core/option.rs
1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//! over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//! returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//! if denominator == 0.0 {
25//! None
26//! } else {
27//! Some(numerator / denominator)
28//! }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//! // The division was valid
37//! Some(x) => println!("Result: {x}"),
38//! // The division was invalid
39//! None => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//! match optional {
69//! Some(p) => println!("has value {p}"),
70//! None => println!("has no value"),
71//! }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//! let a = stack.pop();
88//! let b = stack.pop();
89//!
90//! match (a, b) {
91//! (Some(x), Some(y)) => Some(x + y),
92//! _ => None,
93//! }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//! Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that [`Option<T>`]
122//! has the same size, alignment, and [function call ABI] as `T`. It is
123//! therefore sound, when `T` is one of these types, to transmute a value `t` of
124//! type `T` to type `Option<T>` (producing the value `Some(t)`) and to
125//! transmute a value `Some(t)` of type `Option<T>` to type `T` (producing the
126//! value `t`).
127//!
128//! In some of these cases, Rust further guarantees the following:
129//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
130//! `Option::<T>::None`
131//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
132//! `[0u8; size_of::<T>()]`
133//!
134//! These cases are identified by the second column:
135//!
136//! | `T` | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
137//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
138//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
139//! | `&U` | when `U: Sized` |
140//! | `&mut U` | when `U: Sized` |
141//! | `fn`, `extern "C" fn`[^extern_fn] | always |
142//! | [`num::NonZero*`] | always |
143//! | [`ptr::NonNull<U>`] | when `U: Sized` |
144//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
145//!
146//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
147//!
148//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
149//!
150//! [`Box<U>`]: ../../std/boxed/struct.Box.html
151//! [`num::NonZero*`]: crate::num
152//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
153//! [function call ABI]: ../primitive.fn.html#abi-compatibility
154//! [result_repr]: crate::result#representation
155//!
156//! This is called the "null pointer optimization" or NPO.
157//!
158//! It is further guaranteed that, for the cases above, one can
159//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
160//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
161//! is undefined behavior).
162//!
163//! # Method overview
164//!
165//! In addition to working with pattern matching, [`Option`] provides a wide
166//! variety of different methods.
167//!
168//! ## Querying the variant
169//!
170//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
171//! is [`Some`] or [`None`], respectively.
172//!
173//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
174//! to the contents of the [`Option`] to produce a boolean value.
175//! If this is [`None`] then a default result is returned instead without executing the function.
176//!
177//! [`is_none`]: Option::is_none
178//! [`is_some`]: Option::is_some
179//! [`is_some_and`]: Option::is_some_and
180//! [`is_none_or`]: Option::is_none_or
181//!
182//! ## Adapters for working with references
183//!
184//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
185//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
186//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
187//! <code>[Option]<[&]T::[Target]></code>
188//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
189//! <code>[Option]<[&mut] T::[Target]></code>
190//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
191//! <code>[Option]<[Pin]<[&]T>></code>
192//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
193//! <code>[Option]<[Pin]<[&mut] T>></code>
194//! * [`as_slice`] returns a one-element slice of the contained value, if any.
195//! If this is [`None`], an empty slice is returned.
196//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
197//! If this is [`None`], an empty slice is returned.
198//!
199//! [&]: reference "shared reference"
200//! [&mut]: reference "mutable reference"
201//! [Target]: Deref::Target "ops::Deref::Target"
202//! [`as_deref`]: Option::as_deref
203//! [`as_deref_mut`]: Option::as_deref_mut
204//! [`as_mut`]: Option::as_mut
205//! [`as_pin_mut`]: Option::as_pin_mut
206//! [`as_pin_ref`]: Option::as_pin_ref
207//! [`as_ref`]: Option::as_ref
208//! [`as_slice`]: Option::as_slice
209//! [`as_mut_slice`]: Option::as_mut_slice
210//!
211//! ## Extracting the contained value
212//!
213//! These methods extract the contained value in an [`Option<T>`] when it
214//! is the [`Some`] variant. If the [`Option`] is [`None`]:
215//!
216//! * [`expect`] panics with a provided custom message
217//! * [`unwrap`] panics with a generic message
218//! * [`unwrap_or`] returns the provided default value
219//! * [`unwrap_or_default`] returns the default value of the type `T`
220//! (which must implement the [`Default`] trait)
221//! * [`unwrap_or_else`] returns the result of evaluating the provided
222//! function
223//! * [`unwrap_unchecked`] produces *[undefined behavior]*
224//!
225//! [`expect`]: Option::expect
226//! [`unwrap`]: Option::unwrap
227//! [`unwrap_or`]: Option::unwrap_or
228//! [`unwrap_or_default`]: Option::unwrap_or_default
229//! [`unwrap_or_else`]: Option::unwrap_or_else
230//! [`unwrap_unchecked`]: Option::unwrap_unchecked
231//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
232//!
233//! ## Transforming contained values
234//!
235//! These methods transform [`Option`] to [`Result`]:
236//!
237//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
238//! [`Err(err)`] using the provided default `err` value
239//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
240//! a value of [`Err`] using the provided function
241//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
242//! [`Result`] of an [`Option`]
243//!
244//! [`Err(err)`]: Err
245//! [`Ok(v)`]: Ok
246//! [`Some(v)`]: Some
247//! [`ok_or`]: Option::ok_or
248//! [`ok_or_else`]: Option::ok_or_else
249//! [`transpose`]: Option::transpose
250//!
251//! These methods transform the [`Some`] variant:
252//!
253//! * [`filter`] calls the provided predicate function on the contained
254//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
255//! if the function returns `true`; otherwise, returns [`None`]
256//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
257//! * [`inspect`] method takes ownership of the [`Option`] and applies
258//! the provided function to the contained value by reference if [`Some`]
259//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
260//! provided function to the contained value of [`Some`] and leaving
261//! [`None`] values unchanged
262//!
263//! [`Some(t)`]: Some
264//! [`filter`]: Option::filter
265//! [`flatten`]: Option::flatten
266//! [`inspect`]: Option::inspect
267//! [`map`]: Option::map
268//!
269//! These methods transform [`Option<T>`] to a value of a possibly
270//! different type `U`:
271//!
272//! * [`map_or`] applies the provided function to the contained value of
273//! [`Some`], or returns the provided default value if the [`Option`] is
274//! [`None`]
275//! * [`map_or_else`] applies the provided function to the contained value
276//! of [`Some`], or returns the result of evaluating the provided
277//! fallback function if the [`Option`] is [`None`]
278//!
279//! [`map_or`]: Option::map_or
280//! [`map_or_else`]: Option::map_or_else
281//!
282//! These methods combine the [`Some`] variants of two [`Option`] values:
283//!
284//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
285//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
286//! * [`zip_with`] calls the provided function `f` and returns
287//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
288//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
289//!
290//! [`Some(f(s, o))`]: Some
291//! [`Some(o)`]: Some
292//! [`Some(s)`]: Some
293//! [`Some((s, o))`]: Some
294//! [`zip`]: Option::zip
295//! [`zip_with`]: Option::zip_with
296//!
297//! ## Boolean operators
298//!
299//! These methods treat the [`Option`] as a boolean value, where [`Some`]
300//! acts like [`true`] and [`None`] acts like [`false`]. There are two
301//! categories of these methods: ones that take an [`Option`] as input, and
302//! ones that take a function as input (to be lazily evaluated).
303//!
304//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
305//! input, and produce an [`Option`] as output. Only the [`and`] method can
306//! produce an [`Option<U>`] value having a different inner type `U` than
307//! [`Option<T>`].
308//!
309//! | method | self | input | output |
310//! |---------|-----------|-----------|-----------|
311//! | [`and`] | `None` | (ignored) | `None` |
312//! | [`and`] | `Some(x)` | `None` | `None` |
313//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
314//! | [`or`] | `None` | `None` | `None` |
315//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
316//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
317//! | [`xor`] | `None` | `None` | `None` |
318//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
319//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
320//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
321//!
322//! [`and`]: Option::and
323//! [`or`]: Option::or
324//! [`xor`]: Option::xor
325//!
326//! The [`and_then`] and [`or_else`] methods take a function as input, and
327//! only evaluate the function when they need to produce a new value. Only
328//! the [`and_then`] method can produce an [`Option<U>`] value having a
329//! different inner type `U` than [`Option<T>`].
330//!
331//! | method | self | function input | function result | output |
332//! |--------------|-----------|----------------|-----------------|-----------|
333//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
334//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
335//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
336//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
337//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
338//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
339//!
340//! [`and_then`]: Option::and_then
341//! [`or_else`]: Option::or_else
342//!
343//! This is an example of using methods like [`and_then`] and [`or`] in a
344//! pipeline of method calls. Early stages of the pipeline pass failure
345//! values ([`None`]) through unchanged, and continue processing on
346//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
347//! message if it receives [`None`].
348//!
349//! ```
350//! # use std::collections::BTreeMap;
351//! let mut bt = BTreeMap::new();
352//! bt.insert(20u8, "foo");
353//! bt.insert(42u8, "bar");
354//! let res = [0u8, 1, 11, 200, 22]
355//! .into_iter()
356//! .map(|x| {
357//! // `checked_sub()` returns `None` on error
358//! x.checked_sub(1)
359//! // same with `checked_mul()`
360//! .and_then(|x| x.checked_mul(2))
361//! // `BTreeMap::get` returns `None` on error
362//! .and_then(|x| bt.get(&x))
363//! // Substitute an error message if we have `None` so far
364//! .or(Some(&"error!"))
365//! .copied()
366//! // Won't panic because we unconditionally used `Some` above
367//! .unwrap()
368//! })
369//! .collect::<Vec<_>>();
370//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
371//! ```
372//!
373//! ## Comparison operators
374//!
375//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
376//! [`PartialOrd`] implementation. With this order, [`None`] compares as
377//! less than any [`Some`], and two [`Some`] compare the same way as their
378//! contained values would in `T`. If `T` also implements
379//! [`Ord`], then so does [`Option<T>`].
380//!
381//! ```
382//! assert!(None < Some(0));
383//! assert!(Some(0) < Some(1));
384//! ```
385//!
386//! ## Iterating over `Option`
387//!
388//! An [`Option`] can be iterated over. This can be helpful if you need an
389//! iterator that is conditionally empty. The iterator will either produce
390//! a single value (when the [`Option`] is [`Some`]), or produce no values
391//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
392//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
393//! the [`Option`] is [`None`].
394//!
395//! [`Some(v)`]: Some
396//! [`empty()`]: crate::iter::empty
397//! [`once(v)`]: crate::iter::once
398//!
