Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

core/slice/
mod.rs

1//! Slice management and manipulation.
2//!
3//! For more details see [`std::slice`].
4//!
5//! [`std::slice`]: ../../std/slice/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9use crate::clone::TrivialClone;
10use crate::cmp::Ordering::{self, Equal, Greater, Less};
11use crate::intrinsics::{exact_div, unchecked_sub};
12use crate::mem::{self, MaybeUninit, SizedTypeProperties};
13use crate::num::NonZero;
14use crate::ops::{OneSidedRange, OneSidedRangeBound, Range, RangeBounds, RangeInclusive};
15use crate::panic::const_panic;
16use crate::simd::{self, Simd};
17use crate::ub_checks::assert_unsafe_precondition;
18use crate::{fmt, hint, ptr, range, slice};
19
20#[unstable(
21    feature = "slice_internals",
22    issue = "none",
23    reason = "exposed from core to be reused in std; use the memchr crate"
24)]
25#[doc(hidden)]
26/// Pure Rust memchr implementation, taken from rust-memchr
27pub mod memchr;
28
29#[unstable(
30    feature = "slice_internals",
31    issue = "none",
32    reason = "exposed from core to be reused in std;"
33)]
34#[doc(hidden)]
35pub mod sort;
36
37mod ascii;
38mod cmp;
39pub(crate) mod index;
40mod iter;
41mod raw;
42mod rotate;
43mod specialize;
44
45#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
46pub use ascii::EscapeAscii;
47#[unstable(feature = "str_internals", issue = "none")]
48#[doc(hidden)]
49pub use ascii::is_ascii_simple;
50#[stable(feature = "slice_get_slice", since = "1.28.0")]
51pub use index::SliceIndex;
52#[unstable(feature = "slice_range", issue = "76393")]
53pub use index::{range, try_range};
54#[unstable(feature = "array_windows", issue = "75027")]
55pub use iter::ArrayWindows;
56#[stable(feature = "slice_group_by", since = "1.77.0")]
57pub use iter::{ChunkBy, ChunkByMut};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use iter::{Chunks, ChunksMut, Windows};
60#[stable(feature = "chunks_exact", since = "1.31.0")]
61pub use iter::{ChunksExact, ChunksExactMut};
62#[stable(feature = "rust1", since = "1.0.0")]
63pub use iter::{Iter, IterMut};
64#[stable(feature = "rchunks", since = "1.31.0")]
65pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
66#[stable(feature = "slice_rsplit", since = "1.27.0")]
67pub use iter::{RSplit, RSplitMut};
68#[stable(feature = "rust1", since = "1.0.0")]
69pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
70#[stable(feature = "split_inclusive", since = "1.51.0")]
71pub use iter::{SplitInclusive, SplitInclusiveMut};
72#[stable(feature = "from_ref", since = "1.28.0")]
73pub use raw::{from_mut, from_ref};
74#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
75pub use raw::{from_mut_ptr_range, from_ptr_range};
76#[stable(feature = "rust1", since = "1.0.0")]
77pub use raw::{from_raw_parts, from_raw_parts_mut};
78
79/// Calculates the direction and split point of a one-sided range.
80///
81/// This is a helper function for `split_off` and `split_off_mut` that returns
82/// the direction of the split (front or back) as well as the index at
83/// which to split. Returns `None` if the split index would overflow.
84#[inline]
85fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
86    use OneSidedRangeBound::{End, EndInclusive, StartInclusive};
87
88    Some(match range.bound() {
89        (StartInclusive, i) => (Direction::Back, i),
90        (End, i) => (Direction::Front, i),
91        (EndInclusive, i) => (Direction::Front, i.checked_add(1)?),
92    })
93}
94
95enum Direction {
96    Front,
97    Back,
98}
99
100impl<T> [T] {
101    /// Returns the number of elements in the slice.
102    ///
103    /// # Examples
104    ///
105    /// ```
106    /// let a = [1, 2, 3];
107    /// assert_eq!(a.len(), 3);
108    /// ```
109    #[lang = "slice_len_fn"]
110    #[stable(feature = "rust1", since = "1.0.0")]
111    #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
112    #[rustc_no_implicit_autorefs]
113    #[inline]
114    #[must_use]
115    pub const fn len(&self) -> usize {
116        ptr::metadata(self)
117    }
118
119    /// Returns `true` if the slice has a length of 0.
120    ///
121    /// # Examples
122    ///
123    /// ```
124    /// let a = [1, 2, 3];
125    /// assert!(!a.is_empty());
126    ///
127    /// let b: &[i32] = &[];
128    /// assert!(b.is_empty());
129    /// ```
130    #[stable(feature = "rust1", since = "1.0.0")]
131    #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
132    #[rustc_no_implicit_autorefs]
133    #[inline]
134    #[must_use]
135    pub const fn is_empty(&self) -> bool {
136        self.len() == 0
137    }
138
139    /// Returns the first element of the slice, or `None` if it is empty.
140    ///
141    /// # Examples
142    ///
143    /// ```
144    /// let v = [10, 40, 30];
145    /// assert_eq!(Some(&10), v.first());
146    ///
147    /// let w: &[i32] = &[];
148    /// assert_eq!(None, w.first());
149    /// ```
150    #[stable(feature = "rust1", since = "1.0.0")]
151    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
152    #[inline]
153    #[must_use]
154    pub const fn first(&self) -> Option<&T> {
155        if let [first, ..] = self { Some(first) } else { None }
156    }
157
158    /// Returns a mutable reference to the first element of the slice, or `None` if it is empty.
159    ///
160    /// # Examples
161    ///
162    /// ```
163    /// let x = &mut [0, 1, 2];
164    ///
165    /// if let Some(first) = x.first_mut() {
166    ///     *first = 5;
167    /// }
168    /// assert_eq!(x, &[5, 1, 2]);
169    ///
170    /// let y: &mut [i32] = &mut [];
171    /// assert_eq!(None, y.first_mut());
172    /// ```
173    #[stable(feature = "rust1", since = "1.0.0")]
174    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
175    #[inline]
176    #[must_use]
177    pub const fn first_mut(&mut self) -> Option<&mut T> {
178        if let [first, ..] = self { Some(first) } else { None }
179    }
180
181    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
182    ///
183    /// # Examples
184    ///
185    /// ```
186    /// let x = &[0, 1, 2];
187    ///
188    /// if let Some((first, elements)) = x.split_first() {
189    ///     assert_eq!(first, &0);
190    ///     assert_eq!(elements, &[1, 2]);
191    /// }
192    /// ```
193    #[stable(feature = "slice_splits", since = "1.5.0")]
194    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
195    #[inline]
196    #[must_use]
197    pub const fn split_first(&self) -> Option<(&T, &[T])> {
198        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
199    }
200
201    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
202    ///
203    /// # Examples
204    ///
205    /// ```
206    /// let x = &mut [0, 1, 2];
207    ///
208    /// if let Some((first, elements)) = x.split_first_mut() {
209    ///     *first = 3;
210    ///     elements[0] = 4;
211    ///     elements[1] = 5;
212    /// }
213    /// assert_eq!(x, &[3, 4, 5]);
214    /// ```
215    #[stable(feature = "slice_splits", since = "1.5.0")]
216    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
217    #[inline]
218    #[must_use]
219    pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
220        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
221    }
222
223    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
224    ///
225    /// # Examples
226    ///
227    /// ```
228    /// let x = &[0, 1, 2];
229    ///
230    /// if let Some((last, elements)) = x.split_last() {
231    ///     assert_eq!(last, &2);
232    ///     assert_eq!(elements, &[0, 1]);
233    /// }
234    /// ```
235    #[stable(feature = "slice_splits", since = "1.5.0")]
236    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
237    #[inline]
238    #[must_use]
239    pub const fn split_last(&self) -> Option<(&T, &[T])> {
240        if let [init @ .., last] = self { Some((last, init)) } else { None }
241    }
242
243    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
244    ///
245    /// # Examples
246    ///
247    /// ```
248    /// let x = &mut [0, 1, 2];
249    ///
250    /// if let Some((last, elements)) = x.split_last_mut() {
251    ///     *last = 3;
252    ///     elements[0] = 4;
253    ///     elements[1] = 5;
254    /// }
255    /// assert_eq!(x, &[4, 5, 3]);
256    /// ```
257    #[stable(feature = "slice_splits", since = "1.5.0")]
258    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
259    #[inline]
260    #[must_use]
261    pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
262        if let [init @ .., last] = self { Some((last, init)) } else { None }
263    }
264
265    /// Returns the last element of the slice, or `None` if it is empty.
266    ///
267    /// # Examples
268    ///
269    /// ```
270    /// let v = [10, 40, 30];
271    /// assert_eq!(Some(&30), v.last());
272    ///
273    /// let w: &[i32] = &[];
274    /// assert_eq!(None, w.last());
275    /// ```
276    #[stable(feature = "rust1", since = "1.0.0")]
277    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
278    #[inline]
279    #[must_use]
280    pub const fn last(&self) -> Option<&T> {
281        if let [.., last] = self { Some(last) } else { None }
282    }
283
284    /// Returns a mutable reference to the last item in the slice, or `None` if it is empty.
285    ///
286    /// # Examples
287    ///
288    /// ```
289    /// let x = &mut [0, 1, 2];
290    ///
291    /// if let Some(last) = x.last_mut() {
292    ///     *last = 10;
293    /// }
294    /// assert_eq!(x, &[0, 1, 10]);
295    ///
296    /// let y: &mut [i32] = &mut [];
297    /// assert_eq!(None, y.last_mut());
298    /// ```
299    #[stable(feature = "rust1", since = "1.0.0")]
300    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
301    #[inline]
302    #[must_use]
303    pub const fn last_mut(&mut self) -> Option<&mut T> {
304        if let [.., last] = self { Some(last) } else { None }
305    }
306
307    /// Returns an array reference to the first `N` items in the slice.
308    ///
309    /// If the slice is not at least `N` in length, this will return `None`.
310    ///
311    /// # Examples
312    ///
313    /// ```
314    /// let u = [10, 40, 30];
315    /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
316    ///
317    /// let v: &[i32] = &[10];
318    /// assert_eq!(None, v.first_chunk::<2>());
319    ///
320    /// let w: &[i32] = &[];
321    /// assert_eq!(Some(&[]), w.first_chunk::<0>());
322    /// ```
323    #[inline]
324    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
325    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
326    pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
327        if self.len() < N {
328            None
329        } else {
330            // SAFETY: We explicitly check for the correct number of elements,
331            //   and do not let the reference outlive the slice.
332            Some(unsafe { &*(self.as_ptr().cast_array()) })
333        }
334    }
335
336    /// Returns a mutable array reference to the first `N` items in the slice.
337    ///
338    /// If the slice is not at least `N` in length, this will return `None`.
339    ///
340    /// # Examples
341    ///
342    /// ```
343    /// let x = &mut [0, 1, 2];
344    ///
345    /// if let Some(first) = x.first_chunk_mut::<2>() {
346    ///     first[0] = 5;
347    ///     first[1] = 4;
348    /// }
349    /// assert_eq!(x, &[5, 4, 2]);
350    ///
351    /// assert_eq!(None, x.first_chunk_mut::<4>());
352    /// ```
353    #[inline]
354    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
355    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
356    pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
357        if self.len() < N {
358            None
359        } else {
360            // SAFETY: We explicitly check for the correct number of elements,
361            //   do not let the reference outlive the slice,
362            //   and require exclusive access to the entire slice to mutate the chunk.
363            Some(unsafe { &mut *(self.as_mut_ptr().cast_array()) })
364        }
365    }
366
367    /// Returns an array reference to the first `N` items in the slice and the remaining slice.
368    ///
369    /// If the slice is not at least `N` in length, this will return `None`.
370    ///
371    /// # Examples
372    ///
373    /// ```
374    /// let x = &[0, 1, 2];
375    ///
376    /// if let Some((first, elements)) = x.split_first_chunk::<2>() {
377    ///     assert_eq!(first, &[0, 1]);
378    ///     assert_eq!(elements, &[2]);
379    /// }
380    ///
381    /// assert_eq!(None, x.split_first_chunk::<4>());
382    /// ```
383    #[inline]
384    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
385    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
386    pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
387        let Some((first, tail)) = self.split_at_checked(N) else { return None };
388
389        // SAFETY: We explicitly check for the correct number of elements,
390        //   and do not let the references outlive the slice.
391        Some((unsafe { &*(first.as_ptr().cast_array()) }, tail))
392    }
393
394    /// Returns a mutable array reference to the first `N` items in the slice and the remaining
395    /// slice.
396    ///
397    /// If the slice is not at least `N` in length, this will return `None`.
398    ///
399    /// # Examples
400    ///
401    /// ```
402    /// let x = &mut [0, 1, 2];
403    ///
404    /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
405    ///     first[0] = 3;
406    ///     first[1] = 4;
407    ///     elements[0] = 5;
408    /// }
409    /// assert_eq!(x, &[3, 4, 5]);
410    ///
411    /// assert_eq!(None, x.split_first_chunk_mut::<4>());
412    /// ```
413    #[inline]
414    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
415    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
416    pub const fn split_first_chunk_mut<const N: usize>(
417        &mut self,
418    ) -> Option<(&mut [T; N], &mut [T])> {
419        let Some((first, tail)) = self.split_at_mut_checked(N) else { return None };
420
421        // SAFETY: We explicitly check for the correct number of elements,
422        //   do not let the reference outlive the slice,
423        //   and enforce exclusive mutability of the chunk by the split.
