core/option.rs
1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//! over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//! returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//! if denominator == 0.0 {
25//! None
26//! } else {
27//! Some(numerator / denominator)
28//! }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//! // The division was valid
37//! Some(x) => println!("Result: {x}"),
38//! // The division was invalid
39//! None => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//! match optional {
69//! Some(p) => println!("has value {p}"),
70//! None => println!("has no value"),
71//! }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//! let a = stack.pop();
88//! let b = stack.pop();
89//!
90//! match (a, b) {
91//! (Some(x), Some(y)) => Some(x + y),
92//! _ => None,
93//! }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//! Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that [`Option<T>`]
122//! has the same size, alignment, and [function call ABI] as `T`. It is
123//! therefore sound, when `T` is one of these types, to transmute a value `t` of
124//! type `T` to type `Option<T>` (producing the value `Some(t)`) and to
125//! transmute a value `Some(t)` of type `Option<T>` to type `T` (producing the
126//! value `t`).
127//!
128//! In some of these cases, Rust further guarantees the following:
129//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
130//! `Option::<T>::None`
131//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
132//! `[0u8; size_of::<T>()]`
133//!
134//! These cases are identified by the second column:
135//!
136//! | `T` | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
137//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
138//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
139//! | `&U` | when `U: Sized` |
140//! | `&mut U` | when `U: Sized` |
141//! | `fn`, `extern "C" fn`[^extern_fn] | always |
142//! | [`num::NonZero*`] | always |
143//! | [`ptr::NonNull<U>`] | when `U: Sized` |
144//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
145//!
146//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
147//!
148//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
149//!
150//! [`Box<U>`]: ../../std/boxed/struct.Box.html
151//! [`num::NonZero*`]: crate::num
152//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
153//! [function call ABI]: ../primitive.fn.html#abi-compatibility
154//! [result_repr]: crate::result#representation
155//!
156//! This is called the "null pointer optimization" or NPO.
157//!
158//! It is further guaranteed that, for the cases above, one can
159//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
160//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
161//! is undefined behavior).
162//!
163//! # Method overview
164//!
165//! In addition to working with pattern matching, [`Option`] provides a wide
166//! variety of different methods.
167//!
168//! ## Querying the variant
169//!
170//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
171//! is [`Some`] or [`None`], respectively.
172//!
173//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
174//! to the contents of the [`Option`] to produce a boolean value.
175//! If this is [`None`] then a default result is returned instead without executing the function.
176//!
177//! [`is_none`]: Option::is_none
178//! [`is_some`]: Option::is_some
179//! [`is_some_and`]: Option::is_some_and
180//! [`is_none_or`]: Option::is_none_or
181//!
182//! ## Adapters for working with references
183//!
184//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
185//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
186//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
187//! <code>[Option]<[&]T::[Target]></code>
188//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
189//! <code>[Option]<[&mut] T::[Target]></code>
190//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
191//! <code>[Option]<[Pin]<[&]T>></code>
192//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
193//! <code>[Option]<[Pin]<[&mut] T>></code>
194//! * [`as_slice`] returns a one-element slice of the contained value, if any.
195//! If this is [`None`], an empty slice is returned.
196//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
197//! If this is [`None`], an empty slice is returned.
198//!
199//! [&]: reference "shared reference"
200//! [&mut]: reference "mutable reference"
201//! [Target]: Deref::Target "ops::Deref::Target"
202//! [`as_deref`]: Option::as_deref
203//! [`as_deref_mut`]: Option::as_deref_mut
204//! [`as_mut`]: Option::as_mut
205//! [`as_pin_mut`]: Option::as_pin_mut
206//! [`as_pin_ref`]: Option::as_pin_ref
207//! [`as_ref`]: Option::as_ref
208//! [`as_slice`]: Option::as_slice
209//! [`as_mut_slice`]: Option::as_mut_slice
210//!
211//! ## Extracting the contained value
212//!
213//! These methods extract the contained value in an [`Option<T>`] when it
214//! is the [`Some`] variant. If the [`Option`] is [`None`]:
215//!
216//! * [`expect`] panics with a provided custom message
217//! * [`unwrap`] panics with a generic message
218//! * [`unwrap_or`] returns the provided default value
219//! * [`unwrap_or_default`] returns the default value of the type `T`
220//! (which must implement the [`Default`] trait)
221//! * [`unwrap_or_else`] returns the result of evaluating the provided
222//! function
223//! * [`unwrap_unchecked`] produces *[undefined behavior]*
224//!
225//! [`expect`]: Option::expect
226//! [`unwrap`]: Option::unwrap
227//! [`unwrap_or`]: Option::unwrap_or
228//! [`unwrap_or_default`]: Option::unwrap_or_default
229//! [`unwrap_or_else`]: Option::unwrap_or_else
230//! [`unwrap_unchecked`]: Option::unwrap_unchecked
231//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
232//!
233//! ## Transforming contained values
234//!
235//! These methods transform [`Option`] to [`Result`]:
236//!
237//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
238//! [`Err(err)`] using the provided default `err` value
239//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
240//! a value of [`Err`] using the provided function
241//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
242//! [`Result`] of an [`Option`]
243//!
244//! [`Err(err)`]: Err
245//! [`Ok(v)`]: Ok
246//! [`Some(v)`]: Some
247//! [`ok_or`]: Option::ok_or
248//! [`ok_or_else`]: Option::ok_or_else
249//! [`transpose`]: Option::transpose
250//!
251//! These methods transform the [`Some`] variant:
252//!
253//! * [`filter`] calls the provided predicate function on the contained
254//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
255//! if the function returns `true`; otherwise, returns [`None`]
256//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
257//! * [`inspect`] method takes ownership of the [`Option`] and applies
258//! the provided function to the contained value by reference if [`Some`]
259//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
260//! provided function to the contained value of [`Some`] and leaving
261//! [`None`] values unchanged
262//!
263//! [`Some(t)`]: Some
264//! [`filter`]: Option::filter
265//! [`flatten`]: Option::flatten
266//! [`inspect`]: Option::inspect
267//! [`map`]: Option::map
268//!
269//! These methods transform [`Option<T>`] to a value of a possibly
270//! different type `U`:
271//!
272//! * [`map_or`] applies the provided function to the contained value of
273//! [`Some`], or returns the provided default value if the [`Option`] is
274//! [`None`]
275//! * [`map_or_else`] applies the provided function to the contained value
276//! of [`Some`], or returns the result of evaluating the provided
277//! fallback function if the [`Option`] is [`None`]
278//!
279//! [`map_or`]: Option::map_or
280//! [`map_or_else`]: Option::map_or_else
281//!
282//! These methods combine the [`Some`] variants of two [`Option`] values:
283//!
284//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
285//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
286//! * [`zip_with`] calls the provided function `f` and returns
287//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
288//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
289//!
290//! [`Some(f(s, o))`]: Some
291//! [`Some(o)`]: Some
292//! [`Some(s)`]: Some
293//! [`Some((s, o))`]: Some
294//! [`zip`]: Option::zip
295//! [`zip_with`]: Option::zip_with
296//!
297//! ## Boolean operators
298//!
299//! These methods treat the [`Option`] as a boolean value, where [`Some`]
300//! acts like [`true`] and [`None`] acts like [`false`]. There are two
301//! categories of these methods: ones that take an [`Option`] as input, and
302//! ones that take a function as input (to be lazily evaluated).
303//!
304//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
305//! input, and produce an [`Option`] as output. Only the [`and`] method can
306//! produce an [`Option<U>`] value having a different inner type `U` than
307//! [`Option<T>`].
308//!
309//! | method | self | input | output |
310//! |---------|-----------|-----------|-----------|
311//! | [`and`] | `None` | (ignored) | `None` |
312//! | [`and`] | `Some(x)` | `None` | `None` |
313//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
314//! | [`or`] | `None` | `None` | `None` |
315//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
316//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
317//! | [`xor`] | `None` | `None` | `None` |
318//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
319//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
320//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
321//!
322//! [`and`]: Option::and
323//! [`or`]: Option::or
324//! [`xor`]: Option::xor
325//!
326//! The [`and_then`] and [`or_else`] methods take a function as input, and
327//! only evaluate the function when they need to produce a new value. Only
328//! the [`and_then`] method can produce an [`Option<U>`] value having a
329//! different inner type `U` than [`Option<T>`].
330//!
331//! | method | self | function input | function result | output |
332//! |--------------|-----------|----------------|-----------------|-----------|
333//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
334//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
335//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
336//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
337//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
338//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
339//!
340//! [`and_then`]: Option::and_then
341//! [`or_else`]: Option::or_else
342//!
343//! This is an example of using methods like [`and_then`] and [`or`] in a
344//! pipeline of method calls. Early stages of the pipeline pass failure
345//! values ([`None`]) through unchanged, and continue processing on
346//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
347//! message if it receives [`None`].
348//!
349//! ```
350//! # use std::collections::BTreeMap;
351//! let mut bt = BTreeMap::new();
352//! bt.insert(20u8, "foo");
353//! bt.insert(42u8, "bar");
354//! let res = [0u8, 1, 11, 200, 22]
355//! .into_iter()
356//! .map(|x| {
357//! // `checked_sub()` returns `None` on error
358//! x.checked_sub(1)
359//! // same with `checked_mul()`
360//! .and_then(|x| x.checked_mul(2))
361//! // `BTreeMap::get` returns `None` on error
362//! .and_then(|x| bt.get(&x))
363//! // Substitute an error message if we have `None` so far
364//! .or(Some(&"error!"))
365//! .copied()
366//! // Won't panic because we unconditionally used `Some` above
367//! .unwrap()
368//! })
369//! .collect::<Vec<_>>();
370//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
371//! ```
372//!
373//! ## Comparison operators
374//!
375//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
376//! [`PartialOrd`] implementation. With this order, [`None`] compares as
377//! less than any [`Some`], and two [`Some`] compare the same way as their
378//! contained values would in `T`. If `T` also implements
379//! [`Ord`], then so does [`Option<T>`].
380//!
381//! ```
382//! assert!(None < Some(0));
383//! assert!(Some(0) < Some(1));
384//! ```
385//!
386//! ## Iterating over `Option`
387//!
388//! An [`Option`] can be iterated over. This can be helpful if you need an
389//! iterator that is conditionally empty. The iterator will either produce
390//! a single value (when the [`Option`] is [`Some`]), or produce no values
391//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
392//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
393//! the [`Option`] is [`None`].
394//!
