core/mem/maybe_uninit.rs
1use crate::any::type_name;
2use crate::clone::TrivialClone;
3use crate::marker::Destruct;
4use crate::mem::ManuallyDrop;
5use crate::{fmt, intrinsics, ptr, slice};
6
7/// A wrapper type to construct uninitialized instances of `T`.
8///
9/// # Initialization invariant
10///
11/// The compiler, in general, assumes that a variable is properly initialized
12/// according to the requirements of the variable's type. For example, a variable of
13/// reference type must be aligned and non-null. This is an invariant that must
14/// *always* be upheld, even in unsafe code. As a consequence, zero-initializing a
15/// variable of reference type causes instantaneous [undefined behavior][ub],
16/// no matter whether that reference ever gets used to access memory:
17///
18/// ```rust,no_run
19/// # #![allow(invalid_value)]
20/// use std::mem::{self, MaybeUninit};
21///
22/// let x: &i32 = unsafe { mem::zeroed() }; // undefined behavior! ⚠️
23/// // The equivalent code with `MaybeUninit<&i32>`:
24/// let x: &i32 = unsafe { MaybeUninit::zeroed().assume_init() }; // undefined behavior! ⚠️
25/// ```
26///
27/// This is exploited by the compiler for various optimizations, such as eliding
28/// run-time checks and optimizing `enum` layout.
29///
30/// Similarly, entirely uninitialized memory may have any content, while a `bool` must
31/// always be `true` or `false`. Hence, creating an uninitialized `bool` is undefined behavior:
32///
33/// ```rust,no_run
34/// # #![allow(invalid_value)]
35/// use std::mem::{self, MaybeUninit};
36///
37/// let b: bool = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
38/// // The equivalent code with `MaybeUninit<bool>`:
39/// let b: bool = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
40/// ```
41///
42/// Moreover, uninitialized memory is special in that it does not have a fixed value ("fixed"
43/// meaning "it won't change without being written to"). Reading the same uninitialized byte
44/// multiple times can give different results. This makes it undefined behavior to have
45/// uninitialized data in a variable even if that variable has an integer type, which otherwise can
46/// hold any *fixed* bit pattern:
47///
48/// ```rust,no_run
49/// # #![allow(invalid_value)]
50/// use std::mem::{self, MaybeUninit};
51///
52/// let x: i32 = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
53/// // The equivalent code with `MaybeUninit<i32>`:
54/// let x: i32 = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
55/// ```
56/// On top of that, remember that most types have additional invariants beyond merely
57/// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
58/// is considered initialized (under the current implementation; this does not constitute
59/// a stable guarantee) because the only requirement the compiler knows about it
60/// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
61/// *immediate* undefined behavior, but will cause undefined behavior with most
62/// safe operations (including dropping it).
63///
64/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
65///
66/// # Examples
67///
68/// `MaybeUninit<T>` serves to enable unsafe code to deal with uninitialized data.
69/// It is a signal to the compiler indicating that the data here might *not*
70/// be initialized:
71///
72/// ```rust
73/// use std::mem::MaybeUninit;
74///
75/// // Create an explicitly uninitialized reference. The compiler knows that data inside
76/// // a `MaybeUninit<T>` may be invalid, and hence this is not UB:
77/// let mut x = MaybeUninit::<&i32>::uninit();
78/// // Set it to a valid value.
79/// x.write(&0);
80/// // Extract the initialized data -- this is only allowed *after* properly
81/// // initializing `x`!
82/// let x = unsafe { x.assume_init() };
83/// ```
84///
85/// The compiler then knows to not make any incorrect assumptions or optimizations on this code.
86///
87/// You can think of `MaybeUninit<T>` as being a bit like `Option<T>` but without
88/// any of the run-time tracking and without any of the safety checks.
89///
90/// ## out-pointers
91///
92/// You can use `MaybeUninit<T>` to implement "out-pointers": instead of returning data
93/// from a function, pass it a pointer to some (uninitialized) memory to put the
94/// result into. This can be useful when it is important for the caller to control
95/// how the memory the result is stored in gets allocated, and you want to avoid
96/// unnecessary moves.
97///
98/// ```
99/// use std::mem::MaybeUninit;
100///
101/// unsafe fn make_vec(out: *mut Vec<i32>) {
102/// // `write` does not drop the old contents, which is important.
103/// unsafe { out.write(vec![1, 2, 3]); }
104/// }
105///
106/// let mut v = MaybeUninit::uninit();
107/// unsafe { make_vec(v.as_mut_ptr()); }
108/// // Now we know `v` is initialized! This also makes sure the vector gets
109/// // properly dropped.
110/// let v = unsafe { v.assume_init() };
111/// assert_eq!(&v, &[1, 2, 3]);
112/// ```
113///
114/// ## Initializing an array element-by-element
115///
116/// `MaybeUninit<T>` can be used to initialize a large array element-by-element:
117///
118/// ```
119/// use std::mem::{self, MaybeUninit};
120///
121/// let data = {
122/// // Create an uninitialized array of `MaybeUninit`.
123/// let mut data: [MaybeUninit<Vec<u32>>; 1000] = [const { MaybeUninit::uninit() }; 1000];
124///
125/// // Dropping a `MaybeUninit` does nothing, so if there is a panic during this loop,
126/// // we have a memory leak, but there is no memory safety issue.
127/// for elem in &mut data[..] {
128/// elem.write(vec![42]);
129/// }
130///
131/// // Everything is initialized. Transmute the array to the
132/// // initialized type.
133/// unsafe { mem::transmute::<_, [Vec<u32>; 1000]>(data) }
134/// };
135///
136/// assert_eq!(&data[0], &[42]);
137/// ```
138///
139/// You can also work with partially initialized arrays, which could
140/// be found in low-level datastructures.
141///
142/// ```
143/// use std::mem::MaybeUninit;
144///
145/// // Create an uninitialized array of `MaybeUninit`.
146/// let mut data: [MaybeUninit<String>; 1000] = [const { MaybeUninit::uninit() }; 1000];
147/// // Count the number of elements we have assigned.
148/// let mut data_len: usize = 0;
149///
150/// for elem in &mut data[0..500] {
151/// elem.write(String::from("hello"));
152/// data_len += 1;
153/// }
154///
155/// // For each item in the array, drop if we allocated it.
156/// for elem in &mut data[0..data_len] {
157/// unsafe { elem.assume_init_drop(); }
158/// }
159/// ```
160///
161/// ## Initializing a struct field-by-field
162///
163/// You can use `MaybeUninit<T>`, and the [`std::ptr::addr_of_mut`] macro, to initialize structs field by field:
164///
165/// ```rust
166/// use std::mem::MaybeUninit;
167/// use std::ptr::addr_of_mut;
168///
169/// #[derive(Debug, PartialEq)]
170/// pub struct Foo {
171/// name: String,
172/// list: Vec<u8>,
173/// }
174///
175/// let foo = {
176/// let mut uninit: MaybeUninit<Foo> = MaybeUninit::uninit();
177/// let ptr = uninit.as_mut_ptr();
178///
179/// // Initializing the `name` field
180/// // Using `write` instead of assignment via `=` to not call `drop` on the
181/// // old, uninitialized value.
182/// unsafe { addr_of_mut!((*ptr).name).write("Bob".to_string()); }
183///
184/// // Initializing the `list` field
185/// // If there is a panic here, then the `String` in the `name` field leaks.
186/// unsafe { addr_of_mut!((*ptr).list).write(vec![0, 1, 2]); }
187///
188/// // All the fields are initialized, so we call `assume_init` to get an initialized Foo.