424        Some((unsafe { &mut *(first.as_mut_ptr().cast_array()) }, tail))
425    }
426
427    /// Returns an array reference to the last `N` items in the slice and the remaining slice.
428    ///
429    /// If the slice is not at least `N` in length, this will return `None`.
430    ///
431    /// # Examples
432    ///
433    /// ```
434    /// let x = &[0, 1, 2];
435    ///
436    /// if let Some((elements, last)) = x.split_last_chunk::<2>() {
437    ///     assert_eq!(elements, &[0]);
438    ///     assert_eq!(last, &[1, 2]);
439    /// }
440    ///
441    /// assert_eq!(None, x.split_last_chunk::<4>());
442    /// ```
443    #[inline]
444    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
445    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
446    pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> {
447        let Some(index) = self.len().checked_sub(N) else { return None };
448        let (init, last) = self.split_at(index);
449
450        // SAFETY: We explicitly check for the correct number of elements,
451        //   and do not let the references outlive the slice.
452        Some((init, unsafe { &*(last.as_ptr().cast_array()) }))
453    }
454
455    /// Returns a mutable array reference to the last `N` items in the slice and the remaining
456    /// slice.
457    ///
458    /// If the slice is not at least `N` in length, this will return `None`.
459    ///
460    /// # Examples
461    ///
462    /// ```
463    /// let x = &mut [0, 1, 2];
464    ///
465    /// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
466    ///     last[0] = 3;
467    ///     last[1] = 4;
468    ///     elements[0] = 5;
469    /// }
470    /// assert_eq!(x, &[5, 3, 4]);
471    ///
472    /// assert_eq!(None, x.split_last_chunk_mut::<4>());
473    /// ```
474    #[inline]
475    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
476    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
477    pub const fn split_last_chunk_mut<const N: usize>(
478        &mut self,
479    ) -> Option<(&mut [T], &mut [T; N])> {
480        let Some(index) = self.len().checked_sub(N) else { return None };
481        let (init, last) = self.split_at_mut(index);
482
483        // SAFETY: We explicitly check for the correct number of elements,
484        //   do not let the reference outlive the slice,
485        //   and enforce exclusive mutability of the chunk by the split.
486        Some((init, unsafe { &mut *(last.as_mut_ptr().cast_array()) }))
487    }
488
489    /// Returns an array reference to the last `N` items in the slice.
490    ///
491    /// If the slice is not at least `N` in length, this will return `None`.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// let u = [10, 40, 30];
497    /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
498    ///
499    /// let v: &[i32] = &[10];
500    /// assert_eq!(None, v.last_chunk::<2>());
501    ///
502    /// let w: &[i32] = &[];
503    /// assert_eq!(Some(&[]), w.last_chunk::<0>());
504    /// ```
505    #[inline]
506    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
507    #[rustc_const_stable(feature = "const_slice_last_chunk", since = "1.80.0")]
508    pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
509        // FIXME(const-hack): Without const traits, we need this instead of `get`.
510        let Some(index) = self.len().checked_sub(N) else { return None };
511        let (_, last) = self.split_at(index);
512
513        // SAFETY: We explicitly check for the correct number of elements,
514        //   and do not let the references outlive the slice.
515        Some(unsafe { &*(last.as_ptr().cast_array()) })
516    }
517
518    /// Returns a mutable array reference to the last `N` items in the slice.
519    ///
520    /// If the slice is not at least `N` in length, this will return `None`.
521    ///
522    /// # Examples
523    ///
524    /// ```
525    /// let x = &mut [0, 1, 2];
526    ///
527    /// if let Some(last) = x.last_chunk_mut::<2>() {
528    ///     last[0] = 10;
529    ///     last[1] = 20;
530    /// }
531    /// assert_eq!(x, &[0, 10, 20]);
532    ///
533    /// assert_eq!(None, x.last_chunk_mut::<4>());
534    /// ```
535    #[inline]
536    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
537    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
538    pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
539        // FIXME(const-hack): Without const traits, we need this instead of `get`.
540        let Some(index) = self.len().checked_sub(N) else { return None };
541        let (_, last) = self.split_at_mut(index);
542
543        // SAFETY: We explicitly check for the correct number of elements,
544        //   do not let the reference outlive the slice,
545        //   and require exclusive access to the entire slice to mutate the chunk.
546        Some(unsafe { &mut *(last.as_mut_ptr().cast_array()) })
547    }
548
549    /// Returns a reference to an element or subslice depending on the type of
550    /// index.
551    ///
552    /// - If given a position, returns a reference to the element at that
553    ///   position or `None` if out of bounds.
554    /// - If given a range, returns the subslice corresponding to that range,
555    ///   or `None` if out of bounds.
556    ///
557    /// # Examples
558    ///
559    /// ```
560    /// let v = [10, 40, 30];
561    /// assert_eq!(Some(&40), v.get(1));
562    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
563    /// assert_eq!(None, v.get(3));
564    /// assert_eq!(None, v.get(0..4));
565    /// ```
566    #[stable(feature = "rust1", since = "1.0.0")]
567    #[rustc_no_implicit_autorefs]
568    #[inline]
569    #[must_use]
570    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
571    pub const fn get<I>(&self, index: I) -> Option<&I::Output>
572    where
573        I: [const] SliceIndex<Self>,
574    {
575        index.get(self)
576    }
577
578    /// Returns a mutable reference to an element or subslice depending on the
579    /// type of index (see [`get`]) or `None` if the index is out of bounds.
580    ///
581    /// [`get`]: slice::get
582    ///
583    /// # Examples
584    ///
585    /// ```
586    /// let x = &mut [0, 1, 2];
587    ///
588    /// if let Some(elem) = x.get_mut(1) {
589    ///     *elem = 42;
590    /// }
591    /// assert_eq!(x, &[0, 42, 2]);
592    /// ```
593    #[stable(feature = "rust1", since = "1.0.0")]
594    #[rustc_no_implicit_autorefs]
595    #[inline]
596    #[must_use]
597    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
598    pub const fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
599    where
600        I: [const] SliceIndex<Self>,
601    {
602        index.get_mut(self)
603    }
604
605    /// Returns a reference to an element or subslice, without doing bounds
606    /// checking.
607    ///
608    /// For a safe alternative see [`get`].
609    ///
610    /// # Safety
611    ///
612    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
613    /// even if the resulting reference is not used.
614    ///
615    /// You can think of this like `.get(index).unwrap_unchecked()`.  It's UB
616    /// to call `.get_unchecked(len)`, even if you immediately convert to a
617    /// pointer.  And it's UB to call `.get_unchecked(..len + 1)`,
618    /// `.get_unchecked(..=len)`, or similar.
619    ///
620    /// [`get`]: slice::get
621    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
622    ///
623    /// # Examples
624    ///
625    /// ```
626    /// let x = &[1, 2, 4];
627    ///
628    /// unsafe {
629    ///     assert_eq!(x.get_unchecked(1), &2);
630    /// }
631    /// ```
632    #[stable(feature = "rust1", since = "1.0.0")]
633    #[rustc_no_implicit_autorefs]
634    #[inline]
635    #[must_use]
636    #[track_caller]
637    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
638    pub const unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
639    where
640        I: [const] SliceIndex<Self>,
641    {
642        // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
643        // the slice is dereferenceable because `self` is a safe reference.
644        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
645        unsafe { &*index.get_unchecked(self) }
646    }
647
648    /// Returns a mutable reference to an element or subslice, without doing
649    /// bounds checking.
650    ///
651    /// For a safe alternative see [`get_mut`].
652    ///
653    /// # Safety
654    ///
655    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
656    /// even if the resulting reference is not used.
657    ///
658    /// You can think of this like `.get_mut(index).unwrap_unchecked()`.  It's
659    /// UB to call `.get_unchecked_mut(len)`, even if you immediately convert
660    /// to a pointer.  And it's UB to call `.get_unchecked_mut(..len + 1)`,
661    /// `.get_unchecked_mut(..=len)`, or similar.
662    ///
663    /// [`get_mut`]: slice::get_mut
664    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
665    ///
666    /// # Examples
667    ///
668    /// ```
669    /// let x = &mut [1, 2, 4];
670    ///
671    /// unsafe {
672    ///     let elem = x.get_unchecked_mut(1);
673    ///     *elem = 13;
674    /// }
675    /// assert_eq!(x, &[1, 13, 4]);
676    /// ```
677    #[stable(feature = "rust1", since = "1.0.0")]
678    #[rustc_no_implicit_autorefs]
679    #[inline]
680    #[must_use]
681    #[track_caller]
682    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
683    pub const unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
684    where
685        I: [const] SliceIndex<Self>,
686    {
687        // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
688        // the slice is dereferenceable because `self` is a safe reference.
689        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
690        unsafe { &mut *index.get_unchecked_mut(self) }
691    }
692
693    /// Returns a raw pointer to the slice's buffer.
694    ///
695    /// The caller must ensure that the slice outlives the pointer this
696    /// function returns, or else it will end up dangling.
697    ///
698    /// The caller must also ensure that the memory the pointer (non-transitively) points to
699    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
700    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
701    ///
702    /// Modifying the container referenced by this slice may cause its buffer
703    /// to be reallocated, which would also make any pointers to it invalid.
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// let x = &[1, 2, 4];
709    /// let x_ptr = x.as_ptr();
710    ///
711    /// unsafe {
712    ///     for i in 0..x.len() {
713    ///         assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
714    ///     }
715    /// }
716    /// ```
717    ///
718    /// [`as_mut_ptr`]: slice::as_mut_ptr
719    #[stable(feature = "rust1", since = "1.0.0")]
720    #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
721    #[rustc_never_returns_null_ptr]
722    #[rustc_as_ptr]
723    #[inline(always)]
724    #[must_use]
725    pub const fn as_ptr(&self) -> *const T {
726        self as *const [T] as *const T
727    }
728
729    /// Returns an unsafe mutable pointer to the slice's buffer.
730    ///
731    /// The caller must ensure that the slice outlives the pointer this
732    /// function returns, or else it will end up dangling.
733    ///
734    /// Modifying the container referenced by this slice may cause its buffer
735    /// to be reallocated, which would also make any pointers to it invalid.
736    ///
737    /// # Examples
738    ///
739    /// ```
740    /// let x = &mut [1, 2, 4];
741    /// let x_ptr = x.as_mut_ptr();
742    ///
743    /// unsafe {
744    ///     for i in 0..x.len() {
745    ///         *x_ptr.add(i) += 2;
746    ///     }
747    /// }
748    /// assert_eq!(x, &[3, 4, 6]);
749    /// ```
750    #[stable(feature = "rust1", since = "1.0.0")]
751    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
752    #[rustc_never_returns_null_ptr]
753    #[rustc_as_ptr]
754    #[inline(always)]
755    #[must_use]
756    pub const fn as_mut_ptr(&mut self) -> *mut T {
757        self as *mut [T] as *mut T
758    }
759
760    /// Returns the two raw pointers spanning the slice.
761    ///
762    /// The returned range is half-open, which means that the end pointer
763    /// points *one past* the last element of the slice. This way, an empty
764    /// slice is represented by two equal pointers, and the difference between
765    /// the two pointers represents the size of the slice.
766    ///
767    /// See [`as_ptr`] for warnings on using these pointers. The end pointer
768    /// requires extra caution, as it does not point to a valid element in the
769    /// slice.
770    ///
771    /// This function is useful for interacting with foreign interfaces which
772    /// use two pointers to refer to a range of elements in memory, as is
773    /// common in C++.
774    ///
775    /// It can also be useful to check if a pointer to an element refers to an
776    /// element of this slice:
777    ///
778    /// ```
779    /// let a = [1, 2, 3];
780    /// let x = &a[1] as *const _;
781    /// let y = &5 as *const _;
782    ///
783    /// assert!(a.as_ptr_range().contains(&x));
784    /// assert!(!a.as_ptr_range().contains(&y));
785    /// ```
786    ///
787    /// [`as_ptr`]: slice::as_ptr
788    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
789    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
790    #[inline]
791    #[must_use]
792    pub const fn as_ptr_range(&self) -> Range<*const T> {
793        let start = self.as_ptr();
794        // SAFETY: The `add` here is safe, because:
795        //
796        //   - Both pointers are part of the same object, as pointing directly
797        //     past the object also counts.
798        //
799        //   - The size of the slice is never larger than `isize::MAX` bytes, as
800        //     noted here:
801        //       - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
802        //       - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
803        //       - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
804        //     (This doesn't seem normative yet, but the very same assumption is
805        //     made in many places, including the Index implementation of slices.)
806        //
807        //   - There is no wrapping around involved, as slices do not wrap past
808        //     the end of the address space.
809        //
810        // See the documentation of [`pointer::add`].
811        let end = unsafe { start.add(self.len()) };
812        start..end
813    }
814
815    /// Returns the two unsafe mutable pointers spanning the slice.
816    ///
817    /// The returned range is half-open, which means that the end pointer
818    /// points *one past* the last element of the slice. This way, an empty
819    /// slice is represented by two equal pointers, and the difference between
820    /// the two pointers represents the size of the slice.
821    ///
822    /// See [`as_mut_ptr`] for warnings on using these pointers. The end
823    /// pointer requires extra caution, as it does not point to a valid element
824    /// in the slice.
825    ///
826    /// This function is useful for interacting with foreign interfaces which
827    /// use two pointers to refer to a range of elements in memory, as is
828    /// common in C++.
829    ///
830    /// [`as_mut_ptr`]: slice::as_mut_ptr
831    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
832    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
833    #[inline]
834    #[must_use]
835    pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
836        let start = self.as_mut_ptr();
837        // SAFETY: See as_ptr_range() above for why `add` here is safe.