395//! [`Some(v)`]: Some
396//! [`empty()`]: crate::iter::empty
397//! [`once(v)`]: crate::iter::once
398//!
399//! Iterators over [`Option<T>`] come in three types:
400//!
401//! * [`into_iter`] consumes the [`Option`] and produces the contained
402//! value
403//! * [`iter`] produces an immutable reference of type `&T` to the
404//! contained value
405//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
406//! contained value
407//!
408//! [`into_iter`]: Option::into_iter
409//! [`iter`]: Option::iter
410//! [`iter_mut`]: Option::iter_mut
411//!
412//! An iterator over [`Option`] can be useful when chaining iterators, for
413//! example, to conditionally insert items. (It's not always necessary to
414//! explicitly call an iterator constructor: many [`Iterator`] methods that
415//! accept other iterators will also accept iterable types that implement
416//! [`IntoIterator`], which includes [`Option`].)
417//!
418//! ```
419//! let yep = Some(42);
420//! let nope = None;
421//! // chain() already calls into_iter(), so we don't have to do so
422//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
423//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
424//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
425//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
426//! ```
427//!
428//! One reason to chain iterators in this way is that a function returning
429//! `impl Iterator` must have all possible return values be of the same
430//! concrete type. Chaining an iterated [`Option`] can help with that.
431//!
432//! ```
433//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
434//! // Explicit returns to illustrate return types matching
435//! match do_insert {
436//! true => return (0..4).chain(Some(42)).chain(4..8),
437//! false => return (0..4).chain(None).chain(4..8),
438//! }
439//! }
440//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
441//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
442//! ```
443//!
444//! If we try to do the same thing, but using [`once()`] and [`empty()`],
445//! we can't return `impl Iterator` anymore because the concrete types of
446//! the return values differ.
447//!
448//! [`empty()`]: crate::iter::empty
449//! [`once()`]: crate::iter::once
450//!
451//! ```compile_fail,E0308
452//! # use std::iter::{empty, once};
453//! // This won't compile because all possible returns from the function
454//! // must have the same concrete type.
455//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
456//! // Explicit returns to illustrate return types not matching
457//! match do_insert {
458//! true => return (0..4).chain(once(42)).chain(4..8),
459//! false => return (0..4).chain(empty()).chain(4..8),
460//! }
461//! }
462//! ```
463//!
464//! ## Collecting into `Option`
465//!
466//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
467//! which allows an iterator over [`Option`] values to be collected into an
468//! [`Option`] of a collection of each contained value of the original
469//! [`Option`] values, or [`None`] if any of the elements was [`None`].
470//!
471//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
472//!
473//! ```
474//! let v = [Some(2), Some(4), None, Some(8)];
475//! let res: Option<Vec<_>> = v.into_iter().collect();
476//! assert_eq!(res, None);
477//! let v = [Some(2), Some(4), Some(8)];
478//! let res: Option<Vec<_>> = v.into_iter().collect();
479//! assert_eq!(res, Some(vec![2, 4, 8]));
480//! ```
481//!
482//! [`Option`] also implements the [`Product`][impl-Product] and
483//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
484//! to provide the [`product`][Iterator::product] and
485//! [`sum`][Iterator::sum] methods.
486//!
487//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
488//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
489//!
490//! ```
491//! let v = [None, Some(1), Some(2), Some(3)];
492//! let res: Option<i32> = v.into_iter().sum();
493//! assert_eq!(res, None);
494//! let v = [Some(1), Some(2), Some(21)];
495//! let res: Option<i32> = v.into_iter().product();
496//! assert_eq!(res, Some(42));
497//! ```
498//!
499//! ## Modifying an [`Option`] in-place
500//!
501//! These methods return a mutable reference to the contained value of an
502//! [`Option<T>`]:
503//!
504//! * [`insert`] inserts a value, dropping any old contents
505//! * [`get_or_insert`] gets the current value, inserting a provided
506//! default value if it is [`None`]
507//! * [`get_or_insert_default`] gets the current value, inserting the
508//! default value of type `T` (which must implement [`Default`]) if it is
509//! [`None`]
510//! * [`get_or_insert_with`] gets the current value, inserting a default
511//! computed by the provided function if it is [`None`]
512//!
513//! [`get_or_insert`]: Option::get_or_insert
514//! [`get_or_insert_default`]: Option::get_or_insert_default
515//! [`get_or_insert_with`]: Option::get_or_insert_with
516//! [`insert`]: Option::insert
517//!
518//! These methods transfer ownership of the contained value of an
519//! [`Option`]:
520//!
521//! * [`take`] takes ownership of the contained value of an [`Option`], if
522//! any, replacing the [`Option`] with [`None`]
523//! * [`replace`] takes ownership of the contained value of an [`Option`],
524//! if any, replacing the [`Option`] with a [`Some`] containing the
525//! provided value
526//!
527//! [`replace`]: Option::replace
528//! [`take`]: Option::take
529//!
530//! # Examples
531//!
532//! Basic pattern matching on [`Option`]:
533//!
534//! ```
535//! let msg = Some("howdy");
536//!
537//! // Take a reference to the contained string
538//! if let Some(m) = &msg {
539//! println!("{}", *m);
540//! }
541//!
542//! // Remove the contained string, destroying the Option
543//! let unwrapped_msg = msg.unwrap_or("default message");
544//! ```
545//!
546//! Initialize a result to [`None`] before a loop:
547//!
548//! ```
549//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
550//!
551//! // A list of data to search through.
552//! let all_the_big_things = [
553//! Kingdom::Plant(250, "redwood"),
554//! Kingdom::Plant(230, "noble fir"),
555//! Kingdom::Plant(229, "sugar pine"),
556//! Kingdom::Animal(25, "blue whale"),
557//! Kingdom::Animal(19, "fin whale"),
558//! Kingdom::Animal(15, "north pacific right whale"),
559//! ];
560//!
561//! // We're going to search for the name of the biggest animal,
562//! // but to start with we've just got `None`.
563//! let mut name_of_biggest_animal = None;
564//! let mut size_of_biggest_animal = 0;
565//! for big_thing in &all_the_big_things {
566//! match *big_thing {
567//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
568//! // Now we've found the name of some big animal
569//! size_of_biggest_animal = size;
570//! name_of_biggest_animal = Some(name);
571//! }
572//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
573//! }
574//! }
575//!
576//! match name_of_biggest_animal {
577//! Some(name) => println!("the biggest animal is {name}"),
578//! None => println!("there are no animals :("),
579//! }
580//! ```
581
582#![stable(feature = "rust1", since = "1.0.0")]
583
584use crate::iter::{self, FusedIterator, TrustedLen};
585use crate::marker::Destruct;
586use crate::ops::{self, ControlFlow, Deref, DerefMut};
587use crate::panicking::{panic, panic_display};
588use crate::pin::Pin;
589use crate::{cmp, convert, hint, mem, slice};
590
591/// The `Option` type. See [the module level documentation](self) for more.
592#[doc(search_unbox)]
593#[derive(Copy, Debug, Hash)]
594#[derive_const(Eq)]
595#[rustc_diagnostic_item = "Option"]
596#[lang = "Option"]
597#[stable(feature = "rust1", since = "1.0.0")]
598#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
599pub enum Option<T> {
600 /// No value.
601 #[lang = "None"]
602 #[stable(feature = "rust1", since = "1.0.0")]
603 None,
604 /// Some value of type `T`.
605 #[lang = "Some"]
606 #[stable(feature = "rust1", since = "1.0.0")]
607 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
608}
609
610/////////////////////////////////////////////////////////////////////////////
611// Type implementation
612/////////////////////////////////////////////////////////////////////////////
613
614impl<T> Option<T> {
615 /////////////////////////////////////////////////////////////////////////
616 // Querying the contained values
617 /////////////////////////////////////////////////////////////////////////
618
619 /// Returns `true` if the option is a [`Some`] value.
620 ///
621 /// # Examples
622 ///
623 /// ```
624 /// let x: Option<u32> = Some(2);
625 /// assert_eq!(x.is_some(), true);
626 ///
627 /// let x: Option<u32> = None;
628 /// assert_eq!(x.is_some(), false);
629 /// ```
630 #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
631 #[inline]
632 #[stable(feature = "rust1", since = "1.0.0")]
633 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
634 pub const fn is_some(&self) -> bool {
635 matches!(*self, Some(_))
636 }
637
638 /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
639 ///
640 /// # Examples
641 ///
642 /// ```
643 /// let x: Option<u32> = Some(2);
644 /// assert_eq!(x.is_some_and(|x| x > 1), true);
645 ///
646 /// let x: Option<u32> = Some(0);
647 /// assert_eq!(x.is_some_and(|x| x > 1), false);
648 ///
649 /// let x: Option<u32> = None;
650 /// assert_eq!(x.is_some_and(|x| x > 1), false);
651 ///
652 /// let x: Option<String> = Some("ownership".to_string());
653 /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
654 /// println!("still alive {:?}", x);
655 /// ```
656 #[must_use]
657 #[inline]
658 #[stable(feature = "is_some_and", since = "1.70.0")]
659 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
660 pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
661 match self {
662 None => false,
663 Some(x) => f(x),
664 }
665 }
666
667 /// Returns `true` if the option is a [`None`] value.
668 ///
669 /// # Examples
670 ///
671 /// ```
672 /// let x: Option<u32> = Some(2);
673 /// assert_eq!(x.is_none(), false);
674 ///
675 /// let x: Option<u32> = None;
676 /// assert_eq!(x.is_none(), true);
677 /// ```
678 #[must_use = "if you intended to assert that this doesn't have a value, consider \
679 wrapping this in an `assert!()` instead"]
680 #[inline]
681 #[stable(feature = "rust1", since = "1.0.0")]
682 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
683 pub const fn is_none(&self) -> bool {
684 !self.is_some()
685 }
686
687 /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
688 ///
689 /// # Examples
690 ///
691 /// ```
692 /// let x: Option<u32> = Some(2);
693 /// assert_eq!(x.is_none_or(|x| x > 1), true);
694 ///
695 /// let x: Option<u32> = Some(0);
696 /// assert_eq!(x.is_none_or(|x| x > 1), false);
697 ///
698 /// let x: Option<u32> = None;
699 /// assert_eq!(x.is_none_or(|x| x > 1), true);
700 ///
701 /// let x: Option<String> = Some("ownership".to_string());
702 /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
703 /// println!("still alive {:?}", x);
704 /// ```
705 #[must_use]
706 #[inline]
707 #[stable(feature = "is_none_or", since = "1.82.0")]
708 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
709 pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
710 match self {
711 None => true,
712 Some(x) => f(x),
713 }
714 }
715
716 /////////////////////////////////////////////////////////////////////////
717 // Adapter for working with references
718 /////////////////////////////////////////////////////////////////////////
719
720 /// Converts from `&Option<T>` to `Option<&T>`.
