for Foo {
2153 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2154 /// let c = formatter.fill();
2155 /// if let Some(width) = formatter.width() {
2156 /// for _ in 0..width {
2157 /// write!(formatter, "{c}")?;
2158 /// }
2159 /// Ok(())
2160 /// } else {
2161 /// write!(formatter, "{c}")
2162 /// }
2163 /// }
2164 /// }
2165 ///
2166 /// // We set alignment to the right with ">".
2167 /// assert_eq!(format!("{Foo:G>3}"), "GGG");
2168 /// assert_eq!(format!("{Foo:t>6}"), "tttttt");
2169 /// ```
2170 #[must_use]
2171 #[stable(feature = "fmt_flags", since = "1.5.0")]
2172 pub fn fill(&self) -> char {
2173 self.options.get_fill()
2174 }
2175
2176 /// Returns a flag indicating what form of alignment was requested.
2177 ///
2178 /// # Examples
2179 ///
2180 /// ```
2181 /// use std::fmt::{self, Alignment};
2182 ///
2183 /// struct Foo;
2184 ///
2185 /// impl fmt::Display for Foo {
2186 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2187 /// let s = if let Some(s) = formatter.align() {
2188 /// match s {
2189 /// Alignment::Left => "left",
2190 /// Alignment::Right => "right",
2191 /// Alignment::Center => "center",
2192 /// }
2193 /// } else {
2194 /// "into the void"
2195 /// };
2196 /// write!(formatter, "{s}")
2197 /// }
2198 /// }
2199 ///
2200 /// assert_eq!(format!("{Foo:<}"), "left");
2201 /// assert_eq!(format!("{Foo:>}"), "right");
2202 /// assert_eq!(format!("{Foo:^}"), "center");
2203 /// assert_eq!(format!("{Foo}"), "into the void");
2204 /// ```
2205 #[must_use]
2206 #[stable(feature = "fmt_flags_align", since = "1.28.0")]
2207 pub fn align(&self) -> Option<Alignment> {
2208 self.options.get_align()
2209 }
2210
2211 /// Returns the optionally specified integer width that the output should be.
2212 ///
2213 /// # Examples
2214 ///
2215 /// ```
2216 /// use std::fmt;
2217 ///
2218 /// struct Foo(i32);
2219 ///
2220 /// impl fmt::Display for Foo {
2221 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2222 /// if let Some(width) = formatter.width() {
2223 /// // If we received a width, we use it
2224 /// write!(formatter, "{:width$}", format!("Foo({})", self.0), width = width)
2225 /// } else {
2226 /// // Otherwise we do nothing special
2227 /// write!(formatter, "Foo({})", self.0)
2228 /// }
2229 /// }
2230 /// }
2231 ///
2232 /// assert_eq!(format!("{:10}", Foo(23)), "Foo(23) ");
2233 /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2234 /// ```
2235 #[must_use]
2236 #[stable(feature = "fmt_flags", since = "1.5.0")]
2237 pub fn width(&self) -> Option<usize> {
2238 if self.options.flags & flags::WIDTH_FLAG == 0 {
2239 None
2240 } else {
2241 Some(self.options.width as usize)
2242 }
2243 }
2244
2245 /// Returns the optionally specified precision for numeric types.
2246 /// Alternatively, the maximum width for string types.
2247 ///
2248 /// # Examples
2249 ///
2250 /// ```
2251 /// use std::fmt;
2252 ///
2253 /// struct Foo(f32);
2254 ///
2255 /// impl fmt::Display for Foo {
2256 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2257 /// if let Some(precision) = formatter.precision() {
2258 /// // If we received a precision, we use it.
2259 /// write!(formatter, "Foo({1:.*})", precision, self.0)
2260 /// } else {
2261 /// // Otherwise we default to 2.
2262 /// write!(formatter, "Foo({:.2})", self.0)
2263 /// }
2264 /// }
2265 /// }
2266 ///
2267 /// assert_eq!(format!("{:.4}", Foo(23.2)), "Foo(23.2000)");
2268 /// assert_eq!(format!("{}", Foo(23.2)), "Foo(23.20)");
2269 /// ```
2270 #[must_use]
2271 #[stable(feature = "fmt_flags", since = "1.5.0")]
2272 pub fn precision(&self) -> Option<usize> {
2273 if self.options.flags & flags::PRECISION_FLAG == 0 {
2274 None
2275 } else {
2276 Some(self.options.precision as usize)
2277 }
2278 }
2279
2280 /// Determines if the `+` flag was specified.