838        let end = unsafe { start.add(self.len()) };
839        start..end
840    }
841
842    /// Gets a reference to the underlying array.
843    ///
844    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
845    #[stable(feature = "core_slice_as_array", since = "CURRENT_RUSTC_VERSION")]
846    #[rustc_const_stable(feature = "core_slice_as_array", since = "CURRENT_RUSTC_VERSION")]
847    #[inline]
848    #[must_use]
849    pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]> {
850        if self.len() == N {
851            let ptr = self.as_ptr().cast_array();
852
853            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
854            let me = unsafe { &*ptr };
855            Some(me)
856        } else {
857            None
858        }
859    }
860
861    /// Gets a mutable reference to the slice's underlying array.
862    ///
863    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
864    #[stable(feature = "core_slice_as_array", since = "CURRENT_RUSTC_VERSION")]
865    #[rustc_const_stable(feature = "core_slice_as_array", since = "CURRENT_RUSTC_VERSION")]
866    #[inline]
867    #[must_use]
868    pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]> {
869        if self.len() == N {
870            let ptr = self.as_mut_ptr().cast_array();
871
872            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
873            let me = unsafe { &mut *ptr };
874            Some(me)
875        } else {
876            None
877        }
878    }
879
880    /// Swaps two elements in the slice.
881    ///
882    /// If `a` equals to `b`, it's guaranteed that elements won't change value.
883    ///
884    /// # Arguments
885    ///
886    /// * a - The index of the first element
887    /// * b - The index of the second element
888    ///
889    /// # Panics
890    ///
891    /// Panics if `a` or `b` are out of bounds.
892    ///
893    /// # Examples
894    ///
895    /// ```
896    /// let mut v = ["a", "b", "c", "d", "e"];
897    /// v.swap(2, 4);
898    /// assert!(v == ["a", "b", "e", "d", "c"]);
899    /// ```
900    #[stable(feature = "rust1", since = "1.0.0")]
901    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
902    #[inline]
903    #[track_caller]
904    pub const fn swap(&mut self, a: usize, b: usize) {
905        // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
906        // Can't take two mutable loans from one vector, so instead use raw pointers.
907        let pa = &raw mut self[a];
908        let pb = &raw mut self[b];
909        // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
910        // to elements in the slice and therefore are guaranteed to be valid and aligned.
911        // Note that accessing the elements behind `a` and `b` is checked and will
912        // panic when out of bounds.
913        unsafe {
914            ptr::swap(pa, pb);
915        }
916    }
917
918    /// Swaps two elements in the slice, without doing bounds checking.
919    ///
920    /// For a safe alternative see [`swap`].
921    ///
922    /// # Arguments
923    ///
924    /// * a - The index of the first element
925    /// * b - The index of the second element
926    ///
927    /// # Safety
928    ///
929    /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
930    /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// #![feature(slice_swap_unchecked)]
936    ///
937    /// let mut v = ["a", "b", "c", "d"];
938    /// // SAFETY: we know that 1 and 3 are both indices of the slice
939    /// unsafe { v.swap_unchecked(1, 3) };
940    /// assert!(v == ["a", "d", "c", "b"]);
941    /// ```
942    ///
943    /// [`swap`]: slice::swap
944    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
945    #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
946    #[track_caller]
947    pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
948        assert_unsafe_precondition!(
949            check_library_ub,
950            "slice::swap_unchecked requires that the indices are within the slice",
951            (
952                len: usize = self.len(),
953                a: usize = a,
954                b: usize = b,
955            ) => a < len && b < len,
956        );
957
958        let ptr = self.as_mut_ptr();
959        // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
960        unsafe {
961            ptr::swap(ptr.add(a), ptr.add(b));
962        }
963    }
964
965    /// Reverses the order of elements in the slice, in place.
966    ///
967    /// # Examples
968    ///
969    /// ```
970    /// let mut v = [1, 2, 3];
971    /// v.reverse();
972    /// assert!(v == [3, 2, 1]);
973    /// ```
974    #[stable(feature = "rust1", since = "1.0.0")]
975    #[rustc_const_stable(feature = "const_slice_reverse", since = "1.90.0")]
976    #[inline]
977    pub const fn reverse(&mut self) {
978        let half_len = self.len() / 2;
979        let Range { start, end } = self.as_mut_ptr_range();
980
981        // These slices will skip the middle item for an odd length,
982        // since that one doesn't need to move.
983        let (front_half, back_half) =
984            // SAFETY: Both are subparts of the original slice, so the memory
985            // range is valid, and they don't overlap because they're each only
986            // half (or less) of the original slice.
987            unsafe {
988                (
989                    slice::from_raw_parts_mut(start, half_len),
990                    slice::from_raw_parts_mut(end.sub(half_len), half_len),
991                )
992            };
993
994        // Introducing a function boundary here means that the two halves
995        // get `noalias` markers, allowing better optimization as LLVM
996        // knows that they're disjoint, unlike in the original slice.
997        revswap(front_half, back_half, half_len);
998
999        #[inline]
1000        const fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
1001            debug_assert!(a.len() == n);
1002            debug_assert!(b.len() == n);
1003
1004            // Because this function is first compiled in isolation,
1005            // this check tells LLVM that the indexing below is
1006            // in-bounds. Then after inlining -- once the actual
1007            // lengths of the slices are known -- it's removed.
1008            // FIXME(const_trait_impl) replace with let (a, b) = (&mut a[..n], &mut b[..n]);
1009            let (a, _) = a.split_at_mut(n);
1010            let (b, _) = b.split_at_mut(n);
1011
1012            let mut i = 0;
1013            while i < n {
1014                mem::swap(&mut a[i], &mut b[n - 1 - i]);
1015                i += 1;
1016            }
1017        }
1018    }
1019
1020    /// Returns an iterator over the slice.
1021    ///
1022    /// The iterator yields all items from start to end.
1023    ///
1024    /// # Examples
1025    ///
1026    /// ```
1027    /// let x = &[1, 2, 4];
1028    /// let mut iterator = x.iter();
1029    ///
1030    /// assert_eq!(iterator.next(), Some(&1));
1031    /// assert_eq!(iterator.next(), Some(&2));
1032    /// assert_eq!(iterator.next(), Some(&4));
1033    /// assert_eq!(iterator.next(), None);
1034    /// ```
1035    #[stable(feature = "rust1", since = "1.0.0")]
1036    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1037    #[inline]
1038    #[rustc_diagnostic_item = "slice_iter"]
1039    pub const fn iter(&self) -> Iter<'_, T> {
1040        Iter::new(self)
1041    }
1042
1043    /// Returns an iterator that allows modifying each value.
1044    ///
1045    /// The iterator yields all items from start to end.
1046    ///
1047    /// # Examples
1048    ///
1049    /// ```
1050    /// let x = &mut [1, 2, 4];
1051    /// for elem in x.iter_mut() {
1052    ///     *elem += 2;
1053    /// }
1054    /// assert_eq!(x, &[3, 4, 6]);
1055    /// ```
1056    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1057    #[stable(feature = "rust1", since = "1.0.0")]
1058    #[inline]
1059    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1060        IterMut::new(self)
1061    }
1062
1063    /// Returns an iterator over all contiguous windows of length
1064    /// `size`. The windows overlap. If the slice is shorter than
1065    /// `size`, the iterator returns no values.
1066    ///
1067    /// # Panics
1068    ///
1069    /// Panics if `size` is zero.
1070    ///
1071    /// # Examples
1072    ///
1073    /// ```
1074    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1075    /// let mut iter = slice.windows(3);
1076    /// assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
1077    /// assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
1078    /// assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
1079    /// assert!(iter.next().is_none());
1080    /// ```
1081    ///
1082    /// If the slice is shorter than `size`:
1083    ///
1084    /// ```
1085    /// let slice = ['f', 'o', 'o'];
1086    /// let mut iter = slice.windows(4);
1087    /// assert!(iter.next().is_none());
1088    /// ```
1089    ///
1090    /// Because the [Iterator] trait cannot represent the required lifetimes,
1091    /// there is no `windows_mut` analog to `windows`;
1092    /// `[0,1,2].windows_mut(2).collect()` would violate [the rules of references]
1093    /// (though a [LendingIterator] analog is possible). You can sometimes use
1094    /// [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in
1095    /// conjunction with `windows` instead:
1096    ///
1097    /// [the rules of references]: https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#the-rules-of-references
1098    /// [LendingIterator]: https://blog.rust-lang.org/2022/10/28/gats-stabilization.html
1099    /// ```
1100    /// use std::cell::Cell;
1101    ///
1102    /// let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
1103    /// let slice = &mut array[..];
1104    /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
1105    /// for w in slice_of_cells.windows(3) {
1106    ///     Cell::swap(&w[0], &w[2]);
1107    /// }
1108    /// assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1109    /// ```
1110    #[stable(feature = "rust1", since = "1.0.0")]
1111    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1112    #[inline]
1113    #[track_caller]
1114    pub const fn windows(&self, size: usize) -> Windows<'_, T> {
1115        let size = NonZero::new(size).expect("window size must be non-zero");
1116        Windows::new(self, size)
1117    }
1118
1119    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1120    /// beginning of the slice.
1121    ///
1122    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1123    /// slice, then the last chunk will not have length `chunk_size`.
1124    ///
1125    /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
1126    /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
1127    /// slice.
1128    ///
1129    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1130    /// give references to arrays of exactly that length, rather than slices.
1131    ///
1132    /// # Panics
1133    ///
1134    /// Panics if `chunk_size` is zero.
1135    ///
1136    /// # Examples
1137    ///
1138    /// ```
1139    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1140    /// let mut iter = slice.chunks(2);
1141    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1142    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1143    /// assert_eq!(iter.next().unwrap(), &['m']);
1144    /// assert!(iter.next().is_none());
1145    /// ```
1146    ///
1147    /// [`chunks_exact`]: slice::chunks_exact
1148    /// [`rchunks`]: slice::rchunks
1149    /// [`as_chunks`]: slice::as_chunks
1150    #[stable(feature = "rust1", since = "1.0.0")]
1151    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1152    #[inline]
1153    #[track_caller]
1154    pub const fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
1155        assert!(chunk_size != 0, "chunk size must be non-zero");
1156        Chunks::new(self, chunk_size)
1157    }
1158
1159    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1160    /// beginning of the slice.
1161    ///
1162    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1163    /// length of the slice, then the last chunk will not have length `chunk_size`.
1164    ///
1165    /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
1166    /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
1167    /// the end of the slice.
1168    ///
1169    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1170    /// give references to arrays of exactly that length, rather than slices.
1171    ///
1172    /// # Panics
1173    ///
1174    /// Panics if `chunk_size` is zero.
1175    ///
1176    /// # Examples
1177    ///
1178    /// ```
1179    /// let v = &mut [0, 0, 0, 0, 0];
1180    /// let mut count = 1;
1181    ///
1182    /// for chunk in v.chunks_mut(2) {
1183    ///     for elem in chunk.iter_mut() {
1184    ///         *elem += count;
1185    ///     }
1186    ///     count += 1;
1187    /// }
1188    /// assert_eq!(v, &[1, 1, 2, 2, 3]);
1189    /// ```
1190    ///
1191    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1192    /// [`rchunks_mut`]: slice::rchunks_mut
1193    /// [`as_chunks_mut`]: slice::as_chunks_mut
1194    #[stable(feature = "rust1", since = "1.0.0")]
1195    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1196    #[inline]
1197    #[track_caller]
1198    pub const fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
1199        assert!(chunk_size != 0, "chunk size must be non-zero");
1200        ChunksMut::new(self, chunk_size)
1201    }
1202
1203    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1204    /// beginning of the slice.
1205    ///
1206    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1207    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1208    /// from the `remainder` function of the iterator.
1209    ///
1210    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1211    /// resulting code better than in the case of [`chunks`].
1212    ///
1213    /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
1214    /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
1215    ///
1216    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1217    /// give references to arrays of exactly that length, rather than slices.
1218    ///
1219    /// # Panics
1220    ///
1221    /// Panics if `chunk_size` is zero.
1222    ///
1223    /// # Examples
1224    ///
1225    /// ```
1226    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1227    /// let mut iter = slice.chunks_exact(2);
1228    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1229    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1230    /// assert!(iter.next().is_none());
1231    /// assert_eq!(iter.remainder(), &['m']);
1232    /// ```
1233    ///
1234    /// [`chunks`]: slice::chunks
1235    /// [`rchunks_exact`]: slice::rchunks_exact
1236    /// [`as_chunks`]: slice::as_chunks
1237    #[stable(feature = "chunks_exact", since = "1.31.0")]
1238    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1239    #[inline]
1240    #[track_caller]
1241    pub const fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
1242        assert!(chunk_size != 0, "chunk size must be non-zero");
1243        ChunksExact::new(self, chunk_size)
1244    }
1245
1246    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1247    /// beginning of the slice.
1248    ///
1249    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1250    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1251    /// retrieved from the `into_remainder` function of the iterator.
1252    ///
1253    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1254    /// resulting code better than in the case of [`chunks_mut`].
1255    ///
1256    /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
1257    /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
1258    /// the slice.
1259    ///
1260    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1261    /// give references to arrays of exactly that length, rather than slices.
1262    ///
1263    /// # Panics
1264    ///
1265    /// Panics if `chunk_size` is zero.