189/// unsafe { uninit.assume_init() }
190/// };
191///
192/// assert_eq!(
193/// foo,
194/// Foo {
195/// name: "Bob".to_string(),
196/// list: vec![0, 1, 2]
197/// }
198/// );
199/// ```
200/// [`std::ptr::addr_of_mut`]: crate::ptr::addr_of_mut
201/// [ub]: ../../reference/behavior-considered-undefined.html
202///
203/// # Layout
204///
205/// `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as `T`:
206///
207/// ```rust
208/// use std::mem::MaybeUninit;
209/// assert_eq!(size_of::<MaybeUninit<u64>>(), size_of::<u64>());
210/// assert_eq!(align_of::<MaybeUninit<u64>>(), align_of::<u64>());
211/// ```
212///
213/// However remember that a type *containing* a `MaybeUninit<T>` is not necessarily the same
214/// layout; Rust does not in general guarantee that the fields of a `Foo<T>` have the same order as
215/// a `Foo<U>` even if `T` and `U` have the same size and alignment. Furthermore because any bit
216/// value is valid for a `MaybeUninit<T>` the compiler can't apply non-zero/niche-filling
217/// optimizations, potentially resulting in a larger size:
218///
219/// ```rust
220/// # use std::mem::MaybeUninit;
221/// assert_eq!(size_of::<Option<bool>>(), 1);
222/// assert_eq!(size_of::<Option<MaybeUninit<bool>>>(), 2);
223/// ```
224///
225/// If `T` is FFI-safe, then so is `MaybeUninit<T>`.
226///
227/// While `MaybeUninit` is `#[repr(transparent)]` (indicating it guarantees the same size,
228/// alignment, and ABI as `T`), this does *not* change any of the previous caveats. `Option<T>` and
229/// `Option<MaybeUninit<T>>` may still have different sizes, and types containing a field of type
230/// `T` may be laid out (and sized) differently than if that field were `MaybeUninit<T>`.
231/// `MaybeUninit` is a union type, and `#[repr(transparent)]` on unions is unstable (see [the
232/// tracking issue](https://github.com/rust-lang/rust/issues/60405)). Over time, the exact
233/// guarantees of `#[repr(transparent)]` on unions may evolve, and `MaybeUninit` may or may not
234/// remain `#[repr(transparent)]`. That said, `MaybeUninit<T>` will *always* guarantee that it has
235/// the same size, alignment, and ABI as `T`; it's just that the way `MaybeUninit` implements that
236/// guarantee may evolve.
237///
238/// Note that even though `T` and `MaybeUninit<T>` are ABI compatible it is still unsound to
239/// transmute `&mut T` to `&mut MaybeUninit<T>` and expose that to safe code because it would allow
240/// safe code to access uninitialized memory:
241///
242/// ```rust,no_run
243/// use core::mem::MaybeUninit;
244///
245/// fn unsound_transmute<T>(val: &mut T) -> &mut MaybeUninit<T> {
246/// unsafe { core::mem::transmute(val) }
247/// }
248///
249/// fn main() {
250/// let mut code = 0;
251/// let code = &mut code;
252/// let code2 = unsound_transmute(code);
253/// *code2 = MaybeUninit::uninit();
254/// std::process::exit(*code); // UB! Accessing uninitialized memory.
255/// }
256/// ```
257///
258/// # Validity
259///
260/// `MaybeUninit<T>` has no validity requirements –- any sequence of [bytes] of
261/// the appropriate length, initialized or uninitialized, are a valid
262/// representation.
263///
264/// Moving or copying a value of type `MaybeUninit<T>` (i.e., performing a
265/// "typed copy") will exactly preserve the contents, including the
266/// [provenance], of all non-padding bytes of type `T` in the value's
267/// representation.
268///
269/// Therefore `MaybeUninit` can be used to perform a round trip of a value from
270/// type `T` to type `MaybeUninit<U>` then back to type `T`, while preserving
271/// the original value, if two conditions are met. One, type `U` must have the
272/// same size as type `T`. Two, for all byte offsets where type `U` has padding,
273/// the corresponding bytes in the representation of the value must be
274/// uninitialized.
275///
276/// For example, due to the fact that the type `[u8; size_of::<T>]` has no
277/// padding, the following is sound for any type `T` and will return the
278/// original value:
279///
280/// ```rust,no_run
281/// # use core::mem::{MaybeUninit, transmute};
282/// # struct T;
283/// fn identity(t: T) -> T {
284/// unsafe {
285/// let u: MaybeUninit<[u8; size_of::<T>()]> = transmute(t);
286/// transmute(u) // OK.
287/// }
288/// }
289/// ```
290///
291/// Note: Copying a value that contains references may implicitly reborrow them
292/// causing the provenance of the returned value to differ from that of the
293/// original. This applies equally to the trivial identity function:
294///
295/// ```rust,no_run
296/// fn trivial_identity<T>(t: T) -> T { t }
297/// ```
298///
299/// Note: Moving or copying a value whose representation has initialized bytes
300/// at byte offsets where the type has padding may lose the value of those
301/// bytes, so while the original value will be preserved, the original
302/// *representation* of that value as bytes may not be. Again, this applies
303/// equally to `trivial_identity`.
304///
305/// Note: Performing this round trip when type `U` has padding at byte offsets
306/// where the representation of the original value has initialized bytes may
307/// produce undefined behavior or a different value. For example, the following
308/// is unsound since `T` requires all bytes to be initialized:
309///
310/// ```rust,no_run
311/// # use core::mem::{MaybeUninit, transmute};
312/// #[repr(C)] struct T([u8; 4]);
313/// #[repr(C)] struct U(u8, u16);
314/// fn unsound_identity(t: T) -> T {
315/// unsafe {
316/// let u: MaybeUninit<U> = transmute(t);
317/// transmute(u) // UB.
318/// }
319/// }
320/// ```
321///
322/// Conversely, the following is sound since `T` allows uninitialized bytes in
323/// the representation of a value, but the round trip may alter the value:
324///
325/// ```rust,no_run
326/// # use core::mem::{MaybeUninit, transmute};
327/// #[repr(C)] struct T(MaybeUninit<[u8; 4]>);
328/// #[repr(C)] struct U(u8, u16);
329/// fn non_identity(t: T) -> T {
330/// unsafe {
331/// // May lose an initialized byte.
332/// let u: MaybeUninit<U> = transmute(t);
333/// transmute(u)
334/// }
335/// }
336/// ```
337///
338/// [bytes]: ../../reference/memory-model.html#bytes
339/// [provenance]: crate::ptr#provenance
340#[stable(feature = "maybe_uninit", since = "1.36.0")]
341// Lang item so we can wrap other types in it. This is useful for coroutines.
342#[lang = "maybe_uninit"]
343#[derive(Copy)]
344#[repr(transparent)]
345#[rustc_pub_transparent]
346pub union MaybeUninit<T> {
347 uninit: (),
348 value: ManuallyDrop<T>,
349}
350
351#[stable(feature = "maybe_uninit", since = "1.36.0")]
352impl<T: Copy> Clone for MaybeUninit<T> {
353 #[inline(always)]
354 fn clone(&self) -> Self {
355 // Not calling `T::clone()`, we cannot know if we are initialized enough for that.
356 *self
357 }
358}
359
360// SAFETY: the clone implementation is a copy, see above.
361#[doc(hidden)]
362#[unstable(feature = "trivial_clone", issue = "none")]
363unsafe impl<T> TrivialClone for MaybeUninit<T> where MaybeUninit<T>: Clone {}
364
365#[stable(feature = "maybe_uninit_debug", since = "1.41.0")]
366impl<T> fmt::Debug for MaybeUninit<T> {
367 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
368 // NB: there is no `.pad_fmt` so we can't use a simpler `format_args!("MaybeUninit<{..}>").
369 let full_name = type_name::<Self>();
370 let prefix_len = full_name.find("MaybeUninit").unwrap();
371 f.pad(&full_name[prefix_len..])
372 }
373}
374
375impl<T> MaybeUninit<T> {
376 /// Creates a new `MaybeUninit<T>` initialized with the given value.
377 /// It is safe to call [`assume_init`] on the return value of this function.
378 ///
379 /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
380 /// It is your responsibility to make sure `T` gets dropped if it got initialized.
