Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

core/ptr/
non_null.rs

1use crate::clone::TrivialClone;
2use crate::cmp::Ordering;
3use crate::marker::{Destruct, PointeeSized, Unsize};
4use crate::mem::{MaybeUninit, SizedTypeProperties};
5use crate::num::NonZero;
6use crate::ops::{CoerceUnsized, DispatchFromDyn};
7use crate::pin::PinCoerceUnsized;
8use crate::ptr::Unique;
9use crate::slice::{self, SliceIndex};
10use crate::ub_checks::assert_unsafe_precondition;
11use crate::{fmt, hash, intrinsics, mem, ptr};
12
13/// `*mut T` but non-zero and [covariant].
14///
15/// This is often the correct thing to use when building data structures using
16/// raw pointers, but is ultimately more dangerous to use because of its additional
17/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
18///
19/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
20/// is never dereferenced. This is so that enums may use this forbidden value
21/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
22/// However the pointer may still dangle if it isn't dereferenced.
23///
24/// Unlike `*mut T`, `NonNull<T>` is covariant over `T`. This is usually the correct
25/// choice for most data structures and safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
26/// and `LinkedList`.
27///
28/// In rare cases, if your type exposes a way to mutate the value of `T` through a `NonNull<T>`,
29/// and you need to prevent unsoundness from variance (for example, if `T` could be a reference
30/// with a shorter lifetime), you should add a field to make your type invariant, such as
31/// `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
32///
33/// Example of a type that must be invariant:
34/// ```rust
35/// use std::cell::Cell;
36/// use std::marker::PhantomData;
37/// struct Invariant<T> {
38///     ptr: std::ptr::NonNull<T>,
39///     _invariant: PhantomData<Cell<T>>,
40/// }
41/// ```
42///
43/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
44/// not change the fact that mutating through a (pointer derived from a) shared
45/// reference is undefined behavior unless the mutation happens inside an
46/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
47/// reference. When using this `From` instance without an `UnsafeCell<T>`,
48/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
49/// is never used for mutation.
50///
51/// # Representation
52///
53/// Thanks to the [null pointer optimization],
54/// `NonNull<T>` and `Option<NonNull<T>>`
55/// are guaranteed to have the same size and alignment:
56///
57/// ```
58/// use std::ptr::NonNull;
59///
60/// assert_eq!(size_of::<NonNull<i16>>(), size_of::<Option<NonNull<i16>>>());
61/// assert_eq!(align_of::<NonNull<i16>>(), align_of::<Option<NonNull<i16>>>());
62///
63/// assert_eq!(size_of::<NonNull<str>>(), size_of::<Option<NonNull<str>>>());
64/// assert_eq!(align_of::<NonNull<str>>(), align_of::<Option<NonNull<str>>>());
65/// ```
66///
67/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
68/// [`PhantomData`]: crate::marker::PhantomData
69/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
70/// [null pointer optimization]: crate::option#representation
71#[stable(feature = "nonnull", since = "1.25.0")]
72#[repr(transparent)]
73#[rustc_layout_scalar_valid_range_start(1)]
74#[rustc_nonnull_optimization_guaranteed]
75#[rustc_diagnostic_item = "NonNull"]
76pub struct NonNull<T: PointeeSized> {
77    // Remember to use `.as_ptr()` instead of `.pointer`, as field projecting to
78    // this is banned by <https://github.com/rust-lang/compiler-team/issues/807>.
79    pointer: *const T,
80}
81
82/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
83// N.B., this impl is unnecessary, but should provide better error messages.
84#[stable(feature = "nonnull", since = "1.25.0")]
85impl<T: PointeeSized> !Send for NonNull<T> {}
86
87/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
88// N.B., this impl is unnecessary, but should provide better error messages.
89#[stable(feature = "nonnull", since = "1.25.0")]
90impl<T: PointeeSized> !Sync for NonNull<T> {}
91
92impl<T: Sized> NonNull<T> {
93    /// Creates a pointer with the given address and no [provenance][crate::ptr#provenance].
94    ///
95    /// For more details, see the equivalent method on a raw pointer, [`ptr::without_provenance_mut`].
96    ///
97    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
98    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
99    #[rustc_const_stable(feature = "nonnull_provenance", since = "1.89.0")]
100    #[must_use]
101    #[inline]
102    pub const fn without_provenance(addr: NonZero<usize>) -> Self {
103        let pointer = crate::ptr::without_provenance(addr.get());
104        // SAFETY: we know `addr` is non-zero.
105        unsafe { NonNull { pointer } }
106    }
107
108    /// Creates a new `NonNull` that is dangling, but well-aligned.
109    ///
110    /// This is useful for initializing types which lazily allocate, like
111    /// `Vec::new` does.
112    ///
113    /// Note that the address of the returned pointer may potentially
114    /// be that of a valid pointer, which means this must not be used
115    /// as a "not yet initialized" sentinel value.
116    /// Types that lazily allocate must track initialization by some other means.
117    ///
118    /// # Examples
119    ///
120    /// ```
121    /// use std::ptr::NonNull;
122    ///
123    /// let ptr = NonNull::<u32>::dangling();
124    /// // Important: don't try to access the value of `ptr` without
125    /// // initializing it first! The pointer is not null but isn't valid either!
126    /// ```
127    #[stable(feature = "nonnull", since = "1.25.0")]
128    #[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
129    #[must_use]
130    #[inline]
131    pub const fn dangling() -> Self {
132        let align = crate::ptr::Alignment::of::<T>();
133        NonNull::without_provenance(align.as_nonzero())
134    }
135
136    /// Converts an address back to a mutable pointer, picking up some previously 'exposed'
137    /// [provenance][crate::ptr#provenance].
138    ///
139    /// For more details, see the equivalent method on a raw pointer, [`ptr::with_exposed_provenance_mut`].
140    ///
141    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
142    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
143    #[inline]
144    pub fn with_exposed_provenance(addr: NonZero<usize>) -> Self {
145        // SAFETY: we know `addr` is non-zero.
146        unsafe {
147            let ptr = crate::ptr::with_exposed_provenance_mut(addr.get());
148            NonNull::new_unchecked(ptr)
149        }
150    }
151
152    /// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
153    /// that the value has to be initialized.
154    ///
155    /// For the mutable counterpart see [`as_uninit_mut`].
156    ///
157    /// [`as_ref`]: NonNull::as_ref
158    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
159    ///
160    /// # Safety
161    ///
162    /// When calling this method, you have to ensure that
163    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
164    /// Note that because the created reference is to `MaybeUninit<T>`, the
165    /// source pointer can point to uninitialized memory.
166    #[inline]
167    #[must_use]
168    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
169    pub const unsafe fn as_uninit_ref<'a>(self) -> &'a MaybeUninit<T> {
170        // SAFETY: the caller must guarantee that `self` meets all the
171        // requirements for a reference.
172        unsafe { &*self.cast().as_ptr() }
173    }
174
175    /// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
176    /// that the value has to be initialized.
177    ///
178    /// For the shared counterpart see [`as_uninit_ref`].
179    ///
180    /// [`as_mut`]: NonNull::as_mut
181    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
182    ///
183    /// # Safety
184    ///
185    /// When calling this method, you have to ensure that
186    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
187    /// Note that because the created reference is to `MaybeUninit<T>`, the
188    /// source pointer can point to uninitialized memory.
189    #[inline]
190    #[must_use]
191    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
192    pub const unsafe fn as_uninit_mut<'a>(self) -> &'a mut MaybeUninit<T> {
193        // SAFETY: the caller must guarantee that `self` meets all the
194        // requirements for a reference.
195        unsafe { &mut *self.cast().as_ptr() }
196    }
197
198    /// Casts from a pointer-to-`T` to a pointer-to-`[T; N]`.
199    #[inline]
200    #[unstable(feature = "ptr_cast_array", issue = "144514")]
201    pub const fn cast_array<const N: usize>(self) -> NonNull<[T; N]> {
202        self.cast()
203    }
204}
205
206impl<T: PointeeSized> NonNull<T> {
207    /// Creates a new `NonNull`.