1266    ///
1267    /// # Examples
1268    ///
1269    /// ```
1270    /// let v = &mut [0, 0, 0, 0, 0];
1271    /// let mut count = 1;
1272    ///
1273    /// for chunk in v.chunks_exact_mut(2) {
1274    ///     for elem in chunk.iter_mut() {
1275    ///         *elem += count;
1276    ///     }
1277    ///     count += 1;
1278    /// }
1279    /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1280    /// ```
1281    ///
1282    /// [`chunks_mut`]: slice::chunks_mut
1283    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1284    /// [`as_chunks_mut`]: slice::as_chunks_mut
1285    #[stable(feature = "chunks_exact", since = "1.31.0")]
1286    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1287    #[inline]
1288    #[track_caller]
1289    pub const fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
1290        assert!(chunk_size != 0, "chunk size must be non-zero");
1291        ChunksExactMut::new(self, chunk_size)
1292    }
1293
1294    /// Splits the slice into a slice of `N`-element arrays,
1295    /// assuming that there's no remainder.
1296    ///
1297    /// This is the inverse operation to [`as_flattened`].
1298    ///
1299    /// [`as_flattened`]: slice::as_flattened
1300    ///
1301    /// As this is `unsafe`, consider whether you could use [`as_chunks`] or
1302    /// [`as_rchunks`] instead, perhaps via something like
1303    /// `if let (chunks, []) = slice.as_chunks()` or
1304    /// `let (chunks, []) = slice.as_chunks() else { unreachable!() };`.
1305    ///
1306    /// [`as_chunks`]: slice::as_chunks
1307    /// [`as_rchunks`]: slice::as_rchunks
1308    ///
1309    /// # Safety
1310    ///
1311    /// This may only be called when
1312    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1313    /// - `N != 0`.
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
1319    /// let chunks: &[[char; 1]] =
1320    ///     // SAFETY: 1-element chunks never have remainder
1321    ///     unsafe { slice.as_chunks_unchecked() };
1322    /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1323    /// let chunks: &[[char; 3]] =
1324    ///     // SAFETY: The slice length (6) is a multiple of 3
1325    ///     unsafe { slice.as_chunks_unchecked() };
1326    /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
1327    ///
1328    /// // These would be unsound:
1329    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
1330    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
1331    /// ```
1332    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1333    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1334    #[inline]
1335    #[must_use]
1336    #[track_caller]
1337    pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
1338        assert_unsafe_precondition!(
1339            check_language_ub,
1340            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1341            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n),
1342        );
1343        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1344        let new_len = unsafe { exact_div(self.len(), N) };
1345        // SAFETY: We cast a slice of `new_len * N` elements into
1346        // a slice of `new_len` many `N` elements chunks.
1347        unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
1348    }
1349
1350    /// Splits the slice into a slice of `N`-element arrays,
1351    /// starting at the beginning of the slice,
1352    /// and a remainder slice with length strictly less than `N`.
1353    ///
1354    /// The remainder is meaningful in the division sense.  Given
1355    /// `let (chunks, remainder) = slice.as_chunks()`, then:
1356    /// - `chunks.len()` equals `slice.len() / N`,
1357    /// - `remainder.len()` equals `slice.len() % N`, and
1358    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1359    ///
1360    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1361    ///
1362    /// [`as_flattened`]: slice::as_flattened
1363    ///
1364    /// # Panics
1365    ///
1366    /// Panics if `N` is zero.
1367    ///
1368    /// Note that this check is against a const generic parameter, not a runtime
1369    /// value, and thus a particular monomorphization will either always panic
1370    /// or it will never panic.
1371    ///
1372    /// # Examples
1373    ///
1374    /// ```
1375    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1376    /// let (chunks, remainder) = slice.as_chunks();
1377    /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
1378    /// assert_eq!(remainder, &['m']);
1379    /// ```
1380    ///
1381    /// If you expect the slice to be an exact multiple, you can combine
1382    /// `let`-`else` with an empty slice pattern:
1383    /// ```
1384    /// let slice = ['R', 'u', 's', 't'];
1385    /// let (chunks, []) = slice.as_chunks::<2>() else {
1386    ///     panic!("slice didn't have even length")
1387    /// };
1388    /// assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
1389    /// ```
1390    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1391    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1392    #[inline]
1393    #[track_caller]
1394    #[must_use]
1395    pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
1396        assert!(N != 0, "chunk size must be non-zero");
1397        let len_rounded_down = self.len() / N * N;
1398        // SAFETY: The rounded-down value is always the same or smaller than the
1399        // original length, and thus must be in-bounds of the slice.
1400        let (multiple_of_n, remainder) = unsafe { self.split_at_unchecked(len_rounded_down) };
1401        // SAFETY: We already panicked for zero, and ensured by construction
1402        // that the length of the subslice is a multiple of N.
1403        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1404        (array_slice, remainder)
1405    }
1406
1407    /// Splits the slice into a slice of `N`-element arrays,
1408    /// starting at the end of the slice,
1409    /// and a remainder slice with length strictly less than `N`.
1410    ///
1411    /// The remainder is meaningful in the division sense.  Given
1412    /// `let (remainder, chunks) = slice.as_rchunks()`, then:
1413    /// - `remainder.len()` equals `slice.len() % N`,
1414    /// - `chunks.len()` equals `slice.len() / N`, and
1415    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1416    ///
1417    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1418    ///
1419    /// [`as_flattened`]: slice::as_flattened
1420    ///
1421    /// # Panics
1422    ///
1423    /// Panics if `N` is zero.
1424    ///
1425    /// Note that this check is against a const generic parameter, not a runtime
1426    /// value, and thus a particular monomorphization will either always panic
1427    /// or it will never panic.
1428    ///
1429    /// # Examples
1430    ///
1431    /// ```
1432    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1433    /// let (remainder, chunks) = slice.as_rchunks();
1434    /// assert_eq!(remainder, &['l']);
1435    /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
1436    /// ```
1437    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1438    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1439    #[inline]
1440    #[track_caller]
1441    #[must_use]
1442    pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
1443        assert!(N != 0, "chunk size must be non-zero");
1444        let len = self.len() / N;
1445        let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
1446        // SAFETY: We already panicked for zero, and ensured by construction
1447        // that the length of the subslice is a multiple of N.
1448        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1449        (remainder, array_slice)
1450    }
1451
1452    /// Splits the slice into a slice of `N`-element arrays,
1453    /// assuming that there's no remainder.
1454    ///
1455    /// This is the inverse operation to [`as_flattened_mut`].
1456    ///
1457    /// [`as_flattened_mut`]: slice::as_flattened_mut
1458    ///
1459    /// As this is `unsafe`, consider whether you could use [`as_chunks_mut`] or
1460    /// [`as_rchunks_mut`] instead, perhaps via something like
1461    /// `if let (chunks, []) = slice.as_chunks_mut()` or
1462    /// `let (chunks, []) = slice.as_chunks_mut() else { unreachable!() };`.
1463    ///
1464    /// [`as_chunks_mut`]: slice::as_chunks_mut
1465    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1466    ///
1467    /// # Safety
1468    ///
1469    /// This may only be called when
1470    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1471    /// - `N != 0`.
1472    ///
1473    /// # Examples
1474    ///
1475    /// ```
1476    /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
1477    /// let chunks: &mut [[char; 1]] =
1478    ///     // SAFETY: 1-element chunks never have remainder
1479    ///     unsafe { slice.as_chunks_unchecked_mut() };
1480    /// chunks[0] = ['L'];
1481    /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1482    /// let chunks: &mut [[char; 3]] =
1483    ///     // SAFETY: The slice length (6) is a multiple of 3
1484    ///     unsafe { slice.as_chunks_unchecked_mut() };
1485    /// chunks[1] = ['a', 'x', '?'];
1486    /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
1487    ///
1488    /// // These would be unsound:
1489    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
1490    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
1491    /// ```
1492    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1493    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1494    #[inline]
1495    #[must_use]
1496    #[track_caller]
1497    pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
1498        assert_unsafe_precondition!(
1499            check_language_ub,
1500            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1501            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n)
1502        );
1503        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1504        let new_len = unsafe { exact_div(self.len(), N) };
1505        // SAFETY: We cast a slice of `new_len * N` elements into
1506        // a slice of `new_len` many `N` elements chunks.
1507        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
1508    }
1509
1510    /// Splits the slice into a slice of `N`-element arrays,
1511    /// starting at the beginning of the slice,
1512    /// and a remainder slice with length strictly less than `N`.
1513    ///
1514    /// The remainder is meaningful in the division sense.  Given
1515    /// `let (chunks, remainder) = slice.as_chunks_mut()`, then:
1516    /// - `chunks.len()` equals `slice.len() / N`,
1517    /// - `remainder.len()` equals `slice.len() % N`, and
1518    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1519    ///
1520    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1521    ///
1522    /// [`as_flattened_mut`]: slice::as_flattened_mut
1523    ///
1524    /// # Panics
1525    ///
1526    /// Panics if `N` is zero.
1527    ///
1528    /// Note that this check is against a const generic parameter, not a runtime
1529    /// value, and thus a particular monomorphization will either always panic
1530    /// or it will never panic.
1531    ///
1532    /// # Examples
1533    ///
1534    /// ```
1535    /// let v = &mut [0, 0, 0, 0, 0];
1536    /// let mut count = 1;
1537    ///
1538    /// let (chunks, remainder) = v.as_chunks_mut();
1539    /// remainder[0] = 9;
1540    /// for chunk in chunks {
1541    ///     *chunk = [count; 2];
1542    ///     count += 1;
1543    /// }
1544    /// assert_eq!(v, &[1, 1, 2, 2, 9]);
1545    /// ```
1546    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1547    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1548    #[inline]
1549    #[track_caller]
1550    #[must_use]
1551    pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
1552        assert!(N != 0, "chunk size must be non-zero");
1553        let len_rounded_down = self.len() / N * N;
1554        // SAFETY: The rounded-down value is always the same or smaller than the
1555        // original length, and thus must be in-bounds of the slice.
1556        let (multiple_of_n, remainder) = unsafe { self.split_at_mut_unchecked(len_rounded_down) };
1557        // SAFETY: We already panicked for zero, and ensured by construction
1558        // that the length of the subslice is a multiple of N.
1559        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1560        (array_slice, remainder)
1561    }
1562
1563    /// Splits the slice into a slice of `N`-element arrays,
1564    /// starting at the end of the slice,
1565    /// and a remainder slice with length strictly less than `N`.
1566    ///
1567    /// The remainder is meaningful in the division sense.  Given
1568    /// `let (remainder, chunks) = slice.as_rchunks_mut()`, then:
1569    /// - `remainder.len()` equals `slice.len() % N`,
1570    /// - `chunks.len()` equals `slice.len() / N`, and
1571    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1572    ///
1573    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1574    ///
1575    /// [`as_flattened_mut`]: slice::as_flattened_mut
1576    ///
1577    /// # Panics
1578    ///
1579    /// Panics if `N` is zero.
1580    ///
1581    /// Note that this check is against a const generic parameter, not a runtime
1582    /// value, and thus a particular monomorphization will either always panic
1583    /// or it will never panic.
1584    ///
1585    /// # Examples
1586    ///
1587    /// ```
1588    /// let v = &mut [0, 0, 0, 0, 0];
1589    /// let mut count = 1;
1590    ///
1591    /// let (remainder, chunks) = v.as_rchunks_mut();
1592    /// remainder[0] = 9;
1593    /// for chunk in chunks {
1594    ///     *chunk = [count; 2];
1595    ///     count += 1;
1596    /// }
1597    /// assert_eq!(v, &[9, 1, 1, 2, 2]);
1598    /// ```
1599    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1600    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1601    #[inline]
1602    #[track_caller]
1603    #[must_use]
1604    pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
1605        assert!(N != 0, "chunk size must be non-zero");
1606        let len = self.len() / N;
1607        let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
1608        // SAFETY: We already panicked for zero, and ensured by construction
1609        // that the length of the subslice is a multiple of N.
1610        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1611        (remainder, array_slice)
1612    }
1613
1614    /// Returns an iterator over overlapping windows of `N` elements of a slice,
1615    /// starting at the beginning of the slice.
1616    ///
1617    /// This is the const generic equivalent of [`windows`].
1618    ///
1619    /// If `N` is greater than the size of the slice, it will return no windows.
1620    ///
1621    /// # Panics
1622    ///
1623    /// Panics if `N` is zero. This check will most probably get changed to a compile time
1624    /// error before this method gets stabilized.
1625    ///
1626    /// # Examples
1627    ///
1628    /// ```
1629    /// #![feature(array_windows)]
1630    /// let slice = [0, 1, 2, 3];
1631    /// let mut iter = slice.array_windows();
1632    /// assert_eq!(iter.next().unwrap(), &[0, 1]);
1633    /// assert_eq!(iter.next().unwrap(), &[1, 2]);
1634    /// assert_eq!(iter.next().unwrap(), &[2, 3]);
1635    /// assert!(iter.next().is_none());
1636    /// ```
1637    ///
1638    /// [`windows`]: slice::windows
1639    #[unstable(feature = "array_windows", issue = "75027")]
1640    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1641    #[inline]
1642    #[track_caller]
1643    pub const fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
1644        assert!(N != 0, "window size must be non-zero");
1645        ArrayWindows::new(self)
1646    }
1647
1648    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1649    /// of the slice.
1650    ///
1651    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1652    /// slice, then the last chunk will not have length `chunk_size`.
1653    ///
1654    /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
1655    /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
1656    /// of the slice.
1657    ///
1658    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1659    /// give references to arrays of exactly that length, rather than slices.
1660    ///
1661    /// # Panics
1662    ///
1663    /// Panics if `chunk_size` is zero.