381 ///
382 /// # Example
383 ///
384 /// ```
385 /// use std::mem::MaybeUninit;
386 ///
387 /// let v: MaybeUninit<Vec<u8>> = MaybeUninit::new(vec![42]);
388 /// # // Prevent leaks for Miri
389 /// # unsafe { let _ = MaybeUninit::assume_init(v); }
390 /// ```
391 ///
392 /// [`assume_init`]: MaybeUninit::assume_init
393 #[stable(feature = "maybe_uninit", since = "1.36.0")]
394 #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
395 #[must_use = "use `forget` to avoid running Drop code"]
396 #[inline(always)]
397 pub const fn new(val: T) -> MaybeUninit<T> {
398 MaybeUninit { value: ManuallyDrop::new(val) }
399 }
400
401 /// Creates a new `MaybeUninit<T>` in an uninitialized state.
402 ///
403 /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
404 /// It is your responsibility to make sure `T` gets dropped if it got initialized.
405 ///
406 /// See the [type-level documentation][MaybeUninit] for some examples.
407 ///
408 /// # Example
409 ///
410 /// ```
411 /// use std::mem::MaybeUninit;
412 ///
413 /// let v: MaybeUninit<String> = MaybeUninit::uninit();
414 /// ```
415 #[stable(feature = "maybe_uninit", since = "1.36.0")]
416 #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
417 #[must_use]
418 #[inline(always)]
419 #[rustc_diagnostic_item = "maybe_uninit_uninit"]
420 pub const fn uninit() -> MaybeUninit<T> {
421 MaybeUninit { uninit: () }
422 }
423
424 /// Creates a new `MaybeUninit<T>` in an uninitialized state, with the memory being
425 /// filled with `0` bytes. It depends on `T` whether that already makes for
426 /// proper initialization. For example, `MaybeUninit<usize>::zeroed()` is initialized,
427 /// but `MaybeUninit<&'static i32>::zeroed()` is not because references must not
428 /// be null.
429 ///
430 /// Note that if `T` has padding bytes, those bytes are *not* preserved when the
431 /// `MaybeUninit<T>` value is returned from this function, so those bytes will *not* be zeroed.
432 ///
433 /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
434 /// It is your responsibility to make sure `T` gets dropped if it got initialized.
435 ///
436 /// # Example
437 ///
438 /// Correct usage of this function: initializing a struct with zero, where all
439 /// fields of the struct can hold the bit-pattern 0 as a valid value.
440 ///
441 /// ```rust
442 /// use std::mem::MaybeUninit;
443 ///
444 /// let x = MaybeUninit::<(u8, bool)>::zeroed();
445 /// let x = unsafe { x.assume_init() };
446 /// assert_eq!(x, (0, false));
447 /// ```
448 ///
449 /// This can be used in const contexts, such as to indicate the end of static arrays for
450 /// plugin registration.
451 ///
452 /// *Incorrect* usage of this function: calling `x.zeroed().assume_init()`
453 /// when `0` is not a valid bit-pattern for the type:
454 ///
455 /// ```rust,no_run
456 /// use std::mem::MaybeUninit;
457 ///
458 /// enum NotZero { One = 1, Two = 2 }
459 ///
460 /// let x = MaybeUninit::<(u8, NotZero)>::zeroed();
461 /// let x = unsafe { x.assume_init() };
462 /// // Inside a pair, we create a `NotZero` that does not have a valid discriminant.
463 /// // This is undefined behavior. ⚠️
464 /// ```
465 #[inline]
466 #[must_use]
467 #[rustc_diagnostic_item = "maybe_uninit_zeroed"]
468 #[stable(feature = "maybe_uninit", since = "1.36.0")]
469 #[rustc_const_stable(feature = "const_maybe_uninit_zeroed", since = "1.75.0")]
470 pub const fn zeroed() -> MaybeUninit<T> {
471 let mut u = MaybeUninit::<T>::uninit();
472 // SAFETY: `u.as_mut_ptr()` points to allocated memory.
473 unsafe { u.as_mut_ptr().write_bytes(0u8, 1) };
474 u
475 }
476
477 /// Sets the value of the `MaybeUninit<T>`.
478 ///
479 /// This overwrites any previous value without dropping it, so be careful
480 /// not to use this twice unless you want to skip running the destructor.
481 /// For your convenience, this also returns a mutable reference to the
482 /// (now safely initialized) contents of `self`.
483 ///
484 /// As the content is stored inside a `ManuallyDrop`, the destructor is not
485 /// run for the inner data if the MaybeUninit leaves scope without a call to
486 /// [`assume_init`], [`assume_init_drop`], or similar. Code that receives
487 /// the mutable reference returned by this function needs to keep this in
488 /// mind. The safety model of Rust regards leaks as safe, but they are
489 /// usually still undesirable. This being said, the mutable reference
490 /// behaves like any other mutable reference would, so assigning a new value
491 /// to it will drop the old content.
492 ///
493 /// [`assume_init`]: Self::assume_init
494 /// [`assume_init_drop`]: Self::assume_init_drop
495 ///
496 /// # Examples
497 ///
498 /// Correct usage of this method:
499 ///
500 /// ```rust
501 /// use std::mem::MaybeUninit;
502 ///
503 /// let mut x = MaybeUninit::<Vec<u8>>::uninit();
504 ///
505 /// {
506 /// let hello = x.write((&b"Hello, world!").to_vec());
507 /// // Setting hello does not leak prior allocations, but drops them
508 /// *hello = (&b"Hello").to_vec();
509 /// hello[0] = 'h' as u8;
510 /// }
511 /// // x is initialized now:
512 /// let s = unsafe { x.assume_init() };
513 /// assert_eq!(b"hello", s.as_slice());
514 /// ```
515 ///
516 /// This usage of the method causes a leak:
517 ///
518 /// ```rust
519 /// use std::mem::MaybeUninit;
520 ///
521 /// let mut x = MaybeUninit::<String>::uninit();
522 ///
523 /// x.write("Hello".to_string());
524 /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
525 /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
526 /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
527 /// // This leaks the contained string:
528 /// x.write("hello".to_string());
529 /// // x is initialized now:
530 /// let s = unsafe { x.assume_init() };
531 /// ```
532 ///
533 /// This method can be used to avoid unsafe in some cases. The example below
534 /// shows a part of an implementation of a fixed sized arena that lends out
535 /// pinned references.
536 /// With `write`, we can avoid the need to write through a raw pointer:
537 ///
538 /// ```rust
539 /// use core::pin::Pin;
540 /// use core::mem::MaybeUninit;
541 ///
542 /// struct PinArena<T> {
543 /// memory: Box<[MaybeUninit<T>]>,
544 /// len: usize,
545 /// }
546 ///
547 /// impl <T> PinArena<T> {
548 /// pub fn capacity(&self) -> usize {
549 /// self.memory.len()
550 /// }
551 /// pub fn push(&mut self, val: T) -> Pin<&mut T> {
552 /// if self.len >= self.capacity() {
553 /// panic!("Attempted to push to a full pin arena!");
554 /// }
555 /// let ref_ = self.memory[self.len].write(val);
556 /// self.len += 1;
557 /// unsafe { Pin::new_unchecked(ref_) }
558 /// }
559 /// }
560 /// ```
561 #[inline(always)]
562 #[stable(feature = "maybe_uninit_write", since = "1.55.0")]
563 #[rustc_const_stable(feature = "const_maybe_uninit_write", since = "1.85.0")]
564 pub const fn write(&mut self, val: T) -> &mut T {
565 *self = MaybeUninit::new(val);
566 // SAFETY: We just initialized this value.
567 unsafe { self.assume_init_mut() }
568 }
569
570 /// Gets a pointer to the contained value. Reading from this pointer or turning it
571 /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
572 /// Writing to memory that this pointer (non-transitively) points to is undefined behavior
573 /// (except inside an `UnsafeCell<T>`).
574 ///
575 /// # Examples
576 ///
577 /// Correct usage of this method:
578 ///
579 /// ```rust
580 /// use std::mem::MaybeUninit;
581 ///
582 /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
583 /// x.write(vec![0, 1, 2]);
584 /// // Create a reference into the `MaybeUninit<T>`. This is okay because we initialized it.