399//! Iterators over [`Option<T>`] come in three types:
400//!
401//! * [`into_iter`] consumes the [`Option`] and produces the contained
402//! value
403//! * [`iter`] produces an immutable reference of type `&T` to the
404//! contained value
405//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
406//! contained value
407//!
408//! [`into_iter`]: Option::into_iter
409//! [`iter`]: Option::iter
410//! [`iter_mut`]: Option::iter_mut
411//!
412//! An iterator over [`Option`] can be useful when chaining iterators, for
413//! example, to conditionally insert items. (It's not always necessary to
414//! explicitly call an iterator constructor: many [`Iterator`] methods that
415//! accept other iterators will also accept iterable types that implement
416//! [`IntoIterator`], which includes [`Option`].)
417//!
418//! ```
419//! let yep = Some(42);
420//! let nope = None;
421//! // chain() already calls into_iter(), so we don't have to do so
422//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
423//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
424//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
425//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
426//! ```
427//!
428//! One reason to chain iterators in this way is that a function returning
429//! `impl Iterator` must have all possible return values be of the same
430//! concrete type. Chaining an iterated [`Option`] can help with that.
431//!
432//! ```
433//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
434//! // Explicit returns to illustrate return types matching
435//! match do_insert {
436//! true => return (0..4).chain(Some(42)).chain(4..8),
437//! false => return (0..4).chain(None).chain(4..8),
438//! }
439//! }
440//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
441//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
442//! ```
443//!
444//! If we try to do the same thing, but using [`once()`] and [`empty()`],
445//! we can't return `impl Iterator` anymore because the concrete types of
446//! the return values differ.
447//!
448//! [`empty()`]: crate::iter::empty
449//! [`once()`]: crate::iter::once
450//!
451//! ```compile_fail,E0308
452//! # use std::iter::{empty, once};
453//! // This won't compile because all possible returns from the function
454//! // must have the same concrete type.
455//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
456//! // Explicit returns to illustrate return types not matching
457//! match do_insert {
458//! true => return (0..4).chain(once(42)).chain(4..8),
459//! false => return (0..4).chain(empty()).chain(4..8),
460//! }
461//! }
462//! ```
463//!
464//! ## Collecting into `Option`
465//!
466//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
467//! which allows an iterator over [`Option`] values to be collected into an
468//! [`Option`] of a collection of each contained value of the original
469//! [`Option`] values, or [`None`] if any of the elements was [`None`].
470//!
471//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
472//!
473//! ```
474//! let v = [Some(2), Some(4), None, Some(8)];
475//! let res: Option<Vec<_>> = v.into_iter().collect();
476//! assert_eq!(res, None);
477//! let v = [Some(2), Some(4), Some(8)];
478//! let res: Option<Vec<_>> = v.into_iter().collect();
479//! assert_eq!(res, Some(vec![2, 4, 8]));
480//! ```
481//!
482//! [`Option`] also implements the [`Product`][impl-Product] and
483//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
484//! to provide the [`product`][Iterator::product] and
485//! [`sum`][Iterator::sum] methods.
486//!
487//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
488//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
489//!
490//! ```
491//! let v = [None, Some(1), Some(2), Some(3)];
492//! let res: Option<i32> = v.into_iter().sum();
493//! assert_eq!(res, None);
494//! let v = [Some(1), Some(2), Some(21)];
495//! let res: Option<i32> = v.into_iter().product();
496//! assert_eq!(res, Some(42));
497//! ```
498//!
499//! ## Modifying an [`Option`] in-place
500//!
501//! These methods return a mutable reference to the contained value of an
502//! [`Option<T>`]:
503//!
504//! * [`insert`] inserts a value, dropping any old contents
505//! * [`get_or_insert`] gets the current value, inserting a provided
506//! default value if it is [`None`]
507//! * [`get_or_insert_default`] gets the current value, inserting the
508//! default value of type `T` (which must implement [`Default`]) if it is
509//! [`None`]
510//! * [`get_or_insert_with`] gets the current value, inserting a default
511//! computed by the provided function if it is [`None`]
512//!
513//! [`get_or_insert`]: Option::get_or_insert
514//! [`get_or_insert_default`]: Option::get_or_insert_default
515//! [`get_or_insert_with`]: Option::get_or_insert_with
516//! [`insert`]: Option::insert
517//!
518//! These methods transfer ownership of the contained value of an
519//! [`Option`]:
520//!
521//! * [`take`] takes ownership of the contained value of an [`Option`], if
522//! any, replacing the [`Option`] with [`None`]
523//! * [`replace`] takes ownership of the contained value of an [`Option`],
524//! if any, replacing the [`Option`] with a [`Some`] containing the
525//! provided value
526//!
527//! [`replace`]: Option::replace
528//! [`take`]: Option::take
529//!
530//! # Examples
531//!
532//! Basic pattern matching on [`Option`]:
533//!
534//! ```
535//! let msg = Some("howdy");
536//!
537//! // Take a reference to the contained string
538//! if let Some(m) = &msg {
539//! println!("{}", *m);
540//! }
541//!
542//! // Remove the contained string, destroying the Option
543//! let unwrapped_msg = msg.unwrap_or("default message");
544//! ```
545//!
546//! Initialize a result to [`None`] before a loop:
547//!
548//! ```
549//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
550//!
551//! // A list of data to search through.
552//! let all_the_big_things = [
553//! Kingdom::Plant(250, "redwood"),
554//! Kingdom::Plant(230, "noble fir"),
555//! Kingdom::Plant(229, "sugar pine"),
556//! Kingdom::Animal(25, "blue whale"),
557//! Kingdom::Animal(19, "fin whale"),
558//! Kingdom::Animal(15, "north pacific right whale"),
559//! ];
560//!
561//! // We're going to search for the name of the biggest animal,
562//! // but to start with we've just got `None`.
563//! let mut name_of_biggest_animal = None;
564//! let mut size_of_biggest_animal = 0;
565//! for big_thing in &all_the_big_things {
566//! match *big_thing {
567//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
568//! // Now we've found the name of some big animal
569//! size_of_biggest_animal = size;
570//! name_of_biggest_animal = Some(name);
571//! }
572//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
573//! }
574//! }
575//!
576//! match name_of_biggest_animal {
577//! Some(name) => println!("the biggest animal is {name}"),
578//! None => println!("there are no animals :("),
579//! }
580//! ```
581
582#![stable(feature = "rust1", since = "1.0.0")]
583
584use crate::clone::TrivialClone;
585use crate::iter::{self, FusedIterator, TrustedLen};
586use crate::marker::Destruct;
587use crate::ops::{self, ControlFlow, Deref, DerefMut};
588use crate::panicking::{panic, panic_display};
589use crate::pin::Pin;
590use crate::{cmp, convert, hint, mem, slice};
591
592/// The `Option` type. See [the module level documentation](self) for more.
593#[doc(search_unbox)]
594#[derive(Copy, Debug, Hash)]
595#[derive_const(Eq)]
596#[rustc_diagnostic_item = "Option"]
597#[lang = "Option"]
598#[stable(feature = "rust1", since = "1.0.0")]
599#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
600pub enum Option<T> {
601 /// No value.
602 #[lang = "None"]
603 #[stable(feature = "rust1", since = "1.0.0")]
604 None,
605 /// Some value of type `T`.
606 #[lang = "Some"]
607 #[stable(feature = "rust1", since = "1.0.0")]
608 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
609}
610
611/////////////////////////////////////////////////////////////////////////////
612// Type implementation
613/////////////////////////////////////////////////////////////////////////////
614
615impl<T> Option<T> {
616 /////////////////////////////////////////////////////////////////////////
617 // Querying the contained values
618 /////////////////////////////////////////////////////////////////////////
619
620 /// Returns `true` if the option is a [`Some`] value.
621 ///
622 /// # Examples
623 ///
624 /// ```
625 /// let x: Option<u32> = Some(2);
626 /// assert_eq!(x.is_some(), true);
627 ///
628 /// let x: Option<u32> = None;
629 /// assert_eq!(x.is_some(), false);
630 /// ```
631 #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
632 #[inline]
633 #[stable(feature = "rust1", since = "1.0.0")]
634 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
635 pub const fn is_some(&self) -> bool {
636 matches!(*self, Some(_))
637 }
638
639 /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
640 ///
641 /// # Examples
642 ///
643 /// ```
644 /// let x: Option<u32> = Some(2);
645 /// assert_eq!(x.is_some_and(|x| x > 1), true);
646 ///
647 /// let x: Option<u32> = Some(0);
648 /// assert_eq!(x.is_some_and(|x| x > 1), false);
649 ///
650 /// let x: Option<u32> = None;
651 /// assert_eq!(x.is_some_and(|x| x > 1), false);
652 ///
653 /// let x: Option<String> = Some("ownership".to_string());
654 /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
655 /// println!("still alive {:?}", x);
656 /// ```
657 #[must_use]
658 #[inline]
659 #[stable(feature = "is_some_and", since = "1.70.0")]
660 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
661 pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
662 match self {
663 None => false,
664 Some(x) => f(x),
665 }
666 }
667
668 /// Returns `true` if the option is a [`None`] value.
669 ///
670 /// # Examples
671 ///
672 /// ```
673 /// let x: Option<u32> = Some(2);
674 /// assert_eq!(x.is_none(), false);
675 ///
676 /// let x: Option<u32> = None;
677 /// assert_eq!(x.is_none(), true);
678 /// ```
679 #[must_use = "if you intended to assert that this doesn't have a value, consider \
680 wrapping this in an `assert!()` instead"]
681 #[inline]
682 #[stable(feature = "rust1", since = "1.0.0")]
683 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
684 pub const fn is_none(&self) -> bool {
685 !self.is_some()
686 }
687
688 /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
689 ///
690 /// # Examples
691 ///
692 /// ```
693 /// let x: Option<u32> = Some(2);
694 /// assert_eq!(x.is_none_or(|x| x > 1), true);
695 ///
696 /// let x: Option<u32> = Some(0);
697 /// assert_eq!(x.is_none_or(|x| x > 1), false);
698 ///
699 /// let x: Option<u32> = None;
700 /// assert_eq!(x.is_none_or(|x| x > 1), true);
701 ///
702 /// let x: Option<String> = Some("ownership".to_string());
703 /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
704 /// println!("still alive {:?}", x);
705 /// ```
706 #[must_use]
707 #[inline]
708 #[stable(feature = "is_none_or", since = "1.82.0")]
709 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
710 pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
711 match self {
712 None => true,
713 Some(x) => f(x),
714 }
715 }
716
717 /////////////////////////////////////////////////////////////////////////
718 // Adapter for working with references
719 /////////////////////////////////////////////////////////////////////////
720
721 /// Converts from `&Option<T>` to `Option<&T>`.