1664    ///
1665    /// # Examples
1666    ///
1667    /// ```
1668    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1669    /// let mut iter = slice.rchunks(2);
1670    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1671    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1672    /// assert_eq!(iter.next().unwrap(), &['l']);
1673    /// assert!(iter.next().is_none());
1674    /// ```
1675    ///
1676    /// [`rchunks_exact`]: slice::rchunks_exact
1677    /// [`chunks`]: slice::chunks
1678    /// [`as_rchunks`]: slice::as_rchunks
1679    #[stable(feature = "rchunks", since = "1.31.0")]
1680    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1681    #[inline]
1682    #[track_caller]
1683    pub const fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
1684        assert!(chunk_size != 0, "chunk size must be non-zero");
1685        RChunks::new(self, chunk_size)
1686    }
1687
1688    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1689    /// of the slice.
1690    ///
1691    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1692    /// length of the slice, then the last chunk will not have length `chunk_size`.
1693    ///
1694    /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
1695    /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
1696    /// beginning of the slice.
1697    ///
1698    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1699    /// give references to arrays of exactly that length, rather than slices.
1700    ///
1701    /// # Panics
1702    ///
1703    /// Panics if `chunk_size` is zero.
1704    ///
1705    /// # Examples
1706    ///
1707    /// ```
1708    /// let v = &mut [0, 0, 0, 0, 0];
1709    /// let mut count = 1;
1710    ///
1711    /// for chunk in v.rchunks_mut(2) {
1712    ///     for elem in chunk.iter_mut() {
1713    ///         *elem += count;
1714    ///     }
1715    ///     count += 1;
1716    /// }
1717    /// assert_eq!(v, &[3, 2, 2, 1, 1]);
1718    /// ```
1719    ///
1720    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1721    /// [`chunks_mut`]: slice::chunks_mut
1722    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1723    #[stable(feature = "rchunks", since = "1.31.0")]
1724    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1725    #[inline]
1726    #[track_caller]
1727    pub const fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
1728        assert!(chunk_size != 0, "chunk size must be non-zero");
1729        RChunksMut::new(self, chunk_size)
1730    }
1731
1732    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1733    /// end of the slice.
1734    ///
1735    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1736    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1737    /// from the `remainder` function of the iterator.
1738    ///
1739    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1740    /// resulting code better than in the case of [`rchunks`].
1741    ///
1742    /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
1743    /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
1744    /// slice.
1745    ///
1746    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1747    /// give references to arrays of exactly that length, rather than slices.
1748    ///
1749    /// # Panics
1750    ///
1751    /// Panics if `chunk_size` is zero.
1752    ///
1753    /// # Examples
1754    ///
1755    /// ```
1756    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1757    /// let mut iter = slice.rchunks_exact(2);
1758    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1759    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1760    /// assert!(iter.next().is_none());
1761    /// assert_eq!(iter.remainder(), &['l']);
1762    /// ```
1763    ///
1764    /// [`chunks`]: slice::chunks
1765    /// [`rchunks`]: slice::rchunks
1766    /// [`chunks_exact`]: slice::chunks_exact
1767    /// [`as_rchunks`]: slice::as_rchunks
1768    #[stable(feature = "rchunks", since = "1.31.0")]
1769    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1770    #[inline]
1771    #[track_caller]
1772    pub const fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
1773        assert!(chunk_size != 0, "chunk size must be non-zero");
1774        RChunksExact::new(self, chunk_size)
1775    }
1776
1777    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1778    /// of the slice.
1779    ///
1780    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1781    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1782    /// retrieved from the `into_remainder` function of the iterator.
1783    ///
1784    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1785    /// resulting code better than in the case of [`chunks_mut`].
1786    ///
1787    /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
1788    /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
1789    /// of the slice.
1790    ///
1791    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1792    /// give references to arrays of exactly that length, rather than slices.
1793    ///
1794    /// # Panics
1795    ///
1796    /// Panics if `chunk_size` is zero.
1797    ///
1798    /// # Examples
1799    ///
1800    /// ```
1801    /// let v = &mut [0, 0, 0, 0, 0];
1802    /// let mut count = 1;
1803    ///
1804    /// for chunk in v.rchunks_exact_mut(2) {
1805    ///     for elem in chunk.iter_mut() {
1806    ///         *elem += count;
1807    ///     }
1808    ///     count += 1;
1809    /// }
1810    /// assert_eq!(v, &[0, 2, 2, 1, 1]);
1811    /// ```
1812    ///
1813    /// [`chunks_mut`]: slice::chunks_mut
1814    /// [`rchunks_mut`]: slice::rchunks_mut
1815    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1816    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1817    #[stable(feature = "rchunks", since = "1.31.0")]
1818    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1819    #[inline]
1820    #[track_caller]
1821    pub const fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
1822        assert!(chunk_size != 0, "chunk size must be non-zero");
1823        RChunksExactMut::new(self, chunk_size)
1824    }
1825
1826    /// Returns an iterator over the slice producing non-overlapping runs
1827    /// of elements using the predicate to separate them.
1828    ///
1829    /// The predicate is called for every pair of consecutive elements,
1830    /// meaning that it is called on `slice[0]` and `slice[1]`,
1831    /// followed by `slice[1]` and `slice[2]`, and so on.
1832    ///
1833    /// # Examples
1834    ///
1835    /// ```
1836    /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
1837    ///
1838    /// let mut iter = slice.chunk_by(|a, b| a == b);
1839    ///
1840    /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
1841    /// assert_eq!(iter.next(), Some(&[3, 3][..]));
1842    /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
1843    /// assert_eq!(iter.next(), None);
1844    /// ```
1845    ///
1846    /// This method can be used to extract the sorted subslices:
1847    ///
1848    /// ```
1849    /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
1850    ///
1851    /// let mut iter = slice.chunk_by(|a, b| a <= b);
1852    ///
1853    /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
1854    /// assert_eq!(iter.next(), Some(&[2, 3][..]));
1855    /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
1856    /// assert_eq!(iter.next(), None);
1857    /// ```
1858    #[stable(feature = "slice_group_by", since = "1.77.0")]
1859    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1860    #[inline]
1861    pub const fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
1862    where
1863        F: FnMut(&T, &T) -> bool,
1864    {
1865        ChunkBy::new(self, pred)
1866    }
1867
1868    /// Returns an iterator over the slice producing non-overlapping mutable
1869    /// runs of elements using the predicate to separate them.
1870    ///
1871    /// The predicate is called for every pair of consecutive elements,
1872    /// meaning that it is called on `slice[0]` and `slice[1]`,
1873    /// followed by `slice[1]` and `slice[2]`, and so on.
1874    ///
1875    /// # Examples
1876    ///
1877    /// ```
1878    /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
1879    ///
1880    /// let mut iter = slice.chunk_by_mut(|a, b| a == b);
1881    ///
1882    /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
1883    /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
1884    /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
1885    /// assert_eq!(iter.next(), None);
1886    /// ```
1887    ///
1888    /// This method can be used to extract the sorted subslices:
1889    ///
1890    /// ```
1891    /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
1892    ///
1893    /// let mut iter = slice.chunk_by_mut(|a, b| a <= b);
1894    ///
1895    /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
1896    /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
1897    /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
1898    /// assert_eq!(iter.next(), None);
1899    /// ```
1900    #[stable(feature = "slice_group_by", since = "1.77.0")]
1901    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1902    #[inline]
1903    pub const fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
1904    where
1905        F: FnMut(&T, &T) -> bool,
1906    {
1907        ChunkByMut::new(self, pred)
1908    }
1909
1910    /// Divides one slice into two at an index.
1911    ///
1912    /// The first will contain all indices from `[0, mid)` (excluding
1913    /// the index `mid` itself) and the second will contain all
1914    /// indices from `[mid, len)` (excluding the index `len` itself).
1915    ///
1916    /// # Panics
1917    ///
1918    /// Panics if `mid > len`.  For a non-panicking alternative see
1919    /// [`split_at_checked`](slice::split_at_checked).
1920    ///
1921    /// # Examples
1922    ///
1923    /// ```
1924    /// let v = ['a', 'b', 'c'];
1925    ///
1926    /// {
1927    ///    let (left, right) = v.split_at(0);
1928    ///    assert_eq!(left, []);
1929    ///    assert_eq!(right, ['a', 'b', 'c']);
1930    /// }
1931    ///
1932    /// {
1933    ///     let (left, right) = v.split_at(2);
1934    ///     assert_eq!(left, ['a', 'b']);
1935    ///     assert_eq!(right, ['c']);
1936    /// }
1937    ///
1938    /// {
1939    ///     let (left, right) = v.split_at(3);
1940    ///     assert_eq!(left, ['a', 'b', 'c']);
1941    ///     assert_eq!(right, []);
1942    /// }
1943    /// ```
1944    #[stable(feature = "rust1", since = "1.0.0")]
1945    #[rustc_const_stable(feature = "const_slice_split_at_not_mut", since = "1.71.0")]
1946    #[inline]
1947    #[track_caller]
1948    #[must_use]
1949    pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) {
1950        match self.split_at_checked(mid) {
1951            Some(pair) => pair,
1952            None => panic!("mid > len"),
1953        }
1954    }
1955
1956    /// Divides one mutable slice into two at an index.
1957    ///
1958    /// The first will contain all indices from `[0, mid)` (excluding
1959    /// the index `mid` itself) and the second will contain all
1960    /// indices from `[mid, len)` (excluding the index `len` itself).
1961    ///
1962    /// # Panics
1963    ///
1964    /// Panics if `mid > len`.  For a non-panicking alternative see
1965    /// [`split_at_mut_checked`](slice::split_at_mut_checked).
1966    ///
1967    /// # Examples
1968    ///
1969    /// ```
1970    /// let mut v = [1, 0, 3, 0, 5, 6];
1971    /// let (left, right) = v.split_at_mut(2);
1972    /// assert_eq!(left, [1, 0]);
1973    /// assert_eq!(right, [3, 0, 5, 6]);
1974    /// left[1] = 2;
1975    /// right[1] = 4;
1976    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1977    /// ```
1978    #[stable(feature = "rust1", since = "1.0.0")]
1979    #[inline]
1980    #[track_caller]
1981    #[must_use]
1982    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
1983    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
1984        match self.split_at_mut_checked(mid) {
1985            Some(pair) => pair,
1986            None => panic!("mid > len"),
1987        }
1988    }
1989
1990    /// Divides one slice into two at an index, without doing bounds checking.
1991    ///
1992    /// The first will contain all indices from `[0, mid)` (excluding
1993    /// the index `mid` itself) and the second will contain all
1994    /// indices from `[mid, len)` (excluding the index `len` itself).
1995    ///
1996    /// For a safe alternative see [`split_at`].
1997    ///
1998    /// # Safety
1999    ///
2000    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2001    /// even if the resulting reference is not used. The caller has to ensure that
2002    /// `0 <= mid <= self.len()`.
2003    ///
2004    /// [`split_at`]: slice::split_at
2005    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2006    ///
2007    /// # Examples
2008    ///
2009    /// ```
2010    /// let v = ['a', 'b', 'c'];
2011    ///
2012    /// unsafe {
2013    ///    let (left, right) = v.split_at_unchecked(0);
2014    ///    assert_eq!(left, []);
2015    ///    assert_eq!(right, ['a', 'b', 'c']);
2016    /// }
2017    ///
2018    /// unsafe {
2019    ///     let (left, right) = v.split_at_unchecked(2);
2020    ///     assert_eq!(left, ['a', 'b']);
2021    ///     assert_eq!(right, ['c']);
2022    /// }
2023    ///
2024    /// unsafe {
2025    ///     let (left, right) = v.split_at_unchecked(3);
2026    ///     assert_eq!(left, ['a', 'b', 'c']);
2027    ///     assert_eq!(right, []);
2028    /// }
2029    /// ```
2030    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2031    #[rustc_const_stable(feature = "const_slice_split_at_unchecked", since = "1.77.0")]
2032    #[inline]
2033    #[must_use]
2034    #[track_caller]
2035    pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
2036        // FIXME(const-hack): the const function `from_raw_parts` is used to make this
2037        // function const; previously the implementation used
2038        // `(self.get_unchecked(..mid), self.get_unchecked(mid..))`
2039
2040        let len = self.len();
2041        let ptr = self.as_ptr();
2042
2043        assert_unsafe_precondition!(
2044            check_library_ub,
2045            "slice::split_at_unchecked requires the index to be within the slice",
2046            (mid: usize = mid, len: usize = len) => mid <= len,
2047        );
2048
2049        // SAFETY: Caller has to check that `0 <= mid <= self.len()`
2050        unsafe { (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), unchecked_sub(len, mid))) }
2051    }
2052
2053    /// Divides one mutable slice into two at an index, without doing bounds checking.
2054    ///
2055    /// The first will contain all indices from `[0, mid)` (excluding
2056    /// the index `mid` itself) and the second will contain all
2057    /// indices from `[mid, len)` (excluding the index `len` itself).
2058    ///
2059    /// For a safe alternative see [`split_at_mut`].
2060    ///
2061    /// # Safety
2062    ///
2063    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2064    /// even if the resulting reference is not used. The caller has to ensure that
2065    /// `0 <= mid <= self.len()`.