721 ///
722 /// # Examples
723 ///
724 /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
725 /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
726 /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
727 /// reference to the value inside the original.
728 ///
729 /// [`map`]: Option::map
730 /// [String]: ../../std/string/struct.String.html "String"
731 /// [`String`]: ../../std/string/struct.String.html "String"
732 ///
733 /// ```
734 /// let text: Option<String> = Some("Hello, world!".to_string());
735 /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
736 /// // then consume *that* with `map`, leaving `text` on the stack.
737 /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
738 /// println!("still can print text: {text:?}");
739 /// ```
740 #[inline]
741 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
742 #[stable(feature = "rust1", since = "1.0.0")]
743 pub const fn as_ref(&self) -> Option<&T> {
744 match *self {
745 Some(ref x) => Some(x),
746 None => None,
747 }
748 }
749
750 /// Converts from `&mut Option<T>` to `Option<&mut T>`.
751 ///
752 /// # Examples
753 ///
754 /// ```
755 /// let mut x = Some(2);
756 /// match x.as_mut() {
757 /// Some(v) => *v = 42,
758 /// None => {},
759 /// }
760 /// assert_eq!(x, Some(42));
761 /// ```
762 #[inline]
763 #[stable(feature = "rust1", since = "1.0.0")]
764 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
765 pub const fn as_mut(&mut self) -> Option<&mut T> {
766 match *self {
767 Some(ref mut x) => Some(x),
768 None => None,
769 }
770 }
771
772 /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
773 ///
774 /// [&]: reference "shared reference"
775 #[inline]
776 #[must_use]
777 #[stable(feature = "pin", since = "1.33.0")]
778 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
779 pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
780 // FIXME(const-hack): use `map` once that is possible
781 match Pin::get_ref(self).as_ref() {
782 // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
783 // which is pinned.
784 Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
785 None => None,
786 }
787 }
788
789 /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
790 ///
791 /// [&mut]: reference "mutable reference"
792 #[inline]
793 #[must_use]
794 #[stable(feature = "pin", since = "1.33.0")]
795 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
796 pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
797 // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
798 // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
799 unsafe {
800 // FIXME(const-hack): use `map` once that is possible
801 match Pin::get_unchecked_mut(self).as_mut() {
802 Some(x) => Some(Pin::new_unchecked(x)),
803 None => None,
804 }
805 }
806 }
807
808 #[inline]
809 const fn len(&self) -> usize {
810 // Using the intrinsic avoids emitting a branch to get the 0 or 1.
811 let discriminant: isize = crate::intrinsics::discriminant_value(self);
812 discriminant as usize
813 }
814
815 /// Returns a slice of the contained value, if any. If this is `None`, an
816 /// empty slice is returned. This can be useful to have a single type of
817 /// iterator over an `Option` or slice.
818 ///
819 /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
820 /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
821 ///
822 /// # Examples
823 ///
824 /// ```rust
825 /// assert_eq!(
826 /// [Some(1234).as_slice(), None.as_slice()],
827 /// [&[1234][..], &[][..]],
828 /// );
829 /// ```
830 ///
831 /// The inverse of this function is (discounting
832 /// borrowing) [`[_]::first`](slice::first):
833 ///
834 /// ```rust
835 /// for i in [Some(1234_u16), None] {
836 /// assert_eq!(i.as_ref(), i.as_slice().first());
837 /// }
838 /// ```
839 #[inline]
840 #[must_use]
841 #[stable(feature = "option_as_slice", since = "1.75.0")]
842 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
843 pub const fn as_slice(&self) -> &[T] {
844 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
845 // to the payload, with a length of 1, so this is equivalent to
846 // `slice::from_ref`, and thus is safe.
847 // When the `Option` is `None`, the length used is 0, so to be safe it
848 // just needs to be aligned, which it is because `&self` is aligned and
849 // the offset used is a multiple of alignment.
850 //
851 // Here we assume that `offset_of!` always returns an offset to an
852 // in-bounds and correctly aligned position for a `T` (even if in the
853 // `None` case it's just padding).
854 unsafe {
855 slice::from_raw_parts(
856 (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
857 self.len(),
858 )
859 }
860 }
861
862 /// Returns a mutable slice of the contained value, if any. If this is
863 /// `None`, an empty slice is returned. This can be useful to have a
864 /// single type of iterator over an `Option` or slice.
865 ///
866 /// Note: Should you have an `Option<&mut T>` instead of a
867 /// `&mut Option<T>`, which this method takes, you can obtain a mutable
868 /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
869 ///
870 /// # Examples
871 ///
872 /// ```rust
873 /// assert_eq!(
874 /// [Some(1234).as_mut_slice(), None.as_mut_slice()],
875 /// [&mut [1234][..], &mut [][..]],
876 /// );
877 /// ```
878 ///
879 /// The result is a mutable slice of zero or one items that points into
880 /// our original `Option`:
881 ///
882 /// ```rust
883 /// let mut x = Some(1234);
884 /// x.as_mut_slice()[0] += 1;
885 /// assert_eq!(x, Some(1235));
886 /// ```
887 ///
888 /// The inverse of this method (discounting borrowing)
889 /// is [`[_]::first_mut`](slice::first_mut):
890 ///
891 /// ```rust
892 /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
893 /// ```
894 #[inline]
895 #[must_use]
896 #[stable(feature = "option_as_slice", since = "1.75.0")]
897 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
898 pub const fn as_mut_slice(&mut self) -> &mut [T] {
899 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
900 // to the payload, with a length of 1, so this is equivalent to
901 // `slice::from_mut`, and thus is safe.
902 // When the `Option` is `None`, the length used is 0, so to be safe it
903 // just needs to be aligned, which it is because `&self` is aligned and
904 // the offset used is a multiple of alignment.
905 //
906 // In the new version, the intrinsic creates a `*const T` from a
907 // mutable reference so it is safe to cast back to a mutable pointer
908 // here. As with `as_slice`, the intrinsic always returns a pointer to
909 // an in-bounds and correctly aligned position for a `T` (even if in
910 // the `None` case it's just padding).
911 unsafe {
912 slice::from_raw_parts_mut(
913 (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
914 self.len(),
915 )
916 }
917 }
918
919 /////////////////////////////////////////////////////////////////////////
920 // Getting to contained values
921 /////////////////////////////////////////////////////////////////////////
922
923 /// Returns the contained [`Some`] value, consuming the `self` value.
924 ///
925 /// # Panics
926 ///
927 /// Panics if the value is a [`None`] with a custom panic message provided by
928 /// `msg`.
929 ///
930 /// # Examples
931 ///
932 /// ```
933 /// let x = Some("value");
934 /// assert_eq!(x.expect("fruits are healthy"), "value");
935 /// ```
936 ///
937 /// ```should_panic
938 /// let x: Option<&str> = None;
939 /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
940 /// ```
941 ///
942 /// # Recommended Message Style
943 ///
944 /// We recommend that `expect` messages are used to describe the reason you
945 /// _expect_ the `Option` should be `Some`.
946 ///
947 /// ```should_panic
948 /// # let slice: &[u8] = &[];
949 /// let item = slice.get(0)
950 /// .expect("slice should not be empty");
951 /// ```
952 ///
953 /// **Hint**: If you're having trouble remembering how to phrase expect
954 /// error messages remember to focus on the word "should" as in "env
955 /// variable should be set by blah" or "the given binary should be available
956 /// and executable by the current user".
957 ///
958 /// For more detail on expect message styles and the reasoning behind our
959 /// recommendation please refer to the section on ["Common Message
960 /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
961 #[inline]
962 #[track_caller]
963 #[stable(feature = "rust1", since = "1.0.0")]
964 #[rustc_diagnostic_item = "option_expect"]
965 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
966 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
967 pub const fn expect(self, msg: &str) -> T {
968 match self {
969 Some(val) => val,
970 None => expect_failed(msg),
971 }
972 }
973
974 /// Returns the contained [`Some`] value, consuming the `self` value.
975 ///
976 /// Because this function may panic, its use is generally discouraged.
977 /// Panics are meant for unrecoverable errors, and
978 /// [may abort the entire program][panic-abort].
979 ///
980 /// Instead, prefer to use pattern matching and handle the [`None`]
981 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
982 /// [`unwrap_or_default`]. In functions returning `Option`, you can use
983 /// [the `?` (try) operator][try-option].
984 ///
985 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
986 /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
987 /// [`unwrap_or`]: Option::unwrap_or
988 /// [`unwrap_or_else`]: Option::unwrap_or_else
989 /// [`unwrap_or_default`]: Option::unwrap_or_default
990 ///
991 /// # Panics
992 ///
993 /// Panics if the self value equals [`None`].
994 ///
995 /// # Examples
996 ///
997 /// ```
998 /// let x = Some("air");
999 /// assert_eq!(x.unwrap(), "air");
1000 /// ```
1001 ///
1002 /// ```should_panic
1003 /// let x: Option<&str> = None;
1004 /// assert_eq!(x.unwrap(), "air"); // fails
1005 /// ```
1006 #[inline(always)]
1007 #[track_caller]
1008 #[stable(feature = "rust1", since = "1.0.0")]
1009 #[rustc_diagnostic_item = "option_unwrap"]
1010 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1011 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1012 pub const fn unwrap(self) -> T {
1013 match self {
1014 Some(val) => val,
1015 None => unwrap_failed(),
1016 }
1017 }
1018
1019 /// Returns the contained [`Some`] value or a provided default.
1020 ///
1021 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1022 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1023 /// which is lazily evaluated.
1024 ///
1025 /// [`unwrap_or_else`]: Option::unwrap_or_else
1026 ///
1027 /// # Examples
1028 ///
1029 /// ```
1030 /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1031 /// assert_eq!(None.unwrap_or("bike"), "bike");
1032 /// ```
1033 #[inline]
1034 #[stable(feature = "rust1", since = "1.0.0")]
1035 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1036 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1037 pub const fn unwrap_or(self, default: T) -> T
1038 where
1039 T: [const] Destruct,
1040 {
1041 match self {
1042 Some(x) => x,
1043 None => default,
1044 }
1045 }
1046
1047 /// Returns the contained [`Some`] value or computes it from a closure.