722 ///
723 /// # Examples
724 ///
725 /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
726 /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
727 /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
728 /// reference to the value inside the original.
729 ///
730 /// [`map`]: Option::map
731 /// [String]: ../../std/string/struct.String.html "String"
732 /// [`String`]: ../../std/string/struct.String.html "String"
733 ///
734 /// ```
735 /// let text: Option<String> = Some("Hello, world!".to_string());
736 /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
737 /// // then consume *that* with `map`, leaving `text` on the stack.
738 /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
739 /// println!("still can print text: {text:?}");
740 /// ```
741 #[inline]
742 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
743 #[stable(feature = "rust1", since = "1.0.0")]
744 pub const fn as_ref(&self) -> Option<&T> {
745 match *self {
746 Some(ref x) => Some(x),
747 None => None,
748 }
749 }
750
751 /// Converts from `&mut Option<T>` to `Option<&mut T>`.
752 ///
753 /// # Examples
754 ///
755 /// ```
756 /// let mut x = Some(2);
757 /// match x.as_mut() {
758 /// Some(v) => *v = 42,
759 /// None => {},
760 /// }
761 /// assert_eq!(x, Some(42));
762 /// ```
763 #[inline]
764 #[stable(feature = "rust1", since = "1.0.0")]
765 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
766 pub const fn as_mut(&mut self) -> Option<&mut T> {
767 match *self {
768 Some(ref mut x) => Some(x),
769 None => None,
770 }
771 }
772
773 /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
774 ///
775 /// [&]: reference "shared reference"
776 #[inline]
777 #[must_use]
778 #[stable(feature = "pin", since = "1.33.0")]
779 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
780 pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
781 // FIXME(const-hack): use `map` once that is possible
782 match Pin::get_ref(self).as_ref() {
783 // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
784 // which is pinned.
785 Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
786 None => None,
787 }
788 }
789
790 /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
791 ///
792 /// [&mut]: reference "mutable reference"
793 #[inline]
794 #[must_use]
795 #[stable(feature = "pin", since = "1.33.0")]
796 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
797 pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
798 // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
799 // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
800 unsafe {
801 // FIXME(const-hack): use `map` once that is possible
802 match Pin::get_unchecked_mut(self).as_mut() {
803 Some(x) => Some(Pin::new_unchecked(x)),
804 None => None,
805 }
806 }
807 }
808
809 #[inline]
810 const fn len(&self) -> usize {
811 // Using the intrinsic avoids emitting a branch to get the 0 or 1.
812 let discriminant: isize = crate::intrinsics::discriminant_value(self);
813 discriminant as usize
814 }
815
816 /// Returns a slice of the contained value, if any. If this is `None`, an
817 /// empty slice is returned. This can be useful to have a single type of
818 /// iterator over an `Option` or slice.
819 ///
820 /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
821 /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
822 ///
823 /// # Examples
824 ///
825 /// ```rust
826 /// assert_eq!(
827 /// [Some(1234).as_slice(), None.as_slice()],
828 /// [&[1234][..], &[][..]],
829 /// );
830 /// ```
831 ///
832 /// The inverse of this function is (discounting
833 /// borrowing) [`[_]::first`](slice::first):
834 ///
835 /// ```rust
836 /// for i in [Some(1234_u16), None] {
837 /// assert_eq!(i.as_ref(), i.as_slice().first());
838 /// }
839 /// ```
840 #[inline]
841 #[must_use]
842 #[stable(feature = "option_as_slice", since = "1.75.0")]
843 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
844 pub const fn as_slice(&self) -> &[T] {
845 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
846 // to the payload, with a length of 1, so this is equivalent to
847 // `slice::from_ref`, and thus is safe.
848 // When the `Option` is `None`, the length used is 0, so to be safe it
849 // just needs to be aligned, which it is because `&self` is aligned and
850 // the offset used is a multiple of alignment.
851 //
852 // Here we assume that `offset_of!` always returns an offset to an
853 // in-bounds and correctly aligned position for a `T` (even if in the
854 // `None` case it's just padding).
855 unsafe {
856 slice::from_raw_parts(
857 (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
858 self.len(),
859 )
860 }
861 }
862
863 /// Returns a mutable slice of the contained value, if any. If this is
864 /// `None`, an empty slice is returned. This can be useful to have a
865 /// single type of iterator over an `Option` or slice.
866 ///
867 /// Note: Should you have an `Option<&mut T>` instead of a
868 /// `&mut Option<T>`, which this method takes, you can obtain a mutable
869 /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
870 ///
871 /// # Examples
872 ///
873 /// ```rust
874 /// assert_eq!(
875 /// [Some(1234).as_mut_slice(), None.as_mut_slice()],
876 /// [&mut [1234][..], &mut [][..]],
877 /// );
878 /// ```
879 ///
880 /// The result is a mutable slice of zero or one items that points into
881 /// our original `Option`:
882 ///
883 /// ```rust
884 /// let mut x = Some(1234);
885 /// x.as_mut_slice()[0] += 1;
886 /// assert_eq!(x, Some(1235));
887 /// ```
888 ///
889 /// The inverse of this method (discounting borrowing)
890 /// is [`[_]::first_mut`](slice::first_mut):
891 ///
892 /// ```rust
893 /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
894 /// ```
895 #[inline]
896 #[must_use]
897 #[stable(feature = "option_as_slice", since = "1.75.0")]
898 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
899 pub const fn as_mut_slice(&mut self) -> &mut [T] {
900 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
901 // to the payload, with a length of 1, so this is equivalent to
902 // `slice::from_mut`, and thus is safe.
903 // When the `Option` is `None`, the length used is 0, so to be safe it
904 // just needs to be aligned, which it is because `&self` is aligned and
905 // the offset used is a multiple of alignment.
906 //
907 // In the new version, the intrinsic creates a `*const T` from a
908 // mutable reference so it is safe to cast back to a mutable pointer
909 // here. As with `as_slice`, the intrinsic always returns a pointer to
910 // an in-bounds and correctly aligned position for a `T` (even if in
911 // the `None` case it's just padding).
912 unsafe {
913 slice::from_raw_parts_mut(
914 (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
915 self.len(),
916 )
917 }
918 }
919
920 /////////////////////////////////////////////////////////////////////////
921 // Getting to contained values
922 /////////////////////////////////////////////////////////////////////////
923
924 /// Returns the contained [`Some`] value, consuming the `self` value.
925 ///
926 /// # Panics
927 ///
928 /// Panics if the value is a [`None`] with a custom panic message provided by
929 /// `msg`.
930 ///
931 /// # Examples
932 ///
933 /// ```
934 /// let x = Some("value");
935 /// assert_eq!(x.expect("fruits are healthy"), "value");
936 /// ```
937 ///
938 /// ```should_panic
939 /// let x: Option<&str> = None;
940 /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
941 /// ```
942 ///
943 /// # Recommended Message Style
944 ///
945 /// We recommend that `expect` messages are used to describe the reason you
946 /// _expect_ the `Option` should be `Some`.
947 ///
948 /// ```should_panic
949 /// # let slice: &[u8] = &[];
950 /// let item = slice.get(0)
951 /// .expect("slice should not be empty");
952 /// ```
953 ///
954 /// **Hint**: If you're having trouble remembering how to phrase expect
955 /// error messages remember to focus on the word "should" as in "env
956 /// variable should be set by blah" or "the given binary should be available
957 /// and executable by the current user".
958 ///
959 /// For more detail on expect message styles and the reasoning behind our
960 /// recommendation please refer to the section on ["Common Message
961 /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
962 #[inline]
963 #[track_caller]
964 #[stable(feature = "rust1", since = "1.0.0")]
965 #[rustc_diagnostic_item = "option_expect"]
966 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
967 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
968 pub const fn expect(self, msg: &str) -> T {
969 match self {
970 Some(val) => val,
971 None => expect_failed(msg),
972 }
973 }
974
975 /// Returns the contained [`Some`] value, consuming the `self` value.
976 ///
977 /// Because this function may panic, its use is generally discouraged.
978 /// Panics are meant for unrecoverable errors, and
979 /// [may abort the entire program][panic-abort].
980 ///
981 /// Instead, prefer to use pattern matching and handle the [`None`]
982 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
983 /// [`unwrap_or_default`]. In functions returning `Option`, you can use
984 /// [the `?` (try) operator][try-option].
985 ///
986 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
987 /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
988 /// [`unwrap_or`]: Option::unwrap_or
989 /// [`unwrap_or_else`]: Option::unwrap_or_else
990 /// [`unwrap_or_default`]: Option::unwrap_or_default
991 ///
992 /// # Panics
993 ///
994 /// Panics if the self value equals [`None`].
995 ///
996 /// # Examples
997 ///
998 /// ```
999 /// let x = Some("air");
1000 /// assert_eq!(x.unwrap(), "air");
1001 /// ```
1002 ///
1003 /// ```should_panic
1004 /// let x: Option<&str> = None;
1005 /// assert_eq!(x.unwrap(), "air"); // fails
1006 /// ```
1007 #[inline(always)]
1008 #[track_caller]
1009 #[stable(feature = "rust1", since = "1.0.0")]
1010 #[rustc_diagnostic_item = "option_unwrap"]
1011 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1012 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1013 pub const fn unwrap(self) -> T {
1014 match self {
1015 Some(val) => val,
1016 None => unwrap_failed(),
1017 }
1018 }
1019
1020 /// Returns the contained [`Some`] value or a provided default.
1021 ///
1022 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1023 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1024 /// which is lazily evaluated.
1025 ///
1026 /// [`unwrap_or_else`]: Option::unwrap_or_else
1027 ///
1028 /// # Examples
1029 ///
1030 /// ```
1031 /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1032 /// assert_eq!(None.unwrap_or("bike"), "bike");
1033 /// ```
1034 #[inline]
1035 #[stable(feature = "rust1", since = "1.0.0")]
1036 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1037 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1038 pub const fn unwrap_or(self, default: T) -> T
1039 where
1040 T: [const] Destruct,
1041 {
1042 match self {
1043 Some(x) => x,
1044 None => default,
1045 }
1046 }
1047
1048 /// Returns the contained [`Some`] value or computes it from a closure.