2281 ///
2282 /// # Examples
2283 ///
2284 /// ```
2285 /// use std::fmt;
2286 ///
2287 /// struct Foo(i32);
2288 ///
2289 /// impl fmt::Display for Foo {
2290 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2291 /// if formatter.sign_plus() {
2292 /// write!(formatter,
2293 /// "Foo({}{})",
2294 /// if self.0 < 0 { '-' } else { '+' },
2295 /// self.0.abs())
2296 /// } else {
2297 /// write!(formatter, "Foo({})", self.0)
2298 /// }
2299 /// }
2300 /// }
2301 ///
2302 /// assert_eq!(format!("{:+}", Foo(23)), "Foo(+23)");
2303 /// assert_eq!(format!("{:+}", Foo(-23)), "Foo(-23)");
2304 /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2305 /// ```
2306 #[must_use]
2307 #[stable(feature = "fmt_flags", since = "1.5.0")]
2308 pub fn sign_plus(&self) -> bool {
2309 self.options.flags & flags::SIGN_PLUS_FLAG != 0
2310 }
2311
2312 /// Determines if the `-` flag was specified.
2313 ///
2314 /// # Examples
2315 ///
2316 /// ```
2317 /// use std::fmt;
2318 ///
2319 /// struct Foo(i32);
2320 ///
2321 /// impl fmt::Display for Foo {
2322 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2323 /// if formatter.sign_minus() {
2324 /// // You want a minus sign? Have one!
2325 /// write!(formatter, "-Foo({})", self.0)
2326 /// } else {
2327 /// write!(formatter, "Foo({})", self.0)
2328 /// }
2329 /// }
2330 /// }
2331 ///
2332 /// assert_eq!(format!("{:-}", Foo(23)), "-Foo(23)");
2333 /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2334 /// ```
2335 #[must_use]
2336 #[stable(feature = "fmt_flags", since = "1.5.0")]
2337 pub fn sign_minus(&self) -> bool {
2338 self.options.flags & flags::SIGN_MINUS_FLAG != 0
2339 }
2340
2341 /// Determines if the `#` flag was specified.
2342 ///
2343 /// # Examples
2344 ///
2345 /// ```
2346 /// use std::fmt;
2347 ///
2348 /// struct Foo(i32);
2349 ///
2350 /// impl fmt::Display for Foo {
2351 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2352 /// if formatter.alternate() {
2353 /// write!(formatter, "Foo({})", self.0)
2354 /// } else {
2355 /// write!(formatter, "{}", self.0)
2356 /// }
2357 /// }
2358 /// }
2359 ///
2360 /// assert_eq!(format!("{:#}", Foo(23)), "Foo(23)");
2361 /// assert_eq!(format!("{}", Foo(23)), "23");
2362 /// ```
2363 #[must_use]
2364 #[stable(feature = "fmt_flags", since = "1.5.0")]
2365 pub fn alternate(&self) -> bool {
2366 self.options.flags & flags::ALTERNATE_FLAG != 0
2367 }
2368
2369 /// Determines if the `0` flag was specified.
2370 ///
2371 /// # Examples
2372 ///
2373 /// ```
2374 /// use std::fmt;
2375 ///
2376 /// struct Foo(i32);
2377 ///
2378 /// impl fmt::Display for Foo {
2379 /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2380 /// assert!(formatter.sign_aware_zero_pad());
2381 /// assert_eq!(formatter.width(), Some(4));
2382 /// // We ignore the formatter's options.
2383 /// write!(formatter, "{}", self.0)
2384 /// }
2385 /// }
2386 ///
2387 /// assert_eq!(format!("{:04}", Foo(23)), "23");
2388 /// ```
2389 #[must_use]
2390 #[stable(feature = "fmt_flags", since = "1.5.0")]
2391 pub fn sign_aware_zero_pad(&self) -> bool {
2392 self.options.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
2393 }
2394
2395 // FIXME: Decide what public API we want for these two flags.