2066    ///
2067    /// [`split_at_mut`]: slice::split_at_mut
2068    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2069    ///
2070    /// # Examples
2071    ///
2072    /// ```
2073    /// let mut v = [1, 0, 3, 0, 5, 6];
2074    /// // scoped to restrict the lifetime of the borrows
2075    /// unsafe {
2076    ///     let (left, right) = v.split_at_mut_unchecked(2);
2077    ///     assert_eq!(left, [1, 0]);
2078    ///     assert_eq!(right, [3, 0, 5, 6]);
2079    ///     left[1] = 2;
2080    ///     right[1] = 4;
2081    /// }
2082    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2083    /// ```
2084    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2085    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2086    #[inline]
2087    #[must_use]
2088    #[track_caller]
2089    pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2090        let len = self.len();
2091        let ptr = self.as_mut_ptr();
2092
2093        assert_unsafe_precondition!(
2094            check_library_ub,
2095            "slice::split_at_mut_unchecked requires the index to be within the slice",
2096            (mid: usize = mid, len: usize = len) => mid <= len,
2097        );
2098
2099        // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
2100        //
2101        // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
2102        // is fine.
2103        unsafe {
2104            (
2105                from_raw_parts_mut(ptr, mid),
2106                from_raw_parts_mut(ptr.add(mid), unchecked_sub(len, mid)),
2107            )
2108        }
2109    }
2110
2111    /// Divides one slice into two at an index, returning `None` if the slice is
2112    /// too short.
2113    ///
2114    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2115    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2116    /// second will contain all indices from `[mid, len)` (excluding the index
2117    /// `len` itself).
2118    ///
2119    /// Otherwise, if `mid > len`, returns `None`.
2120    ///
2121    /// # Examples
2122    ///
2123    /// ```
2124    /// let v = [1, -2, 3, -4, 5, -6];
2125    ///
2126    /// {
2127    ///    let (left, right) = v.split_at_checked(0).unwrap();
2128    ///    assert_eq!(left, []);
2129    ///    assert_eq!(right, [1, -2, 3, -4, 5, -6]);
2130    /// }
2131    ///
2132    /// {
2133    ///     let (left, right) = v.split_at_checked(2).unwrap();
2134    ///     assert_eq!(left, [1, -2]);
2135    ///     assert_eq!(right, [3, -4, 5, -6]);
2136    /// }
2137    ///
2138    /// {
2139    ///     let (left, right) = v.split_at_checked(6).unwrap();
2140    ///     assert_eq!(left, [1, -2, 3, -4, 5, -6]);
2141    ///     assert_eq!(right, []);
2142    /// }
2143    ///
2144    /// assert_eq!(None, v.split_at_checked(7));
2145    /// ```
2146    #[stable(feature = "split_at_checked", since = "1.80.0")]
2147    #[rustc_const_stable(feature = "split_at_checked", since = "1.80.0")]
2148    #[inline]
2149    #[must_use]
2150    pub const fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])> {
2151        if mid <= self.len() {
2152            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2153            // fulfills the requirements of `split_at_unchecked`.
2154            Some(unsafe { self.split_at_unchecked(mid) })
2155        } else {
2156            None
2157        }
2158    }
2159
2160    /// Divides one mutable slice into two at an index, returning `None` if the
2161    /// slice is too short.
2162    ///
2163    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2164    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2165    /// second will contain all indices from `[mid, len)` (excluding the index
2166    /// `len` itself).
2167    ///
2168    /// Otherwise, if `mid > len`, returns `None`.
2169    ///
2170    /// # Examples
2171    ///
2172    /// ```
2173    /// let mut v = [1, 0, 3, 0, 5, 6];
2174    ///
2175    /// if let Some((left, right)) = v.split_at_mut_checked(2) {
2176    ///     assert_eq!(left, [1, 0]);
2177    ///     assert_eq!(right, [3, 0, 5, 6]);
2178    ///     left[1] = 2;
2179    ///     right[1] = 4;
2180    /// }
2181    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2182    ///
2183    /// assert_eq!(None, v.split_at_mut_checked(7));
2184    /// ```
2185    #[stable(feature = "split_at_checked", since = "1.80.0")]
2186    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2187    #[inline]
2188    #[must_use]
2189    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut [T], &mut [T])> {
2190        if mid <= self.len() {
2191            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2192            // fulfills the requirements of `split_at_unchecked`.
2193            Some(unsafe { self.split_at_mut_unchecked(mid) })
2194        } else {
2195            None
2196        }
2197    }
2198
2199    /// Returns an iterator over subslices separated by elements that match
2200    /// `pred`. The matched element is not contained in the subslices.
2201    ///
2202    /// # Examples
2203    ///
2204    /// ```
2205    /// let slice = [10, 40, 33, 20];
2206    /// let mut iter = slice.split(|num| num % 3 == 0);
2207    ///
2208    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2209    /// assert_eq!(iter.next().unwrap(), &[20]);
2210    /// assert!(iter.next().is_none());
2211    /// ```
2212    ///
2213    /// If the first element is matched, an empty slice will be the first item
2214    /// returned by the iterator. Similarly, if the last element in the slice
2215    /// is matched, an empty slice will be the last item returned by the
2216    /// iterator:
2217    ///
2218    /// ```
2219    /// let slice = [10, 40, 33];
2220    /// let mut iter = slice.split(|num| num % 3 == 0);
2221    ///
2222    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2223    /// assert_eq!(iter.next().unwrap(), &[]);
2224    /// assert!(iter.next().is_none());
2225    /// ```
2226    ///
2227    /// If two matched elements are directly adjacent, an empty slice will be
2228    /// present between them:
2229    ///
2230    /// ```
2231    /// let slice = [10, 6, 33, 20];
2232    /// let mut iter = slice.split(|num| num % 3 == 0);
2233    ///
2234    /// assert_eq!(iter.next().unwrap(), &[10]);
2235    /// assert_eq!(iter.next().unwrap(), &[]);
2236    /// assert_eq!(iter.next().unwrap(), &[20]);
2237    /// assert!(iter.next().is_none());
2238    /// ```
2239    #[stable(feature = "rust1", since = "1.0.0")]
2240    #[inline]
2241    pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
2242    where
2243        F: FnMut(&T) -> bool,
2244    {
2245        Split::new(self, pred)
2246    }
2247
2248    /// Returns an iterator over mutable subslices separated by elements that
2249    /// match `pred`. The matched element is not contained in the subslices.
2250    ///
2251    /// # Examples
2252    ///
2253    /// ```
2254    /// let mut v = [10, 40, 30, 20, 60, 50];
2255    ///
2256    /// for group in v.split_mut(|num| *num % 3 == 0) {
2257    ///     group[0] = 1;
2258    /// }
2259    /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
2260    /// ```
2261    #[stable(feature = "rust1", since = "1.0.0")]
2262    #[inline]
2263    pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
2264    where
2265        F: FnMut(&T) -> bool,
2266    {
2267        SplitMut::new(self, pred)
2268    }
2269
2270    /// Returns an iterator over subslices separated by elements that match
2271    /// `pred`. The matched element is contained in the end of the previous
2272    /// subslice as a terminator.
2273    ///
2274    /// # Examples
2275    ///
2276    /// ```
2277    /// let slice = [10, 40, 33, 20];
2278    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2279    ///
2280    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2281    /// assert_eq!(iter.next().unwrap(), &[20]);
2282    /// assert!(iter.next().is_none());
2283    /// ```
2284    ///
2285    /// If the last element of the slice is matched,
2286    /// that element will be considered the terminator of the preceding slice.
2287    /// That slice will be the last item returned by the iterator.
2288    ///
2289    /// ```
2290    /// let slice = [3, 10, 40, 33];
2291    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2292    ///
2293    /// assert_eq!(iter.next().unwrap(), &[3]);
2294    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2295    /// assert!(iter.next().is_none());
2296    /// ```
2297    #[stable(feature = "split_inclusive", since = "1.51.0")]
2298    #[inline]
2299    pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
2300    where
2301        F: FnMut(&T) -> bool,
2302    {
2303        SplitInclusive::new(self, pred)
2304    }
2305
2306    /// Returns an iterator over mutable subslices separated by elements that
2307    /// match `pred`. The matched element is contained in the previous
2308    /// subslice as a terminator.
2309    ///
2310    /// # Examples
2311    ///
2312    /// ```
2313    /// let mut v = [10, 40, 30, 20, 60, 50];
2314    ///
2315    /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
2316    ///     let terminator_idx = group.len()-1;
2317    ///     group[terminator_idx] = 1;
2318    /// }
2319    /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
2320    /// ```
2321    #[stable(feature = "split_inclusive", since = "1.51.0")]
2322    #[inline]
2323    pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
2324    where
2325        F: FnMut(&T) -> bool,
2326    {
2327        SplitInclusiveMut::new(self, pred)
2328    }
2329
2330    /// Returns an iterator over subslices separated by elements that match
2331    /// `pred`, starting at the end of the slice and working backwards.
2332    /// The matched element is not contained in the subslices.
2333    ///
2334    /// # Examples
2335    ///
2336    /// ```
2337    /// let slice = [11, 22, 33, 0, 44, 55];
2338    /// let mut iter = slice.rsplit(|num| *num == 0);
2339    ///
2340    /// assert_eq!(iter.next().unwrap(), &[44, 55]);
2341    /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
2342    /// assert_eq!(iter.next(), None);
2343    /// ```
2344    ///
2345    /// As with `split()`, if the first or last element is matched, an empty
2346    /// slice will be the first (or last) item returned by the iterator.
2347    ///
2348    /// ```
2349    /// let v = &[0, 1, 1, 2, 3, 5, 8];
2350    /// let mut it = v.rsplit(|n| *n % 2 == 0);
2351    /// assert_eq!(it.next().unwrap(), &[]);
2352    /// assert_eq!(it.next().unwrap(), &[3, 5]);
2353    /// assert_eq!(it.next().unwrap(), &[1, 1]);
2354    /// assert_eq!(it.next().unwrap(), &[]);
2355    /// assert_eq!(it.next(), None);
2356    /// ```
2357    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2358    #[inline]
2359    pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
2360    where
2361        F: FnMut(&T) -> bool,
2362    {
2363        RSplit::new(self, pred)
2364    }
2365
2366    /// Returns an iterator over mutable subslices separated by elements that
2367    /// match `pred`, starting at the end of the slice and working
2368    /// backwards. The matched element is not contained in the subslices.
2369    ///
2370    /// # Examples
2371    ///
2372    /// ```
2373    /// let mut v = [100, 400, 300, 200, 600, 500];
2374    ///
2375    /// let mut count = 0;
2376    /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
2377    ///     count += 1;
2378    ///     group[0] = count;
2379    /// }
2380    /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
2381    /// ```
2382    ///
2383    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2384    #[inline]
2385    pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
2386    where
2387        F: FnMut(&T) -> bool,
2388    {
2389        RSplitMut::new(self, pred)
2390    }
2391
2392    /// Returns an iterator over subslices separated by elements that match
2393    /// `pred`, limited to returning at most `n` items. The matched element is
2394    /// not contained in the subslices.
2395    ///
2396    /// The last element returned, if any, will contain the remainder of the
2397    /// slice.
2398    ///
2399    /// # Examples
2400    ///
2401    /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
2402    /// `[20, 60, 50]`):
2403    ///
2404    /// ```
2405    /// let v = [10, 40, 30, 20, 60, 50];
2406    ///
2407    /// for group in v.splitn(2, |num| *num % 3 == 0) {
2408    ///     println!("{group:?}");
2409    /// }
2410    /// ```
2411    #[stable(feature = "rust1", since = "1.0.0")]
2412    #[inline]
2413    pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
2414    where
2415        F: FnMut(&T) -> bool,
2416    {
2417        SplitN::new(self.split(pred), n)
2418    }
2419
2420    /// Returns an iterator over mutable subslices separated by elements that match
2421    /// `pred`, limited to returning at most `n` items. The matched element is
2422    /// not contained in the subslices.
2423    ///
2424    /// The last element returned, if any, will contain the remainder of the
2425    /// slice.
2426    ///
2427    /// # Examples
2428    ///
2429    /// ```
2430    /// let mut v = [10, 40, 30, 20, 60, 50];
2431    ///
2432    /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
2433    ///     group[0] = 1;
2434    /// }
2435    /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
2436    /// ```
2437    #[stable(feature = "rust1", since = "1.0.0")]
2438    #[inline]
2439    pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
2440    where
2441        F: FnMut(&T) -> bool,
2442    {
2443        SplitNMut::new(self.split_mut(pred), n)
2444    }
2445
2446    /// Returns an iterator over subslices separated by elements that match
2447    /// `pred` limited to returning at most `n` items. This starts at the end of
2448    /// the slice and works backwards. The matched element is not contained in
2449    /// the subslices.
2450    ///
2451    /// The last element returned, if any, will contain the remainder of the
2452    /// slice.
2453    ///
2454    /// # Examples
2455    ///
2456    /// Print the slice split once, starting from the end, by numbers divisible
2457    /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
2458    ///
2459    /// ```
2460    /// let v = [10, 40, 30, 20, 60, 50];
2461    ///
2462    /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
2463    ///     println!("{group:?}");
2464    /// }
2465    /// ```
2466    #[stable(feature = "rust1", since = "1.0.0")]
2467    #[inline]
2468    pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
2469    where
2470        F: FnMut(&T) -> bool,
2471    {
2472        RSplitN::new(self.rsplit(pred), n)
2473    }
2474
2475    /// Returns an iterator over subslices separated by elements that match
2476    /// `pred` limited to returning at most `n` items. This starts at the end of
2477    /// the slice and works backwards. The matched element is not contained in
2478    /// the subslices.
2479    ///
2480    /// The last element returned, if any, will contain the remainder of the
2481    /// slice.