1049 ///
1050 /// # Examples
1051 ///
1052 /// ```
1053 /// let k = 10;
1054 /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1055 /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1056 /// ```
1057 #[inline]
1058 #[track_caller]
1059 #[stable(feature = "rust1", since = "1.0.0")]
1060 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1061 pub const fn unwrap_or_else<F>(self, f: F) -> T
1062 where
1063 F: [const] FnOnce() -> T + [const] Destruct,
1064 {
1065 match self {
1066 Some(x) => x,
1067 None => f(),
1068 }
1069 }
1070
1071 /// Returns the contained [`Some`] value or a default.
1072 ///
1073 /// Consumes the `self` argument then, if [`Some`], returns the contained
1074 /// value, otherwise if [`None`], returns the [default value] for that
1075 /// type.
1076 ///
1077 /// # Examples
1078 ///
1079 /// ```
1080 /// let x: Option<u32> = None;
1081 /// let y: Option<u32> = Some(12);
1082 ///
1083 /// assert_eq!(x.unwrap_or_default(), 0);
1084 /// assert_eq!(y.unwrap_or_default(), 12);
1085 /// ```
1086 ///
1087 /// [default value]: Default::default
1088 /// [`parse`]: str::parse
1089 /// [`FromStr`]: crate::str::FromStr
1090 #[inline]
1091 #[stable(feature = "rust1", since = "1.0.0")]
1092 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1093 pub const fn unwrap_or_default(self) -> T
1094 where
1095 T: [const] Default,
1096 {
1097 match self {
1098 Some(x) => x,
1099 None => T::default(),
1100 }
1101 }
1102
1103 /// Returns the contained [`Some`] value, consuming the `self` value,
1104 /// without checking that the value is not [`None`].
1105 ///
1106 /// # Safety
1107 ///
1108 /// Calling this method on [`None`] is *[undefined behavior]*.
1109 ///
1110 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1111 ///
1112 /// # Examples
1113 ///
1114 /// ```
1115 /// let x = Some("air");
1116 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1117 /// ```
1118 ///
1119 /// ```no_run
1120 /// let x: Option<&str> = None;
1121 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1122 /// ```
1123 #[inline]
1124 #[track_caller]
1125 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1126 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1127 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1128 pub const unsafe fn unwrap_unchecked(self) -> T {
1129 match self {
1130 Some(val) => val,
1131 // SAFETY: the safety contract must be upheld by the caller.
1132 None => unsafe { hint::unreachable_unchecked() },
1133 }
1134 }
1135
1136 /////////////////////////////////////////////////////////////////////////
1137 // Transforming contained values
1138 /////////////////////////////////////////////////////////////////////////
1139
1140 /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1141 ///
1142 /// # Examples
1143 ///
1144 /// Calculates the length of an <code>Option<[String]></code> as an
1145 /// <code>Option<[usize]></code>, consuming the original:
1146 ///
1147 /// [String]: ../../std/string/struct.String.html "String"
1148 /// ```
1149 /// let maybe_some_string = Some(String::from("Hello, World!"));
1150 /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1151 /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1152 /// assert_eq!(maybe_some_len, Some(13));
1153 ///
1154 /// let x: Option<&str> = None;
1155 /// assert_eq!(x.map(|s| s.len()), None);
1156 /// ```
1157 #[inline]
1158 #[stable(feature = "rust1", since = "1.0.0")]
1159 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1160 pub const fn map<U, F>(self, f: F) -> Option<U>
1161 where
1162 F: [const] FnOnce(T) -> U + [const] Destruct,
1163 {
1164 match self {
1165 Some(x) => Some(f(x)),
1166 None => None,
1167 }
1168 }
1169
1170 /// Calls a function with a reference to the contained value if [`Some`].
1171 ///
1172 /// Returns the original option.
1173 ///
1174 /// # Examples
1175 ///
1176 /// ```
1177 /// let list = vec![1, 2, 3];
1178 ///
1179 /// // prints "got: 2"
1180 /// let x = list
1181 /// .get(1)
1182 /// .inspect(|x| println!("got: {x}"))
1183 /// .expect("list should be long enough");
1184 ///
1185 /// // prints nothing
1186 /// list.get(5).inspect(|x| println!("got: {x}"));
1187 /// ```
1188 #[inline]
1189 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1190 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1191 pub const fn inspect<F>(self, f: F) -> Self
1192 where
1193 F: [const] FnOnce(&T) + [const] Destruct,
1194 {
1195 if let Some(ref x) = self {
1196 f(x);
1197 }
1198
1199 self
1200 }
1201
1202 /// Returns the provided default result (if none),
1203 /// or applies a function to the contained value (if any).
1204 ///
1205 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1206 /// the result of a function call, it is recommended to use [`map_or_else`],
1207 /// which is lazily evaluated.
1208 ///
1209 /// [`map_or_else`]: Option::map_or_else
1210 ///
1211 /// # Examples
1212 ///
1213 /// ```
1214 /// let x = Some("foo");
1215 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1216 ///
1217 /// let x: Option<&str> = None;
1218 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1219 /// ```
1220 #[inline]
1221 #[stable(feature = "rust1", since = "1.0.0")]
1222 #[must_use = "if you don't need the returned value, use `if let` instead"]
1223 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1224 pub const fn map_or<U, F>(self, default: U, f: F) -> U
1225 where
1226 F: [const] FnOnce(T) -> U + [const] Destruct,
1227 U: [const] Destruct,
1228 {
1229 match self {
1230 Some(t) => f(t),
1231 None => default,
1232 }
1233 }
1234
1235 /// Computes a default function result (if none), or
1236 /// applies a different function to the contained value (if any).
1237 ///
1238 /// # Basic examples
1239 ///
1240 /// ```
1241 /// let k = 21;
1242 ///
1243 /// let x = Some("foo");
1244 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1245 ///
1246 /// let x: Option<&str> = None;
1247 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1248 /// ```
1249 ///
1250 /// # Handling a Result-based fallback
1251 ///
1252 /// A somewhat common occurrence when dealing with optional values
1253 /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1254 /// a fallible fallback if the option is not present. This example
1255 /// parses a command line argument (if present), or the contents of a file to
1256 /// an integer. However, unlike accessing the command line argument, reading
1257 /// the file is fallible, so it must be wrapped with `Ok`.
1258 ///
1259 /// ```no_run
1260 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1261 /// let v: u64 = std::env::args()
1262 /// .nth(1)
1263 /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1264 /// .parse()?;
1265 /// # Ok(())
1266 /// # }
1267 /// ```
1268 #[inline]
1269 #[stable(feature = "rust1", since = "1.0.0")]
1270 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1271 pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1272 where
1273 D: [const] FnOnce() -> U + [const] Destruct,
1274 F: [const] FnOnce(T) -> U + [const] Destruct,
1275 {
1276 match self {
1277 Some(t) => f(t),
1278 None => default(),
1279 }
1280 }
1281
1282 /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1283 /// value if the option is [`Some`], otherwise if [`None`], returns the
1284 /// [default value] for the type `U`.
1285 ///
1286 /// # Examples
1287 ///
1288 /// ```
1289 /// #![feature(result_option_map_or_default)]
1290 ///
1291 /// let x: Option<&str> = Some("hi");
1292 /// let y: Option<&str> = None;
1293 ///
1294 /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1295 /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1296 /// ```
1297 ///
1298 /// [default value]: Default::default
1299 #[inline]
1300 #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1301 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1302 pub const fn map_or_default<U, F>(self, f: F) -> U
1303 where
1304 U: [const] Default,
1305 F: [const] FnOnce(T) -> U + [const] Destruct,
1306 {
1307 match self {
1308 Some(t) => f(t),
1309 None => U::default(),
1310 }
1311 }
1312
1313 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1314 /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1315 ///
1316 /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1317 /// result of a function call, it is recommended to use [`ok_or_else`], which is
1318 /// lazily evaluated.
1319 ///
1320 /// [`Ok(v)`]: Ok
1321 /// [`Err(err)`]: Err
1322 /// [`Some(v)`]: Some
1323 /// [`ok_or_else`]: Option::ok_or_else
1324 ///
1325 /// # Examples
1326 ///
1327 /// ```
1328 /// let x = Some("foo");
1329 /// assert_eq!(x.ok_or(0), Ok("foo"));
1330 ///
1331 /// let x: Option<&str> = None;
1332 /// assert_eq!(x.ok_or(0), Err(0));
1333 /// ```
1334 #[inline]
1335 #[stable(feature = "rust1", since = "1.0.0")]
1336 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1337 pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1338 match self {
1339 Some(v) => Ok(v),
1340 None => Err(err),
1341 }
1342 }
1343
1344 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1345 /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1346 ///
1347 /// [`Ok(v)`]: Ok
1348 /// [`Err(err())`]: Err
1349 /// [`Some(v)`]: Some
1350 ///
1351 /// # Examples
1352 ///
1353 /// ```
1354 /// let x = Some("foo");
1355 /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1356 ///
1357 /// let x: Option<&str> = None;
1358 /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1359 /// ```
1360 #[inline]
1361 #[stable(feature = "rust1", since = "1.0.0")]
1362 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1363 pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1364 where
1365 F: [const] FnOnce() -> E + [const] Destruct,
1366 {
1367 match self {
1368 Some(v) => Ok(v),
1369 None => Err(err()),
1370 }
1371 }
1372
1373 /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1374 ///
1375 /// Leaves the original Option in-place, creating a new one with a reference
1376 /// to the original one, additionally coercing the contents via [`Deref`].
1377 ///
1378 /// # Examples
1379 ///
1380 /// ```
1381 /// let x: Option<String> = Some("hey".to_owned());
1382 /// assert_eq!(x.as_deref(), Some("hey"));
1383 ///
1384 /// let x: Option<String> = None;
1385 /// assert_eq!(x.as_deref(), None);
1386 /// ```
1387 #[inline]
1388 #[stable(feature = "option_deref", since = "1.40.0")]
1389 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1390 pub const fn as_deref(&self) -> Option<&T::Target>
1391 where
1392 T: [const] Deref,
1393 {
1394 self.as_ref().map(Deref::deref)
1395 }
1396
1397 /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1398 ///
1399 /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1400 /// the inner type's [`Deref::Target`] type.