2396 // https://github.com/rust-lang/rust/issues/48584
2397 fn debug_lower_hex(&self) -> bool {
2398 self.options.flags & flags::DEBUG_LOWER_HEX_FLAG != 0
2399 }
2400 fn debug_upper_hex(&self) -> bool {
2401 self.options.flags & flags::DEBUG_UPPER_HEX_FLAG != 0
2402 }
2403
2404 /// Creates a [`DebugStruct`] builder designed to assist with creation of
2405 /// [`fmt::Debug`] implementations for structs.
2406 ///
2407 /// [`fmt::Debug`]: self::Debug
2408 ///
2409 /// # Examples
2410 ///
2411 /// ```rust
2412 /// use std::fmt;
2413 /// use std::net::Ipv4Addr;
2414 ///
2415 /// struct Foo {
2416 /// bar: i32,
2417 /// baz: String,
2418 /// addr: Ipv4Addr,
2419 /// }
2420 ///
2421 /// impl fmt::Debug for Foo {
2422 /// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2423 /// fmt.debug_struct("Foo")
2424 /// .field("bar", &self.bar)
2425 /// .field("baz", &self.baz)
2426 /// .field("addr", &format_args!("{}", self.addr))
2427 /// .finish()
2428 /// }
2429 /// }
2430 ///
2431 /// assert_eq!(
2432 /// "Foo { bar: 10, baz: \"Hello World\", addr: 127.0.0.1 }",
2433 /// format!("{:?}", Foo {
2434 /// bar: 10,
2435 /// baz: "Hello World".to_string(),
2436 /// addr: Ipv4Addr::new(127, 0, 0, 1),
2437 /// })
2438 /// );
2439 /// ```
2440 #[stable(feature = "debug_builders", since = "1.2.0")]
2441 pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
2442 builders::debug_struct_new(self, name)
2443 }
2444
2445 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2446 /// binaries. `debug_struct_fields_finish` is more general, but this is
2447 /// faster for 1 field.
2448 #[doc(hidden)]
2449 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2450 pub fn debug_struct_field1_finish<'b>(
2451 &'b mut self,
2452 name: &str,
2453 name1: &str,
2454 value1: &dyn Debug,
2455 ) -> Result {
2456 let mut builder = builders::debug_struct_new(self, name);
2457 builder.field(name1, value1);
2458 builder.finish()
2459 }
2460
2461 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2462 /// binaries. `debug_struct_fields_finish` is more general, but this is
2463 /// faster for 2 fields.
2464 #[doc(hidden)]
2465 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2466 pub fn debug_struct_field2_finish<'b>(
2467 &'b mut self,
2468 name: &str,
2469 name1: &str,
2470 value1: &dyn Debug,
2471 name2: &str,
2472 value2: &dyn Debug,
2473 ) -> Result {
2474 let mut builder = builders::debug_struct_new(self, name);
2475 builder.field(name1, value1);
2476 builder.field(name2, value2);
2477 builder.finish()
2478 }
2479
2480 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2481 /// binaries. `debug_struct_fields_finish` is more general, but this is
2482 /// faster for 3 fields.
2483 #[doc(hidden)]
2484 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2485 pub fn debug_struct_field3_finish<'b>(
2486 &'b mut self,
2487 name: &str,
2488 name1: &str,
2489 value1: &dyn Debug,
2490 name2: &str,
2491 value2: &dyn Debug,
2492 name3: &str,
2493 value3: &dyn Debug,
2494 ) -> Result {
2495 let mut builder = builders::debug_struct_new(self, name);
2496 builder.field(name1, value1);
2497 builder.field(name2, value2);
2498 builder.field(name3, value3);
2499 builder.finish()
2500 }
2501
2502 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2503 /// binaries. `debug_struct_fields_finish` is more general, but this is
2504 /// faster for 4 fields.
2505 #[doc(hidden)]
2506 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2507 pub fn debug_struct_field4_finish<'b>(
2508 &'b mut self,
2509 name: &str,
2510 name1: &str,
2511 value1: &dyn Debug,
2512 name2: &str,
2513 value2: &dyn Debug,
2514 name3: &str,
2515 value3: &dyn Debug,
2516 name4: &str,
2517 value4: &dyn Debug,
2518 ) -> Result {
2519 let mut builder = builders::debug_struct_new(self, name);
2520 builder.field(name1, value1);
2521 builder.field(name2, value2);
2522 builder.field(name3, value3);
2523 builder.field(name4, value4);
2524 builder.finish()
2525 }
2526
2527 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2528 /// binaries. `debug_struct_fields_finish` is more general, but this is
2529 /// faster for 5 fields.