208    ///
209    /// # Safety
210    ///
211    /// `ptr` must be non-null.
212    ///
213    /// # Examples
214    ///
215    /// ```
216    /// use std::ptr::NonNull;
217    ///
218    /// let mut x = 0u32;
219    /// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
220    /// ```
221    ///
222    /// *Incorrect* usage of this function:
223    ///
224    /// ```rust,no_run
225    /// use std::ptr::NonNull;
226    ///
227    /// // NEVER DO THAT!!! This is undefined behavior. ⚠️
228    /// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
229    /// ```
230    #[stable(feature = "nonnull", since = "1.25.0")]
231    #[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
232    #[inline]
233    #[track_caller]
234    pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
235        // SAFETY: the caller must guarantee that `ptr` is non-null.
236        unsafe {
237            assert_unsafe_precondition!(
238                check_language_ub,
239                "NonNull::new_unchecked requires that the pointer is non-null",
240                (ptr: *mut () = ptr as *mut ()) => !ptr.is_null()
241            );
242            NonNull { pointer: ptr as _ }
243        }
244    }
245
246    /// Creates a new `NonNull` if `ptr` is non-null.
247    ///
248    /// # Panics during const evaluation
249    ///
250    /// This method will panic during const evaluation if the pointer cannot be
251    /// determined to be null or not. See [`is_null`] for more information.
252    ///
253    /// [`is_null`]: ../primitive.pointer.html#method.is_null-1
254    ///
255    /// # Examples
256    ///
257    /// ```
258    /// use std::ptr::NonNull;
259    ///
260    /// let mut x = 0u32;
261    /// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
262    ///
263    /// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
264    ///     unreachable!();
265    /// }
266    /// ```
267    #[stable(feature = "nonnull", since = "1.25.0")]
268    #[rustc_const_stable(feature = "const_nonnull_new", since = "1.85.0")]
269    #[inline]
270    pub const fn new(ptr: *mut T) -> Option<Self> {
271        if !ptr.is_null() {
272            // SAFETY: The pointer is already checked and is not null
273            Some(unsafe { Self::new_unchecked(ptr) })
274        } else {
275            None
276        }
277    }
278
279    /// Converts a reference to a `NonNull` pointer.
280    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
281    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
282    #[inline]
283    pub const fn from_ref(r: &T) -> Self {
284        // SAFETY: A reference cannot be null.
285        unsafe { NonNull { pointer: r as *const T } }
286    }
287
288    /// Converts a mutable reference to a `NonNull` pointer.
289    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
290    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
291    #[inline]
292    pub const fn from_mut(r: &mut T) -> Self {
293        // SAFETY: A mutable reference cannot be null.
294        unsafe { NonNull { pointer: r as *mut T } }
295    }
296
297    /// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
298    /// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
299    ///
300    /// See the documentation of [`std::ptr::from_raw_parts`] for more details.
301    ///
302    /// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
303    #[unstable(feature = "ptr_metadata", issue = "81513")]
304    #[inline]
305    pub const fn from_raw_parts(
306        data_pointer: NonNull<impl super::Thin>,
307        metadata: <T as super::Pointee>::Metadata,
308    ) -> NonNull<T> {
309        // SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_pointer` is.
310        unsafe {
311            NonNull::new_unchecked(super::from_raw_parts_mut(data_pointer.as_ptr(), metadata))
312        }
313    }
314
315    /// Decompose a (possibly wide) pointer into its data pointer and metadata components.
316    ///
317    /// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
318    #[unstable(feature = "ptr_metadata", issue = "81513")]
319    #[must_use = "this returns the result of the operation, \
320                  without modifying the original"]
321    #[inline]
322    pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
323        (self.cast(), super::metadata(self.as_ptr()))
324    }
325
326    /// Gets the "address" portion of the pointer.
327    ///
328    /// For more details, see the equivalent method on a raw pointer, [`pointer::addr`].
329    ///
330    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
331    #[must_use]
332    #[inline]
333    #[stable(feature = "strict_provenance", since = "1.84.0")]
334    pub fn addr(self) -> NonZero<usize> {
335        // SAFETY: The pointer is guaranteed by the type to be non-null,
336        // meaning that the address will be non-zero.
337        unsafe { NonZero::new_unchecked(self.as_ptr().addr()) }
338    }
339
340    /// Exposes the ["provenance"][crate::ptr#provenance] part of the pointer for future use in
341    /// [`with_exposed_provenance`][NonNull::with_exposed_provenance] and returns the "address" portion.
342    ///
343    /// For more details, see the equivalent method on a raw pointer, [`pointer::expose_provenance`].
344    ///
345    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
346    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
347    pub fn expose_provenance(self) -> NonZero<usize> {
348        // SAFETY: The pointer is guaranteed by the type to be non-null,
349        // meaning that the address will be non-zero.
350        unsafe { NonZero::new_unchecked(self.as_ptr().expose_provenance()) }
351    }
352
353    /// Creates a new pointer with the given address and the [provenance][crate::ptr#provenance] of
354    /// `self`.
355    ///
356    /// For more details, see the equivalent method on a raw pointer, [`pointer::with_addr`].
357    ///
358    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
359    #[must_use]
360    #[inline]
361    #[stable(feature = "strict_provenance", since = "1.84.0")]
362    pub fn with_addr(self, addr: NonZero<usize>) -> Self {
363        // SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
364        unsafe { NonNull::new_unchecked(self.as_ptr().with_addr(addr.get()) as *mut _) }
365    }
366
367    /// Creates a new pointer by mapping `self`'s address to a new one, preserving the
368    /// [provenance][crate::ptr#provenance] of `self`.
369    ///
370    /// For more details, see the equivalent method on a raw pointer, [`pointer::map_addr`].
371    ///
372    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
373    #[must_use]
374    #[inline]
375    #[stable(feature = "strict_provenance", since = "1.84.0")]
376    pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self {
377        self.with_addr(f(self.addr()))
378    }
379
380    /// Acquires the underlying `*mut` pointer.
381    ///
382    /// # Examples
383    ///
384    /// ```
385    /// use std::ptr::NonNull;
386    ///
387    /// let mut x = 0u32;
388    /// let ptr = NonNull::new(&mut x).expect("ptr is null!");
389    ///
390    /// let x_value = unsafe { *ptr.as_ptr() };
391    /// assert_eq!(x_value, 0);
392    ///
393    /// unsafe { *ptr.as_ptr() += 2; }
394    /// let x_value = unsafe { *ptr.as_ptr() };
395    /// assert_eq!(x_value, 2);
396    /// ```
397    #[stable(feature = "nonnull", since = "1.25.0")]
398    #[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
399    #[rustc_never_returns_null_ptr]
400    #[must_use]
401    #[inline(always)]
402    pub const fn as_ptr(self) -> *mut T {
403        // This is a transmute for the same reasons as `NonZero::get`.
404
405        // SAFETY: `NonNull` is `transparent` over a `*const T`, and `*const T`
406        // and `*mut T` have the same layout, so transitively we can transmute
407        // our `NonNull` to a `*mut T` directly.
408        unsafe { mem::transmute::<Self, *mut T>(self) }
409    }
410
411    /// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
412    /// must be used instead.
413    ///
414    /// For the mutable counterpart see [`as_mut`].
415    ///
416    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
417    /// [`as_mut`]: NonNull::as_mut
418    ///
419    /// # Safety
420    ///
421    /// When calling this method, you have to ensure that
422    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
423    ///
424    /// # Examples
425    ///
426    /// ```
427    /// use std::ptr::NonNull;
428    ///
429    /// let mut x = 0u32;
430    /// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
431    ///
432    /// let ref_x = unsafe { ptr.as_ref() };
433    /// println!("{ref_x}");
434    /// ```
435    ///
436    /// [the module documentation]: crate::ptr#safety
437    #[stable(feature = "nonnull", since = "1.25.0")]
438    #[rustc_const_stable(feature = "const_nonnull_as_ref", since = "1.73.0")]
439    #[must_use]
440    #[inline(always)]
441    pub const unsafe fn as_ref<'a>(&self) -> &'a T {
442        // SAFETY: the caller must guarantee that `self` meets all the
443        // requirements for a reference.