1401 ///
1402 /// # Examples
1403 ///
1404 /// ```
1405 /// let mut x: Option<String> = Some("hey".to_owned());
1406 /// assert_eq!(x.as_deref_mut().map(|x| {
1407 /// x.make_ascii_uppercase();
1408 /// x
1409 /// }), Some("HEY".to_owned().as_mut_str()));
1410 /// ```
1411 #[inline]
1412 #[stable(feature = "option_deref", since = "1.40.0")]
1413 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1414 pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1415 where
1416 T: [const] DerefMut,
1417 {
1418 self.as_mut().map(DerefMut::deref_mut)
1419 }
1420
1421 /////////////////////////////////////////////////////////////////////////
1422 // Iterator constructors
1423 /////////////////////////////////////////////////////////////////////////
1424
1425 /// Returns an iterator over the possibly contained value.
1426 ///
1427 /// # Examples
1428 ///
1429 /// ```
1430 /// let x = Some(4);
1431 /// assert_eq!(x.iter().next(), Some(&4));
1432 ///
1433 /// let x: Option<u32> = None;
1434 /// assert_eq!(x.iter().next(), None);
1435 /// ```
1436 #[inline]
1437 #[stable(feature = "rust1", since = "1.0.0")]
1438 pub fn iter(&self) -> Iter<'_, T> {
1439 Iter { inner: Item { opt: self.as_ref() } }
1440 }
1441
1442 /// Returns a mutable iterator over the possibly contained value.
1443 ///
1444 /// # Examples
1445 ///
1446 /// ```
1447 /// let mut x = Some(4);
1448 /// match x.iter_mut().next() {
1449 /// Some(v) => *v = 42,
1450 /// None => {},
1451 /// }
1452 /// assert_eq!(x, Some(42));
1453 ///
1454 /// let mut x: Option<u32> = None;
1455 /// assert_eq!(x.iter_mut().next(), None);
1456 /// ```
1457 #[inline]
1458 #[stable(feature = "rust1", since = "1.0.0")]
1459 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1460 IterMut { inner: Item { opt: self.as_mut() } }
1461 }
1462
1463 /////////////////////////////////////////////////////////////////////////
1464 // Boolean operations on the values, eager and lazy
1465 /////////////////////////////////////////////////////////////////////////
1466
1467 /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1468 ///
1469 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1470 /// result of a function call, it is recommended to use [`and_then`], which is
1471 /// lazily evaluated.
1472 ///
1473 /// [`and_then`]: Option::and_then
1474 ///
1475 /// # Examples
1476 ///
1477 /// ```
1478 /// let x = Some(2);
1479 /// let y: Option<&str> = None;
1480 /// assert_eq!(x.and(y), None);
1481 ///
1482 /// let x: Option<u32> = None;
1483 /// let y = Some("foo");
1484 /// assert_eq!(x.and(y), None);
1485 ///
1486 /// let x = Some(2);
1487 /// let y = Some("foo");
1488 /// assert_eq!(x.and(y), Some("foo"));
1489 ///
1490 /// let x: Option<u32> = None;
1491 /// let y: Option<&str> = None;
1492 /// assert_eq!(x.and(y), None);
1493 /// ```
1494 #[inline]
1495 #[stable(feature = "rust1", since = "1.0.0")]
1496 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1497 pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1498 where
1499 T: [const] Destruct,
1500 U: [const] Destruct,
1501 {
1502 match self {
1503 Some(_) => optb,
1504 None => None,
1505 }
1506 }
1507
1508 /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1509 /// wrapped value and returns the result.
1510 ///
1511 /// Some languages call this operation flatmap.
1512 ///
1513 /// # Examples
1514 ///
1515 /// ```
1516 /// fn sq_then_to_string(x: u32) -> Option<String> {
1517 /// x.checked_mul(x).map(|sq| sq.to_string())
1518 /// }
1519 ///
1520 /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1521 /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1522 /// assert_eq!(None.and_then(sq_then_to_string), None);
1523 /// ```
1524 ///
1525 /// Often used to chain fallible operations that may return [`None`].
1526 ///
1527 /// ```
1528 /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1529 ///
1530 /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1531 /// assert_eq!(item_0_1, Some(&"A1"));
1532 ///
1533 /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1534 /// assert_eq!(item_2_0, None);
1535 /// ```
1536 #[doc(alias = "flatmap")]
1537 #[inline]
1538 #[stable(feature = "rust1", since = "1.0.0")]
1539 #[rustc_confusables("flat_map", "flatmap")]
1540 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1541 pub const fn and_then<U, F>(self, f: F) -> Option<U>
1542 where
1543 F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1544 {
1545 match self {
1546 Some(x) => f(x),
1547 None => None,
1548 }
1549 }
1550
1551 /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1552 /// with the wrapped value and returns:
1553 ///
1554 /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1555 /// value), and
1556 /// - [`None`] if `predicate` returns `false`.
1557 ///
1558 /// This function works similar to [`Iterator::filter()`]. You can imagine
1559 /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1560 /// lets you decide which elements to keep.
1561 ///
1562 /// # Examples
1563 ///
1564 /// ```rust
1565 /// fn is_even(n: &i32) -> bool {
1566 /// n % 2 == 0
1567 /// }
1568 ///
1569 /// assert_eq!(None.filter(is_even), None);
1570 /// assert_eq!(Some(3).filter(is_even), None);
1571 /// assert_eq!(Some(4).filter(is_even), Some(4));
1572 /// ```
1573 ///
1574 /// [`Some(t)`]: Some
1575 #[inline]
1576 #[stable(feature = "option_filter", since = "1.27.0")]
1577 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1578 pub const fn filter<P>(self, predicate: P) -> Self
1579 where
1580 P: [const] FnOnce(&T) -> bool + [const] Destruct,
1581 T: [const] Destruct,
1582 {
1583 if let Some(x) = self {
1584 if predicate(&x) {
1585 return Some(x);
1586 }
1587 }
1588 None
1589 }
1590
1591 /// Returns the option if it contains a value, otherwise returns `optb`.
1592 ///
1593 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1594 /// result of a function call, it is recommended to use [`or_else`], which is
1595 /// lazily evaluated.
1596 ///
1597 /// [`or_else`]: Option::or_else
1598 ///
1599 /// # Examples
1600 ///
1601 /// ```
1602 /// let x = Some(2);
1603 /// let y = None;
1604 /// assert_eq!(x.or(y), Some(2));
1605 ///
1606 /// let x = None;
1607 /// let y = Some(100);
1608 /// assert_eq!(x.or(y), Some(100));
1609 ///
1610 /// let x = Some(2);
1611 /// let y = Some(100);
1612 /// assert_eq!(x.or(y), Some(2));
1613 ///
1614 /// let x: Option<u32> = None;
1615 /// let y = None;
1616 /// assert_eq!(x.or(y), None);
1617 /// ```
1618 #[inline]
1619 #[stable(feature = "rust1", since = "1.0.0")]
1620 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1621 pub const fn or(self, optb: Option<T>) -> Option<T>
1622 where
1623 T: [const] Destruct,
1624 {
1625 match self {
1626 x @ Some(_) => x,
1627 None => optb,
1628 }
1629 }
1630
1631 /// Returns the option if it contains a value, otherwise calls `f` and
1632 /// returns the result.
1633 ///
1634 /// # Examples
1635 ///
1636 /// ```
1637 /// fn nobody() -> Option<&'static str> { None }
1638 /// fn vikings() -> Option<&'static str> { Some("vikings") }
1639 ///
1640 /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1641 /// assert_eq!(None.or_else(vikings), Some("vikings"));
1642 /// assert_eq!(None.or_else(nobody), None);
1643 /// ```
1644 #[inline]
1645 #[stable(feature = "rust1", since = "1.0.0")]
1646 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1647 pub const fn or_else<F>(self, f: F) -> Option<T>
1648 where
1649 F: [const] FnOnce() -> Option<T> + [const] Destruct,
1650 //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1651 // no value of type `T` gets dropped here
1652 T: [const] Destruct,
1653 {
1654 match self {
1655 x @ Some(_) => x,
1656 None => f(),
1657 }
1658 }
1659
1660 /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1661 ///
1662 /// # Examples
1663 ///
1664 /// ```
1665 /// let x = Some(2);
1666 /// let y: Option<u32> = None;
1667 /// assert_eq!(x.xor(y), Some(2));
1668 ///
1669 /// let x: Option<u32> = None;
1670 /// let y = Some(2);
1671 /// assert_eq!(x.xor(y), Some(2));
1672 ///
1673 /// let x = Some(2);
1674 /// let y = Some(2);
1675 /// assert_eq!(x.xor(y), None);
1676 ///
1677 /// let x: Option<u32> = None;
1678 /// let y: Option<u32> = None;
1679 /// assert_eq!(x.xor(y), None);
1680 /// ```
1681 #[inline]
1682 #[stable(feature = "option_xor", since = "1.37.0")]
1683 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1684 pub const fn xor(self, optb: Option<T>) -> Option<T>
1685 where
1686 T: [const] Destruct,
1687 {
1688 match (self, optb) {
1689 (a @ Some(_), None) => a,
1690 (None, b @ Some(_)) => b,
1691 _ => None,
1692 }
1693 }
1694
1695 /////////////////////////////////////////////////////////////////////////
1696 // Entry-like operations to insert a value and return a reference
1697 /////////////////////////////////////////////////////////////////////////
1698
1699 /// Inserts `value` into the option, then returns a mutable reference to it.
1700 ///
1701 /// If the option already contains a value, the old value is dropped.
1702 ///
1703 /// See also [`Option::get_or_insert`], which doesn't update the value if
1704 /// the option already contains [`Some`].
1705 ///
1706 /// # Example
1707 ///
1708 /// ```
1709 /// let mut opt = None;
1710 /// let val = opt.insert(1);
1711 /// assert_eq!(*val, 1);
1712 /// assert_eq!(opt.unwrap(), 1);
1713 /// let val = opt.insert(2);
1714 /// assert_eq!(*val, 2);
1715 /// *val = 3;
1716 /// assert_eq!(opt.unwrap(), 3);
1717 /// ```
1718 #[must_use = "if you intended to set a value, consider assignment instead"]
1719 #[inline]
1720 #[stable(feature = "option_insert", since = "1.53.0")]
1721 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1722 pub const fn insert(&mut self, value: T) -> &mut T
1723 where
1724 T: [const] Destruct,
1725 {
1726 *self = Some(value);
1727
1728 // SAFETY: the code above just filled the option
1729 unsafe { self.as_mut().unwrap_unchecked() }
1730 }
1731
1732 /// Inserts `value` into the option if it is [`None`], then
1733 /// returns a mutable reference to the contained value.
1734 ///
1735 /// See also [`Option::insert`], which updates the value even if
1736 /// the option already contains [`Some`].