2530 #[doc(hidden)]
2531 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2532 pub fn debug_struct_field5_finish<'b>(
2533 &'b mut self,
2534 name: &str,
2535 name1: &str,
2536 value1: &dyn Debug,
2537 name2: &str,
2538 value2: &dyn Debug,
2539 name3: &str,
2540 value3: &dyn Debug,
2541 name4: &str,
2542 value4: &dyn Debug,
2543 name5: &str,
2544 value5: &dyn Debug,
2545 ) -> Result {
2546 let mut builder = builders::debug_struct_new(self, name);
2547 builder.field(name1, value1);
2548 builder.field(name2, value2);
2549 builder.field(name3, value3);
2550 builder.field(name4, value4);
2551 builder.field(name5, value5);
2552 builder.finish()
2553 }
2554
2555 /// Shrinks `derive(Debug)` code, for faster compilation and smaller binaries.
2556 /// For the cases not covered by `debug_struct_field[12345]_finish`.
2557 #[doc(hidden)]
2558 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2559 pub fn debug_struct_fields_finish<'b>(
2560 &'b mut self,
2561 name: &str,
2562 names: &[&str],
2563 values: &[&dyn Debug],
2564 ) -> Result {
2565 assert_eq!(names.len(), values.len());
2566 let mut builder = builders::debug_struct_new(self, name);
2567 for (name, value) in iter::zip(names, values) {
2568 builder.field(name, value);
2569 }
2570 builder.finish()
2571 }
2572
2573 /// Creates a `DebugTuple` builder designed to assist with creation of
2574 /// `fmt::Debug` implementations for tuple structs.
2575 ///
2576 /// # Examples
2577 ///
2578 /// ```rust
2579 /// use std::fmt;
2580 /// use std::marker::PhantomData;
2581 ///
2582 /// struct Foo<T>(i32, String, PhantomData<T>);
2583 ///
2584 /// impl<T> fmt::Debug for Foo<T> {
2585 /// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2586 /// fmt.debug_tuple("Foo")
2587 /// .field(&self.0)
2588 /// .field(&self.1)
2589 /// .field(&format_args!("_"))
2590 /// .finish()
2591 /// }
2592 /// }
2593 ///
2594 /// assert_eq!(
2595 /// "Foo(10, \"Hello\", _)",
2596 /// format!("{:?}", Foo(10, "Hello".to_string(), PhantomData::<u8>))
2597 /// );
2598 /// ```
2599 #[stable(feature = "debug_builders", since = "1.2.0")]
2600 pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
2601 builders::debug_tuple_new(self, name)
2602 }
2603
2604 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2605 /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2606 /// for 1 field.
2607 #[doc(hidden)]
2608 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2609 pub fn debug_tuple_field1_finish<'b>(&'b mut self, name: &str, value1: &dyn Debug) -> Result {
2610 let mut builder = builders::debug_tuple_new(self, name);
2611 builder.field(value1);
2612 builder.finish()
2613 }
2614
2615 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2616 /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2617 /// for 2 fields.
2618 #[doc(hidden)]
2619 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2620 pub fn debug_tuple_field2_finish<'b>(
2621 &'b mut self,
2622 name: &str,
2623 value1: &dyn Debug,
2624 value2: &dyn Debug,
2625 ) -> Result {
2626 let mut builder = builders::debug_tuple_new(self, name);
2627 builder.field(value1);
2628 builder.field(value2);
2629 builder.finish()
2630 }
2631
2632 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2633 /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2634 /// for 3 fields.
2635 #[doc(hidden)]
2636 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2637 pub fn debug_tuple_field3_finish<'b>(
2638 &'b mut self,
2639 name: &str,
2640 value1: &dyn Debug,
2641 value2: &dyn Debug,
2642 value3: &dyn Debug,
2643 ) -> Result {
2644 let mut builder = builders::debug_tuple_new(self, name);
2645 builder.field(value1);
2646 builder.field(value2);
2647 builder.field(value3);
2648 builder.finish()
2649 }
2650
2651 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2652 /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2653 /// for 4 fields.