585 /// let x_vec = unsafe { &*x.as_ptr() };
586 /// assert_eq!(x_vec.len(), 3);
587 /// # // Prevent leaks for Miri
588 /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
589 /// ```
590 ///
591 /// *Incorrect* usage of this method:
592 ///
593 /// ```rust,no_run
594 /// use std::mem::MaybeUninit;
595 ///
596 /// let x = MaybeUninit::<Vec<u32>>::uninit();
597 /// let x_vec = unsafe { &*x.as_ptr() };
598 /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
599 /// ```
600 ///
601 /// (Notice that the rules around references to uninitialized data are not finalized yet, but
602 /// until they are, it is advisable to avoid them.)
603 #[stable(feature = "maybe_uninit", since = "1.36.0")]
604 #[rustc_const_stable(feature = "const_maybe_uninit_as_ptr", since = "1.59.0")]
605 #[rustc_as_ptr]
606 #[inline(always)]
607 pub const fn as_ptr(&self) -> *const T {
608 // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
609 self as *const _ as *const T
610 }
611
612 /// Gets a mutable pointer to the contained value. Reading from this pointer or turning it
613 /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
614 ///
615 /// # Examples
616 ///
617 /// Correct usage of this method:
618 ///
619 /// ```rust
620 /// use std::mem::MaybeUninit;
621 ///
622 /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
623 /// x.write(vec![0, 1, 2]);
624 /// // Create a reference into the `MaybeUninit<Vec<u32>>`.
625 /// // This is okay because we initialized it.
626 /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
627 /// x_vec.push(3);
628 /// assert_eq!(x_vec.len(), 4);
629 /// # // Prevent leaks for Miri
630 /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
631 /// ```
632 ///
633 /// *Incorrect* usage of this method:
634 ///
635 /// ```rust,no_run
636 /// use std::mem::MaybeUninit;
637 ///
638 /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
639 /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
640 /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
641 /// ```
642 ///
643 /// (Notice that the rules around references to uninitialized data are not finalized yet, but
644 /// until they are, it is advisable to avoid them.)
645 #[stable(feature = "maybe_uninit", since = "1.36.0")]
646 #[rustc_const_stable(feature = "const_maybe_uninit_as_mut_ptr", since = "1.83.0")]
647 #[rustc_as_ptr]
648 #[inline(always)]
649 pub const fn as_mut_ptr(&mut self) -> *mut T {
650 // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
651 self as *mut _ as *mut T
652 }
653
654 /// Extracts the value from the `MaybeUninit<T>` container. This is a great way
655 /// to ensure that the data will get dropped, because the resulting `T` is
656 /// subject to the usual drop handling.
657 ///
658 /// # Safety
659 ///
660 /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
661 /// state. Calling this when the content is not yet fully initialized causes immediate undefined
662 /// behavior. The [type-level documentation][inv] contains more information about
663 /// this initialization invariant.
664 ///
665 /// [inv]: #initialization-invariant
666 ///
667 /// On top of that, remember that most types have additional invariants beyond merely
668 /// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
669 /// is considered initialized (under the current implementation; this does not constitute
670 /// a stable guarantee) because the only requirement the compiler knows about it
671 /// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
672 /// *immediate* undefined behavior, but will cause undefined behavior with most
673 /// safe operations (including dropping it).
674 ///
675 /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
676 ///
677 /// # Examples
678 ///
679 /// Correct usage of this method:
680 ///
681 /// ```rust
682 /// use std::mem::MaybeUninit;
683 ///
684 /// let mut x = MaybeUninit::<bool>::uninit();
685 /// x.write(true);
686 /// let x_init = unsafe { x.assume_init() };
687 /// assert_eq!(x_init, true);
688 /// ```
689 ///
690 /// *Incorrect* usage of this method:
691 ///
692 /// ```rust,no_run
693 /// use std::mem::MaybeUninit;
694 ///
695 /// let x = MaybeUninit::<Vec<u32>>::uninit();
696 /// let x_init = unsafe { x.assume_init() };
697 /// // `x` had not been initialized yet, so this last line caused undefined behavior. ⚠️
698 /// ```
699 #[stable(feature = "maybe_uninit", since = "1.36.0")]
700 #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_by_value", since = "1.59.0")]
701 #[inline(always)]
702 #[rustc_diagnostic_item = "assume_init"]
703 #[track_caller]
704 pub const unsafe fn assume_init(self) -> T {
705 // SAFETY: the caller must guarantee that `self` is initialized.
706 // This also means that `self` must be a `value` variant.
707 unsafe {
708 intrinsics::assert_inhabited::<T>();
709 // We do this via a raw ptr read instead of `ManuallyDrop::into_inner` so that there's
710 // no trace of `ManuallyDrop` in Miri's error messages here.
711 (&raw const self.value).cast::<T>().read()
712 }
713 }
714
715 /// Reads the value from the `MaybeUninit<T>` container. The resulting `T` is subject
716 /// to the usual drop handling.
717 ///
718 /// Whenever possible, it is preferable to use [`assume_init`] instead, which
719 /// prevents duplicating the content of the `MaybeUninit<T>`.
720 ///
721 /// # Safety
722 ///
723 /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
724 /// state. Calling this when the content is not yet fully initialized causes undefined
725 /// behavior. The [type-level documentation][inv] contains more information about
726 /// this initialization invariant.
727 ///
728 /// Moreover, similar to the [`ptr::read`] function, this function creates a
729 /// bitwise copy of the contents, regardless whether the contained type
730 /// implements the [`Copy`] trait or not. When using multiple copies of the
731 /// data (by calling `assume_init_read` multiple times, or first calling
732 /// `assume_init_read` and then [`assume_init`]), it is your responsibility
733 /// to ensure that data may indeed be duplicated.
734 ///
735 /// [inv]: #initialization-invariant
736 /// [`assume_init`]: MaybeUninit::assume_init
737 ///
738 /// # Examples
739 ///
740 /// Correct usage of this method:
741 ///
742 /// ```rust
743 /// use std::mem::MaybeUninit;
744 ///
745 /// let mut x = MaybeUninit::<u32>::uninit();
746 /// x.write(13);
747 /// let x1 = unsafe { x.assume_init_read() };
748 /// // `u32` is `Copy`, so we may read multiple times.
749 /// let x2 = unsafe { x.assume_init_read() };
750 /// assert_eq!(x1, x2);
751 ///
752 /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
753 /// x.write(None);
754 /// let x1 = unsafe { x.assume_init_read() };
755 /// // Duplicating a `None` value is okay, so we may read multiple times.
756 /// let x2 = unsafe { x.assume_init_read() };
757 /// assert_eq!(x1, x2);
758 /// ```
759 ///
760 /// *Incorrect* usage of this method:
761 ///
762 /// ```rust,no_run
763 /// use std::mem::MaybeUninit;
764 ///
765 /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
766 /// x.write(Some(vec![0, 1, 2]));
767 /// let x1 = unsafe { x.assume_init_read() };
768 /// let x2 = unsafe { x.assume_init_read() };
769 /// // We now created two copies of the same vector, leading to a double-free ⚠️ when
770 /// // they both get dropped!
771 /// ```
772 #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
773 #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_read", since = "1.75.0")]
774 #[inline(always)]
775 #[track_caller]
776 pub const unsafe fn assume_init_read(&self) -> T {
777 // SAFETY: the caller must guarantee that `self` is initialized.
778 // Reading from `self.as_ptr()` is safe since `self` should be initialized.
779 unsafe {
780 intrinsics::assert_inhabited::<T>();
781 self.as_ptr().read()
782 }
783 }
784
785 /// Drops the contained value in place.
786 ///
787 /// If you have ownership of the `MaybeUninit`, you can also use
788 /// [`assume_init`] as an alternative.
789 ///
790 /// # Safety
791 ///
792 /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is
793 /// in an initialized state. Calling this when the content is not yet fully
794 /// initialized causes undefined behavior.