444        // `cast_const` avoids a mutable raw pointer deref.
445        unsafe { &*self.as_ptr().cast_const() }
446    }
447
448    /// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
449    /// must be used instead.
450    ///
451    /// For the shared counterpart see [`as_ref`].
452    ///
453    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
454    /// [`as_ref`]: NonNull::as_ref
455    ///
456    /// # Safety
457    ///
458    /// When calling this method, you have to ensure that
459    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
460    /// # Examples
461    ///
462    /// ```
463    /// use std::ptr::NonNull;
464    ///
465    /// let mut x = 0u32;
466    /// let mut ptr = NonNull::new(&mut x).expect("null pointer");
467    ///
468    /// let x_ref = unsafe { ptr.as_mut() };
469    /// assert_eq!(*x_ref, 0);
470    /// *x_ref += 2;
471    /// assert_eq!(*x_ref, 2);
472    /// ```
473    ///
474    /// [the module documentation]: crate::ptr#safety
475    #[stable(feature = "nonnull", since = "1.25.0")]
476    #[rustc_const_stable(feature = "const_ptr_as_ref", since = "1.83.0")]
477    #[must_use]
478    #[inline(always)]
479    pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
480        // SAFETY: the caller must guarantee that `self` meets all the
481        // requirements for a mutable reference.
482        unsafe { &mut *self.as_ptr() }
483    }
484
485    /// Casts to a pointer of another type.
486    ///
487    /// # Examples
488    ///
489    /// ```
490    /// use std::ptr::NonNull;
491    ///
492    /// let mut x = 0u32;
493    /// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
494    ///
495    /// let casted_ptr = ptr.cast::<i8>();
496    /// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
497    /// ```
498    #[stable(feature = "nonnull_cast", since = "1.27.0")]
499    #[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
500    #[must_use = "this returns the result of the operation, \
501                  without modifying the original"]
502    #[inline]
503    pub const fn cast<U>(self) -> NonNull<U> {
504        // SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
505        unsafe { NonNull { pointer: self.as_ptr() as *mut U } }
506    }
507
508    /// Try to cast to a pointer of another type by checking alignment.
509    ///
510    /// If the pointer is properly aligned to the target type, it will be
511    /// cast to the target type. Otherwise, `None` is returned.
512    ///
513    /// # Examples
514    ///
515    /// ```rust
516    /// #![feature(pointer_try_cast_aligned)]
517    /// use std::ptr::NonNull;
518    ///
519    /// let mut x = 0u64;
520    ///
521    /// let aligned = NonNull::from_mut(&mut x);
522    /// let unaligned = unsafe { aligned.byte_add(1) };
523    ///
524    /// assert!(aligned.try_cast_aligned::<u32>().is_some());
525    /// assert!(unaligned.try_cast_aligned::<u32>().is_none());
526    /// ```
527    #[unstable(feature = "pointer_try_cast_aligned", issue = "141221")]
528    #[must_use = "this returns the result of the operation, \
529                  without modifying the original"]
530    #[inline]
531    pub fn try_cast_aligned<U>(self) -> Option<NonNull<U>> {
532        if self.is_aligned_to(align_of::<U>()) { Some(self.cast()) } else { None }
533    }
534
535    /// Adds an offset to a pointer.
536    ///
537    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
538    /// offset of `3 * size_of::<T>()` bytes.
539    ///
540    /// # Safety
541    ///
542    /// If any of the following conditions are violated, the result is Undefined Behavior:
543    ///
544    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
545    ///
546    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
547    ///   [allocation], and the entire memory range between `self` and the result must be in
548    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
549    ///   of the address space.
550    ///
551    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
552    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
553    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
554    /// safe.
555    ///
556    /// [allocation]: crate::ptr#allocation
557    ///
558    /// # Examples
559    ///
560    /// ```
561    /// use std::ptr::NonNull;
562    ///
563    /// let mut s = [1, 2, 3];
564    /// let ptr: NonNull<u32> = NonNull::new(s.as_mut_ptr()).unwrap();
565    ///
566    /// unsafe {
567    ///     println!("{}", ptr.offset(1).read());
568    ///     println!("{}", ptr.offset(2).read());
569    /// }
570    /// ```
571    #[inline(always)]
572    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
573    #[must_use = "returns a new pointer rather than modifying its argument"]
574    #[stable(feature = "non_null_convenience", since = "1.80.0")]
575    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
576    pub const unsafe fn offset(self, count: isize) -> Self
577    where
578        T: Sized,
579    {
580        // SAFETY: the caller must uphold the safety contract for `offset`.
581        // Additionally safety contract of `offset` guarantees that the resulting pointer is
582        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
583        // construct `NonNull`.
584        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
585    }
586
587    /// Calculates the offset from a pointer in bytes.
588    ///
589    /// `count` is in units of **bytes**.
590    ///
591    /// This is purely a convenience for casting to a `u8` pointer and
592    /// using [offset][pointer::offset] on it. See that method for documentation
593    /// and safety requirements.
594    ///
595    /// For non-`Sized` pointees this operation changes only the data pointer,
596    /// leaving the metadata untouched.
597    #[must_use]
598    #[inline(always)]
599    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
600    #[stable(feature = "non_null_convenience", since = "1.80.0")]
601    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
602    pub const unsafe fn byte_offset(self, count: isize) -> Self {
603        // SAFETY: the caller must uphold the safety contract for `offset` and `byte_offset` has
604        // the same safety contract.
605        // Additionally safety contract of `offset` guarantees that the resulting pointer is
606        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
607        // construct `NonNull`.
608        unsafe { NonNull { pointer: self.as_ptr().byte_offset(count) } }
609    }
610
611    /// Adds an offset to a pointer (convenience for `.offset(count as isize)`).
612    ///
613    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
614    /// offset of `3 * size_of::<T>()` bytes.
615    ///
616    /// # Safety
617    ///
618    /// If any of the following conditions are violated, the result is Undefined Behavior:
619    ///
620    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
621    ///
622    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
623    ///   [allocation], and the entire memory range between `self` and the result must be in
624    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
625    ///   of the address space.
626    ///
627    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
628    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
629    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
630    /// safe.
631    ///
632    /// [allocation]: crate::ptr#allocation
633    ///
634    /// # Examples
635    ///
636    /// ```
637    /// use std::ptr::NonNull;
638    ///
639    /// let s: &str = "123";
640    /// let ptr: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap();
641    ///
642    /// unsafe {
643    ///     println!("{}", ptr.add(1).read() as char);
644    ///     println!("{}", ptr.add(2).read() as char);
645    /// }
646    /// ```
647    #[inline(always)]
648    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
649    #[must_use = "returns a new pointer rather than modifying its argument"]
650    #[stable(feature = "non_null_convenience", since = "1.80.0")]
651    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
652    pub const unsafe fn add(self, count: usize) -> Self
653    where
654        T: Sized,
655    {
656        // SAFETY: the caller must uphold the safety contract for `offset`.
657        // Additionally safety contract of `offset` guarantees that the resulting pointer is
658        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
659        // construct `NonNull`.
660        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
661    }
662
663    /// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
664    ///
665    /// `count` is in units of bytes.
666    ///
667    /// This is purely a convenience for casting to a `u8` pointer and
668    /// using [`add`][NonNull::add] on it. See that method for documentation
669    /// and safety requirements.
670    ///
671    /// For non-`Sized` pointees this operation changes only the data pointer,
672    /// leaving the metadata untouched.
673    #[must_use]
674    #[inline(always)]
675    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
676    #[stable(feature = "non_null_convenience", since = "1.80.0")]
677    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
678    pub const unsafe fn byte_add(self, count: usize) -> Self {
679        // SAFETY: the caller must uphold the safety contract for `add` and `byte_add` has the same
680        // safety contract.