1737 ///
1738 /// # Examples
1739 ///
1740 /// ```
1741 /// let mut x = None;
1742 ///
1743 /// {
1744 /// let y: &mut u32 = x.get_or_insert(5);
1745 /// assert_eq!(y, &5);
1746 ///
1747 /// *y = 7;
1748 /// }
1749 ///
1750 /// assert_eq!(x, Some(7));
1751 /// ```
1752 #[inline]
1753 #[stable(feature = "option_entry", since = "1.20.0")]
1754 pub fn get_or_insert(&mut self, value: T) -> &mut T {
1755 self.get_or_insert_with(|| value)
1756 }
1757
1758 /// Inserts the default value into the option if it is [`None`], then
1759 /// returns a mutable reference to the contained value.
1760 ///
1761 /// # Examples
1762 ///
1763 /// ```
1764 /// let mut x = None;
1765 ///
1766 /// {
1767 /// let y: &mut u32 = x.get_or_insert_default();
1768 /// assert_eq!(y, &0);
1769 ///
1770 /// *y = 7;
1771 /// }
1772 ///
1773 /// assert_eq!(x, Some(7));
1774 /// ```
1775 #[inline]
1776 #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1777 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1778 pub const fn get_or_insert_default(&mut self) -> &mut T
1779 where
1780 T: [const] Default + [const] Destruct,
1781 {
1782 self.get_or_insert_with(T::default)
1783 }
1784
1785 /// Inserts a value computed from `f` into the option if it is [`None`],
1786 /// then returns a mutable reference to the contained value.
1787 ///
1788 /// # Examples
1789 ///
1790 /// ```
1791 /// let mut x = None;
1792 ///
1793 /// {
1794 /// let y: &mut u32 = x.get_or_insert_with(|| 5);
1795 /// assert_eq!(y, &5);
1796 ///
1797 /// *y = 7;
1798 /// }
1799 ///
1800 /// assert_eq!(x, Some(7));
1801 /// ```
1802 #[inline]
1803 #[stable(feature = "option_entry", since = "1.20.0")]
1804 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1805 pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1806 where
1807 F: [const] FnOnce() -> T + [const] Destruct,
1808 T: [const] Destruct,
1809 {
1810 if let None = self {
1811 *self = Some(f());
1812 }
1813
1814 // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1815 // variant in the code above.
1816 unsafe { self.as_mut().unwrap_unchecked() }
1817 }
1818
1819 /////////////////////////////////////////////////////////////////////////
1820 // Misc
1821 /////////////////////////////////////////////////////////////////////////
1822
1823 /// Takes the value out of the option, leaving a [`None`] in its place.
1824 ///
1825 /// # Examples
1826 ///
1827 /// ```
1828 /// let mut x = Some(2);
1829 /// let y = x.take();
1830 /// assert_eq!(x, None);
1831 /// assert_eq!(y, Some(2));
1832 ///
1833 /// let mut x: Option<u32> = None;
1834 /// let y = x.take();
1835 /// assert_eq!(x, None);
1836 /// assert_eq!(y, None);
1837 /// ```
1838 #[inline]
1839 #[stable(feature = "rust1", since = "1.0.0")]
1840 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1841 pub const fn take(&mut self) -> Option<T> {
1842 // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1843 mem::replace(self, None)
1844 }
1845
1846 /// Takes the value out of the option, but only if the predicate evaluates to
1847 /// `true` on a mutable reference to the value.
1848 ///
1849 /// In other words, replaces `self` with `None` if the predicate returns `true`.
1850 /// This method operates similar to [`Option::take`] but conditional.
1851 ///
1852 /// # Examples
1853 ///
1854 /// ```
1855 /// let mut x = Some(42);
1856 ///
1857 /// let prev = x.take_if(|v| if *v == 42 {
1858 /// *v += 1;
1859 /// false
1860 /// } else {
1861 /// false
1862 /// });
1863 /// assert_eq!(x, Some(43));
1864 /// assert_eq!(prev, None);
1865 ///
1866 /// let prev = x.take_if(|v| *v == 43);
1867 /// assert_eq!(x, None);
1868 /// assert_eq!(prev, Some(43));
1869 /// ```
1870 #[inline]
1871 #[stable(feature = "option_take_if", since = "1.80.0")]
1872 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1873 pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1874 where
1875 P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1876 {
1877 if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1878 }
1879
1880 /// Replaces the actual value in the option by the value given in parameter,
1881 /// returning the old value if present,
1882 /// leaving a [`Some`] in its place without deinitializing either one.
1883 ///
1884 /// # Examples
1885 ///
1886 /// ```
1887 /// let mut x = Some(2);
1888 /// let old = x.replace(5);
1889 /// assert_eq!(x, Some(5));
1890 /// assert_eq!(old, Some(2));
1891 ///
1892 /// let mut x = None;
1893 /// let old = x.replace(3);
1894 /// assert_eq!(x, Some(3));
1895 /// assert_eq!(old, None);
1896 /// ```
1897 #[inline]
1898 #[stable(feature = "option_replace", since = "1.31.0")]
1899 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1900 pub const fn replace(&mut self, value: T) -> Option<T> {
1901 mem::replace(self, Some(value))
1902 }
1903
1904 /// Zips `self` with another `Option`.
1905 ///
1906 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1907 /// Otherwise, `None` is returned.
1908 ///
1909 /// # Examples
1910 ///
1911 /// ```
1912 /// let x = Some(1);
1913 /// let y = Some("hi");
1914 /// let z = None::<u8>;
1915 ///
1916 /// assert_eq!(x.zip(y), Some((1, "hi")));
1917 /// assert_eq!(x.zip(z), None);
1918 /// ```
1919 #[stable(feature = "option_zip_option", since = "1.46.0")]
1920 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1921 pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1922 where
1923 T: [const] Destruct,
1924 U: [const] Destruct,
1925 {
1926 match (self, other) {
1927 (Some(a), Some(b)) => Some((a, b)),
1928 _ => None,
1929 }
1930 }
1931
1932 /// Zips `self` and another `Option` with function `f`.
1933 ///
1934 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1935 /// Otherwise, `None` is returned.
1936 ///
1937 /// # Examples
1938 ///
1939 /// ```
1940 /// #![feature(option_zip)]
1941 ///
1942 /// #[derive(Debug, PartialEq)]
1943 /// struct Point {
1944 /// x: f64,
1945 /// y: f64,
1946 /// }
1947 ///
1948 /// impl Point {
1949 /// fn new(x: f64, y: f64) -> Self {
1950 /// Self { x, y }
1951 /// }
1952 /// }
1953 ///
1954 /// let x = Some(17.5);
1955 /// let y = Some(42.7);
1956 ///
1957 /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1958 /// assert_eq!(x.zip_with(None, Point::new), None);
1959 /// ```
1960 #[unstable(feature = "option_zip", issue = "70086")]
1961 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1962 pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1963 where
1964 F: [const] FnOnce(T, U) -> R + [const] Destruct,
1965 T: [const] Destruct,
1966 U: [const] Destruct,
1967 {
1968 match (self, other) {
1969 (Some(a), Some(b)) => Some(f(a, b)),
1970 _ => None,
1971 }
1972 }
1973
1974 /// Reduces two options into one, using the provided function if both are `Some`.
1975 ///
1976 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1977 /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
1978 /// If both `self` and `other` are `None`, `None` is returned.
1979 ///
1980 /// # Examples
1981 ///
1982 /// ```
1983 /// #![feature(option_reduce)]
1984 ///
1985 /// let s12 = Some(12);
1986 /// let s17 = Some(17);
1987 /// let n = None;
1988 /// let f = |a, b| a + b;
1989 ///
1990 /// assert_eq!(s12.reduce(s17, f), Some(29));
1991 /// assert_eq!(s12.reduce(n, f), Some(12));
1992 /// assert_eq!(n.reduce(s17, f), Some(17));
1993 /// assert_eq!(n.reduce(n, f), None);
1994 /// ```
1995 #[unstable(feature = "option_reduce", issue = "144273")]
1996 pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
1997 where
1998 T: Into<R>,
1999 U: Into<R>,
2000 F: FnOnce(T, U) -> R,
2001 {
2002 match (self, other) {
2003 (Some(a), Some(b)) => Some(f(a, b)),
2004 (Some(a), _) => Some(a.into()),
2005 (_, Some(b)) => Some(b.into()),
2006 _ => None,
2007 }
2008 }
2009}
2010
2011impl<T, U> Option<(T, U)> {
2012 /// Unzips an option containing a tuple of two options.
2013 ///
2014 /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2015 /// Otherwise, `(None, None)` is returned.
2016 ///
2017 /// # Examples
2018 ///
2019 /// ```
2020 /// let x = Some((1, "hi"));
2021 /// let y = None::<(u8, u32)>;
2022 ///
2023 /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2024 /// assert_eq!(y.unzip(), (None, None));
2025 /// ```
2026 #[inline]
2027 #[stable(feature = "unzip_option", since = "1.66.0")]
2028 pub fn unzip(self) -> (Option<T>, Option<U>) {
2029 match self {
2030 Some((a, b)) => (Some(a), Some(b)),
2031 None => (None, None),
2032 }
2033 }
2034}
2035
2036impl<T> Option<&T> {
2037 /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2038 /// option.
2039 ///
2040 /// # Examples
2041 ///
2042 /// ```
2043 /// let x = 12;
2044 /// let opt_x = Some(&x);
2045 /// assert_eq!(opt_x, Some(&12));
2046 /// let copied = opt_x.copied();
2047 /// assert_eq!(copied, Some(12));
2048 /// ```
2049 #[must_use = "`self` will be dropped if the result is not used"]
2050 #[stable(feature = "copied", since = "1.35.0")]
2051 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2052 pub const fn copied(self) -> Option<T>
2053 where
2054 T: Copy,
2055 {
2056 // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2057 // ready yet, should be reverted when possible to avoid code repetition
2058 match self {
2059 Some(&v) => Some(v),
2060 None => None,
2061 }
2062 }
2063
2064 /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2065 /// option.
2066 ///
2067 /// # Examples
2068 ///
2069 /// ```
2070 /// let x = 12;
2071 /// let opt_x = Some(&x);
2072 /// assert_eq!(opt_x, Some(&12));
2073 /// let cloned = opt_x.cloned();
2074 /// assert_eq!(cloned, Some(12));
2075 /// ```
2076 #[must_use = "`self` will be dropped if the result is not used"]
2077 #[stable(feature = "rust1", since = "1.0.0")]
2078 pub fn cloned(self) -> Option<T>
2079 where
2080 T: Clone,
2081 {
2082 match self {
2083 Some(t) => Some(t.clone()),
2084 None => None,
2085 }
2086 }
2087}
2088
2089impl<T> Option<&mut T> {
2090 /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2091 /// option.