2654 #[doc(hidden)]
2655 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2656 pub fn debug_tuple_field4_finish<'b>(
2657 &'b mut self,
2658 name: &str,
2659 value1: &dyn Debug,
2660 value2: &dyn Debug,
2661 value3: &dyn Debug,
2662 value4: &dyn Debug,
2663 ) -> Result {
2664 let mut builder = builders::debug_tuple_new(self, name);
2665 builder.field(value1);
2666 builder.field(value2);
2667 builder.field(value3);
2668 builder.field(value4);
2669 builder.finish()
2670 }
2671
2672 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2673 /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2674 /// for 5 fields.
2675 #[doc(hidden)]
2676 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2677 pub fn debug_tuple_field5_finish<'b>(
2678 &'b mut self,
2679 name: &str,
2680 value1: &dyn Debug,
2681 value2: &dyn Debug,
2682 value3: &dyn Debug,
2683 value4: &dyn Debug,
2684 value5: &dyn Debug,
2685 ) -> Result {
2686 let mut builder = builders::debug_tuple_new(self, name);
2687 builder.field(value1);
2688 builder.field(value2);
2689 builder.field(value3);
2690 builder.field(value4);
2691 builder.field(value5);
2692 builder.finish()
2693 }
2694
2695 /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2696 /// binaries. For the cases not covered by `debug_tuple_field[12345]_finish`.
2697 #[doc(hidden)]
2698 #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2699 pub fn debug_tuple_fields_finish<'b>(
2700 &'b mut self,
2701 name: &str,
2702 values: &[&dyn Debug],
2703 ) -> Result {
2704 let mut builder = builders::debug_tuple_new(self, name);
2705 for value in values {
2706 builder.field(value);
2707 }
2708 builder.finish()
2709 }
2710
2711 /// Creates a `DebugList` builder designed to assist with creation of
2712 /// `fmt::Debug` implementations for list-like structures.
2713 ///
2714 /// # Examples
2715 ///
2716 /// ```rust
2717 /// use std::fmt;
2718 ///
2719 /// struct Foo(Vec<i32>);
2720 ///
2721 /// impl fmt::Debug for Foo {
2722 /// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2723 /// fmt.debug_list().entries(self.0.iter()).finish()
2724 /// }
2725 /// }
2726 ///
2727 /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "[10, 11]");
2728 /// ```
2729 #[stable(feature = "debug_builders", since = "1.2.0")]
2730 pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
2731 builders::debug_list_new(self)
2732 }
2733
2734 /// Creates a `DebugSet` builder designed to assist with creation of
2735 /// `fmt::Debug` implementations for set-like structures.
2736 ///
2737 /// # Examples
2738 ///
2739 /// ```rust
2740 /// use std::fmt;
2741 ///
2742 /// struct Foo(Vec<i32>);
2743 ///
2744 /// impl fmt::Debug for Foo {
2745 /// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2746 /// fmt.debug_set().entries(self.0.iter()).finish()
2747 /// }
2748 /// }
2749 ///
2750 /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "{10, 11}");
2751 /// ```
2752 ///
2753 /// [`format_args!`]: crate::format_args
2754 ///
2755 /// In this more complex example, we use [`format_args!`] and `.debug_set()`
2756 /// to build a list of match arms:
2757 ///
2758 /// ```rust
2759 /// use std::fmt;
2760 ///
2761 /// struct Arm<'a, L, R>(&'a (L, R));
2762 /// struct Table<'a, K, V>(&'a [(K, V)], V);
2763 ///
2764 /// impl<'a, L, R> fmt::Debug for Arm<'a, L, R>
2765 /// where
2766 /// L: 'a + fmt::Debug, R: 'a + fmt::Debug
2767 /// {
2768 /// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2769 /// L::fmt(&(self.0).0, fmt)?;
2770 /// fmt.write_str(" => ")?;
2771 /// R::fmt(&(self.0).1, fmt)
2772 /// }
2773 /// }
2774 ///
2775 /// impl<'a, K, V> fmt::Debug for Table<'a, K, V>
2776 /// where
2777 /// K: 'a + fmt::Debug, V: 'a + fmt::Debug
2778 /// {
2779 /// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2780 /// fmt.debug_set()
2781 /// .entries(self.0.iter().map(Arm))
2782 /// .entry(&Arm(&(format_args!("_"), &self.1)))
2783 /// .finish()
2784 /// }
2785 /// }
2786 /// ```
2787 #[stable(feature = "debug_builders", since = "1.2.0")]
2788 pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
2789 builders::debug_set_new(self)
2790 }
2791
2792 /// Creates a `DebugMap` builder designed to assist with creation of
2793 /// `fmt::Debug` implementations for map-like structures.