1048 ///
1049 /// # Examples
1050 ///
1051 /// ```
1052 /// let k = 10;
1053 /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1054 /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1055 /// ```
1056 #[inline]
1057 #[track_caller]
1058 #[stable(feature = "rust1", since = "1.0.0")]
1059 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1060 pub const fn unwrap_or_else<F>(self, f: F) -> T
1061 where
1062 F: [const] FnOnce() -> T + [const] Destruct,
1063 {
1064 match self {
1065 Some(x) => x,
1066 None => f(),
1067 }
1068 }
1069
1070 /// Returns the contained [`Some`] value or a default.
1071 ///
1072 /// Consumes the `self` argument then, if [`Some`], returns the contained
1073 /// value, otherwise if [`None`], returns the [default value] for that
1074 /// type.
1075 ///
1076 /// # Examples
1077 ///
1078 /// ```
1079 /// let x: Option<u32> = None;
1080 /// let y: Option<u32> = Some(12);
1081 ///
1082 /// assert_eq!(x.unwrap_or_default(), 0);
1083 /// assert_eq!(y.unwrap_or_default(), 12);
1084 /// ```
1085 ///
1086 /// [default value]: Default::default
1087 /// [`parse`]: str::parse
1088 /// [`FromStr`]: crate::str::FromStr
1089 #[inline]
1090 #[stable(feature = "rust1", since = "1.0.0")]
1091 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1092 pub const fn unwrap_or_default(self) -> T
1093 where
1094 T: [const] Default,
1095 {
1096 match self {
1097 Some(x) => x,
1098 None => T::default(),
1099 }
1100 }
1101
1102 /// Returns the contained [`Some`] value, consuming the `self` value,
1103 /// without checking that the value is not [`None`].
1104 ///
1105 /// # Safety
1106 ///
1107 /// Calling this method on [`None`] is *[undefined behavior]*.
1108 ///
1109 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1110 ///
1111 /// # Examples
1112 ///
1113 /// ```
1114 /// let x = Some("air");
1115 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1116 /// ```
1117 ///
1118 /// ```no_run
1119 /// let x: Option<&str> = None;
1120 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1121 /// ```
1122 #[inline]
1123 #[track_caller]
1124 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1125 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1126 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1127 pub const unsafe fn unwrap_unchecked(self) -> T {
1128 match self {
1129 Some(val) => val,
1130 // SAFETY: the safety contract must be upheld by the caller.
1131 None => unsafe { hint::unreachable_unchecked() },
1132 }
1133 }
1134
1135 /////////////////////////////////////////////////////////////////////////
1136 // Transforming contained values
1137 /////////////////////////////////////////////////////////////////////////
1138
1139 /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1140 ///
1141 /// # Examples
1142 ///
1143 /// Calculates the length of an <code>Option<[String]></code> as an
1144 /// <code>Option<[usize]></code>, consuming the original:
1145 ///
1146 /// [String]: ../../std/string/struct.String.html "String"
1147 /// ```
1148 /// let maybe_some_string = Some(String::from("Hello, World!"));
1149 /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1150 /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1151 /// assert_eq!(maybe_some_len, Some(13));
1152 ///
1153 /// let x: Option<&str> = None;
1154 /// assert_eq!(x.map(|s| s.len()), None);
1155 /// ```
1156 #[inline]
1157 #[stable(feature = "rust1", since = "1.0.0")]
1158 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1159 pub const fn map<U, F>(self, f: F) -> Option<U>
1160 where
1161 F: [const] FnOnce(T) -> U + [const] Destruct,
1162 {
1163 match self {
1164 Some(x) => Some(f(x)),
1165 None => None,
1166 }
1167 }
1168
1169 /// Calls a function with a reference to the contained value if [`Some`].
1170 ///
1171 /// Returns the original option.
1172 ///
1173 /// # Examples
1174 ///
1175 /// ```
1176 /// let list = vec![1, 2, 3];
1177 ///
1178 /// // prints "got: 2"
1179 /// let x = list
1180 /// .get(1)
1181 /// .inspect(|x| println!("got: {x}"))
1182 /// .expect("list should be long enough");
1183 ///
1184 /// // prints nothing
1185 /// list.get(5).inspect(|x| println!("got: {x}"));
1186 /// ```
1187 #[inline]
1188 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1189 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1190 pub const fn inspect<F>(self, f: F) -> Self
1191 where
1192 F: [const] FnOnce(&T) + [const] Destruct,
1193 {
1194 if let Some(ref x) = self {
1195 f(x);
1196 }
1197
1198 self
1199 }
1200
1201 /// Returns the provided default result (if none),
1202 /// or applies a function to the contained value (if any).
1203 ///
1204 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1205 /// the result of a function call, it is recommended to use [`map_or_else`],
1206 /// which is lazily evaluated.
1207 ///
1208 /// [`map_or_else`]: Option::map_or_else
1209 ///
1210 /// # Examples
1211 ///
1212 /// ```
1213 /// let x = Some("foo");
1214 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1215 ///
1216 /// let x: Option<&str> = None;
1217 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1218 /// ```
1219 #[inline]
1220 #[stable(feature = "rust1", since = "1.0.0")]
1221 #[must_use = "if you don't need the returned value, use `if let` instead"]
1222 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1223 pub const fn map_or<U, F>(self, default: U, f: F) -> U
1224 where
1225 F: [const] FnOnce(T) -> U + [const] Destruct,
1226 U: [const] Destruct,
1227 {
1228 match self {
1229 Some(t) => f(t),
1230 None => default,
1231 }
1232 }
1233
1234 /// Computes a default function result (if none), or
1235 /// applies a different function to the contained value (if any).
1236 ///
1237 /// # Basic examples
1238 ///
1239 /// ```
1240 /// let k = 21;
1241 ///
1242 /// let x = Some("foo");
1243 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1244 ///
1245 /// let x: Option<&str> = None;
1246 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1247 /// ```
1248 ///
1249 /// # Handling a Result-based fallback
1250 ///
1251 /// A somewhat common occurrence when dealing with optional values
1252 /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1253 /// a fallible fallback if the option is not present. This example
1254 /// parses a command line argument (if present), or the contents of a file to
1255 /// an integer. However, unlike accessing the command line argument, reading
1256 /// the file is fallible, so it must be wrapped with `Ok`.
1257 ///
1258 /// ```no_run
1259 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1260 /// let v: u64 = std::env::args()
1261 /// .nth(1)
1262 /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1263 /// .parse()?;
1264 /// # Ok(())
1265 /// # }
1266 /// ```
1267 #[inline]
1268 #[stable(feature = "rust1", since = "1.0.0")]
1269 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1270 pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1271 where
1272 D: [const] FnOnce() -> U + [const] Destruct,
1273 F: [const] FnOnce(T) -> U + [const] Destruct,
1274 {
1275 match self {
1276 Some(t) => f(t),
1277 None => default(),
1278 }
1279 }
1280
1281 /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1282 /// value if the option is [`Some`], otherwise if [`None`], returns the
1283 /// [default value] for the type `U`.
1284 ///
1285 /// # Examples
1286 ///
1287 /// ```
1288 /// #![feature(result_option_map_or_default)]
1289 ///
1290 /// let x: Option<&str> = Some("hi");
1291 /// let y: Option<&str> = None;
1292 ///
1293 /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1294 /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1295 /// ```
1296 ///
1297 /// [default value]: Default::default
1298 #[inline]
1299 #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1300 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1301 pub const fn map_or_default<U, F>(self, f: F) -> U
1302 where
1303 U: [const] Default,
1304 F: [const] FnOnce(T) -> U + [const] Destruct,
1305 {
1306 match self {
1307 Some(t) => f(t),
1308 None => U::default(),
1309 }
1310 }
1311
1312 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1313 /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1314 ///
1315 /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1316 /// result of a function call, it is recommended to use [`ok_or_else`], which is
1317 /// lazily evaluated.
1318 ///
1319 /// [`Ok(v)`]: Ok
1320 /// [`Err(err)`]: Err
1321 /// [`Some(v)`]: Some
1322 /// [`ok_or_else`]: Option::ok_or_else
1323 ///
1324 /// # Examples
1325 ///
1326 /// ```
1327 /// let x = Some("foo");
1328 /// assert_eq!(x.ok_or(0), Ok("foo"));
1329 ///
1330 /// let x: Option<&str> = None;
1331 /// assert_eq!(x.ok_or(0), Err(0));
1332 /// ```
1333 #[inline]
1334 #[stable(feature = "rust1", since = "1.0.0")]
1335 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1336 pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1337 match self {
1338 Some(v) => Ok(v),
1339 None => Err(err),
1340 }
1341 }
1342
1343 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1344 /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1345 ///
1346 /// [`Ok(v)`]: Ok
1347 /// [`Err(err())`]: Err
1348 /// [`Some(v)`]: Some
1349 ///
1350 /// # Examples
1351 ///
1352 /// ```
1353 /// let x = Some("foo");
1354 /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1355 ///
1356 /// let x: Option<&str> = None;
1357 /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1358 /// ```
1359 #[inline]
1360 #[stable(feature = "rust1", since = "1.0.0")]
1361 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1362 pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1363 where
1364 F: [const] FnOnce() -> E + [const] Destruct,
1365 {
1366 match self {
1367 Some(v) => Ok(v),
1368 None => Err(err()),
1369 }
1370 }
1371
1372 /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1373 ///
1374 /// Leaves the original Option in-place, creating a new one with a reference
1375 /// to the original one, additionally coercing the contents via [`Deref`].
1376 ///
1377 /// # Examples
1378 ///
1379 /// ```
1380 /// let x: Option<String> = Some("hey".to_owned());
1381 /// assert_eq!(x.as_deref(), Some("hey"));
1382 ///
1383 /// let x: Option<String> = None;
1384 /// assert_eq!(x.as_deref(), None);
1385 /// ```
1386 #[inline]
1387 #[stable(feature = "option_deref", since = "1.40.0")]
1388 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1389 pub const fn as_deref(&self) -> Option<&T::Target>
1390 where
1391 T: [const] Deref,
1392 {
1393 self.as_ref().map(Deref::deref)
1394 }
1395
1396 /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1397 ///
1398 /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1399 /// the inner type's [`Deref::Target`] type.