681        // Additionally safety contract of `add` guarantees that the resulting pointer is pointing
682        // to an allocation, there can't be an allocation at null, thus it's safe to construct
683        // `NonNull`.
684        unsafe { NonNull { pointer: self.as_ptr().byte_add(count) } }
685    }
686
687    /// Subtracts an offset from a pointer (convenience for
688    /// `.offset((count as isize).wrapping_neg())`).
689    ///
690    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
691    /// offset of `3 * size_of::<T>()` bytes.
692    ///
693    /// # Safety
694    ///
695    /// If any of the following conditions are violated, the result is Undefined Behavior:
696    ///
697    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
698    ///
699    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
700    ///   [allocation], and the entire memory range between `self` and the result must be in
701    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
702    ///   of the address space.
703    ///
704    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
705    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
706    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
707    /// safe.
708    ///
709    /// [allocation]: crate::ptr#allocation
710    ///
711    /// # Examples
712    ///
713    /// ```
714    /// use std::ptr::NonNull;
715    ///
716    /// let s: &str = "123";
717    ///
718    /// unsafe {
719    ///     let end: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap().add(3);
720    ///     println!("{}", end.sub(1).read() as char);
721    ///     println!("{}", end.sub(2).read() as char);
722    /// }
723    /// ```
724    #[inline(always)]
725    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
726    #[must_use = "returns a new pointer rather than modifying its argument"]
727    #[stable(feature = "non_null_convenience", since = "1.80.0")]
728    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
729    pub const unsafe fn sub(self, count: usize) -> Self
730    where
731        T: Sized,
732    {
733        if T::IS_ZST {
734            // Pointer arithmetic does nothing when the pointee is a ZST.
735            self
736        } else {
737            // SAFETY: the caller must uphold the safety contract for `offset`.
738            // Because the pointee is *not* a ZST, that means that `count` is
739            // at most `isize::MAX`, and thus the negation cannot overflow.
740            unsafe { self.offset((count as isize).unchecked_neg()) }
741        }
742    }
743
744    /// Calculates the offset from a pointer in bytes (convenience for
745    /// `.byte_offset((count as isize).wrapping_neg())`).
746    ///
747    /// `count` is in units of bytes.
748    ///
749    /// This is purely a convenience for casting to a `u8` pointer and
750    /// using [`sub`][NonNull::sub] on it. See that method for documentation
751    /// and safety requirements.
752    ///
753    /// For non-`Sized` pointees this operation changes only the data pointer,
754    /// leaving the metadata untouched.
755    #[must_use]
756    #[inline(always)]
757    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
758    #[stable(feature = "non_null_convenience", since = "1.80.0")]
759    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
760    pub const unsafe fn byte_sub(self, count: usize) -> Self {
761        // SAFETY: the caller must uphold the safety contract for `sub` and `byte_sub` has the same
762        // safety contract.
763        // Additionally safety contract of `sub` guarantees that the resulting pointer is pointing
764        // to an allocation, there can't be an allocation at null, thus it's safe to construct
765        // `NonNull`.
766        unsafe { NonNull { pointer: self.as_ptr().byte_sub(count) } }
767    }
768
769    /// Calculates the distance between two pointers within the same allocation. The returned value is in
770    /// units of T: the distance in bytes divided by `size_of::<T>()`.
771    ///
772    /// This is equivalent to `(self as isize - origin as isize) / (size_of::<T>() as isize)`,
773    /// except that it has a lot more opportunities for UB, in exchange for the compiler
774    /// better understanding what you are doing.
775    ///
776    /// The primary motivation of this method is for computing the `len` of an array/slice
777    /// of `T` that you are currently representing as a "start" and "end" pointer
778    /// (and "end" is "one past the end" of the array).
779    /// In that case, `end.offset_from(start)` gets you the length of the array.
780    ///
781    /// All of the following safety requirements are trivially satisfied for this usecase.
782    ///
783    /// [`offset`]: #method.offset
784    ///
785    /// # Safety
786    ///
787    /// If any of the following conditions are violated, the result is Undefined Behavior:
788    ///
789    /// * `self` and `origin` must either
790    ///
791    ///   * point to the same address, or
792    ///   * both be *derived from* a pointer to the same [allocation], and the memory range between
793    ///     the two pointers must be in bounds of that object. (See below for an example.)
794    ///
795    /// * The distance between the pointers, in bytes, must be an exact multiple
796    ///   of the size of `T`.
797    ///
798    /// As a consequence, the absolute distance between the pointers, in bytes, computed on
799    /// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
800    /// implied by the in-bounds requirement, and the fact that no allocation can be larger
801    /// than `isize::MAX` bytes.
802    ///
803    /// The requirement for pointers to be derived from the same allocation is primarily
804    /// needed for `const`-compatibility: the distance between pointers into *different* allocated
805    /// objects is not known at compile-time. However, the requirement also exists at
806    /// runtime and may be exploited by optimizations. If you wish to compute the difference between
807    /// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
808    /// origin as isize) / size_of::<T>()`.
809    // FIXME: recommend `addr()` instead of `as usize` once that is stable.
810    ///
811    /// [`add`]: #method.add
812    /// [allocation]: crate::ptr#allocation
813    ///
814    /// # Panics
815    ///
816    /// This function panics if `T` is a Zero-Sized Type ("ZST").
817    ///
818    /// # Examples
819    ///
820    /// Basic usage:
821    ///
822    /// ```
823    /// use std::ptr::NonNull;
824    ///
825    /// let a = [0; 5];
826    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
827    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
828    /// unsafe {
829    ///     assert_eq!(ptr2.offset_from(ptr1), 2);
830    ///     assert_eq!(ptr1.offset_from(ptr2), -2);
831    ///     assert_eq!(ptr1.offset(2), ptr2);
832    ///     assert_eq!(ptr2.offset(-2), ptr1);
833    /// }
834    /// ```
835    ///
836    /// *Incorrect* usage:
837    ///
838    /// ```rust,no_run
839    /// use std::ptr::NonNull;
840    ///
841    /// let ptr1 = NonNull::new(Box::into_raw(Box::new(0u8))).unwrap();
842    /// let ptr2 = NonNull::new(Box::into_raw(Box::new(1u8))).unwrap();
843    /// let diff = (ptr2.addr().get() as isize).wrapping_sub(ptr1.addr().get() as isize);
844    /// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
845    /// let diff_plus_1 = diff.wrapping_add(1);
846    /// let ptr2_other = NonNull::new(ptr1.as_ptr().wrapping_byte_offset(diff_plus_1)).unwrap();
847    /// assert_eq!(ptr2.addr(), ptr2_other.addr());
848    /// // Since ptr2_other and ptr2 are derived from pointers to different objects,
849    /// // computing their offset is undefined behavior, even though
850    /// // they point to addresses that are in-bounds of the same object!
851    ///
852    /// let one = unsafe { ptr2_other.offset_from(ptr2) }; // Undefined Behavior! ⚠️
853    /// ```
854    #[inline]
855    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
856    #[stable(feature = "non_null_convenience", since = "1.80.0")]
857    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
858    pub const unsafe fn offset_from(self, origin: NonNull<T>) -> isize
859    where
860        T: Sized,
861    {
862        // SAFETY: the caller must uphold the safety contract for `offset_from`.
863        unsafe { self.as_ptr().offset_from(origin.as_ptr()) }
864    }
865
866    /// Calculates the distance between two pointers within the same allocation. The returned value is in
867    /// units of **bytes**.
868    ///
869    /// This is purely a convenience for casting to a `u8` pointer and
870    /// using [`offset_from`][NonNull::offset_from] on it. See that method for
871    /// documentation and safety requirements.
872    ///
873    /// For non-`Sized` pointees this operation considers only the data pointers,
874    /// ignoring the metadata.