795 ///
796 /// On top of that, all additional invariants of the type `T` must be
797 /// satisfied, as the `Drop` implementation of `T` (or its members) may
798 /// rely on this. For example, setting a `Vec<T>` to an invalid but
799 /// non-null address makes it initialized (under the current implementation;
800 /// this does not constitute a stable guarantee), because the only
801 /// requirement the compiler knows about it is that the data pointer must be
802 /// non-null. Dropping such a `Vec<T>` however will cause undefined
803 /// behavior.
804 ///
805 /// [`assume_init`]: MaybeUninit::assume_init
806 #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
807 #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
808 pub const unsafe fn assume_init_drop(&mut self)
809 where
810 T: [const] Destruct,
811 {
812 // SAFETY: the caller must guarantee that `self` is initialized and
813 // satisfies all invariants of `T`.
814 // Dropping the value in place is safe if that is the case.
815 unsafe { ptr::drop_in_place(self.as_mut_ptr()) }
816 }
817
818 /// Gets a shared reference to the contained value.
819 ///
820 /// This can be useful when we want to access a `MaybeUninit` that has been
821 /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
822 /// of `.assume_init()`).
823 ///
824 /// # Safety
825 ///
826 /// Calling this when the content is not yet fully initialized causes undefined
827 /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
828 /// is in an initialized state.
829 ///
830 /// # Examples
831 ///
832 /// ### Correct usage of this method:
833 ///
834 /// ```rust
835 /// use std::mem::MaybeUninit;
836 ///
837 /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
838 /// # let mut x_mu = x;
839 /// # let mut x = &mut x_mu;
840 /// // Initialize `x`:
841 /// x.write(vec![1, 2, 3]);
842 /// // Now that our `MaybeUninit<_>` is known to be initialized, it is okay to
843 /// // create a shared reference to it:
844 /// let x: &Vec<u32> = unsafe {
845 /// // SAFETY: `x` has been initialized.
846 /// x.assume_init_ref()
847 /// };
848 /// assert_eq!(x, &vec![1, 2, 3]);
849 /// # // Prevent leaks for Miri
850 /// # unsafe { MaybeUninit::assume_init_drop(&mut x_mu); }
851 /// ```
852 ///
853 /// ### *Incorrect* usages of this method:
854 ///
855 /// ```rust,no_run
856 /// use std::mem::MaybeUninit;
857 ///
858 /// let x = MaybeUninit::<Vec<u32>>::uninit();
859 /// let x_vec: &Vec<u32> = unsafe { x.assume_init_ref() };
860 /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
861 /// ```
862 ///
863 /// ```rust,no_run
864 /// use std::{cell::Cell, mem::MaybeUninit};
865 ///
866 /// let b = MaybeUninit::<Cell<bool>>::uninit();
867 /// // Initialize the `MaybeUninit` using `Cell::set`:
868 /// unsafe {
869 /// b.assume_init_ref().set(true);
870 /// //^^^^^^^^^^^^^^^ Reference to an uninitialized `Cell<bool>`: UB!
871 /// }
872 /// ```
873 #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
874 #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_ref", since = "1.59.0")]
875 #[inline(always)]
876 pub const unsafe fn assume_init_ref(&self) -> &T {
877 // SAFETY: the caller must guarantee that `self` is initialized.
878 // This also means that `self` must be a `value` variant.
879 unsafe {
880 intrinsics::assert_inhabited::<T>();
881 &*self.as_ptr()
882 }
883 }
884
885 /// Gets a mutable (unique) reference to the contained value.
886 ///
887 /// This can be useful when we want to access a `MaybeUninit` that has been
888 /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
889 /// of `.assume_init()`).
890 ///
891 /// # Safety
892 ///
893 /// Calling this when the content is not yet fully initialized causes undefined
894 /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
895 /// is in an initialized state. For instance, `.assume_init_mut()` cannot be used to
896 /// initialize a `MaybeUninit`.
897 ///
898 /// # Examples
899 ///
900 /// ### Correct usage of this method:
901 ///
902 /// ```rust
903 /// # #![allow(unexpected_cfgs)]
904 /// use std::mem::MaybeUninit;
905 ///
906 /// # unsafe extern "C" fn initialize_buffer(buf: *mut [u8; 1024]) { unsafe { *buf = [0; 1024] } }
907 /// # #[cfg(FALSE)]
908 /// extern "C" {
909 /// /// Initializes *all* the bytes of the input buffer.
910 /// fn initialize_buffer(buf: *mut [u8; 1024]);
911 /// }
912 ///
913 /// let mut buf = MaybeUninit::<[u8; 1024]>::uninit();
914 ///
915 /// // Initialize `buf`:
916 /// unsafe { initialize_buffer(buf.as_mut_ptr()); }
917 /// // Now we know that `buf` has been initialized, so we could `.assume_init()` it.
918 /// // However, using `.assume_init()` may trigger a `memcpy` of the 1024 bytes.
919 /// // To assert our buffer has been initialized without copying it, we upgrade
920 /// // the `&mut MaybeUninit<[u8; 1024]>` to a `&mut [u8; 1024]`:
921 /// let buf: &mut [u8; 1024] = unsafe {
922 /// // SAFETY: `buf` has been initialized.
923 /// buf.assume_init_mut()
924 /// };
925 ///
926 /// // Now we can use `buf` as a normal slice:
927 /// buf.sort_unstable();
928 /// assert!(
929 /// buf.windows(2).all(|pair| pair[0] <= pair[1]),
930 /// "buffer is sorted",
931 /// );
932 /// ```
933 ///
934 /// ### *Incorrect* usages of this method:
935 ///
936 /// You cannot use `.assume_init_mut()` to initialize a value:
937 ///
938 /// ```rust,no_run
939 /// use std::mem::MaybeUninit;
940 ///
941 /// let mut b = MaybeUninit::<bool>::uninit();
942 /// unsafe {
943 /// *b.assume_init_mut() = true;
944 /// // We have created a (mutable) reference to an uninitialized `bool`!
945 /// // This is undefined behavior. ⚠️
946 /// }
947 /// ```
948 ///
949 /// For instance, you cannot [`Read`] into an uninitialized buffer:
950 ///
951 /// [`Read`]: ../../std/io/trait.Read.html
952 ///
953 /// ```rust,no_run
954 /// use std::{io, mem::MaybeUninit};
955 ///
956 /// fn read_chunk (reader: &'_ mut dyn io::Read) -> io::Result<[u8; 64]>
957 /// {
958 /// let mut buffer = MaybeUninit::<[u8; 64]>::uninit();
959 /// reader.read_exact(unsafe { buffer.assume_init_mut() })?;
960 /// // ^^^^^^^^^^^^^^^^^^^^^^^^
961 /// // (mutable) reference to uninitialized memory!
962 /// // This is undefined behavior.
963 /// Ok(unsafe { buffer.assume_init() })
964 /// }
965 /// ```
966 ///
967 /// Nor can you use direct field access to do field-by-field gradual initialization:
968 ///
969 /// ```rust,no_run
970 /// use std::{mem::MaybeUninit, ptr};
971 ///
972 /// struct Foo {
973 /// a: u32,
974 /// b: u8,
975 /// }
976 ///
977 /// let foo: Foo = unsafe {
978 /// let mut foo = MaybeUninit::<Foo>::uninit();
979 /// ptr::write(&mut foo.assume_init_mut().a as *mut u32, 1337);
980 /// // ^^^^^^^^^^^^^^^^^^^^^
981 /// // (mutable) reference to uninitialized memory!
982 /// // This is undefined behavior.
983 /// ptr::write(&mut foo.assume_init_mut().b as *mut u8, 42);
984 /// // ^^^^^^^^^^^^^^^^^^^^^
985 /// // (mutable) reference to uninitialized memory!
986 /// // This is undefined behavior.
987 /// foo.assume_init()
988 /// };
989 /// ```
990 #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
991 #[rustc_const_stable(feature = "const_maybe_uninit_assume_init", since = "1.84.0")]
992 #[inline(always)]
993 pub const unsafe fn assume_init_mut(&mut self) -> &mut T {
994 // SAFETY: the caller must guarantee that `self` is initialized.
995 // This also means that `self` must be a `value` variant.