1400 ///
1401 /// # Examples
1402 ///
1403 /// ```
1404 /// let mut x: Option<String> = Some("hey".to_owned());
1405 /// assert_eq!(x.as_deref_mut().map(|x| {
1406 /// x.make_ascii_uppercase();
1407 /// x
1408 /// }), Some("HEY".to_owned().as_mut_str()));
1409 /// ```
1410 #[inline]
1411 #[stable(feature = "option_deref", since = "1.40.0")]
1412 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1413 pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1414 where
1415 T: [const] DerefMut,
1416 {
1417 self.as_mut().map(DerefMut::deref_mut)
1418 }
1419
1420 /////////////////////////////////////////////////////////////////////////
1421 // Iterator constructors
1422 /////////////////////////////////////////////////////////////////////////
1423
1424 /// Returns an iterator over the possibly contained value.
1425 ///
1426 /// # Examples
1427 ///
1428 /// ```
1429 /// let x = Some(4);
1430 /// assert_eq!(x.iter().next(), Some(&4));
1431 ///
1432 /// let x: Option<u32> = None;
1433 /// assert_eq!(x.iter().next(), None);
1434 /// ```
1435 #[inline]
1436 #[stable(feature = "rust1", since = "1.0.0")]
1437 pub fn iter(&self) -> Iter<'_, T> {
1438 Iter { inner: Item { opt: self.as_ref() } }
1439 }
1440
1441 /// Returns a mutable iterator over the possibly contained value.
1442 ///
1443 /// # Examples
1444 ///
1445 /// ```
1446 /// let mut x = Some(4);
1447 /// match x.iter_mut().next() {
1448 /// Some(v) => *v = 42,
1449 /// None => {},
1450 /// }
1451 /// assert_eq!(x, Some(42));
1452 ///
1453 /// let mut x: Option<u32> = None;
1454 /// assert_eq!(x.iter_mut().next(), None);
1455 /// ```
1456 #[inline]
1457 #[stable(feature = "rust1", since = "1.0.0")]
1458 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1459 IterMut { inner: Item { opt: self.as_mut() } }
1460 }
1461
1462 /////////////////////////////////////////////////////////////////////////
1463 // Boolean operations on the values, eager and lazy
1464 /////////////////////////////////////////////////////////////////////////
1465
1466 /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1467 ///
1468 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1469 /// result of a function call, it is recommended to use [`and_then`], which is
1470 /// lazily evaluated.
1471 ///
1472 /// [`and_then`]: Option::and_then
1473 ///
1474 /// # Examples
1475 ///
1476 /// ```
1477 /// let x = Some(2);
1478 /// let y: Option<&str> = None;
1479 /// assert_eq!(x.and(y), None);
1480 ///
1481 /// let x: Option<u32> = None;
1482 /// let y = Some("foo");
1483 /// assert_eq!(x.and(y), None);
1484 ///
1485 /// let x = Some(2);
1486 /// let y = Some("foo");
1487 /// assert_eq!(x.and(y), Some("foo"));
1488 ///
1489 /// let x: Option<u32> = None;
1490 /// let y: Option<&str> = None;
1491 /// assert_eq!(x.and(y), None);
1492 /// ```
1493 #[inline]
1494 #[stable(feature = "rust1", since = "1.0.0")]
1495 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1496 pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1497 where
1498 T: [const] Destruct,
1499 U: [const] Destruct,
1500 {
1501 match self {
1502 Some(_) => optb,
1503 None => None,
1504 }
1505 }
1506
1507 /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1508 /// wrapped value and returns the result.
1509 ///
1510 /// Some languages call this operation flatmap.
1511 ///
1512 /// # Examples
1513 ///
1514 /// ```
1515 /// fn sq_then_to_string(x: u32) -> Option<String> {
1516 /// x.checked_mul(x).map(|sq| sq.to_string())
1517 /// }
1518 ///
1519 /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1520 /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1521 /// assert_eq!(None.and_then(sq_then_to_string), None);
1522 /// ```
1523 ///
1524 /// Often used to chain fallible operations that may return [`None`].
1525 ///
1526 /// ```
1527 /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1528 ///
1529 /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1530 /// assert_eq!(item_0_1, Some(&"A1"));
1531 ///
1532 /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1533 /// assert_eq!(item_2_0, None);
1534 /// ```
1535 #[doc(alias = "flatmap")]
1536 #[inline]
1537 #[stable(feature = "rust1", since = "1.0.0")]
1538 #[rustc_confusables("flat_map", "flatmap")]
1539 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1540 pub const fn and_then<U, F>(self, f: F) -> Option<U>
1541 where
1542 F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1543 {
1544 match self {
1545 Some(x) => f(x),
1546 None => None,
1547 }
1548 }
1549
1550 /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1551 /// with the wrapped value and returns:
1552 ///
1553 /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1554 /// value), and
1555 /// - [`None`] if `predicate` returns `false`.
1556 ///
1557 /// This function works similar to [`Iterator::filter()`]. You can imagine
1558 /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1559 /// lets you decide which elements to keep.
1560 ///
1561 /// # Examples
1562 ///
1563 /// ```rust
1564 /// fn is_even(n: &i32) -> bool {
1565 /// n % 2 == 0
1566 /// }
1567 ///
1568 /// assert_eq!(None.filter(is_even), None);
1569 /// assert_eq!(Some(3).filter(is_even), None);
1570 /// assert_eq!(Some(4).filter(is_even), Some(4));
1571 /// ```
1572 ///
1573 /// [`Some(t)`]: Some
1574 #[inline]
1575 #[stable(feature = "option_filter", since = "1.27.0")]
1576 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1577 pub const fn filter<P>(self, predicate: P) -> Self
1578 where
1579 P: [const] FnOnce(&T) -> bool + [const] Destruct,
1580 T: [const] Destruct,
1581 {
1582 if let Some(x) = self {
1583 if predicate(&x) {
1584 return Some(x);
1585 }
1586 }
1587 None
1588 }
1589
1590 /// Returns the option if it contains a value, otherwise returns `optb`.
1591 ///
1592 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1593 /// result of a function call, it is recommended to use [`or_else`], which is
1594 /// lazily evaluated.
1595 ///
1596 /// [`or_else`]: Option::or_else
1597 ///
1598 /// # Examples
1599 ///
1600 /// ```
1601 /// let x = Some(2);
1602 /// let y = None;
1603 /// assert_eq!(x.or(y), Some(2));
1604 ///
1605 /// let x = None;
1606 /// let y = Some(100);
1607 /// assert_eq!(x.or(y), Some(100));
1608 ///
1609 /// let x = Some(2);
1610 /// let y = Some(100);
1611 /// assert_eq!(x.or(y), Some(2));
1612 ///
1613 /// let x: Option<u32> = None;
1614 /// let y = None;
1615 /// assert_eq!(x.or(y), None);
1616 /// ```
1617 #[inline]
1618 #[stable(feature = "rust1", since = "1.0.0")]
1619 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1620 pub const fn or(self, optb: Option<T>) -> Option<T>
1621 where
1622 T: [const] Destruct,
1623 {
1624 match self {
1625 x @ Some(_) => x,
1626 None => optb,
1627 }
1628 }
1629
1630 /// Returns the option if it contains a value, otherwise calls `f` and
1631 /// returns the result.
1632 ///
1633 /// # Examples
1634 ///
1635 /// ```
1636 /// fn nobody() -> Option<&'static str> { None }
1637 /// fn vikings() -> Option<&'static str> { Some("vikings") }
1638 ///
1639 /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1640 /// assert_eq!(None.or_else(vikings), Some("vikings"));
1641 /// assert_eq!(None.or_else(nobody), None);
1642 /// ```
1643 #[inline]
1644 #[stable(feature = "rust1", since = "1.0.0")]
1645 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1646 pub const fn or_else<F>(self, f: F) -> Option<T>
1647 where
1648 F: [const] FnOnce() -> Option<T> + [const] Destruct,
1649 //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1650 // no value of type `T` gets dropped here
1651 T: [const] Destruct,
1652 {
1653 match self {
1654 x @ Some(_) => x,
1655 None => f(),
1656 }
1657 }
1658
1659 /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1660 ///
1661 /// # Examples
1662 ///
1663 /// ```
1664 /// let x = Some(2);
1665 /// let y: Option<u32> = None;
1666 /// assert_eq!(x.xor(y), Some(2));
1667 ///
1668 /// let x: Option<u32> = None;
1669 /// let y = Some(2);
1670 /// assert_eq!(x.xor(y), Some(2));
1671 ///
1672 /// let x = Some(2);
1673 /// let y = Some(2);
1674 /// assert_eq!(x.xor(y), None);
1675 ///
1676 /// let x: Option<u32> = None;
1677 /// let y: Option<u32> = None;
1678 /// assert_eq!(x.xor(y), None);
1679 /// ```
1680 #[inline]
1681 #[stable(feature = "option_xor", since = "1.37.0")]
1682 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1683 pub const fn xor(self, optb: Option<T>) -> Option<T>
1684 where
1685 T: [const] Destruct,
1686 {
1687 match (self, optb) {
1688 (a @ Some(_), None) => a,
1689 (None, b @ Some(_)) => b,
1690 _ => None,
1691 }
1692 }
1693
1694 /////////////////////////////////////////////////////////////////////////
1695 // Entry-like operations to insert a value and return a reference
1696 /////////////////////////////////////////////////////////////////////////
1697
1698 /// Inserts `value` into the option, then returns a mutable reference to it.
1699 ///
1700 /// If the option already contains a value, the old value is dropped.
1701 ///
1702 /// See also [`Option::get_or_insert`], which doesn't update the value if
1703 /// the option already contains [`Some`].
1704 ///
1705 /// # Example
1706 ///
1707 /// ```
1708 /// let mut opt = None;
1709 /// let val = opt.insert(1);
1710 /// assert_eq!(*val, 1);
1711 /// assert_eq!(opt.unwrap(), 1);
1712 /// let val = opt.insert(2);
1713 /// assert_eq!(*val, 2);
1714 /// *val = 3;
1715 /// assert_eq!(opt.unwrap(), 3);
1716 /// ```
1717 #[must_use = "if you intended to set a value, consider assignment instead"]
1718 #[inline]
1719 #[stable(feature = "option_insert", since = "1.53.0")]
1720 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1721 pub const fn insert(&mut self, value: T) -> &mut T
1722 where
1723 T: [const] Destruct,
1724 {
1725 *self = Some(value);
1726
1727 // SAFETY: the code above just filled the option
1728 unsafe { self.as_mut().unwrap_unchecked() }
1729 }
1730
1731 /// Inserts `value` into the option if it is [`None`], then
1732 /// returns a mutable reference to the contained value.
1733 ///
1734 /// See also [`Option::insert`], which updates the value even if
1735 /// the option already contains [`Some`].