875    #[inline(always)]
876    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
877    #[stable(feature = "non_null_convenience", since = "1.80.0")]
878    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
879    pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: NonNull<U>) -> isize {
880        // SAFETY: the caller must uphold the safety contract for `byte_offset_from`.
881        unsafe { self.as_ptr().byte_offset_from(origin.as_ptr()) }
882    }
883
884    // N.B. `wrapping_offset``, `wrapping_add`, etc are not implemented because they can wrap to null
885
886    /// Calculates the distance between two pointers within the same allocation, *where it's known that
887    /// `self` is equal to or greater than `origin`*. The returned value is in
888    /// units of T: the distance in bytes is divided by `size_of::<T>()`.
889    ///
890    /// This computes the same value that [`offset_from`](#method.offset_from)
891    /// would compute, but with the added precondition that the offset is
892    /// guaranteed to be non-negative.  This method is equivalent to
893    /// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
894    /// but it provides slightly more information to the optimizer, which can
895    /// sometimes allow it to optimize slightly better with some backends.
896    ///
897    /// This method can be though of as recovering the `count` that was passed
898    /// to [`add`](#method.add) (or, with the parameters in the other order,
899    /// to [`sub`](#method.sub)).  The following are all equivalent, assuming
900    /// that their safety preconditions are met:
901    /// ```rust
902    /// # unsafe fn blah(ptr: std::ptr::NonNull<u32>, origin: std::ptr::NonNull<u32>, count: usize) -> bool { unsafe {
903    /// ptr.offset_from_unsigned(origin) == count
904    /// # &&
905    /// origin.add(count) == ptr
906    /// # &&
907    /// ptr.sub(count) == origin
908    /// # } }
909    /// ```
910    ///
911    /// # Safety
912    ///
913    /// - The distance between the pointers must be non-negative (`self >= origin`)
914    ///
915    /// - *All* the safety conditions of [`offset_from`](#method.offset_from)
916    ///   apply to this method as well; see it for the full details.
917    ///
918    /// Importantly, despite the return type of this method being able to represent
919    /// a larger offset, it's still *not permitted* to pass pointers which differ
920    /// by more than `isize::MAX` *bytes*.  As such, the result of this method will
921    /// always be less than or equal to `isize::MAX as usize`.
922    ///
923    /// # Panics
924    ///
925    /// This function panics if `T` is a Zero-Sized Type ("ZST").
926    ///
927    /// # Examples
928    ///
929    /// ```
930    /// use std::ptr::NonNull;
931    ///
932    /// let a = [0; 5];
933    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
934    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
935    /// unsafe {
936    ///     assert_eq!(ptr2.offset_from_unsigned(ptr1), 2);
937    ///     assert_eq!(ptr1.add(2), ptr2);
938    ///     assert_eq!(ptr2.sub(2), ptr1);
939    ///     assert_eq!(ptr2.offset_from_unsigned(ptr2), 0);
940    /// }
941    ///
942    /// // This would be incorrect, as the pointers are not correctly ordered:
943    /// // ptr1.offset_from_unsigned(ptr2)
944    /// ```
945    #[inline]
946    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
947    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
948    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
949    pub const unsafe fn offset_from_unsigned(self, subtracted: NonNull<T>) -> usize
950    where
951        T: Sized,
952    {
953        // SAFETY: the caller must uphold the safety contract for `offset_from_unsigned`.
954        unsafe { self.as_ptr().offset_from_unsigned(subtracted.as_ptr()) }
955    }
956
957    /// Calculates the distance between two pointers within the same allocation, *where it's known that
958    /// `self` is equal to or greater than `origin`*. The returned value is in
959    /// units of **bytes**.
960    ///
961    /// This is purely a convenience for casting to a `u8` pointer and
962    /// using [`offset_from_unsigned`][NonNull::offset_from_unsigned] on it.
963    /// See that method for documentation and safety requirements.
964    ///
965    /// For non-`Sized` pointees this operation considers only the data pointers,
966    /// ignoring the metadata.
967    #[inline(always)]
968    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
969    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
970    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
971    pub const unsafe fn byte_offset_from_unsigned<U: ?Sized>(self, origin: NonNull<U>) -> usize {
972        // SAFETY: the caller must uphold the safety contract for `byte_offset_from_unsigned`.
973        unsafe { self.as_ptr().byte_offset_from_unsigned(origin.as_ptr()) }
974    }
975
976    /// Reads the value from `self` without moving it. This leaves the
977    /// memory in `self` unchanged.
978    ///
979    /// See [`ptr::read`] for safety concerns and examples.
980    ///
981    /// [`ptr::read`]: crate::ptr::read()
982    #[inline]
983    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
984    #[stable(feature = "non_null_convenience", since = "1.80.0")]
985    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
986    pub const unsafe fn read(self) -> T
987    where
988        T: Sized,
989    {
990        // SAFETY: the caller must uphold the safety contract for `read`.
991        unsafe { ptr::read(self.as_ptr()) }
992    }
993
994    /// Performs a volatile read of the value from `self` without moving it. This
995    /// leaves the memory in `self` unchanged.
996    ///
997    /// Volatile operations are intended to act on I/O memory, and are guaranteed
998    /// to not be elided or reordered by the compiler across other volatile
999    /// operations.
1000    ///
1001    /// See [`ptr::read_volatile`] for safety concerns and examples.
1002    ///
1003    /// [`ptr::read_volatile`]: crate::ptr::read_volatile()
1004    #[inline]
1005    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1006    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1007    pub unsafe fn read_volatile(self) -> T
1008    where
1009        T: Sized,
1010    {
1011        // SAFETY: the caller must uphold the safety contract for `read_volatile`.
1012        unsafe { ptr::read_volatile(self.as_ptr()) }
1013    }
1014
1015    /// Reads the value from `self` without moving it. This leaves the
1016    /// memory in `self` unchanged.
1017    ///
1018    /// Unlike `read`, the pointer may be unaligned.
1019    ///
1020    /// See [`ptr::read_unaligned`] for safety concerns and examples.
1021    ///
1022    /// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
1023    #[inline]
1024    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1025    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1026    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1027    pub const unsafe fn read_unaligned(self) -> T
1028    where
1029        T: Sized,
1030    {
1031        // SAFETY: the caller must uphold the safety contract for `read_unaligned`.
1032        unsafe { ptr::read_unaligned(self.as_ptr()) }
1033    }
1034
1035    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1036    /// and destination may overlap.
1037    ///
1038    /// NOTE: this has the *same* argument order as [`ptr::copy`].
1039    ///
1040    /// See [`ptr::copy`] for safety concerns and examples.
1041    ///
1042    /// [`ptr::copy`]: crate::ptr::copy()
1043    #[inline(always)]
1044    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1045    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1046    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1047    pub const unsafe fn copy_to(self, dest: NonNull<T>, count: usize)
1048    where
1049        T: Sized,
1050    {
1051        // SAFETY: the caller must uphold the safety contract for `copy`.
1052        unsafe { ptr::copy(self.as_ptr(), dest.as_ptr(), count) }
1053    }
1054
1055    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1056    /// and destination may *not* overlap.
1057    ///
1058    /// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
1059    ///
1060    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1061    ///
1062    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1063    #[inline(always)]
1064    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1065    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1066    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1067    pub const unsafe fn copy_to_nonoverlapping(self, dest: NonNull<T>, count: usize)
1068    where
1069        T: Sized,
1070    {
1071        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1072        unsafe { ptr::copy_nonoverlapping(self.as_ptr(), dest.as_ptr(), count) }
1073    }
1074
1075    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1076    /// and destination may overlap.
1077    ///
1078    /// NOTE: this has the *opposite* argument order of [`ptr::copy`].
1079    ///
1080    /// See [`ptr::copy`] for safety concerns and examples.
1081    ///
1082    /// [`ptr::copy`]: crate::ptr::copy()
1083    #[inline(always)]
1084    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1085    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1086    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1087    pub const unsafe fn copy_from(self, src: NonNull<T>, count: usize)
1088    where
1089        T: Sized,
1090    {
1091        // SAFETY: the caller must uphold the safety contract for `copy`.