2092 ///
2093 /// # Examples
2094 ///
2095 /// ```
2096 /// let mut x = 12;
2097 /// let opt_x = Some(&mut x);
2098 /// assert_eq!(opt_x, Some(&mut 12));
2099 /// let copied = opt_x.copied();
2100 /// assert_eq!(copied, Some(12));
2101 /// ```
2102 #[must_use = "`self` will be dropped if the result is not used"]
2103 #[stable(feature = "copied", since = "1.35.0")]
2104 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2105 pub const fn copied(self) -> Option<T>
2106 where
2107 T: Copy,
2108 {
2109 match self {
2110 Some(&mut t) => Some(t),
2111 None => None,
2112 }
2113 }
2114
2115 /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2116 /// option.
2117 ///
2118 /// # Examples
2119 ///
2120 /// ```
2121 /// let mut x = 12;
2122 /// let opt_x = Some(&mut x);
2123 /// assert_eq!(opt_x, Some(&mut 12));
2124 /// let cloned = opt_x.cloned();
2125 /// assert_eq!(cloned, Some(12));
2126 /// ```
2127 #[must_use = "`self` will be dropped if the result is not used"]
2128 #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2129 pub fn cloned(self) -> Option<T>
2130 where
2131 T: Clone,
2132 {
2133 match self {
2134 Some(t) => Some(t.clone()),
2135 None => None,
2136 }
2137 }
2138}
2139
2140impl<T, E> Option<Result<T, E>> {
2141 /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2142 ///
2143 /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2144 /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2145 /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2146 ///
2147 /// # Examples
2148 ///
2149 /// ```
2150 /// #[derive(Debug, Eq, PartialEq)]
2151 /// struct SomeErr;
2152 ///
2153 /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2154 /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2155 /// assert_eq!(x.transpose(), y);
2156 /// ```
2157 #[inline]
2158 #[stable(feature = "transpose_result", since = "1.33.0")]
2159 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2160 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2161 pub const fn transpose(self) -> Result<Option<T>, E> {
2162 match self {
2163 Some(Ok(x)) => Ok(Some(x)),
2164 Some(Err(e)) => Err(e),
2165 None => Ok(None),
2166 }
2167 }
2168}
2169
2170#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2171#[cfg_attr(panic = "immediate-abort", inline)]
2172#[cold]
2173#[track_caller]
2174const fn unwrap_failed() -> ! {
2175 panic("called `Option::unwrap()` on a `None` value")
2176}
2177
2178// This is a separate function to reduce the code size of .expect() itself.
2179#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2180#[cfg_attr(panic = "immediate-abort", inline)]
2181#[cold]
2182#[track_caller]
2183const fn expect_failed(msg: &str) -> ! {
2184 panic_display(&msg)
2185}
2186
2187/////////////////////////////////////////////////////////////////////////////
2188// Trait implementations
2189/////////////////////////////////////////////////////////////////////////////
2190
2191#[stable(feature = "rust1", since = "1.0.0")]
2192#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2193impl<T> const Clone for Option<T>
2194where
2195 // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2196 // See https://github.com/rust-lang/rust/issues/144207
2197 T: [const] Clone + [const] Destruct,
2198{
2199 #[inline]
2200 fn clone(&self) -> Self {
2201 match self {
2202 Some(x) => Some(x.clone()),
2203 None => None,
2204 }
2205 }
2206
2207 #[inline]
2208 fn clone_from(&mut self, source: &Self) {
2209 match (self, source) {
2210 (Some(to), Some(from)) => to.clone_from(from),
2211 (to, from) => *to = from.clone(),
2212 }
2213 }
2214}
2215
2216#[unstable(feature = "ergonomic_clones", issue = "132290")]
2217impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2218
2219#[doc(hidden)]
2220#[unstable(feature = "trivial_clone", issue = "none")]
2221#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2222unsafe impl<T> const TrivialClone for Option<T> where T: [const] TrivialClone + [const] Destruct {}
2223
2224#[stable(feature = "rust1", since = "1.0.0")]
2225#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2226impl<T> const Default for Option<T> {
2227 /// Returns [`None`][Option::None].
2228 ///
2229 /// # Examples
2230 ///
2231 /// ```
2232 /// let opt: Option<u32> = Option::default();
2233 /// assert!(opt.is_none());
2234 /// ```
2235 #[inline]
2236 fn default() -> Option<T> {
2237 None
2238 }
2239}
2240
2241#[stable(feature = "rust1", since = "1.0.0")]
2242impl<T> IntoIterator for Option<T> {
2243 type Item = T;
2244 type IntoIter = IntoIter<T>;
2245
2246 /// Returns a consuming iterator over the possibly contained value.
2247 ///
2248 /// # Examples
2249 ///
2250 /// ```
2251 /// let x = Some("string");
2252 /// let v: Vec<&str> = x.into_iter().collect();
2253 /// assert_eq!(v, ["string"]);
2254 ///
2255 /// let x = None;
2256 /// let v: Vec<&str> = x.into_iter().collect();
2257 /// assert!(v.is_empty());
2258 /// ```
2259 #[inline]
2260 fn into_iter(self) -> IntoIter<T> {
2261 IntoIter { inner: Item { opt: self } }
2262 }
2263}
2264
2265#[stable(since = "1.4.0", feature = "option_iter")]
2266impl<'a, T> IntoIterator for &'a Option<T> {
2267 type Item = &'a T;
2268 type IntoIter = Iter<'a, T>;
2269
2270 fn into_iter(self) -> Iter<'a, T> {
2271 self.iter()
2272 }
2273}
2274
2275#[stable(since = "1.4.0", feature = "option_iter")]
2276impl<'a, T> IntoIterator for &'a mut Option<T> {
2277 type Item = &'a mut T;
2278 type IntoIter = IterMut<'a, T>;
2279
2280 fn into_iter(self) -> IterMut<'a, T> {
2281 self.iter_mut()
2282 }
2283}
2284
2285#[stable(since = "1.12.0", feature = "option_from")]
2286#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2287impl<T> const From<T> for Option<T> {
2288 /// Moves `val` into a new [`Some`].
2289 ///
2290 /// # Examples
2291 ///
2292 /// ```
2293 /// let o: Option<u8> = Option::from(67);
2294 ///
2295 /// assert_eq!(Some(67), o);
2296 /// ```
2297 fn from(val: T) -> Option<T> {
2298 Some(val)
2299 }
2300}
2301
2302#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2303#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2304impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2305 /// Converts from `&Option<T>` to `Option<&T>`.
2306 ///
2307 /// # Examples
2308 ///
2309 /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2310 /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2311 /// so this technique uses `from` to first take an [`Option`] to a reference
2312 /// to the value inside the original.
2313 ///
2314 /// [`map`]: Option::map
2315 /// [String]: ../../std/string/struct.String.html "String"
2316 ///
2317 /// ```
2318 /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2319 /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2320 ///
2321 /// println!("Can still print s: {s:?}");
2322 ///
2323 /// assert_eq!(o, Some(18));
2324 /// ```
2325 fn from(o: &'a Option<T>) -> Option<&'a T> {
2326 o.as_ref()
2327 }
2328}
2329
2330#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2331#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2332impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2333 /// Converts from `&mut Option<T>` to `Option<&mut T>`
2334 ///
2335 /// # Examples
2336 ///
2337 /// ```
2338 /// let mut s = Some(String::from("Hello"));
2339 /// let o: Option<&mut String> = Option::from(&mut s);
2340 ///
2341 /// match o {
2342 /// Some(t) => *t = String::from("Hello, Rustaceans!"),
2343 /// None => (),
2344 /// }
2345 ///
2346 /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2347 /// ```
2348 fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2349 o.as_mut()
2350 }
2351}
2352
2353// Ideally, LLVM should be able to optimize our derive code to this.
2354// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2355// go back to deriving `PartialEq`.
2356#[stable(feature = "rust1", since = "1.0.0")]
2357impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2358#[stable(feature = "rust1", since = "1.0.0")]
2359#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2360impl<T: [const] PartialEq> const PartialEq for Option<T> {
2361 #[inline]
2362 fn eq(&self, other: &Self) -> bool {
2363 // Spelling out the cases explicitly optimizes better than
2364 // `_ => false`
2365 match (self, other) {
2366 (Some(l), Some(r)) => *l == *r,
2367 (Some(_), None) => false,
2368 (None, Some(_)) => false,
2369 (None, None) => true,
2370 }
2371 }
2372}
2373
2374// Manually implementing here somewhat improves codegen for
2375// https://github.com/rust-lang/rust/issues/49892, although still
2376// not optimal.
2377#[stable(feature = "rust1", since = "1.0.0")]
2378#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2379impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2380 #[inline]
2381 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2382 match (self, other) {
2383 (Some(l), Some(r)) => l.partial_cmp(r),
2384 (Some(_), None) => Some(cmp::Ordering::Greater),
2385 (None, Some(_)) => Some(cmp::Ordering::Less),
2386 (None, None) => Some(cmp::Ordering::Equal),
2387 }
2388 }
2389}
2390
2391#[stable(feature = "rust1", since = "1.0.0")]
2392#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2393impl<T: [const] Ord> const Ord for Option<T> {
2394 #[inline]
2395 fn cmp(&self, other: &Self) -> cmp::Ordering {
2396 match (self, other) {
2397 (Some(l), Some(r)) => l.cmp(r),
2398 (Some(_), None) => cmp::Ordering::Greater,
2399 (None, Some(_)) => cmp::Ordering::Less,
2400 (None, None) => cmp::Ordering::Equal,
2401 }
2402 }
2403}
2404
2405/////////////////////////////////////////////////////////////////////////////
2406// The Option Iterators
2407/////////////////////////////////////////////////////////////////////////////
2408
2409#[derive(Clone, Debug)]
2410struct Item<A> {
2411 opt: Option<A>,
2412}
2413
2414impl<A> Iterator for Item<A> {
2415 type Item = A;
2416
2417 #[inline]
2418 fn next(&mut self) -> Option<A> {
2419 self.opt.take()
2420 }
2421
2422 #[inline]
2423 fn size_hint(&self) -> (usize, Option<usize>) {
2424 let len = self.len();
2425 (len, Some(len))
2426 }
2427}
2428
2429impl<A> DoubleEndedIterator for Item<A> {
2430 #[inline]
2431 fn next_back(&mut self) -> Option<A> {
2432 self.opt.take()
2433 }
2434}
2435
2436impl<A> ExactSizeIterator for Item<A> {
2437 #[inline]
2438 fn len(&self) -> usize {
2439 self.opt.len()
2440 }
2441}
2442impl<A> FusedIterator for Item<A> {}
2443unsafe impl<A> TrustedLen for Item<A> {}
2444
2445/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2446///
2447/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2448///
2449/// This `struct` is created by the [`Option::iter`] function.