1736 ///
1737 /// # Examples
1738 ///
1739 /// ```
1740 /// let mut x = None;
1741 ///
1742 /// {
1743 /// let y: &mut u32 = x.get_or_insert(5);
1744 /// assert_eq!(y, &5);
1745 ///
1746 /// *y = 7;
1747 /// }
1748 ///
1749 /// assert_eq!(x, Some(7));
1750 /// ```
1751 #[inline]
1752 #[stable(feature = "option_entry", since = "1.20.0")]
1753 pub fn get_or_insert(&mut self, value: T) -> &mut T {
1754 self.get_or_insert_with(|| value)
1755 }
1756
1757 /// Inserts the default value into the option if it is [`None`], then
1758 /// returns a mutable reference to the contained value.
1759 ///
1760 /// # Examples
1761 ///
1762 /// ```
1763 /// let mut x = None;
1764 ///
1765 /// {
1766 /// let y: &mut u32 = x.get_or_insert_default();
1767 /// assert_eq!(y, &0);
1768 ///
1769 /// *y = 7;
1770 /// }
1771 ///
1772 /// assert_eq!(x, Some(7));
1773 /// ```
1774 #[inline]
1775 #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1776 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1777 pub const fn get_or_insert_default(&mut self) -> &mut T
1778 where
1779 T: [const] Default + [const] Destruct,
1780 {
1781 self.get_or_insert_with(T::default)
1782 }
1783
1784 /// Inserts a value computed from `f` into the option if it is [`None`],
1785 /// then returns a mutable reference to the contained value.
1786 ///
1787 /// # Examples
1788 ///
1789 /// ```
1790 /// let mut x = None;
1791 ///
1792 /// {
1793 /// let y: &mut u32 = x.get_or_insert_with(|| 5);
1794 /// assert_eq!(y, &5);
1795 ///
1796 /// *y = 7;
1797 /// }
1798 ///
1799 /// assert_eq!(x, Some(7));
1800 /// ```
1801 #[inline]
1802 #[stable(feature = "option_entry", since = "1.20.0")]
1803 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1804 pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1805 where
1806 F: [const] FnOnce() -> T + [const] Destruct,
1807 T: [const] Destruct,
1808 {
1809 if let None = self {
1810 *self = Some(f());
1811 }
1812
1813 // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1814 // variant in the code above.
1815 unsafe { self.as_mut().unwrap_unchecked() }
1816 }
1817
1818 /////////////////////////////////////////////////////////////////////////
1819 // Misc
1820 /////////////////////////////////////////////////////////////////////////
1821
1822 /// Takes the value out of the option, leaving a [`None`] in its place.
1823 ///
1824 /// # Examples
1825 ///
1826 /// ```
1827 /// let mut x = Some(2);
1828 /// let y = x.take();
1829 /// assert_eq!(x, None);
1830 /// assert_eq!(y, Some(2));
1831 ///
1832 /// let mut x: Option<u32> = None;
1833 /// let y = x.take();
1834 /// assert_eq!(x, None);
1835 /// assert_eq!(y, None);
1836 /// ```
1837 #[inline]
1838 #[stable(feature = "rust1", since = "1.0.0")]
1839 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1840 pub const fn take(&mut self) -> Option<T> {
1841 // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1842 mem::replace(self, None)
1843 }
1844
1845 /// Takes the value out of the option, but only if the predicate evaluates to
1846 /// `true` on a mutable reference to the value.
1847 ///
1848 /// In other words, replaces `self` with `None` if the predicate returns `true`.
1849 /// This method operates similar to [`Option::take`] but conditional.
1850 ///
1851 /// # Examples
1852 ///
1853 /// ```
1854 /// let mut x = Some(42);
1855 ///
1856 /// let prev = x.take_if(|v| if *v == 42 {
1857 /// *v += 1;
1858 /// false
1859 /// } else {
1860 /// false
1861 /// });
1862 /// assert_eq!(x, Some(43));
1863 /// assert_eq!(prev, None);
1864 ///
1865 /// let prev = x.take_if(|v| *v == 43);
1866 /// assert_eq!(x, None);
1867 /// assert_eq!(prev, Some(43));
1868 /// ```
1869 #[inline]
1870 #[stable(feature = "option_take_if", since = "1.80.0")]
1871 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1872 pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1873 where
1874 P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1875 {
1876 if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1877 }
1878
1879 /// Replaces the actual value in the option by the value given in parameter,
1880 /// returning the old value if present,
1881 /// leaving a [`Some`] in its place without deinitializing either one.
1882 ///
1883 /// # Examples
1884 ///
1885 /// ```
1886 /// let mut x = Some(2);
1887 /// let old = x.replace(5);
1888 /// assert_eq!(x, Some(5));
1889 /// assert_eq!(old, Some(2));
1890 ///
1891 /// let mut x = None;
1892 /// let old = x.replace(3);
1893 /// assert_eq!(x, Some(3));
1894 /// assert_eq!(old, None);
1895 /// ```
1896 #[inline]
1897 #[stable(feature = "option_replace", since = "1.31.0")]
1898 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1899 pub const fn replace(&mut self, value: T) -> Option<T> {
1900 mem::replace(self, Some(value))
1901 }
1902
1903 /// Zips `self` with another `Option`.
1904 ///
1905 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1906 /// Otherwise, `None` is returned.
1907 ///
1908 /// # Examples
1909 ///
1910 /// ```
1911 /// let x = Some(1);
1912 /// let y = Some("hi");
1913 /// let z = None::<u8>;
1914 ///
1915 /// assert_eq!(x.zip(y), Some((1, "hi")));
1916 /// assert_eq!(x.zip(z), None);
1917 /// ```
1918 #[stable(feature = "option_zip_option", since = "1.46.0")]
1919 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1920 pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1921 where
1922 T: [const] Destruct,
1923 U: [const] Destruct,
1924 {
1925 match (self, other) {
1926 (Some(a), Some(b)) => Some((a, b)),
1927 _ => None,
1928 }
1929 }
1930
1931 /// Zips `self` and another `Option` with function `f`.
1932 ///
1933 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1934 /// Otherwise, `None` is returned.
1935 ///
1936 /// # Examples
1937 ///
1938 /// ```
1939 /// #![feature(option_zip)]
1940 ///
1941 /// #[derive(Debug, PartialEq)]
1942 /// struct Point {
1943 /// x: f64,
1944 /// y: f64,
1945 /// }
1946 ///
1947 /// impl Point {
1948 /// fn new(x: f64, y: f64) -> Self {
1949 /// Self { x, y }
1950 /// }
1951 /// }
1952 ///
1953 /// let x = Some(17.5);
1954 /// let y = Some(42.7);
1955 ///
1956 /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1957 /// assert_eq!(x.zip_with(None, Point::new), None);
1958 /// ```
1959 #[unstable(feature = "option_zip", issue = "70086")]
1960 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1961 pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1962 where
1963 F: [const] FnOnce(T, U) -> R + [const] Destruct,
1964 T: [const] Destruct,
1965 U: [const] Destruct,
1966 {
1967 match (self, other) {
1968 (Some(a), Some(b)) => Some(f(a, b)),
1969 _ => None,
1970 }
1971 }
1972
1973 /// Reduces two options into one, using the provided function if both are `Some`.
1974 ///
1975 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1976 /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
1977 /// If both `self` and `other` are `None`, `None` is returned.
1978 ///
1979 /// # Examples
1980 ///
1981 /// ```
1982 /// #![feature(option_reduce)]
1983 ///
1984 /// let s12 = Some(12);
1985 /// let s17 = Some(17);
1986 /// let n = None;
1987 /// let f = |a, b| a + b;
1988 ///
1989 /// assert_eq!(s12.reduce(s17, f), Some(29));
1990 /// assert_eq!(s12.reduce(n, f), Some(12));
1991 /// assert_eq!(n.reduce(s17, f), Some(17));
1992 /// assert_eq!(n.reduce(n, f), None);
1993 /// ```
1994 #[unstable(feature = "option_reduce", issue = "144273")]
1995 pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
1996 where
1997 T: Into<R>,
1998 U: Into<R>,
1999 F: FnOnce(T, U) -> R,
2000 {
2001 match (self, other) {
2002 (Some(a), Some(b)) => Some(f(a, b)),
2003 (Some(a), _) => Some(a.into()),
2004 (_, Some(b)) => Some(b.into()),
2005 _ => None,
2006 }
2007 }
2008}
2009
2010impl<T, U> Option<(T, U)> {
2011 /// Unzips an option containing a tuple of two options.
2012 ///
2013 /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2014 /// Otherwise, `(None, None)` is returned.
2015 ///
2016 /// # Examples
2017 ///
2018 /// ```
2019 /// let x = Some((1, "hi"));
2020 /// let y = None::<(u8, u32)>;
2021 ///
2022 /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2023 /// assert_eq!(y.unzip(), (None, None));
2024 /// ```
2025 #[inline]
2026 #[stable(feature = "unzip_option", since = "1.66.0")]
2027 pub fn unzip(self) -> (Option<T>, Option<U>) {
2028 match self {
2029 Some((a, b)) => (Some(a), Some(b)),
2030 None => (None, None),
2031 }
2032 }
2033}
2034
2035impl<T> Option<&T> {
2036 /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2037 /// option.
2038 ///
2039 /// # Examples
2040 ///
2041 /// ```
2042 /// let x = 12;
2043 /// let opt_x = Some(&x);
2044 /// assert_eq!(opt_x, Some(&12));
2045 /// let copied = opt_x.copied();
2046 /// assert_eq!(copied, Some(12));
2047 /// ```
2048 #[must_use = "`self` will be dropped if the result is not used"]
2049 #[stable(feature = "copied", since = "1.35.0")]
2050 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2051 pub const fn copied(self) -> Option<T>
2052 where
2053 T: Copy,
2054 {
2055 // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2056 // ready yet, should be reverted when possible to avoid code repetition
2057 match self {
2058 Some(&v) => Some(v),
2059 None => None,
2060 }
2061 }
2062
2063 /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2064 /// option.
2065 ///
2066 /// # Examples
2067 ///
2068 /// ```
2069 /// let x = 12;
2070 /// let opt_x = Some(&x);
2071 /// assert_eq!(opt_x, Some(&12));
2072 /// let cloned = opt_x.cloned();
2073 /// assert_eq!(cloned, Some(12));
2074 /// ```
2075 #[must_use = "`self` will be dropped if the result is not used"]
2076 #[stable(feature = "rust1", since = "1.0.0")]
2077 pub fn cloned(self) -> Option<T>
2078 where
2079 T: Clone,
2080 {
2081 match self {
2082 Some(t) => Some(t.clone()),
2083 None => None,
2084 }
2085 }
2086}
2087
2088impl<T> Option<&mut T> {
2089 /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2090 /// option.