2794 ///
2795 /// # Examples
2796 ///
2797 /// ```rust
2798 /// use std::fmt;
2799 ///
2800 /// struct Foo(Vec<(String, i32)>);
2801 ///
2802 /// impl fmt::Debug for Foo {
2803 /// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2804 /// fmt.debug_map().entries(self.0.iter().map(|&(ref k, ref v)| (k, v))).finish()
2805 /// }
2806 /// }
2807 ///
2808 /// assert_eq!(
2809 /// format!("{:?}", Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)])),
2810 /// r#"{"A": 10, "B": 11}"#
2811 /// );
2812 /// ```
2813 #[stable(feature = "debug_builders", since = "1.2.0")]
2814 pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
2815 builders::debug_map_new(self)
2816 }
2817
2818 /// Returns the sign of this formatter (`+` or `-`).
2819 #[unstable(feature = "formatting_options", issue = "118117")]
2820 pub const fn sign(&self) -> Option<Sign> {
2821 self.options.get_sign()
2822 }
2823
2824 /// Returns the formatting options this formatter corresponds to.
2825 #[unstable(feature = "formatting_options", issue = "118117")]
2826 pub const fn options(&self) -> FormattingOptions {
2827 self.options
2828 }
2829}
2830
2831#[stable(since = "1.2.0", feature = "formatter_write")]
2832impl Write for Formatter<'_> {
2833 fn write_str(&mut self, s: &str) -> Result {
2834 self.buf.write_str(s)
2835 }
2836
2837 fn write_char(&mut self, c: char) -> Result {
2838 self.buf.write_char(c)
2839 }
2840
2841 #[inline]
2842 fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
2843 if let Some(s) = args.as_statically_known_str() {
2844 self.buf.write_str(s)
2845 } else {
2846 write(self.buf, args)
2847 }
2848 }
2849}
2850
2851#[stable(feature = "rust1", since = "1.0.0")]
2852impl Display for Error {
2853 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2854 Display::fmt("an error occurred when formatting an argument", f)
2855 }
2856}
2857
2858// Implementations of the core formatting traits
2859
2860macro_rules! fmt_refs {
2861 ($($tr:ident),*) => {
2862 $(
2863 #[stable(feature = "rust1", since = "1.0.0")]
2864 impl<T: PointeeSized + $tr> $tr for &T {
2865 fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2866 }
2867 #[stable(feature = "rust1", since = "1.0.0")]
2868 impl<T: PointeeSized + $tr> $tr for &mut T {
2869 fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2870 }
2871 )*
2872 }
2873}
2874
2875fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }
2876
2877#[unstable(feature = "never_type", issue = "35121")]
2878impl Debug for ! {
2879 #[inline]
2880 fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2881 *self
2882 }
2883}
2884
2885#[unstable(feature = "never_type", issue = "35121")]
2886impl Display for ! {
2887 #[inline]
2888 fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2889 *self
2890 }
2891}
2892
2893#[stable(feature = "rust1", since = "1.0.0")]
2894impl Debug for bool {
2895 #[inline]
2896 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2897 Display::fmt(self, f)
2898 }
2899}
2900
2901#[stable(feature = "rust1", since = "1.0.0")]
2902impl Display for bool {
2903 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2904 Display::fmt(if *self { "true" } else { "false" }, f)
2905 }
2906}
2907
2908#[stable(feature = "rust1", since = "1.0.0")]
2909impl Debug for str {
2910 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2911 f.write_char('"')?;
2912
2913 // substring we know is printable
2914 let mut printable_range = 0..0;
2915
2916 fn needs_escape(b: u8) -> bool {
2917 b > 0x7E || b < 0x20 || b == b'\\' || b == b'"'
2918 }
2919
2920 // the loop here first skips over runs of printable ASCII as a fast path.
2921 // other chars (unicode, or ASCII that needs escaping) are then handled per-`char`.