2482    ///
2483    /// # Examples
2484    ///
2485    /// ```
2486    /// let mut s = [10, 40, 30, 20, 60, 50];
2487    ///
2488    /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
2489    ///     group[0] = 1;
2490    /// }
2491    /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
2492    /// ```
2493    #[stable(feature = "rust1", since = "1.0.0")]
2494    #[inline]
2495    pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
2496    where
2497        F: FnMut(&T) -> bool,
2498    {
2499        RSplitNMut::new(self.rsplit_mut(pred), n)
2500    }
2501
2502    /// Splits the slice on the first element that matches the specified
2503    /// predicate.
2504    ///
2505    /// If any matching elements are present in the slice, returns the prefix
2506    /// before the match and suffix after. The matching element itself is not
2507    /// included. If no elements match, returns `None`.
2508    ///
2509    /// # Examples
2510    ///
2511    /// ```
2512    /// #![feature(slice_split_once)]
2513    /// let s = [1, 2, 3, 2, 4];
2514    /// assert_eq!(s.split_once(|&x| x == 2), Some((
2515    ///     &[1][..],
2516    ///     &[3, 2, 4][..]
2517    /// )));
2518    /// assert_eq!(s.split_once(|&x| x == 0), None);
2519    /// ```
2520    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2521    #[inline]
2522    pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2523    where
2524        F: FnMut(&T) -> bool,
2525    {
2526        let index = self.iter().position(pred)?;
2527        Some((&self[..index], &self[index + 1..]))
2528    }
2529
2530    /// Splits the slice on the last element that matches the specified
2531    /// predicate.
2532    ///
2533    /// If any matching elements are present in the slice, returns the prefix
2534    /// before the match and suffix after. The matching element itself is not
2535    /// included. If no elements match, returns `None`.
2536    ///
2537    /// # Examples
2538    ///
2539    /// ```
2540    /// #![feature(slice_split_once)]
2541    /// let s = [1, 2, 3, 2, 4];
2542    /// assert_eq!(s.rsplit_once(|&x| x == 2), Some((
2543    ///     &[1, 2, 3][..],
2544    ///     &[4][..]
2545    /// )));
2546    /// assert_eq!(s.rsplit_once(|&x| x == 0), None);
2547    /// ```
2548    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2549    #[inline]
2550    pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2551    where
2552        F: FnMut(&T) -> bool,
2553    {
2554        let index = self.iter().rposition(pred)?;
2555        Some((&self[..index], &self[index + 1..]))
2556    }
2557
2558    /// Returns `true` if the slice contains an element with the given value.
2559    ///
2560    /// This operation is *O*(*n*).
2561    ///
2562    /// Note that if you have a sorted slice, [`binary_search`] may be faster.
2563    ///
2564    /// [`binary_search`]: slice::binary_search
2565    ///
2566    /// # Examples
2567    ///
2568    /// ```
2569    /// let v = [10, 40, 30];
2570    /// assert!(v.contains(&30));
2571    /// assert!(!v.contains(&50));
2572    /// ```
2573    ///
2574    /// If you do not have a `&T`, but some other value that you can compare
2575    /// with one (for example, `String` implements `PartialEq<str>`), you can
2576    /// use `iter().any`:
2577    ///
2578    /// ```
2579    /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
2580    /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
2581    /// assert!(!v.iter().any(|e| e == "hi"));
2582    /// ```
2583    #[stable(feature = "rust1", since = "1.0.0")]
2584    #[inline]
2585    #[must_use]
2586    pub fn contains(&self, x: &T) -> bool
2587    where
2588        T: PartialEq,
2589    {
2590        cmp::SliceContains::slice_contains(x, self)
2591    }
2592
2593    /// Returns `true` if `needle` is a prefix of the slice or equal to the slice.
2594    ///
2595    /// # Examples
2596    ///
2597    /// ```
2598    /// let v = [10, 40, 30];
2599    /// assert!(v.starts_with(&[10]));
2600    /// assert!(v.starts_with(&[10, 40]));
2601    /// assert!(v.starts_with(&v));
2602    /// assert!(!v.starts_with(&[50]));
2603    /// assert!(!v.starts_with(&[10, 50]));
2604    /// ```
2605    ///
2606    /// Always returns `true` if `needle` is an empty slice:
2607    ///
2608    /// ```
2609    /// let v = &[10, 40, 30];
2610    /// assert!(v.starts_with(&[]));
2611    /// let v: &[u8] = &[];
2612    /// assert!(v.starts_with(&[]));
2613    /// ```
2614    #[stable(feature = "rust1", since = "1.0.0")]
2615    #[must_use]
2616    pub fn starts_with(&self, needle: &[T]) -> bool
2617    where
2618        T: PartialEq,
2619    {
2620        let n = needle.len();
2621        self.len() >= n && needle == &self[..n]
2622    }
2623
2624    /// Returns `true` if `needle` is a suffix of the slice or equal to the slice.
2625    ///
2626    /// # Examples
2627    ///
2628    /// ```
2629    /// let v = [10, 40, 30];
2630    /// assert!(v.ends_with(&[30]));
2631    /// assert!(v.ends_with(&[40, 30]));
2632    /// assert!(v.ends_with(&v));
2633    /// assert!(!v.ends_with(&[50]));
2634    /// assert!(!v.ends_with(&[50, 30]));
2635    /// ```
2636    ///
2637    /// Always returns `true` if `needle` is an empty slice:
2638    ///
2639    /// ```
2640    /// let v = &[10, 40, 30];
2641    /// assert!(v.ends_with(&[]));
2642    /// let v: &[u8] = &[];
2643    /// assert!(v.ends_with(&[]));
2644    /// ```
2645    #[stable(feature = "rust1", since = "1.0.0")]
2646    #[must_use]
2647    pub fn ends_with(&self, needle: &[T]) -> bool
2648    where
2649        T: PartialEq,
2650    {
2651        let (m, n) = (self.len(), needle.len());
2652        m >= n && needle == &self[m - n..]
2653    }
2654
2655    /// Returns a subslice with the prefix removed.
2656    ///
2657    /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
2658    /// If `prefix` is empty, simply returns the original slice. If `prefix` is equal to the
2659    /// original slice, returns an empty slice.
2660    ///
2661    /// If the slice does not start with `prefix`, returns `None`.
2662    ///
2663    /// # Examples
2664    ///
2665    /// ```
2666    /// let v = &[10, 40, 30];
2667    /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
2668    /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
2669    /// assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
2670    /// assert_eq!(v.strip_prefix(&[50]), None);
2671    /// assert_eq!(v.strip_prefix(&[10, 50]), None);
2672    ///
2673    /// let prefix : &str = "he";
2674    /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
2675    ///            Some(b"llo".as_ref()));
2676    /// ```
2677    #[must_use = "returns the subslice without modifying the original"]
2678    #[stable(feature = "slice_strip", since = "1.51.0")]
2679    pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
2680    where
2681        T: PartialEq,
2682    {
2683        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2684        let prefix = prefix.as_slice();
2685        let n = prefix.len();
2686        if n <= self.len() {
2687            let (head, tail) = self.split_at(n);
2688            if head == prefix {
2689                return Some(tail);
2690            }
2691        }
2692        None
2693    }
2694
2695    /// Returns a subslice with the suffix removed.
2696    ///
2697    /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
2698    /// If `suffix` is empty, simply returns the original slice. If `suffix` is equal to the
2699    /// original slice, returns an empty slice.
2700    ///
2701    /// If the slice does not end with `suffix`, returns `None`.
2702    ///
2703    /// # Examples
2704    ///
2705    /// ```
2706    /// let v = &[10, 40, 30];
2707    /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
2708    /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
2709    /// assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
2710    /// assert_eq!(v.strip_suffix(&[50]), None);
2711    /// assert_eq!(v.strip_suffix(&[50, 30]), None);
2712    /// ```
2713    #[must_use = "returns the subslice without modifying the original"]
2714    #[stable(feature = "slice_strip", since = "1.51.0")]
2715    pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
2716    where
2717        T: PartialEq,
2718    {
2719        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2720        let suffix = suffix.as_slice();
2721        let (len, n) = (self.len(), suffix.len());
2722        if n <= len {
2723            let (head, tail) = self.split_at(len - n);
2724            if tail == suffix {
2725                return Some(head);
2726            }
2727        }
2728        None
2729    }
2730
2731    /// Returns a subslice with the prefix and suffix removed.
2732    ///
2733    /// If the slice starts with `prefix` and ends with `suffix`, returns the subslice after the
2734    /// prefix and before the suffix, wrapped in `Some`.
2735    ///
2736    /// If the slice does not start with `prefix` or does not end with `suffix`, returns `None`.
2737    ///
2738    /// # Examples
2739    ///
2740    /// ```
2741    /// #![feature(strip_circumfix)]
2742    ///
2743    /// let v = &[10, 50, 40, 30];
2744    /// assert_eq!(v.strip_circumfix(&[10], &[30]), Some(&[50, 40][..]));
2745    /// assert_eq!(v.strip_circumfix(&[10], &[40, 30]), Some(&[50][..]));
2746    /// assert_eq!(v.strip_circumfix(&[10, 50], &[40, 30]), Some(&[][..]));
2747    /// assert_eq!(v.strip_circumfix(&[50], &[30]), None);
2748    /// assert_eq!(v.strip_circumfix(&[10], &[40]), None);
2749    /// assert_eq!(v.strip_circumfix(&[], &[40, 30]), Some(&[10, 50][..]));
2750    /// assert_eq!(v.strip_circumfix(&[10, 50], &[]), Some(&[40, 30][..]));
2751    /// ```
2752    #[must_use = "returns the subslice without modifying the original"]
2753    #[unstable(feature = "strip_circumfix", issue = "147946")]
2754    pub fn strip_circumfix<S, P>(&self, prefix: &P, suffix: &S) -> Option<&[T]>
2755    where
2756        T: PartialEq,
2757        S: SlicePattern<Item = T> + ?Sized,
2758        P: SlicePattern<Item = T> + ?Sized,
2759    {
2760        self.strip_prefix(prefix)?.strip_suffix(suffix)
2761    }
2762
2763    /// Returns a subslice with the optional prefix removed.
2764    ///
2765    /// If the slice starts with `prefix`, returns the subslice after the prefix.  If `prefix`
2766    /// is empty or the slice does not start with `prefix`, simply returns the original slice.
2767    /// If `prefix` is equal to the original slice, returns an empty slice.
2768    ///
2769    /// # Examples
2770    ///
2771    /// ```
2772    /// #![feature(trim_prefix_suffix)]
2773    ///
2774    /// let v = &[10, 40, 30];
2775    ///
2776    /// // Prefix present - removes it
2777    /// assert_eq!(v.trim_prefix(&[10]), &[40, 30][..]);
2778    /// assert_eq!(v.trim_prefix(&[10, 40]), &[30][..]);
2779    /// assert_eq!(v.trim_prefix(&[10, 40, 30]), &[][..]);
2780    ///
2781    /// // Prefix absent - returns original slice
2782    /// assert_eq!(v.trim_prefix(&[50]), &[10, 40, 30][..]);
2783    /// assert_eq!(v.trim_prefix(&[10, 50]), &[10, 40, 30][..]);
2784    ///
2785    /// let prefix : &str = "he";
2786    /// assert_eq!(b"hello".trim_prefix(prefix.as_bytes()), b"llo".as_ref());
2787    /// ```
2788    #[must_use = "returns the subslice without modifying the original"]
2789    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2790    pub fn trim_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> &[T]
2791    where
2792        T: PartialEq,
2793    {
2794        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2795        let prefix = prefix.as_slice();
2796        let n = prefix.len();
2797        if n <= self.len() {
2798            let (head, tail) = self.split_at(n);
2799            if head == prefix {
2800                return tail;
2801            }
2802        }
2803        self
2804    }
2805
2806    /// Returns a subslice with the optional suffix removed.
2807    ///
2808    /// If the slice ends with `suffix`, returns the subslice before the suffix.  If `suffix`
2809    /// is empty or the slice does not end with `suffix`, simply returns the original slice.
2810    /// If `suffix` is equal to the original slice, returns an empty slice.
2811    ///
2812    /// # Examples
2813    ///
2814    /// ```
2815    /// #![feature(trim_prefix_suffix)]
2816    ///
2817    /// let v = &[10, 40, 30];
2818    ///
2819    /// // Suffix present - removes it
2820    /// assert_eq!(v.trim_suffix(&[30]), &[10, 40][..]);
2821    /// assert_eq!(v.trim_suffix(&[40, 30]), &[10][..]);
2822    /// assert_eq!(v.trim_suffix(&[10, 40, 30]), &[][..]);
2823    ///
2824    /// // Suffix absent - returns original slice
2825    /// assert_eq!(v.trim_suffix(&[50]), &[10, 40, 30][..]);
2826    /// assert_eq!(v.trim_suffix(&[50, 30]), &[10, 40, 30][..]);
2827    /// ```
2828    #[must_use = "returns the subslice without modifying the original"]
2829    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2830    pub fn trim_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> &[T]
2831    where
2832        T: PartialEq,
2833    {
2834        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2835        let suffix = suffix.as_slice();
2836        let (len, n) = (self.len(), suffix.len());
2837        if n <= len {
2838            let (head, tail) = self.split_at(len - n);
2839            if tail == suffix {
2840                return head;
2841            }
2842        }
2843        self
2844    }
2845
2846    /// Binary searches this slice for a given element.
2847    /// If the slice is not sorted, the returned result is unspecified and
2848    /// meaningless.