2091 ///
2092 /// # Examples
2093 ///
2094 /// ```
2095 /// let mut x = 12;
2096 /// let opt_x = Some(&mut x);
2097 /// assert_eq!(opt_x, Some(&mut 12));
2098 /// let copied = opt_x.copied();
2099 /// assert_eq!(copied, Some(12));
2100 /// ```
2101 #[must_use = "`self` will be dropped if the result is not used"]
2102 #[stable(feature = "copied", since = "1.35.0")]
2103 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2104 pub const fn copied(self) -> Option<T>
2105 where
2106 T: Copy,
2107 {
2108 match self {
2109 Some(&mut t) => Some(t),
2110 None => None,
2111 }
2112 }
2113
2114 /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2115 /// option.
2116 ///
2117 /// # Examples
2118 ///
2119 /// ```
2120 /// let mut x = 12;
2121 /// let opt_x = Some(&mut x);
2122 /// assert_eq!(opt_x, Some(&mut 12));
2123 /// let cloned = opt_x.cloned();
2124 /// assert_eq!(cloned, Some(12));
2125 /// ```
2126 #[must_use = "`self` will be dropped if the result is not used"]
2127 #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2128 pub fn cloned(self) -> Option<T>
2129 where
2130 T: Clone,
2131 {
2132 match self {
2133 Some(t) => Some(t.clone()),
2134 None => None,
2135 }
2136 }
2137}
2138
2139impl<T, E> Option<Result<T, E>> {
2140 /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2141 ///
2142 /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2143 /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2144 /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2145 ///
2146 /// # Examples
2147 ///
2148 /// ```
2149 /// #[derive(Debug, Eq, PartialEq)]
2150 /// struct SomeErr;
2151 ///
2152 /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2153 /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2154 /// assert_eq!(x.transpose(), y);
2155 /// ```
2156 #[inline]
2157 #[stable(feature = "transpose_result", since = "1.33.0")]
2158 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2159 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2160 pub const fn transpose(self) -> Result<Option<T>, E> {
2161 match self {
2162 Some(Ok(x)) => Ok(Some(x)),
2163 Some(Err(e)) => Err(e),
2164 None => Ok(None),
2165 }
2166 }
2167}
2168
2169#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2170#[cfg_attr(panic = "immediate-abort", inline)]
2171#[cold]
2172#[track_caller]
2173const fn unwrap_failed() -> ! {
2174 panic("called `Option::unwrap()` on a `None` value")
2175}
2176
2177// This is a separate function to reduce the code size of .expect() itself.
2178#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2179#[cfg_attr(panic = "immediate-abort", inline)]
2180#[cold]
2181#[track_caller]
2182const fn expect_failed(msg: &str) -> ! {
2183 panic_display(&msg)
2184}
2185
2186/////////////////////////////////////////////////////////////////////////////
2187// Trait implementations
2188/////////////////////////////////////////////////////////////////////////////
2189
2190#[stable(feature = "rust1", since = "1.0.0")]
2191#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2192impl<T> const Clone for Option<T>
2193where
2194 // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2195 // See https://github.com/rust-lang/rust/issues/144207
2196 T: [const] Clone + [const] Destruct,
2197{
2198 #[inline]
2199 fn clone(&self) -> Self {
2200 match self {
2201 Some(x) => Some(x.clone()),
2202 None => None,
2203 }
2204 }
2205
2206 #[inline]
2207 fn clone_from(&mut self, source: &Self) {
2208 match (self, source) {
2209 (Some(to), Some(from)) => to.clone_from(from),
2210 (to, from) => *to = from.clone(),
2211 }
2212 }
2213}
2214
2215#[unstable(feature = "ergonomic_clones", issue = "132290")]
2216impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2217
2218#[stable(feature = "rust1", since = "1.0.0")]
2219#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2220impl<T> const Default for Option<T> {
2221 /// Returns [`None`][Option::None].
2222 ///
2223 /// # Examples
2224 ///
2225 /// ```
2226 /// let opt: Option<u32> = Option::default();
2227 /// assert!(opt.is_none());
2228 /// ```
2229 #[inline]
2230 fn default() -> Option<T> {
2231 None
2232 }
2233}
2234
2235#[stable(feature = "rust1", since = "1.0.0")]
2236impl<T> IntoIterator for Option<T> {
2237 type Item = T;
2238 type IntoIter = IntoIter<T>;
2239
2240 /// Returns a consuming iterator over the possibly contained value.
2241 ///
2242 /// # Examples
2243 ///
2244 /// ```
2245 /// let x = Some("string");
2246 /// let v: Vec<&str> = x.into_iter().collect();
2247 /// assert_eq!(v, ["string"]);
2248 ///
2249 /// let x = None;
2250 /// let v: Vec<&str> = x.into_iter().collect();
2251 /// assert!(v.is_empty());
2252 /// ```
2253 #[inline]
2254 fn into_iter(self) -> IntoIter<T> {
2255 IntoIter { inner: Item { opt: self } }
2256 }
2257}
2258
2259#[stable(since = "1.4.0", feature = "option_iter")]
2260impl<'a, T> IntoIterator for &'a Option<T> {
2261 type Item = &'a T;
2262 type IntoIter = Iter<'a, T>;
2263
2264 fn into_iter(self) -> Iter<'a, T> {
2265 self.iter()
2266 }
2267}
2268
2269#[stable(since = "1.4.0", feature = "option_iter")]
2270impl<'a, T> IntoIterator for &'a mut Option<T> {
2271 type Item = &'a mut T;
2272 type IntoIter = IterMut<'a, T>;
2273
2274 fn into_iter(self) -> IterMut<'a, T> {
2275 self.iter_mut()
2276 }
2277}
2278
2279#[stable(since = "1.12.0", feature = "option_from")]
2280#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2281impl<T> const From<T> for Option<T> {
2282 /// Moves `val` into a new [`Some`].
2283 ///
2284 /// # Examples
2285 ///
2286 /// ```
2287 /// let o: Option<u8> = Option::from(67);
2288 ///
2289 /// assert_eq!(Some(67), o);
2290 /// ```
2291 fn from(val: T) -> Option<T> {
2292 Some(val)
2293 }
2294}
2295
2296#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2297#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2298impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2299 /// Converts from `&Option<T>` to `Option<&T>`.
2300 ///
2301 /// # Examples
2302 ///
2303 /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2304 /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2305 /// so this technique uses `from` to first take an [`Option`] to a reference
2306 /// to the value inside the original.
2307 ///
2308 /// [`map`]: Option::map
2309 /// [String]: ../../std/string/struct.String.html "String"
2310 ///
2311 /// ```
2312 /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2313 /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2314 ///
2315 /// println!("Can still print s: {s:?}");
2316 ///
2317 /// assert_eq!(o, Some(18));
2318 /// ```
2319 fn from(o: &'a Option<T>) -> Option<&'a T> {
2320 o.as_ref()
2321 }
2322}
2323
2324#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2325#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2326impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2327 /// Converts from `&mut Option<T>` to `Option<&mut T>`
2328 ///
2329 /// # Examples
2330 ///
2331 /// ```
2332 /// let mut s = Some(String::from("Hello"));
2333 /// let o: Option<&mut String> = Option::from(&mut s);
2334 ///
2335 /// match o {
2336 /// Some(t) => *t = String::from("Hello, Rustaceans!"),
2337 /// None => (),
2338 /// }
2339 ///
2340 /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2341 /// ```
2342 fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2343 o.as_mut()
2344 }
2345}
2346
2347// Ideally, LLVM should be able to optimize our derive code to this.
2348// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2349// go back to deriving `PartialEq`.
2350#[stable(feature = "rust1", since = "1.0.0")]
2351impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2352#[stable(feature = "rust1", since = "1.0.0")]
2353#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2354impl<T: [const] PartialEq> const PartialEq for Option<T> {
2355 #[inline]
2356 fn eq(&self, other: &Self) -> bool {
2357 // Spelling out the cases explicitly optimizes better than
2358 // `_ => false`
2359 match (self, other) {
2360 (Some(l), Some(r)) => *l == *r,
2361 (Some(_), None) => false,
2362 (None, Some(_)) => false,
2363 (None, None) => true,
2364 }
2365 }
2366}
2367
2368// Manually implementing here somewhat improves codegen for
2369// https://github.com/rust-lang/rust/issues/49892, although still
2370// not optimal.
2371#[stable(feature = "rust1", since = "1.0.0")]
2372#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2373impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2374 #[inline]
2375 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2376 match (self, other) {
2377 (Some(l), Some(r)) => l.partial_cmp(r),
2378 (Some(_), None) => Some(cmp::Ordering::Greater),
2379 (None, Some(_)) => Some(cmp::Ordering::Less),
2380 (None, None) => Some(cmp::Ordering::Equal),
2381 }
2382 }
2383}
2384
2385#[stable(feature = "rust1", since = "1.0.0")]
2386#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2387impl<T: [const] Ord> const Ord for Option<T> {
2388 #[inline]
2389 fn cmp(&self, other: &Self) -> cmp::Ordering {
2390 match (self, other) {
2391 (Some(l), Some(r)) => l.cmp(r),
2392 (Some(_), None) => cmp::Ordering::Greater,
2393 (None, Some(_)) => cmp::Ordering::Less,
2394 (None, None) => cmp::Ordering::Equal,
2395 }
2396 }
2397}
2398
2399/////////////////////////////////////////////////////////////////////////////
2400// The Option Iterators
2401/////////////////////////////////////////////////////////////////////////////
2402
2403#[derive(Clone, Debug)]
2404struct Item<A> {
2405 opt: Option<A>,
2406}
2407
2408impl<A> Iterator for Item<A> {
2409 type Item = A;
2410
2411 #[inline]
2412 fn next(&mut self) -> Option<A> {
2413 self.opt.take()
2414 }
2415
2416 #[inline]
2417 fn size_hint(&self) -> (usize, Option<usize>) {
2418 let len = self.len();
2419 (len, Some(len))
2420 }
2421}
2422
2423impl<A> DoubleEndedIterator for Item<A> {
2424 #[inline]
2425 fn next_back(&mut self) -> Option<A> {
2426 self.opt.take()
2427 }
2428}
2429
2430impl<A> ExactSizeIterator for Item<A> {
2431 #[inline]
2432 fn len(&self) -> usize {
2433 self.opt.len()
2434 }
2435}
2436impl<A> FusedIterator for Item<A> {}
2437unsafe impl<A> TrustedLen for Item<A> {}
2438
2439/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2440///
2441/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2442///
2443/// This `struct` is created by the [`Option::iter`] function.