2922 let mut rest = self;
2923 while rest.len() > 0 {
2924 let Some(non_printable_start) = rest.as_bytes().iter().position(|&b| needs_escape(b))
2925 else {
2926 printable_range.end += rest.len();
2927 break;
2928 };
2929
2930 printable_range.end += non_printable_start;
2931 // SAFETY: the position was derived from an iterator, so is known to be within bounds, and at a char boundary
2932 rest = unsafe { rest.get_unchecked(non_printable_start..) };
2933
2934 let mut chars = rest.chars();
2935 if let Some(c) = chars.next() {
2936 let esc = c.escape_debug_ext(EscapeDebugExtArgs {
2937 escape_grapheme_extended: true,
2938 escape_single_quote: false,
2939 escape_double_quote: true,
2940 });
2941 if esc.len() != 1 {
2942 f.write_str(&self[printable_range.clone()])?;
2943 Display::fmt(&esc, f)?;
2944 printable_range.start = printable_range.end + c.len_utf8();
2945 }
2946 printable_range.end += c.len_utf8();
2947 }
2948 rest = chars.as_str();
2949 }
2950
2951 f.write_str(&self[printable_range])?;
2952
2953 f.write_char('"')
2954 }
2955}
2956
2957#[stable(feature = "rust1", since = "1.0.0")]
2958impl Display for str {
2959 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2960 f.pad(self)
2961 }
2962}
2963
2964#[stable(feature = "rust1", since = "1.0.0")]
2965impl Debug for char {
2966 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2967 f.write_char('\'')?;
2968 let esc = self.escape_debug_ext(EscapeDebugExtArgs {
2969 escape_grapheme_extended: true,
2970 escape_single_quote: true,
2971 escape_double_quote: false,
2972 });
2973 Display::fmt(&esc, f)?;
2974 f.write_char('\'')
2975 }
2976}
2977
2978#[stable(feature = "rust1", since = "1.0.0")]
2979impl Display for char {
2980 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2981 if f.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
2982 f.write_char(*self)
2983 } else {
2984 f.pad(self.encode_utf8(&mut [0; MAX_LEN_UTF8]))
2985 }
2986 }
2987}
2988
2989#[stable(feature = "rust1", since = "1.0.0")]
2990impl<T: PointeeSized> Pointer for *const T {
2991 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2992 if <<T as core::ptr::Pointee>::Metadata as core::unit::IsUnit>::is_unit() {
2993 pointer_fmt_inner(self.expose_provenance(), f)
2994 } else {
2995 f.debug_struct("Pointer")
2996 .field_with("addr", |f| pointer_fmt_inner(self.expose_provenance(), f))
2997 .field("metadata", &core::ptr::metadata(*self))
2998 .finish()
2999 }
3000 }
3001}
3002
3003/// Since the formatting will be identical for all pointer types, uses a
3004/// non-monomorphized implementation for the actual formatting to reduce the
3005/// amount of codegen work needed.
3006///
3007/// This uses `ptr_addr: usize` and not `ptr: *const ()` to be able to use this for
3008/// `fn(...) -> ...` without using [problematic] "Oxford Casts".
3009///
3010/// [problematic]: https://github.com/rust-lang/rust/issues/95489
3011pub(crate) fn pointer_fmt_inner(ptr_addr: usize, f: &mut Formatter<'_>) -> Result {
3012 let old_options = f.options;
3013
3014 // The alternate flag is already treated by LowerHex as being special-
3015 // it denotes whether to prefix with 0x. We use it to work out whether
3016 // or not to zero extend, and then unconditionally set it to get the
3017 // prefix.