996 unsafe {
997 intrinsics::assert_inhabited::<T>();
998 &mut *self.as_mut_ptr()
999 }
1000 }
1001
1002 /// Extracts the values from an array of `MaybeUninit` containers.
1003 ///
1004 /// # Safety
1005 ///
1006 /// It is up to the caller to guarantee that all elements of the array are
1007 /// in an initialized state.
1008 ///
1009 /// # Examples
1010 ///
1011 /// ```
1012 /// #![feature(maybe_uninit_array_assume_init)]
1013 /// use std::mem::MaybeUninit;
1014 ///
1015 /// let mut array: [MaybeUninit<i32>; 3] = [MaybeUninit::uninit(); 3];
1016 /// array[0].write(0);
1017 /// array[1].write(1);
1018 /// array[2].write(2);
1019 ///
1020 /// // SAFETY: Now safe as we initialised all elements
1021 /// let array = unsafe {
1022 /// MaybeUninit::array_assume_init(array)
1023 /// };
1024 ///
1025 /// assert_eq!(array, [0, 1, 2]);
1026 /// ```
1027 #[unstable(feature = "maybe_uninit_array_assume_init", issue = "96097")]
1028 #[inline(always)]
1029 #[track_caller]
1030 pub const unsafe fn array_assume_init<const N: usize>(array: [Self; N]) -> [T; N] {
1031 // SAFETY:
1032 // * The caller guarantees that all elements of the array are initialized
1033 // * `MaybeUninit<T>` and T are guaranteed to have the same layout
1034 // * `MaybeUninit` does not drop, so there are no double-frees
1035 // And thus the conversion is safe
1036 unsafe {
1037 intrinsics::assert_inhabited::<[T; N]>();
1038 intrinsics::transmute_unchecked(array)
1039 }
1040 }
1041
1042 /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1043 ///
1044 /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1045 /// contain padding bytes which are left uninitialized.
1046 ///
1047 /// # Examples
1048 ///
1049 /// ```
1050 /// #![feature(maybe_uninit_as_bytes, maybe_uninit_slice)]
1051 /// use std::mem::MaybeUninit;
1052 ///
1053 /// let val = 0x12345678_i32;
1054 /// let uninit = MaybeUninit::new(val);
1055 /// let uninit_bytes = uninit.as_bytes();
1056 /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1057 /// assert_eq!(bytes, val.to_ne_bytes());
1058 /// ```
1059 #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1060 pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1061 // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1062 unsafe {
1063 slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of::<T>())
1064 }
1065 }
1066
1067 /// Returns the contents of this `MaybeUninit` as a mutable slice of potentially uninitialized
1068 /// bytes.
1069 ///
1070 /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1071 /// contain padding bytes which are left uninitialized.
1072 ///
1073 /// # Examples
1074 ///
1075 /// ```
1076 /// #![feature(maybe_uninit_as_bytes)]
1077 /// use std::mem::MaybeUninit;
1078 ///
1079 /// let val = 0x12345678_i32;
1080 /// let mut uninit = MaybeUninit::new(val);
1081 /// let uninit_bytes = uninit.as_bytes_mut();
1082 /// if cfg!(target_endian = "little") {
1083 /// uninit_bytes[0].write(0xcd);
1084 /// } else {
1085 /// uninit_bytes[3].write(0xcd);
1086 /// }
1087 /// let val2 = unsafe { uninit.assume_init() };
1088 /// assert_eq!(val2, 0x123456cd);
1089 /// ```
1090 #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1091 pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1092 // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1093 unsafe {
1094 slice::from_raw_parts_mut(
1095 self.as_mut_ptr().cast::<MaybeUninit<u8>>(),
1096 super::size_of::<T>(),
1097 )
1098 }
1099 }
1100
1101 /// Gets a pointer to the first element of the array.
1102 #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1103 #[inline(always)]
1104 pub const fn slice_as_ptr(this: &[MaybeUninit<T>]) -> *const T {
1105 this.as_ptr() as *const T
1106 }
1107
1108 /// Gets a mutable pointer to the first element of the array.
1109 #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1110 #[inline(always)]
1111 pub const fn slice_as_mut_ptr(this: &mut [MaybeUninit<T>]) -> *mut T {
1112 this.as_mut_ptr() as *mut T
1113 }
1114}
1115
1116impl<T> [MaybeUninit<T>] {
1117 /// Copies the elements from `src` to `self`,
1118 /// returning a mutable reference to the now initialized contents of `self`.
1119 ///
1120 /// If `T` does not implement `Copy`, use [`write_clone_of_slice`] instead.
1121 ///
1122 /// This is similar to [`slice::copy_from_slice`].
1123 ///
1124 /// # Panics
1125 ///
1126 /// This function will panic if the two slices have different lengths.
1127 ///
1128 /// # Examples
1129 ///
1130 /// ```
1131 /// #![feature(maybe_uninit_write_slice)]
1132 /// use std::mem::MaybeUninit;
1133 ///
1134 /// let mut dst = [MaybeUninit::uninit(); 32];
1135 /// let src = [0; 32];
1136 ///
1137 /// let init = dst.write_copy_of_slice(&src);
1138 ///
1139 /// assert_eq!(init, src);
1140 /// ```
1141 ///
1142 /// ```
1143 /// #![feature(maybe_uninit_write_slice)]
1144 ///
1145 /// let mut vec = Vec::with_capacity(32);
1146 /// let src = [0; 16];
1147 ///
1148 /// vec.spare_capacity_mut()[..src.len()].write_copy_of_slice(&src);
1149 ///
1150 /// // SAFETY: we have just copied all the elements of len into the spare capacity
1151 /// // the first src.len() elements of the vec are valid now.
1152 /// unsafe {
1153 /// vec.set_len(src.len());
1154 /// }
1155 ///
1156 /// assert_eq!(vec, src);
1157 /// ```
1158 ///
1159 /// [`write_clone_of_slice`]: slice::write_clone_of_slice
1160 #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
1161 pub const fn write_copy_of_slice(&mut self, src: &[T]) -> &mut [T]
1162 where
1163 T: Copy,
1164 {
1165 // SAFETY: &[T] and &[MaybeUninit<T>] have the same layout
1166 let uninit_src: &[MaybeUninit<T>] = unsafe { super::transmute(src) };
1167
1168 self.copy_from_slice(uninit_src);
1169
1170 // SAFETY: Valid elements have just been copied into `self` so it is initialized
1171 unsafe { self.assume_init_mut() }
1172 }
1173
1174 /// Clones the elements from `src` to `self`,
1175 /// returning a mutable reference to the now initialized contents of `self`.
1176 /// Any already initialized elements will not be dropped.
1177 ///
1178 /// If `T` implements `Copy`, use [`write_copy_of_slice`] instead.
1179 ///
1180 /// This is similar to [`slice::clone_from_slice`] but does not drop existing elements.
1181 ///
1182 /// # Panics
1183 ///
1184 /// This function will panic if the two slices have different lengths, or if the implementation of `Clone` panics.
1185 ///
1186 /// If there is a panic, the already cloned elements will be dropped.
1187 ///
1188 /// # Examples
1189 ///
1190 /// ```
1191 /// #![feature(maybe_uninit_write_slice)]
1192 /// use std::mem::MaybeUninit;
1193 ///
1194 /// let mut dst = [const { MaybeUninit::uninit() }; 5];
1195 /// let src = ["wibbly", "wobbly", "timey", "wimey", "stuff"].map(|s| s.to_string());
1196 ///
1197 /// let init = dst.write_clone_of_slice(&src);
1198 ///
1199 /// assert_eq!(init, src);
1200 ///
1201 /// # // Prevent leaks for Miri
1202 /// # unsafe { std::ptr::drop_in_place(init); }
1203 /// ```
1204 ///
1205 /// ```
1206 /// #![feature(maybe_uninit_write_slice)]
1207 ///
1208 /// let mut vec = Vec::with_capacity(32);
1209 /// let src = ["rust", "is", "a", "pretty", "cool", "language"].map(|s| s.to_string());
1210 ///
1211 /// vec.spare_capacity_mut()[..src.len()].write_clone_of_slice(&src);
1212 ///
1213 /// // SAFETY: we have just cloned all the elements of len into the spare capacity
1214 /// // the first src.len() elements of the vec are valid now.