1092        unsafe { ptr::copy(src.as_ptr(), self.as_ptr(), count) }
1093    }
1094
1095    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1096    /// and destination may *not* overlap.
1097    ///
1098    /// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
1099    ///
1100    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1101    ///
1102    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1103    #[inline(always)]
1104    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1105    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1106    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1107    pub const unsafe fn copy_from_nonoverlapping(self, src: NonNull<T>, count: usize)
1108    where
1109        T: Sized,
1110    {
1111        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1112        unsafe { ptr::copy_nonoverlapping(src.as_ptr(), self.as_ptr(), count) }
1113    }
1114
1115    /// Executes the destructor (if any) of the pointed-to value.
1116    ///
1117    /// See [`ptr::drop_in_place`] for safety concerns and examples.
1118    ///
1119    /// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
1120    #[inline(always)]
1121    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1122    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1123    pub const unsafe fn drop_in_place(self)
1124    where
1125        T: [const] Destruct,
1126    {
1127        // SAFETY: the caller must uphold the safety contract for `drop_in_place`.
1128        unsafe { ptr::drop_in_place(self.as_ptr()) }
1129    }
1130
1131    /// Overwrites a memory location with the given value without reading or
1132    /// dropping the old value.
1133    ///
1134    /// See [`ptr::write`] for safety concerns and examples.
1135    ///
1136    /// [`ptr::write`]: crate::ptr::write()
1137    #[inline(always)]
1138    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1139    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1140    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1141    pub const unsafe fn write(self, val: T)
1142    where
1143        T: Sized,
1144    {
1145        // SAFETY: the caller must uphold the safety contract for `write`.
1146        unsafe { ptr::write(self.as_ptr(), val) }
1147    }
1148
1149    /// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
1150    /// bytes of memory starting at `self` to `val`.
1151    ///
1152    /// See [`ptr::write_bytes`] for safety concerns and examples.
1153    ///
1154    /// [`ptr::write_bytes`]: crate::ptr::write_bytes()
1155    #[inline(always)]
1156    #[doc(alias = "memset")]
1157    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1158    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1159    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1160    pub const unsafe fn write_bytes(self, val: u8, count: usize)
1161    where
1162        T: Sized,
1163    {
1164        // SAFETY: the caller must uphold the safety contract for `write_bytes`.
1165        unsafe { ptr::write_bytes(self.as_ptr(), val, count) }
1166    }
1167
1168    /// Performs a volatile write of a memory location with the given value without
1169    /// reading or dropping the old value.
1170    ///
1171    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1172    /// to not be elided or reordered by the compiler across other volatile
1173    /// operations.
1174    ///
1175    /// See [`ptr::write_volatile`] for safety concerns and examples.
1176    ///
1177    /// [`ptr::write_volatile`]: crate::ptr::write_volatile()
1178    #[inline(always)]
1179    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1180    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1181    pub unsafe fn write_volatile(self, val: T)
1182    where
1183        T: Sized,
1184    {
1185        // SAFETY: the caller must uphold the safety contract for `write_volatile`.
1186        unsafe { ptr::write_volatile(self.as_ptr(), val) }
1187    }
1188
1189    /// Overwrites a memory location with the given value without reading or
1190    /// dropping the old value.
1191    ///
1192    /// Unlike `write`, the pointer may be unaligned.
1193    ///
1194    /// See [`ptr::write_unaligned`] for safety concerns and examples.
1195    ///
1196    /// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
1197    #[inline(always)]
1198    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1199    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1200    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1201    pub const unsafe fn write_unaligned(self, val: T)
1202    where
1203        T: Sized,
1204    {
1205        // SAFETY: the caller must uphold the safety contract for `write_unaligned`.
1206        unsafe { ptr::write_unaligned(self.as_ptr(), val) }
1207    }
1208
1209    /// Replaces the value at `self` with `src`, returning the old
1210    /// value, without dropping either.
1211    ///
1212    /// See [`ptr::replace`] for safety concerns and examples.
1213    ///
1214    /// [`ptr::replace`]: crate::ptr::replace()
1215    #[inline(always)]
1216    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1217    #[rustc_const_stable(feature = "const_inherent_ptr_replace", since = "1.88.0")]
1218    pub const unsafe fn replace(self, src: T) -> T
1219    where
1220        T: Sized,
1221    {
1222        // SAFETY: the caller must uphold the safety contract for `replace`.
1223        unsafe { ptr::replace(self.as_ptr(), src) }
1224    }
1225
1226    /// Swaps the values at two mutable locations of the same type, without
1227    /// deinitializing either. They may overlap, unlike `mem::swap` which is
1228    /// otherwise equivalent.
1229    ///
1230    /// See [`ptr::swap`] for safety concerns and examples.
1231    ///
1232    /// [`ptr::swap`]: crate::ptr::swap()
1233    #[inline(always)]
1234    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1235    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
1236    pub const unsafe fn swap(self, with: NonNull<T>)
1237    where
1238        T: Sized,
1239    {
1240        // SAFETY: the caller must uphold the safety contract for `swap`.
1241        unsafe { ptr::swap(self.as_ptr(), with.as_ptr()) }
1242    }
1243
1244    /// Computes the offset that needs to be applied to the pointer in order to make it aligned to
1245    /// `align`.
1246    ///
1247    /// If it is not possible to align the pointer, the implementation returns
1248    /// `usize::MAX`.
1249    ///
1250    /// The offset is expressed in number of `T` elements, and not bytes.
1251    ///
1252    /// There are no guarantees whatsoever that offsetting the pointer will not overflow or go
1253    /// beyond the allocation that the pointer points into. It is up to the caller to ensure that
1254    /// the returned offset is correct in all terms other than alignment.
1255    ///
1256    /// When this is called during compile-time evaluation (which is unstable), the implementation
1257    /// may return `usize::MAX` in cases where that can never happen at runtime. This is because the
1258    /// actual alignment of pointers is not known yet during compile-time, so an offset with
1259    /// guaranteed alignment can sometimes not be computed. For example, a buffer declared as `[u8;
1260    /// N]` might be allocated at an odd or an even address, but at compile-time this is not yet
1261    /// known, so the execution has to be correct for either choice. It is therefore impossible to
1262    /// find an offset that is guaranteed to be 2-aligned. (This behavior is subject to change, as usual
1263    /// for unstable APIs.)
1264    ///
1265    /// # Panics
1266    ///
1267    /// The function panics if `align` is not a power-of-two.
1268    ///
1269    /// # Examples
1270    ///
1271    /// Accessing adjacent `u8` as `u16`
1272    ///
1273    /// ```
1274    /// use std::ptr::NonNull;
1275    ///
1276    /// # unsafe {
1277    /// let x = [5_u8, 6, 7, 8, 9];
1278    /// let ptr = NonNull::new(x.as_ptr() as *mut u8).unwrap();
1279    /// let offset = ptr.align_offset(align_of::<u16>());
1280    ///
1281    /// if offset < x.len() - 1 {
1282    ///     let u16_ptr = ptr.add(offset).cast::<u16>();
1283    ///     assert!(u16_ptr.read() == u16::from_ne_bytes([5, 6]) || u16_ptr.read() == u16::from_ne_bytes([6, 7]));
1284    /// } else {
1285    ///     // while the pointer can be aligned via `offset`, it would point
1286    ///     // outside the allocation
1287    /// }
1288    /// # }
1289    /// ```
1290    #[inline]
1291    #[must_use]
1292    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1293    pub fn align_offset(self, align: usize) -> usize
1294    where
1295        T: Sized,
1296    {
1297        if !align.is_power_of_two() {
1298            panic!("align_offset: align is not a power-of-two");
1299        }
1300
1301        {
1302            // SAFETY: `align` has been checked to be a power of 2 above.
1303            unsafe { ptr::align_offset(self.as_ptr(), align) }
1304        }
1305    }
1306
1307    /// Returns whether the pointer is properly aligned for `T`.