2450#[stable(feature = "rust1", since = "1.0.0")]
2451#[derive(Debug)]
2452pub struct Iter<'a, A: 'a> {
2453 inner: Item<&'a A>,
2454}
2455
2456#[stable(feature = "rust1", since = "1.0.0")]
2457impl<'a, A> Iterator for Iter<'a, A> {
2458 type Item = &'a A;
2459
2460 #[inline]
2461 fn next(&mut self) -> Option<&'a A> {
2462 self.inner.next()
2463 }
2464 #[inline]
2465 fn size_hint(&self) -> (usize, Option<usize>) {
2466 self.inner.size_hint()
2467 }
2468}
2469
2470#[stable(feature = "rust1", since = "1.0.0")]
2471impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2472 #[inline]
2473 fn next_back(&mut self) -> Option<&'a A> {
2474 self.inner.next_back()
2475 }
2476}
2477
2478#[stable(feature = "rust1", since = "1.0.0")]
2479impl<A> ExactSizeIterator for Iter<'_, A> {}
2480
2481#[stable(feature = "fused", since = "1.26.0")]
2482impl<A> FusedIterator for Iter<'_, A> {}
2483
2484#[unstable(feature = "trusted_len", issue = "37572")]
2485unsafe impl<A> TrustedLen for Iter<'_, A> {}
2486
2487#[stable(feature = "rust1", since = "1.0.0")]
2488impl<A> Clone for Iter<'_, A> {
2489 #[inline]
2490 fn clone(&self) -> Self {
2491 Iter { inner: self.inner.clone() }
2492 }
2493}
2494
2495/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2496///
2497/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2498///
2499/// This `struct` is created by the [`Option::iter_mut`] function.
2500#[stable(feature = "rust1", since = "1.0.0")]
2501#[derive(Debug)]
2502pub struct IterMut<'a, A: 'a> {
2503 inner: Item<&'a mut A>,
2504}
2505
2506#[stable(feature = "rust1", since = "1.0.0")]
2507impl<'a, A> Iterator for IterMut<'a, A> {
2508 type Item = &'a mut A;
2509
2510 #[inline]
2511 fn next(&mut self) -> Option<&'a mut A> {
2512 self.inner.next()
2513 }
2514 #[inline]
2515 fn size_hint(&self) -> (usize, Option<usize>) {
2516 self.inner.size_hint()
2517 }
2518}
2519
2520#[stable(feature = "rust1", since = "1.0.0")]
2521impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2522 #[inline]
2523 fn next_back(&mut self) -> Option<&'a mut A> {
2524 self.inner.next_back()
2525 }
2526}
2527
2528#[stable(feature = "rust1", since = "1.0.0")]
2529impl<A> ExactSizeIterator for IterMut<'_, A> {}
2530
2531#[stable(feature = "fused", since = "1.26.0")]
2532impl<A> FusedIterator for IterMut<'_, A> {}
2533#[unstable(feature = "trusted_len", issue = "37572")]
2534unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2535
2536/// An iterator over the value in [`Some`] variant of an [`Option`].
2537///
2538/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2539///
2540/// This `struct` is created by the [`Option::into_iter`] function.
2541#[derive(Clone, Debug)]
2542#[stable(feature = "rust1", since = "1.0.0")]
2543pub struct IntoIter<A> {
2544 inner: Item<A>,
2545}
2546
2547#[stable(feature = "rust1", since = "1.0.0")]
2548impl<A> Iterator for IntoIter<A> {
2549 type Item = A;
2550
2551 #[inline]
2552 fn next(&mut self) -> Option<A> {
2553 self.inner.next()
2554 }
2555 #[inline]
2556 fn size_hint(&self) -> (usize, Option<usize>) {
2557 self.inner.size_hint()
2558 }
2559}
2560
2561#[stable(feature = "rust1", since = "1.0.0")]
2562impl<A> DoubleEndedIterator for IntoIter<A> {
2563 #[inline]
2564 fn next_back(&mut self) -> Option<A> {
2565 self.inner.next_back()
2566 }
2567}
2568
2569#[stable(feature = "rust1", since = "1.0.0")]
2570impl<A> ExactSizeIterator for IntoIter<A> {}
2571
2572#[stable(feature = "fused", since = "1.26.0")]
2573impl<A> FusedIterator for IntoIter<A> {}
2574
2575#[unstable(feature = "trusted_len", issue = "37572")]
2576unsafe impl<A> TrustedLen for IntoIter<A> {}
2577
2578/////////////////////////////////////////////////////////////////////////////
2579// FromIterator
2580/////////////////////////////////////////////////////////////////////////////
2581
2582#[stable(feature = "rust1", since = "1.0.0")]
2583impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2584 /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2585 /// no further elements are taken, and the [`None`][Option::None] is
2586 /// returned. Should no [`None`][Option::None] occur, a container of type
2587 /// `V` containing the values of each [`Option`] is returned.
2588 ///
2589 /// # Examples
2590 ///
2591 /// Here is an example which increments every integer in a vector.
2592 /// We use the checked variant of `add` that returns `None` when the
2593 /// calculation would result in an overflow.
2594 ///
2595 /// ```
2596 /// let items = vec![0_u16, 1, 2];
2597 ///
2598 /// let res: Option<Vec<u16>> = items
2599 /// .iter()
2600 /// .map(|x| x.checked_add(1))
2601 /// .collect();
2602 ///
2603 /// assert_eq!(res, Some(vec![1, 2, 3]));
2604 /// ```
2605 ///
2606 /// As you can see, this will return the expected, valid items.
2607 ///
2608 /// Here is another example that tries to subtract one from another list
2609 /// of integers, this time checking for underflow:
2610 ///
2611 /// ```
2612 /// let items = vec![2_u16, 1, 0];
2613 ///
2614 /// let res: Option<Vec<u16>> = items
2615 /// .iter()
2616 /// .map(|x| x.checked_sub(1))
2617 /// .collect();
2618 ///
2619 /// assert_eq!(res, None);
2620 /// ```
2621 ///
2622 /// Since the last element is zero, it would underflow. Thus, the resulting
2623 /// value is `None`.
2624 ///
2625 /// Here is a variation on the previous example, showing that no
2626 /// further elements are taken from `iter` after the first `None`.
2627 ///
2628 /// ```
2629 /// let items = vec![3_u16, 2, 1, 10];
2630 ///
2631 /// let mut shared = 0;
2632 ///
2633 /// let res: Option<Vec<u16>> = items
2634 /// .iter()
2635 /// .map(|x| { shared += x; x.checked_sub(2) })
2636 /// .collect();
2637 ///
2638 /// assert_eq!(res, None);
2639 /// assert_eq!(shared, 6);
2640 /// ```
2641 ///
2642 /// Since the third element caused an underflow, no further elements were taken,
2643 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2644 #[inline]
2645 fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2646 // FIXME(#11084): This could be replaced with Iterator::scan when this
2647 // performance bug is closed.
2648
2649 iter::try_process(iter.into_iter(), |i| i.collect())
2650 }
2651}
2652
2653#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2654#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2655impl<T> const ops::Try for Option<T> {
2656 type Output = T;
2657 type Residual = Option<convert::Infallible>;
2658
2659 #[inline]
2660 fn from_output(output: Self::Output) -> Self {
2661 Some(output)
2662 }
2663
2664 #[inline]
2665 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2666 match self {
2667 Some(v) => ControlFlow::Continue(v),
2668 None => ControlFlow::Break(None),
2669 }
2670 }
2671}
2672
2673#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2674#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2675// Note: manually specifying the residual type instead of using the default to work around
2676// https://github.com/rust-lang/rust/issues/99940
2677impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2678 #[inline]
2679 fn from_residual(residual: Option<convert::Infallible>) -> Self {
2680 match residual {
2681 None => None,
2682 }
2683 }
2684}
2685
2686#[diagnostic::do_not_recommend]
2687#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2688#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2689impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2690 #[inline]
2691 fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2692 None
2693 }
2694}
2695
2696#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2697#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2698impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2699 type TryType = Option<T>;
2700}
2701
2702impl<T> Option<Option<T>> {
2703 /// Converts from `Option<Option<T>>` to `Option<T>`.
2704 ///
2705 /// # Examples
2706 ///
2707 /// Basic usage:
2708 ///
2709 /// ```
2710 /// let x: Option<Option<u32>> = Some(Some(6));
2711 /// assert_eq!(Some(6), x.flatten());
2712 ///
2713 /// let x: Option<Option<u32>> = Some(None);
2714 /// assert_eq!(None, x.flatten());
2715 ///
2716 /// let x: Option<Option<u32>> = None;
2717 /// assert_eq!(None, x.flatten());
2718 /// ```
2719 ///
2720 /// Flattening only removes one level of nesting at a time:
2721 ///
2722 /// ```
2723 /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2724 /// assert_eq!(Some(Some(6)), x.flatten());
2725 /// assert_eq!(Some(6), x.flatten().flatten());
2726 /// ```
2727 #[inline]
2728 #[stable(feature = "option_flattening", since = "1.40.0")]
2729 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2730 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2731 pub const fn flatten(self) -> Option<T> {
2732 // FIXME(const-hack): could be written with `and_then`
2733 match self {
2734 Some(inner) => inner,
2735 None => None,
2736 }
2737 }
2738}
2739
2740impl<T, const N: usize> [Option<T>; N] {
2741 /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2742 ///
2743 /// # Examples
2744 ///
2745 /// ```
2746 /// #![feature(option_array_transpose)]
2747 /// # use std::option::Option;
2748 ///
2749 /// let data = [Some(0); 1000];
2750 /// let data: Option<[u8; 1000]> = data.transpose();
2751 /// assert_eq!(data, Some([0; 1000]));
2752 ///
2753 /// let data = [Some(0), None];
2754 /// let data: Option<[u8; 2]> = data.transpose();
2755 /// assert_eq!(data, None);
2756 /// ```
2757 #[inline]
2758 #[unstable(feature = "option_array_transpose", issue = "130828")]
2759 pub fn transpose(self) -> Option<[T; N]> {
2760 self.try_map(core::convert::identity)
2761 }
2762}