3018 if f.options.get_alternate() {
3019 f.options.sign_aware_zero_pad(true);
3020
3021 if f.options.get_width().is_none() {
3022 f.options.width(Some((usize::BITS / 4) as u16 + 2));
3023 }
3024 }
3025 f.options.alternate(true);
3026
3027 let ret = LowerHex::fmt(&ptr_addr, f);
3028
3029 f.options = old_options;
3030
3031 ret
3032}
3033
3034#[stable(feature = "rust1", since = "1.0.0")]
3035impl<T: PointeeSized> Pointer for *mut T {
3036 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3037 Pointer::fmt(&(*self as *const T), f)
3038 }
3039}
3040
3041#[stable(feature = "rust1", since = "1.0.0")]
3042impl<T: PointeeSized> Pointer for &T {
3043 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3044 Pointer::fmt(&(*self as *const T), f)
3045 }
3046}
3047
3048#[stable(feature = "rust1", since = "1.0.0")]
3049impl<T: PointeeSized> Pointer for &mut T {
3050 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3051 Pointer::fmt(&(&**self as *const T), f)
3052 }
3053}
3054
3055// Implementation of Display/Debug for various core types
3056
3057#[stable(feature = "rust1", since = "1.0.0")]
3058impl<T: PointeeSized> Debug for *const T {
3059 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3060 Pointer::fmt(self, f)
3061 }
3062}
3063#[stable(feature = "rust1", since = "1.0.0")]
3064impl<T: PointeeSized> Debug for *mut T {
3065 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3066 Pointer::fmt(self, f)
3067 }
3068}
3069
3070macro_rules! peel {
3071 ($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
3072}
3073
3074macro_rules! tuple {
3075 () => ();
3076 ( $($name:ident,)+ ) => (
3077 maybe_tuple_doc! {
3078 $($name)+ @
3079 #[stable(feature = "rust1", since = "1.0.0")]
3080 impl<$($name:Debug),+> Debug for ($($name,)+) {
3081 #[allow(non_snake_case, unused_assignments)]
3082 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3083 let mut builder = f.debug_tuple("");
3084 let ($(ref $name,)+) = *self;
3085 $(
3086 builder.field(&$name);
3087 )+
3088
3089 builder.finish()
3090 }
3091 }
3092 }
3093 peel! { $($name,)+ }
3094 )
3095}
3096
3097macro_rules! maybe_tuple_doc {
3098 ($a:ident @ #[$meta:meta] $item:item) => {
3099 #[doc(fake_variadic)]
3100 #[doc = "This trait is implemented for tuples up to twelve items long."]
3101 #[$meta]
3102 $item
3103 };
3104 ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
3105 #[doc(hidden)]
3106 #[$meta]
3107 $item
3108 };
3109}
3110
3111tuple! { E, D, C, B, A, Z, Y, X, W, V, U, T, }
3112
3113#[stable(feature = "rust1", since = "1.0.0")]
3114impl<T: Debug> Debug for [T] {
3115 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3116 f.debug_list().entries(self.iter()).finish()
3117 }
3118}
3119
3120#[stable(feature = "rust1", since = "1.0.0")]
3121impl Debug for () {
3122 #[inline]
3123 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3124 f.pad("()")
3125 }
3126}
3127#[stable(feature = "rust1", since = "1.0.0")]
3128impl<T: ?Sized> Debug for PhantomData<T> {
3129 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3130 write!(f, "PhantomData<{}>", crate::any::type_name::<T>())
3131 }
3132}
3133
3134#[stable(feature = "rust1", since = "1.0.0")]
3135impl<T: Copy + Debug> Debug for Cell<T> {
3136 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3137 f.debug_struct("Cell").field("value", &self.get()).finish()
3138 }
3139}
3140
3141#[stable(feature = "rust1", since = "1.0.0")]
3142impl<T: ?Sized + Debug> Debug for RefCell<T> {
3143 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3144 let mut d = f.debug_struct("RefCell");
3145 match self.try_borrow() {
3146 Ok(borrow) => d.field("value", &borrow),
3147 Err(_) => d.field("value", &format_args!("<borrowed>")),
3148 };
3149 d.finish()
3150 }
3151}
3152
3153#[stable(feature = "rust1", since = "1.0.0")]
3154impl<T: ?Sized + Debug> Debug for Ref<'_, T> {
3155 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3156 Debug::fmt(&**self, f)
3157 }
3158}
3159
3160#[stable(feature = "rust1", since = "1.0.0")]
3161impl<T: ?Sized + Debug> Debug for RefMut<'_, T> {
3162 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3163 Debug::fmt(&*(self.deref()), f)
3164 }
3165}
3166
3167#[stable(feature = "core_impl_debug", since = "1.9.0")]
3168impl<T: ?Sized> Debug for UnsafeCell<T> {
3169 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3170 f.debug_struct("UnsafeCell").finish_non_exhaustive()
3171 }
3172}
3173
3174#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
3175impl<T: ?Sized> Debug for SyncUnsafeCell<T> {
3176 fn fmt(&self, f: &mut Formatter<'_>) -> Result {
3177 f.debug_struct("SyncUnsafeCell").finish_non_exhaustive()
3178 }
3179}
3180
3181// If you expected tests to be here, look instead at coretests/tests/fmt/;
3182// it's a lot easier than creating all of the rt::Piece structures here.
3183// There are also tests in alloctests/tests/fmt.rs, for those that need allocations.