2444#[stable(feature = "rust1", since = "1.0.0")]
2445#[derive(Debug)]
2446pub struct Iter<'a, A: 'a> {
2447 inner: Item<&'a A>,
2448}
2449
2450#[stable(feature = "rust1", since = "1.0.0")]
2451impl<'a, A> Iterator for Iter<'a, A> {
2452 type Item = &'a A;
2453
2454 #[inline]
2455 fn next(&mut self) -> Option<&'a A> {
2456 self.inner.next()
2457 }
2458 #[inline]
2459 fn size_hint(&self) -> (usize, Option<usize>) {
2460 self.inner.size_hint()
2461 }
2462}
2463
2464#[stable(feature = "rust1", since = "1.0.0")]
2465impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2466 #[inline]
2467 fn next_back(&mut self) -> Option<&'a A> {
2468 self.inner.next_back()
2469 }
2470}
2471
2472#[stable(feature = "rust1", since = "1.0.0")]
2473impl<A> ExactSizeIterator for Iter<'_, A> {}
2474
2475#[stable(feature = "fused", since = "1.26.0")]
2476impl<A> FusedIterator for Iter<'_, A> {}
2477
2478#[unstable(feature = "trusted_len", issue = "37572")]
2479unsafe impl<A> TrustedLen for Iter<'_, A> {}
2480
2481#[stable(feature = "rust1", since = "1.0.0")]
2482impl<A> Clone for Iter<'_, A> {
2483 #[inline]
2484 fn clone(&self) -> Self {
2485 Iter { inner: self.inner.clone() }
2486 }
2487}
2488
2489/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2490///
2491/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2492///
2493/// This `struct` is created by the [`Option::iter_mut`] function.
2494#[stable(feature = "rust1", since = "1.0.0")]
2495#[derive(Debug)]
2496pub struct IterMut<'a, A: 'a> {
2497 inner: Item<&'a mut A>,
2498}
2499
2500#[stable(feature = "rust1", since = "1.0.0")]
2501impl<'a, A> Iterator for IterMut<'a, A> {
2502 type Item = &'a mut A;
2503
2504 #[inline]
2505 fn next(&mut self) -> Option<&'a mut A> {
2506 self.inner.next()
2507 }
2508 #[inline]
2509 fn size_hint(&self) -> (usize, Option<usize>) {
2510 self.inner.size_hint()
2511 }
2512}
2513
2514#[stable(feature = "rust1", since = "1.0.0")]
2515impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2516 #[inline]
2517 fn next_back(&mut self) -> Option<&'a mut A> {
2518 self.inner.next_back()
2519 }
2520}
2521
2522#[stable(feature = "rust1", since = "1.0.0")]
2523impl<A> ExactSizeIterator for IterMut<'_, A> {}
2524
2525#[stable(feature = "fused", since = "1.26.0")]
2526impl<A> FusedIterator for IterMut<'_, A> {}
2527#[unstable(feature = "trusted_len", issue = "37572")]
2528unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2529
2530/// An iterator over the value in [`Some`] variant of an [`Option`].
2531///
2532/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2533///
2534/// This `struct` is created by the [`Option::into_iter`] function.
2535#[derive(Clone, Debug)]
2536#[stable(feature = "rust1", since = "1.0.0")]
2537pub struct IntoIter<A> {
2538 inner: Item<A>,
2539}
2540
2541#[stable(feature = "rust1", since = "1.0.0")]
2542impl<A> Iterator for IntoIter<A> {
2543 type Item = A;
2544
2545 #[inline]
2546 fn next(&mut self) -> Option<A> {
2547 self.inner.next()
2548 }
2549 #[inline]
2550 fn size_hint(&self) -> (usize, Option<usize>) {
2551 self.inner.size_hint()
2552 }
2553}
2554
2555#[stable(feature = "rust1", since = "1.0.0")]
2556impl<A> DoubleEndedIterator for IntoIter<A> {
2557 #[inline]
2558 fn next_back(&mut self) -> Option<A> {
2559 self.inner.next_back()
2560 }
2561}
2562
2563#[stable(feature = "rust1", since = "1.0.0")]
2564impl<A> ExactSizeIterator for IntoIter<A> {}
2565
2566#[stable(feature = "fused", since = "1.26.0")]
2567impl<A> FusedIterator for IntoIter<A> {}
2568
2569#[unstable(feature = "trusted_len", issue = "37572")]
2570unsafe impl<A> TrustedLen for IntoIter<A> {}
2571
2572/////////////////////////////////////////////////////////////////////////////
2573// FromIterator
2574/////////////////////////////////////////////////////////////////////////////
2575
2576#[stable(feature = "rust1", since = "1.0.0")]
2577impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2578 /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2579 /// no further elements are taken, and the [`None`][Option::None] is
2580 /// returned. Should no [`None`][Option::None] occur, a container of type
2581 /// `V` containing the values of each [`Option`] is returned.
2582 ///
2583 /// # Examples
2584 ///
2585 /// Here is an example which increments every integer in a vector.
2586 /// We use the checked variant of `add` that returns `None` when the
2587 /// calculation would result in an overflow.
2588 ///
2589 /// ```
2590 /// let items = vec![0_u16, 1, 2];
2591 ///
2592 /// let res: Option<Vec<u16>> = items
2593 /// .iter()
2594 /// .map(|x| x.checked_add(1))
2595 /// .collect();
2596 ///
2597 /// assert_eq!(res, Some(vec![1, 2, 3]));
2598 /// ```
2599 ///
2600 /// As you can see, this will return the expected, valid items.
2601 ///
2602 /// Here is another example that tries to subtract one from another list
2603 /// of integers, this time checking for underflow:
2604 ///
2605 /// ```
2606 /// let items = vec![2_u16, 1, 0];
2607 ///
2608 /// let res: Option<Vec<u16>> = items
2609 /// .iter()
2610 /// .map(|x| x.checked_sub(1))
2611 /// .collect();
2612 ///
2613 /// assert_eq!(res, None);
2614 /// ```
2615 ///
2616 /// Since the last element is zero, it would underflow. Thus, the resulting
2617 /// value is `None`.
2618 ///
2619 /// Here is a variation on the previous example, showing that no
2620 /// further elements are taken from `iter` after the first `None`.
2621 ///
2622 /// ```
2623 /// let items = vec![3_u16, 2, 1, 10];
2624 ///
2625 /// let mut shared = 0;
2626 ///
2627 /// let res: Option<Vec<u16>> = items
2628 /// .iter()
2629 /// .map(|x| { shared += x; x.checked_sub(2) })
2630 /// .collect();
2631 ///
2632 /// assert_eq!(res, None);
2633 /// assert_eq!(shared, 6);
2634 /// ```
2635 ///
2636 /// Since the third element caused an underflow, no further elements were taken,
2637 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2638 #[inline]
2639 fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2640 // FIXME(#11084): This could be replaced with Iterator::scan when this
2641 // performance bug is closed.
2642
2643 iter::try_process(iter.into_iter(), |i| i.collect())
2644 }
2645}
2646
2647#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2648#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2649impl<T> const ops::Try for Option<T> {
2650 type Output = T;
2651 type Residual = Option<convert::Infallible>;
2652
2653 #[inline]
2654 fn from_output(output: Self::Output) -> Self {
2655 Some(output)
2656 }
2657
2658 #[inline]
2659 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2660 match self {
2661 Some(v) => ControlFlow::Continue(v),
2662 None => ControlFlow::Break(None),
2663 }
2664 }
2665}
2666
2667#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2668#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2669// Note: manually specifying the residual type instead of using the default to work around
2670// https://github.com/rust-lang/rust/issues/99940
2671impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2672 #[inline]
2673 fn from_residual(residual: Option<convert::Infallible>) -> Self {
2674 match residual {
2675 None => None,
2676 }
2677 }
2678}
2679
2680#[diagnostic::do_not_recommend]
2681#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2682#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2683impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2684 #[inline]
2685 fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2686 None
2687 }
2688}
2689
2690#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2691#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2692impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2693 type TryType = Option<T>;
2694}
2695
2696impl<T> Option<Option<T>> {
2697 /// Converts from `Option<Option<T>>` to `Option<T>`.
2698 ///
2699 /// # Examples
2700 ///
2701 /// Basic usage:
2702 ///
2703 /// ```
2704 /// let x: Option<Option<u32>> = Some(Some(6));
2705 /// assert_eq!(Some(6), x.flatten());
2706 ///
2707 /// let x: Option<Option<u32>> = Some(None);
2708 /// assert_eq!(None, x.flatten());
2709 ///
2710 /// let x: Option<Option<u32>> = None;
2711 /// assert_eq!(None, x.flatten());
2712 /// ```
2713 ///
2714 /// Flattening only removes one level of nesting at a time:
2715 ///
2716 /// ```
2717 /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2718 /// assert_eq!(Some(Some(6)), x.flatten());
2719 /// assert_eq!(Some(6), x.flatten().flatten());
2720 /// ```
2721 #[inline]
2722 #[stable(feature = "option_flattening", since = "1.40.0")]
2723 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2724 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2725 pub const fn flatten(self) -> Option<T> {
2726 // FIXME(const-hack): could be written with `and_then`
2727 match self {
2728 Some(inner) => inner,
2729 None => None,
2730 }
2731 }
2732}
2733
2734impl<T, const N: usize> [Option<T>; N] {
2735 /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2736 ///
2737 /// # Examples
2738 ///
2739 /// ```
2740 /// #![feature(option_array_transpose)]
2741 /// # use std::option::Option;
2742 ///
2743 /// let data = [Some(0); 1000];
2744 /// let data: Option<[u8; 1000]> = data.transpose();
2745 /// assert_eq!(data, Some([0; 1000]));
2746 ///
2747 /// let data = [Some(0), None];
2748 /// let data: Option<[u8; 2]> = data.transpose();
2749 /// assert_eq!(data, None);
2750 /// ```
2751 #[inline]
2752 #[unstable(feature = "option_array_transpose", issue = "130828")]
2753 pub fn transpose(self) -> Option<[T; N]> {
2754 self.try_map(core::convert::identity)
2755 }
2756}