1308    ///
1309    /// # Examples
1310    ///
1311    /// ```
1312    /// use std::ptr::NonNull;
1313    ///
1314    /// // On some platforms, the alignment of i32 is less than 4.
1315    /// #[repr(align(4))]
1316    /// struct AlignedI32(i32);
1317    ///
1318    /// let data = AlignedI32(42);
1319    /// let ptr = NonNull::<AlignedI32>::from(&data);
1320    ///
1321    /// assert!(ptr.is_aligned());
1322    /// assert!(!NonNull::new(ptr.as_ptr().wrapping_byte_add(1)).unwrap().is_aligned());
1323    /// ```
1324    #[inline]
1325    #[must_use]
1326    #[stable(feature = "pointer_is_aligned", since = "1.79.0")]
1327    pub fn is_aligned(self) -> bool
1328    where
1329        T: Sized,
1330    {
1331        self.as_ptr().is_aligned()
1332    }
1333
1334    /// Returns whether the pointer is aligned to `align`.
1335    ///
1336    /// For non-`Sized` pointees this operation considers only the data pointer,
1337    /// ignoring the metadata.
1338    ///
1339    /// # Panics
1340    ///
1341    /// The function panics if `align` is not a power-of-two (this includes 0).
1342    ///
1343    /// # Examples
1344    ///
1345    /// ```
1346    /// #![feature(pointer_is_aligned_to)]
1347    ///
1348    /// // On some platforms, the alignment of i32 is less than 4.
1349    /// #[repr(align(4))]
1350    /// struct AlignedI32(i32);
1351    ///
1352    /// let data = AlignedI32(42);
1353    /// let ptr = &data as *const AlignedI32;
1354    ///
1355    /// assert!(ptr.is_aligned_to(1));
1356    /// assert!(ptr.is_aligned_to(2));
1357    /// assert!(ptr.is_aligned_to(4));
1358    ///
1359    /// assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
1360    /// assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
1361    ///
1362    /// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
1363    /// ```
1364    #[inline]
1365    #[must_use]
1366    #[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
1367    pub fn is_aligned_to(self, align: usize) -> bool {
1368        self.as_ptr().is_aligned_to(align)
1369    }
1370}
1371
1372impl<T> NonNull<T> {
1373    /// Casts from a type to its maybe-uninitialized version.
1374    #[must_use]
1375    #[inline(always)]
1376    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1377    pub const fn cast_uninit(self) -> NonNull<MaybeUninit<T>> {
1378        self.cast()
1379    }
1380}
1381impl<T> NonNull<MaybeUninit<T>> {
1382    /// Casts from a maybe-uninitialized type to its initialized version.
1383    ///
1384    /// This is always safe, since UB can only occur if the pointer is read
1385    /// before being initialized.
1386    #[must_use]
1387    #[inline(always)]
1388    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1389    pub const fn cast_init(self) -> NonNull<T> {
1390        self.cast()
1391    }
1392}
1393
1394impl<T> NonNull<[T]> {
1395    /// Creates a non-null raw slice from a thin pointer and a length.
1396    ///
1397    /// The `len` argument is the number of **elements**, not the number of bytes.
1398    ///
1399    /// This function is safe, but dereferencing the return value is unsafe.
1400    /// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
1401    ///
1402    /// # Examples
1403    ///
1404    /// ```rust
1405    /// use std::ptr::NonNull;
1406    ///
1407    /// // create a slice pointer when starting out with a pointer to the first element
1408    /// let mut x = [5, 6, 7];
1409    /// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
1410    /// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
1411    /// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
1412    /// ```
1413    ///
1414    /// (Note that this example artificially demonstrates a use of this method,
1415    /// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
1416    #[stable(feature = "nonnull_slice_from_raw_parts", since = "1.70.0")]
1417    #[rustc_const_stable(feature = "const_slice_from_raw_parts_mut", since = "1.83.0")]
1418    #[must_use]
1419    #[inline]
1420    pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
1421        // SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
1422        unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
1423    }
1424
1425    /// Returns the length of a non-null raw slice.
1426    ///
1427    /// The returned value is the number of **elements**, not the number of bytes.
1428    ///
1429    /// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
1430    /// because the pointer does not have a valid address.
1431    ///
1432    /// # Examples
1433    ///
1434    /// ```rust
1435    /// use std::ptr::NonNull;
1436    ///
1437    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1438    /// assert_eq!(slice.len(), 3);
1439    /// ```
1440    #[stable(feature = "slice_ptr_len_nonnull", since = "1.63.0")]
1441    #[rustc_const_stable(feature = "const_slice_ptr_len_nonnull", since = "1.63.0")]
1442    #[must_use]
1443    #[inline]
1444    pub const fn len(self) -> usize {
1445        self.as_ptr().len()
1446    }
1447
1448    /// Returns `true` if the non-null raw slice has a length of 0.
1449    ///
1450    /// # Examples
1451    ///
1452    /// ```rust
1453    /// use std::ptr::NonNull;
1454    ///
1455    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1456    /// assert!(!slice.is_empty());
1457    /// ```
1458    #[stable(feature = "slice_ptr_is_empty_nonnull", since = "1.79.0")]
1459    #[rustc_const_stable(feature = "const_slice_ptr_is_empty_nonnull", since = "1.79.0")]
1460    #[must_use]
1461    #[inline]
1462    pub const fn is_empty(self) -> bool {
1463        self.len() == 0
1464    }
1465
1466    /// Returns a non-null pointer to the slice's buffer.
1467    ///
1468    /// # Examples
1469    ///
1470    /// ```rust
1471    /// #![feature(slice_ptr_get)]
1472    /// use std::ptr::NonNull;
1473    ///
1474    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1475    /// assert_eq!(slice.as_non_null_ptr(), NonNull::<i8>::dangling());
1476    /// ```
1477    #[inline]
1478    #[must_use]
1479    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1480    pub const fn as_non_null_ptr(self) -> NonNull<T> {
1481        self.cast()
1482    }
1483
1484    /// Returns a raw pointer to the slice's buffer.
1485    ///
1486    /// # Examples
1487    ///
1488    /// ```rust
1489    /// #![feature(slice_ptr_get)]
1490    /// use std::ptr::NonNull;
1491    ///
1492    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1493    /// assert_eq!(slice.as_mut_ptr(), NonNull::<i8>::dangling().as_ptr());
1494    /// ```
1495    #[inline]
1496    #[must_use]
1497    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1498    #[rustc_never_returns_null_ptr]
1499    pub const fn as_mut_ptr(self) -> *mut T {
1500        self.as_non_null_ptr().as_ptr()
1501    }
1502
1503    /// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
1504    /// [`as_ref`], this does not require that the value has to be initialized.
1505    ///
1506    /// For the mutable counterpart see [`as_uninit_slice_mut`].
1507    ///
1508    /// [`as_ref`]: NonNull::as_ref
1509    /// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
1510    ///
1511    /// # Safety
1512    ///
1513    /// When calling this method, you have to ensure that all of the following is true:
1514    ///
1515    /// * The pointer must be [valid] for reads for `ptr.len() * size_of::<T>()` many bytes,
1516    ///   and it must be properly aligned. This means in particular:
1517    ///
1518    ///     * The entire memory range of this slice must be contained within a single allocation!
1519    ///       Slices can never span across multiple allocations.
1520    ///
1521    ///     * The pointer must be aligned even for zero-length slices. One
1522    ///       reason for this is that enum layout optimizations may rely on references
1523    ///       (including slices of any length) being aligned and non-null to distinguish
1524    ///       them from other data. You can obtain a pointer that is usable as `data`
1525    ///       for zero-length slices using [`NonNull::dangling()`].
1526    ///
1527    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1528    ///   See the safety documentation of [`pointer::offset`].
1529    ///
1530    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1531    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1532    ///   In particular, while this reference exists, the memory the pointer points to must
1533    ///   not get mutated (except inside `UnsafeCell`).
1534    ///
1535    /// This applies even if the result of this method is unused!