1215 /// unsafe {
1216 /// vec.set_len(src.len());
1217 /// }
1218 ///
1219 /// assert_eq!(vec, src);
1220 /// ```
1221 ///
1222 /// [`write_copy_of_slice`]: slice::write_copy_of_slice
1223 #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
1224 pub fn write_clone_of_slice(&mut self, src: &[T]) -> &mut [T]
1225 where
1226 T: Clone,
1227 {
1228 // unlike copy_from_slice this does not call clone_from_slice on the slice
1229 // this is because `MaybeUninit<T: Clone>` does not implement Clone.
1230
1231 assert_eq!(self.len(), src.len(), "destination and source slices have different lengths");
1232
1233 // NOTE: We need to explicitly slice them to the same length
1234 // for bounds checking to be elided, and the optimizer will
1235 // generate memcpy for simple cases (for example T = u8).
1236 let len = self.len();
1237 let src = &src[..len];
1238
1239 // guard is needed b/c panic might happen during a clone
1240 let mut guard = Guard { slice: self, initialized: 0 };
1241
1242 for i in 0..len {
1243 guard.slice[i].write(src[i].clone());
1244 guard.initialized += 1;
1245 }
1246
1247 super::forget(guard);
1248
1249 // SAFETY: Valid elements have just been written into `self` so it is initialized
1250 unsafe { self.assume_init_mut() }
1251 }
1252
1253 /// Fills a slice with elements by cloning `value`, returning a mutable reference to the now
1254 /// initialized contents of the slice.
1255 /// Any previously initialized elements will not be dropped.
1256 ///
1257 /// This is similar to [`slice::fill`].
1258 ///
1259 /// # Panics
1260 ///
1261 /// This function will panic if any call to `Clone` panics.
1262 ///
1263 /// If such a panic occurs, any elements previously initialized during this operation will be
1264 /// dropped.
1265 ///
1266 /// # Examples
1267 ///
1268 /// ```
1269 /// #![feature(maybe_uninit_fill)]
1270 /// use std::mem::MaybeUninit;
1271 ///
1272 /// let mut buf = [const { MaybeUninit::uninit() }; 10];
1273 /// let initialized = buf.write_filled(1);
1274 /// assert_eq!(initialized, &mut [1; 10]);
1275 /// ```
1276 #[doc(alias = "memset")]
1277 #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1278 pub fn write_filled(&mut self, value: T) -> &mut [T]
1279 where
1280 T: Clone,
1281 {
1282 SpecFill::spec_fill(self, value);
1283 // SAFETY: Valid elements have just been filled into `self` so it is initialized
1284 unsafe { self.assume_init_mut() }
1285 }
1286
1287 /// Fills a slice with elements returned by calling a closure for each index.
1288 ///
1289 /// This method uses a closure to create new values. If you'd rather `Clone` a given value, use
1290 /// [slice::write_filled]. If you want to use the `Default` trait to generate values, you can
1291 /// pass [`|_| Default::default()`][Default::default] as the argument.
1292 ///
1293 /// # Panics
1294 ///
1295 /// This function will panic if any call to the provided closure panics.
1296 ///
1297 /// If such a panic occurs, any elements previously initialized during this operation will be
1298 /// dropped.
1299 ///
1300 /// # Examples
1301 ///
1302 /// ```
1303 /// #![feature(maybe_uninit_fill)]
1304 /// use std::mem::MaybeUninit;
1305 ///
1306 /// let mut buf = [const { MaybeUninit::<usize>::uninit() }; 5];
1307 /// let initialized = buf.write_with(|idx| idx + 1);
1308 /// assert_eq!(initialized, &mut [1, 2, 3, 4, 5]);
1309 /// ```
1310 #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1311 pub fn write_with<F>(&mut self, mut f: F) -> &mut [T]
1312 where
1313 F: FnMut(usize) -> T,
1314 {
1315 let mut guard = Guard { slice: self, initialized: 0 };
1316
1317 for (idx, element) in guard.slice.iter_mut().enumerate() {
1318 element.write(f(idx));
1319 guard.initialized += 1;
1320 }
1321
1322 super::forget(guard);
1323
1324 // SAFETY: Valid elements have just been written into `this` so it is initialized
1325 unsafe { self.assume_init_mut() }
1326 }
1327
1328 /// Fills a slice with elements yielded by an iterator until either all elements have been
1329 /// initialized or the iterator is empty.
1330 ///
1331 /// Returns two slices. The first slice contains the initialized portion of the original slice.
1332 /// The second slice is the still-uninitialized remainder of the original slice.
1333 ///
1334 /// # Panics
1335 ///
1336 /// This function panics if the iterator's `next` function panics.
1337 ///
1338 /// If such a panic occurs, any elements previously initialized during this operation will be
1339 /// dropped.
1340 ///
1341 /// # Examples
1342 ///
1343 /// Completely filling the slice:
1344 ///
1345 /// ```
1346 /// #![feature(maybe_uninit_fill)]
1347 /// use std::mem::MaybeUninit;
1348 ///
1349 /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1350 ///
1351 /// let iter = [1, 2, 3].into_iter().cycle();
1352 /// let (initialized, remainder) = buf.write_iter(iter);
1353 ///
1354 /// assert_eq!(initialized, &mut [1, 2, 3, 1, 2]);
1355 /// assert_eq!(remainder.len(), 0);
1356 /// ```
1357 ///
1358 /// Partially filling the slice:
1359 ///
1360 /// ```
1361 /// #![feature(maybe_uninit_fill)]
1362 /// use std::mem::MaybeUninit;
1363 ///
1364 /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1365 /// let iter = [1, 2];
1366 /// let (initialized, remainder) = buf.write_iter(iter);
1367 ///
1368 /// assert_eq!(initialized, &mut [1, 2]);
1369 /// assert_eq!(remainder.len(), 3);
1370 /// ```
1371 ///
1372 /// Checking an iterator after filling a slice:
1373 ///
1374 /// ```
1375 /// #![feature(maybe_uninit_fill)]
1376 /// use std::mem::MaybeUninit;
1377 ///
1378 /// let mut buf = [const { MaybeUninit::uninit() }; 3];
1379 /// let mut iter = [1, 2, 3, 4, 5].into_iter();
1380 /// let (initialized, remainder) = buf.write_iter(iter.by_ref());
1381 ///
1382 /// assert_eq!(initialized, &mut [1, 2, 3]);
1383 /// assert_eq!(remainder.len(), 0);
1384 /// assert_eq!(iter.as_slice(), &[4, 5]);
1385 /// ```
1386 #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1387 pub fn write_iter<I>(&mut self, it: I) -> (&mut [T], &mut [MaybeUninit<T>])
1388 where
1389 I: IntoIterator<Item = T>,
1390 {
1391 let iter = it.into_iter();
1392 let mut guard = Guard { slice: self, initialized: 0 };
1393
1394 for (element, val) in guard.slice.iter_mut().zip(iter) {
1395 element.write(val);
1396 guard.initialized += 1;
1397 }
1398
1399 let initialized_len = guard.initialized;
1400 super::forget(guard);
1401
1402 // SAFETY: guard.initialized <= self.len()
1403 let (initted, remainder) = unsafe { self.split_at_mut_unchecked(initialized_len) };
1404
1405 // SAFETY: Valid elements have just been written into `init`, so that portion
1406 // of `this` is initialized.
1407 (unsafe { initted.assume_init_mut() }, remainder)
1408 }
1409
1410 /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1411 ///
1412 /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1413 /// contain padding bytes which are left uninitialized.