1536    ///
1537    /// See also [`slice::from_raw_parts`].
1538    ///
1539    /// [valid]: crate::ptr#safety
1540    #[inline]
1541    #[must_use]
1542    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1543    pub const unsafe fn as_uninit_slice<'a>(self) -> &'a [MaybeUninit<T>] {
1544        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
1545        unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
1546    }
1547
1548    /// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
1549    /// [`as_mut`], this does not require that the value has to be initialized.
1550    ///
1551    /// For the shared counterpart see [`as_uninit_slice`].
1552    ///
1553    /// [`as_mut`]: NonNull::as_mut
1554    /// [`as_uninit_slice`]: NonNull::as_uninit_slice
1555    ///
1556    /// # Safety
1557    ///
1558    /// When calling this method, you have to ensure that all of the following is true:
1559    ///
1560    /// * The pointer must be [valid] for reads and writes for `ptr.len() * size_of::<T>()`
1561    ///   many bytes, and it must be properly aligned. This means in particular:
1562    ///
1563    ///     * The entire memory range of this slice must be contained within a single allocation!
1564    ///       Slices can never span across multiple allocations.
1565    ///
1566    ///     * The pointer must be aligned even for zero-length slices. One
1567    ///       reason for this is that enum layout optimizations may rely on references
1568    ///       (including slices of any length) being aligned and non-null to distinguish
1569    ///       them from other data. You can obtain a pointer that is usable as `data`
1570    ///       for zero-length slices using [`NonNull::dangling()`].
1571    ///
1572    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1573    ///   See the safety documentation of [`pointer::offset`].
1574    ///
1575    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1576    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1577    ///   In particular, while this reference exists, the memory the pointer points to must
1578    ///   not get accessed (read or written) through any other pointer.
1579    ///
1580    /// This applies even if the result of this method is unused!
1581    ///
1582    /// See also [`slice::from_raw_parts_mut`].
1583    ///
1584    /// [valid]: crate::ptr#safety
1585    ///
1586    /// # Examples
1587    ///
1588    /// ```rust
1589    /// #![feature(allocator_api, ptr_as_uninit)]
1590    ///
1591    /// use std::alloc::{Allocator, Layout, Global};
1592    /// use std::mem::MaybeUninit;
1593    /// use std::ptr::NonNull;
1594    ///
1595    /// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
1596    /// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
1597    /// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
1598    /// # #[allow(unused_variables)]
1599    /// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
1600    /// # // Prevent leaks for Miri.
1601    /// # unsafe { Global.deallocate(memory.cast(), Layout::new::<[u8; 32]>()); }
1602    /// # Ok::<_, std::alloc::AllocError>(())
1603    /// ```
1604    #[inline]
1605    #[must_use]
1606    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1607    pub const unsafe fn as_uninit_slice_mut<'a>(self) -> &'a mut [MaybeUninit<T>] {
1608        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
1609        unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
1610    }
1611
1612    /// Returns a raw pointer to an element or subslice, without doing bounds
1613    /// checking.
1614    ///
1615    /// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
1616    /// is *[undefined behavior]* even if the resulting pointer is not used.
1617    ///
1618    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1619    ///
1620    /// # Examples
1621    ///
1622    /// ```
1623    /// #![feature(slice_ptr_get)]
1624    /// use std::ptr::NonNull;
1625    ///
1626    /// let x = &mut [1, 2, 4];
1627    /// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
1628    ///
1629    /// unsafe {
1630    ///     assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
1631    /// }
1632    /// ```
1633    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1634    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
1635    #[inline]
1636    pub const unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
1637    where
1638        I: [const] SliceIndex<[T]>,
1639    {
1640        // SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
1641        // As a consequence, the resulting pointer cannot be null.
1642        unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
1643    }
1644}
1645
1646#[stable(feature = "nonnull", since = "1.25.0")]
1647impl<T: PointeeSized> Clone for NonNull<T> {
1648    #[inline(always)]
1649    fn clone(&self) -> Self {
1650        *self
1651    }
1652}
1653
1654#[stable(feature = "nonnull", since = "1.25.0")]
1655impl<T: PointeeSized> Copy for NonNull<T> {}
1656
1657#[doc(hidden)]
1658#[unstable(feature = "trivial_clone", issue = "none")]
1659unsafe impl<T: ?Sized> TrivialClone for NonNull<T> {}
1660
1661#[unstable(feature = "coerce_unsized", issue = "18598")]
1662impl<T: PointeeSized, U: PointeeSized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1663
1664#[unstable(feature = "dispatch_from_dyn", issue = "none")]
1665impl<T: PointeeSized, U: PointeeSized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1666
1667#[stable(feature = "pin", since = "1.33.0")]
1668unsafe impl<T: PointeeSized> PinCoerceUnsized for NonNull<T> {}
1669
1670#[stable(feature = "nonnull", since = "1.25.0")]
1671impl<T: PointeeSized> fmt::Debug for NonNull<T> {
1672    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1673        fmt::Pointer::fmt(&self.as_ptr(), f)
1674    }
1675}
1676
1677#[stable(feature = "nonnull", since = "1.25.0")]
1678impl<T: PointeeSized> fmt::Pointer for NonNull<T> {
1679    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1680        fmt::Pointer::fmt(&self.as_ptr(), f)
1681    }
1682}
1683
1684#[stable(feature = "nonnull", since = "1.25.0")]
1685impl<T: PointeeSized> Eq for NonNull<T> {}
1686
1687#[stable(feature = "nonnull", since = "1.25.0")]
1688impl<T: PointeeSized> PartialEq for NonNull<T> {
1689    #[inline]
1690    #[allow(ambiguous_wide_pointer_comparisons)]
1691    fn eq(&self, other: &Self) -> bool {
1692        self.as_ptr() == other.as_ptr()
1693    }
1694}
1695
1696#[stable(feature = "nonnull", since = "1.25.0")]
1697impl<T: PointeeSized> Ord for NonNull<T> {
1698    #[inline]
1699    #[allow(ambiguous_wide_pointer_comparisons)]
1700    fn cmp(&self, other: &Self) -> Ordering {
1701        self.as_ptr().cmp(&other.as_ptr())
1702    }
1703}
1704
1705#[stable(feature = "nonnull", since = "1.25.0")]
1706impl<T: PointeeSized> PartialOrd for NonNull<T> {
1707    #[inline]
1708    #[allow(ambiguous_wide_pointer_comparisons)]
1709    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1710        self.as_ptr().partial_cmp(&other.as_ptr())
1711    }
1712}
1713
1714#[stable(feature = "nonnull", since = "1.25.0")]
1715impl<T: PointeeSized> hash::Hash for NonNull<T> {
1716    #[inline]
1717    fn hash<H: hash::Hasher>(&self, state: &mut H) {
1718        self.as_ptr().hash(state)
1719    }
1720}
1721
1722#[unstable(feature = "ptr_internals", issue = "none")]
1723#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1724impl<T: PointeeSized> const From<Unique<T>> for NonNull<T> {
1725    #[inline]
1726    fn from(unique: Unique<T>) -> Self {
1727        unique.as_non_null_ptr()
1728    }
1729}
1730
1731#[stable(feature = "nonnull", since = "1.25.0")]
1732#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1733impl<T: PointeeSized> const From<&mut T> for NonNull<T> {
1734    /// Converts a `&mut T` to a `NonNull<T>`.
1735    ///
1736    /// This conversion is safe and infallible since references cannot be null.
1737    #[inline]
1738    fn from(r: &mut T) -> Self {
1739        NonNull::from_mut(r)
1740    }
1741}
1742
1743#[stable(feature = "nonnull", since = "1.25.0")]
1744#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1745impl<T: PointeeSized> const From<&T> for NonNull<T> {
1746    /// Converts a `&T` to a `NonNull<T>`.
1747    ///
1748    /// This conversion is safe and infallible since references cannot be null.
1749    #[inline]
1750    fn from(r: &T) -> Self {
1751        NonNull::from_ref(r)
1752    }
1753}