1414 ///
1415 /// # Examples
1416 ///
1417 /// ```
1418 /// #![feature(maybe_uninit_as_bytes, maybe_uninit_write_slice, maybe_uninit_slice)]
1419 /// use std::mem::MaybeUninit;
1420 ///
1421 /// let uninit = [MaybeUninit::new(0x1234u16), MaybeUninit::new(0x5678u16)];
1422 /// let uninit_bytes = uninit.as_bytes();
1423 /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1424 /// let val1 = u16::from_ne_bytes(bytes[0..2].try_into().unwrap());
1425 /// let val2 = u16::from_ne_bytes(bytes[2..4].try_into().unwrap());
1426 /// assert_eq!(&[val1, val2], &[0x1234u16, 0x5678u16]);
1427 /// ```
1428 #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1429 pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1430 // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1431 unsafe {
1432 slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of_val(self))
1433 }
1434 }
1435
1436 /// Returns the contents of this `MaybeUninit` slice as a mutable slice of potentially
1437 /// uninitialized bytes.
1438 ///
1439 /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1440 /// contain padding bytes which are left uninitialized.
1441 ///
1442 /// # Examples
1443 ///
1444 /// ```
1445 /// #![feature(maybe_uninit_as_bytes, maybe_uninit_write_slice, maybe_uninit_slice)]
1446 /// use std::mem::MaybeUninit;
1447 ///
1448 /// let mut uninit = [MaybeUninit::<u16>::uninit(), MaybeUninit::<u16>::uninit()];
1449 /// let uninit_bytes = uninit.as_bytes_mut();
1450 /// uninit_bytes.write_copy_of_slice(&[0x12, 0x34, 0x56, 0x78]);
1451 /// let vals = unsafe { uninit.assume_init_ref() };
1452 /// if cfg!(target_endian = "little") {
1453 /// assert_eq!(vals, &[0x3412u16, 0x7856u16]);
1454 /// } else {
1455 /// assert_eq!(vals, &[0x1234u16, 0x5678u16]);
1456 /// }
1457 /// ```
1458 #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1459 pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1460 // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1461 unsafe {
1462 slice::from_raw_parts_mut(
1463 self.as_mut_ptr() as *mut MaybeUninit<u8>,
1464 super::size_of_val(self),
1465 )
1466 }
1467 }
1468
1469 /// Drops the contained values in place.
1470 ///
1471 /// # Safety
1472 ///
1473 /// It is up to the caller to guarantee that every `MaybeUninit<T>` in the slice
1474 /// really is in an initialized state. Calling this when the content is not yet
1475 /// fully initialized causes undefined behavior.
1476 ///
1477 /// On top of that, all additional invariants of the type `T` must be
1478 /// satisfied, as the `Drop` implementation of `T` (or its members) may
1479 /// rely on this. For example, setting a `Vec<T>` to an invalid but
1480 /// non-null address makes it initialized (under the current implementation;
1481 /// this does not constitute a stable guarantee), because the only
1482 /// requirement the compiler knows about it is that the data pointer must be
1483 /// non-null. Dropping such a `Vec<T>` however will cause undefined
1484 /// behaviour.
1485 #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1486 #[inline(always)]
1487 #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1488 pub const unsafe fn assume_init_drop(&mut self)
1489 where
1490 T: [const] Destruct,
1491 {
1492 if !self.is_empty() {
1493 // SAFETY: the caller must guarantee that every element of `self`
1494 // is initialized and satisfies all invariants of `T`.
1495 // Dropping the value in place is safe if that is the case.
1496 unsafe { ptr::drop_in_place(self as *mut [MaybeUninit<T>] as *mut [T]) }
1497 }
1498 }
1499
1500 /// Gets a shared reference to the contained value.
1501 ///
1502 /// # Safety
1503 ///
1504 /// Calling this when the content is not yet fully initialized causes undefined
1505 /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in
1506 /// the slice really is in an initialized state.
1507 #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1508 #[inline(always)]
1509 pub const unsafe fn assume_init_ref(&self) -> &[T] {
1510 // SAFETY: casting `slice` to a `*const [T]` is safe since the caller guarantees that
1511 // `slice` is initialized, and `MaybeUninit` is guaranteed to have the same layout as `T`.
1512 // The pointer obtained is valid since it refers to memory owned by `slice` which is a
1513 // reference and thus guaranteed to be valid for reads.
1514 unsafe { &*(self as *const Self as *const [T]) }
1515 }
1516
1517 /// Gets a mutable (unique) reference to the contained value.
1518 ///
1519 /// # Safety
1520 ///
1521 /// Calling this when the content is not yet fully initialized causes undefined
1522 /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in the
1523 /// slice really is in an initialized state. For instance, `.assume_init_mut()` cannot
1524 /// be used to initialize a `MaybeUninit` slice.
1525 #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1526 #[inline(always)]
1527 pub const unsafe fn assume_init_mut(&mut self) -> &mut [T] {
1528 // SAFETY: similar to safety notes for `slice_get_ref`, but we have a
1529 // mutable reference which is also guaranteed to be valid for writes.
1530 unsafe { &mut *(self as *mut Self as *mut [T]) }
1531 }
1532}
1533
1534impl<T, const N: usize> MaybeUninit<[T; N]> {
1535 /// Transposes a `MaybeUninit<[T; N]>` into a `[MaybeUninit<T>; N]`.
1536 ///
1537 /// # Examples
1538 ///
1539 /// ```
1540 /// #![feature(maybe_uninit_uninit_array_transpose)]
1541 /// # use std::mem::MaybeUninit;
1542 ///
1543 /// let data: [MaybeUninit<u8>; 1000] = MaybeUninit::uninit().transpose();
1544 /// ```
1545 #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1546 #[inline]
1547 pub const fn transpose(self) -> [MaybeUninit<T>; N] {
1548 // SAFETY: T and MaybeUninit<T> have the same layout
1549 unsafe { intrinsics::transmute_unchecked(self) }
1550 }
1551}
1552
1553impl<T, const N: usize> [MaybeUninit<T>; N] {
1554 /// Transposes a `[MaybeUninit<T>; N]` into a `MaybeUninit<[T; N]>`.
1555 ///
1556 /// # Examples
1557 ///
1558 /// ```
1559 /// #![feature(maybe_uninit_uninit_array_transpose)]
1560 /// # use std::mem::MaybeUninit;
1561 ///
1562 /// let data = [MaybeUninit::<u8>::uninit(); 1000];
1563 /// let data: MaybeUninit<[u8; 1000]> = data.transpose();
1564 /// ```
1565 #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1566 #[inline]
1567 pub const fn transpose(self) -> MaybeUninit<[T; N]> {
1568 // SAFETY: T and MaybeUninit<T> have the same layout
1569 unsafe { intrinsics::transmute_unchecked(self) }
1570 }
1571}
1572
1573struct Guard<'a, T> {
1574 slice: &'a mut [MaybeUninit<T>],
1575 initialized: usize,
1576}
1577
1578impl<'a, T> Drop for Guard<'a, T> {
1579 fn drop(&mut self) {
1580 let initialized_part = &mut self.slice[..self.initialized];
1581 // SAFETY: this raw sub-slice will contain only initialized objects.
1582 unsafe {
1583 initialized_part.assume_init_drop();
1584 }
1585 }
1586}
1587
1588trait SpecFill<T> {
1589 fn spec_fill(&mut self, value: T);
1590}
1591
1592impl<T: Clone> SpecFill<T> for [MaybeUninit<T>] {
1593 default fn spec_fill(&mut self, value: T) {
1594 let mut guard = Guard { slice: self, initialized: 0 };
1595
1596 if let Some((last, elems)) = guard.slice.split_last_mut() {
1597 for el in elems {
1598 el.write(value.clone());
1599 guard.initialized += 1;
1600 }
1601
1602 last.write(value);
1603 }
1604 super::forget(guard);
1605 }
1606}
1607
1608impl<T: TrivialClone> SpecFill<T> for [MaybeUninit<T>] {
1609 fn spec_fill(&mut self, value: T) {
1610 // SAFETY: because `T` is `TrivialClone`, this is equivalent to calling
1611 // `T::clone` for every element. Notably, `TrivialClone` also implies
1612 // that the `clone` implementation will not panic, so we can avoid
1613 // initialization guards and such.
1614 self.fill_with(|| MaybeUninit::new(unsafe { ptr::read(&value) }));
1615 }
1616}