2849    ///
2850    /// If the value is found then [`Result::Ok`] is returned, containing the
2851    /// index of the matching element. If there are multiple matches, then any
2852    /// one of the matches could be returned. The index is chosen
2853    /// deterministically, but is subject to change in future versions of Rust.
2854    /// If the value is not found then [`Result::Err`] is returned, containing
2855    /// the index where a matching element could be inserted while maintaining
2856    /// sorted order.
2857    ///
2858    /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2859    ///
2860    /// [`binary_search_by`]: slice::binary_search_by
2861    /// [`binary_search_by_key`]: slice::binary_search_by_key
2862    /// [`partition_point`]: slice::partition_point
2863    ///
2864    /// # Examples
2865    ///
2866    /// Looks up a series of four elements. The first is found, with a
2867    /// uniquely determined position; the second and third are not
2868    /// found; the fourth could match any position in `[1, 4]`.
2869    ///
2870    /// ```
2871    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2872    ///
2873    /// assert_eq!(s.binary_search(&13),  Ok(9));
2874    /// assert_eq!(s.binary_search(&4),   Err(7));
2875    /// assert_eq!(s.binary_search(&100), Err(13));
2876    /// let r = s.binary_search(&1);
2877    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2878    /// ```
2879    ///
2880    /// If you want to find that whole *range* of matching items, rather than
2881    /// an arbitrary matching one, that can be done using [`partition_point`]:
2882    /// ```
2883    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2884    ///
2885    /// let low = s.partition_point(|x| x < &1);
2886    /// assert_eq!(low, 1);
2887    /// let high = s.partition_point(|x| x <= &1);
2888    /// assert_eq!(high, 5);
2889    /// let r = s.binary_search(&1);
2890    /// assert!((low..high).contains(&r.unwrap()));
2891    ///
2892    /// assert!(s[..low].iter().all(|&x| x < 1));
2893    /// assert!(s[low..high].iter().all(|&x| x == 1));
2894    /// assert!(s[high..].iter().all(|&x| x > 1));
2895    ///
2896    /// // For something not found, the "range" of equal items is empty
2897    /// assert_eq!(s.partition_point(|x| x < &11), 9);
2898    /// assert_eq!(s.partition_point(|x| x <= &11), 9);
2899    /// assert_eq!(s.binary_search(&11), Err(9));
2900    /// ```
2901    ///
2902    /// If you want to insert an item to a sorted vector, while maintaining
2903    /// sort order, consider using [`partition_point`]:
2904    ///
2905    /// ```
2906    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2907    /// let num = 42;
2908    /// let idx = s.partition_point(|&x| x <= num);
2909    /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2910    /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
2911    /// // to shift less elements.
2912    /// s.insert(idx, num);
2913    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2914    /// ```
2915    #[stable(feature = "rust1", since = "1.0.0")]
2916    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2917    where
2918        T: Ord,
2919    {
2920        self.binary_search_by(|p| p.cmp(x))
2921    }
2922
2923    /// Binary searches this slice with a comparator function.
2924    ///
2925    /// The comparator function should return an order code that indicates
2926    /// whether its argument is `Less`, `Equal` or `Greater` the desired
2927    /// target.
2928    /// If the slice is not sorted or if the comparator function does not
2929    /// implement an order consistent with the sort order of the underlying
2930    /// slice, the returned result is unspecified and meaningless.
2931    ///
2932    /// If the value is found then [`Result::Ok`] is returned, containing the
2933    /// index of the matching element. If there are multiple matches, then any
2934    /// one of the matches could be returned. The index is chosen
2935    /// deterministically, but is subject to change in future versions of Rust.
2936    /// If the value is not found then [`Result::Err`] is returned, containing
2937    /// the index where a matching element could be inserted while maintaining
2938    /// sorted order.
2939    ///
2940    /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2941    ///
2942    /// [`binary_search`]: slice::binary_search
2943    /// [`binary_search_by_key`]: slice::binary_search_by_key
2944    /// [`partition_point`]: slice::partition_point
2945    ///
2946    /// # Examples
2947    ///
2948    /// Looks up a series of four elements. The first is found, with a
2949    /// uniquely determined position; the second and third are not
2950    /// found; the fourth could match any position in `[1, 4]`.
2951    ///
2952    /// ```
2953    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2954    ///
2955    /// let seek = 13;
2956    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
2957    /// let seek = 4;
2958    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
2959    /// let seek = 100;
2960    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
2961    /// let seek = 1;
2962    /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
2963    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2964    /// ```
2965    #[stable(feature = "rust1", since = "1.0.0")]
2966    #[inline]
2967    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
2968    where
2969        F: FnMut(&'a T) -> Ordering,
2970    {
2971        let mut size = self.len();
2972        if size == 0 {
2973            return Err(0);
2974        }
2975        let mut base = 0usize;
2976
2977        // This loop intentionally doesn't have an early exit if the comparison
2978        // returns Equal. We want the number of loop iterations to depend *only*
2979        // on the size of the input slice so that the CPU can reliably predict
2980        // the loop count.
2981        while size > 1 {
2982            let half = size / 2;
2983            let mid = base + half;
2984
2985            // SAFETY: the call is made safe by the following invariants:
2986            // - `mid >= 0`: by definition
2987            // - `mid < size`: `mid = size / 2 + size / 4 + size / 8 ...`
2988            let cmp = f(unsafe { self.get_unchecked(mid) });
2989
2990            // Binary search interacts poorly with branch prediction, so force
2991            // the compiler to use conditional moves if supported by the target
2992            // architecture.
2993            base = hint::select_unpredictable(cmp == Greater, base, mid);
2994
2995            // This is imprecise in the case where `size` is odd and the
2996            // comparison returns Greater: the mid element still gets included
2997            // by `size` even though it's known to be larger than the element
2998            // being searched for.
2999            //
3000            // This is fine though: we gain more performance by keeping the
3001            // loop iteration count invariant (and thus predictable) than we
3002            // lose from considering one additional element.
3003            size -= half;
3004        }
3005
3006        // SAFETY: base is always in [0, size) because base <= mid.
3007        let cmp = f(unsafe { self.get_unchecked(base) });
3008        if cmp == Equal {
3009            // SAFETY: same as the `get_unchecked` above.
3010            unsafe { hint::assert_unchecked(base < self.len()) };
3011            Ok(base)
3012        } else {
3013            let result = base + (cmp == Less) as usize;
3014            // SAFETY: same as the `get_unchecked` above.
3015            // Note that this is `<=`, unlike the assume in the `Ok` path.
3016            unsafe { hint::assert_unchecked(result <= self.len()) };
3017            Err(result)
3018        }
3019    }
3020
3021    /// Binary searches this slice with a key extraction function.
3022    ///
3023    /// Assumes that the slice is sorted by the key, for instance with
3024    /// [`sort_by_key`] using the same key extraction function.
3025    /// If the slice is not sorted by the key, the returned result is
3026    /// unspecified and meaningless.
3027    ///
3028    /// If the value is found then [`Result::Ok`] is returned, containing the
3029    /// index of the matching element. If there are multiple matches, then any
3030    /// one of the matches could be returned. The index is chosen
3031    /// deterministically, but is subject to change in future versions of Rust.
3032    /// If the value is not found then [`Result::Err`] is returned, containing
3033    /// the index where a matching element could be inserted while maintaining
3034    /// sorted order.
3035    ///
3036    /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
3037    ///
3038    /// [`sort_by_key`]: slice::sort_by_key
3039    /// [`binary_search`]: slice::binary_search
3040    /// [`binary_search_by`]: slice::binary_search_by
3041    /// [`partition_point`]: slice::partition_point
3042    ///
3043    /// # Examples
3044    ///
3045    /// Looks up a series of four elements in a slice of pairs sorted by
3046    /// their second elements. The first is found, with a uniquely
3047    /// determined position; the second and third are not found; the
3048    /// fourth could match any position in `[1, 4]`.
3049    ///
3050    /// ```
3051    /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
3052    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
3053    ///          (1, 21), (2, 34), (4, 55)];
3054    ///
3055    /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
3056    /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
3057    /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
3058    /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
3059    /// assert!(match r { Ok(1..=4) => true, _ => false, });
3060    /// ```
3061    // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
3062    // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
3063    // This breaks links when slice is displayed in core, but changing it to use relative links
3064    // would break when the item is re-exported. So allow the core links to be broken for now.
3065    #[allow(rustdoc::broken_intra_doc_links)]
3066    #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
3067    #[inline]
3068    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
3069    where
3070        F: FnMut(&'a T) -> B,
3071        B: Ord,
3072    {
3073        self.binary_search_by(|k| f(k).cmp(b))
3074    }
3075
3076    /// Sorts the slice in ascending order **without** preserving the initial order of equal elements.
3077    ///
3078    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3079    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3080    ///
3081    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
3082    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3083    /// is unspecified. See also the note on panicking below.
3084    ///
3085    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3086    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3087    /// examples see the [`Ord`] documentation.
3088    ///
3089    ///
3090    /// All original elements will remain in the slice and any possible modifications via interior
3091    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `T` panics.
3092    ///
3093    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
3094    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
3095    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
3096    /// `slice::sort_unstable_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a
3097    /// [total order] users can sort slices containing floating-point values. Alternatively, if all
3098    /// values in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`]
3099    /// forms a [total order], it's possible to sort the slice with `sort_unstable_by(|a, b|
3100    /// a.partial_cmp(b).unwrap())`.
3101    ///
3102    /// # Current implementation
3103    ///
3104    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3105    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3106    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3107    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3108    ///
3109    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3110    /// slice is partially sorted.
3111    ///
3112    /// # Panics
3113    ///
3114    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
3115    /// the [`Ord`] implementation panics.
3116    ///
3117    /// # Examples
3118    ///
3119    /// ```
3120    /// let mut v = [4, -5, 1, -3, 2];
3121    ///
3122    /// v.sort_unstable();
3123    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3124    /// ```
3125    ///
3126    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3127    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3128    #[stable(feature = "sort_unstable", since = "1.20.0")]
3129    #[inline]
3130    pub fn sort_unstable(&mut self)
3131    where
3132        T: Ord,
3133    {
3134        sort::unstable::sort(self, &mut T::lt);
3135    }
3136
3137    /// Sorts the slice in ascending order with a comparison function, **without** preserving the
3138    /// initial order of equal elements.
3139    ///
3140    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3141    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3142    ///
3143    /// If the comparison function `compare` does not implement a [total order], the function
3144    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3145    /// is unspecified. See also the note on panicking below.
3146    ///
3147    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3148    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3149    /// examples see the [`Ord`] documentation.
3150    ///
3151    /// All original elements will remain in the slice and any possible modifications via interior
3152    /// mutability are observed in the input. Same is true if `compare` panics.
3153    ///
3154    /// # Current implementation
3155    ///
3156    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3157    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3158    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3159    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3160    ///
3161    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3162    /// slice is partially sorted.
3163    ///
3164    /// # Panics
3165    ///
3166    /// May panic if the `compare` does not implement a [total order], or if
3167    /// the `compare` itself panics.
3168    ///
3169    /// # Examples
3170    ///
3171    /// ```
3172    /// let mut v = [4, -5, 1, -3, 2];
3173    /// v.sort_unstable_by(|a, b| a.cmp(b));
3174    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3175    ///
3176    /// // reverse sorting
3177    /// v.sort_unstable_by(|a, b| b.cmp(a));
3178    /// assert_eq!(v, [4, 2, 1, -3, -5]);
3179    /// ```
3180    ///
3181    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3182    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3183    #[stable(feature = "sort_unstable", since = "1.20.0")]
3184    #[inline]
3185    pub fn sort_unstable_by<F>(&mut self, mut compare: F)
3186    where
3187        F: FnMut(&T, &T) -> Ordering,
3188    {
3189        sort::unstable::sort(self, &mut |a, b| compare(a, b) == Ordering::Less);
3190    }
3191
3192    /// Sorts the slice in ascending order with a key extraction function, **without** preserving
3193    /// the initial order of equal elements.
3194    ///
3195    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3196    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3197    ///
3198    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
3199    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3200    /// is unspecified. See also the note on panicking below.
3201    ///
3202    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3203    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3204    /// examples see the [`Ord`] documentation.
3205    ///
3206    /// All original elements will remain in the slice and any possible modifications via interior
3207    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `K` panics.
3208    ///
3209    /// # Current implementation
3210    ///
3211    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3212    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3213    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3214    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3215    ///
3216    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3217    /// slice is partially sorted.
3218    ///
3219    /// # Panics
3220    ///
3221    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
3222    /// the [`Ord`] implementation panics.
3223    ///
3224    /// # Examples
3225    ///
3226    /// ```
3227    /// let mut v = [4i32, -5, 1, -3, 2];
3228    ///
3229    /// v.sort_unstable_by_key(|k| k.abs());
3230    /// assert_eq!(v, [1, 2, -3, 4, -5]);
3231    /// ```
3232    ///
3233    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3234    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3235    #[stable(feature = "sort_unstable", since = "1.20.0")]
3236    #[inline]
3237    pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
3238    where
3239        F: FnMut(&T) -> K,
3240        K: Ord,
3241    {
3242        sort::unstable::sort(self, &mut |a, b| f(a).lt(&f(b)));
3243    }
3244
3245    /// Reorders the slice such that the element at `index` is at a sort-order position. All
3246    /// elements before `index` will be `<=` to this value, and all elements after will be `>=` to
3247    /// it.
3248    ///
3249    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3250    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3251    /// function is also known as "kth element" in other libraries.
3252    ///
3253    /// Returns a triple that partitions the reordered slice:
3254    ///
3255    /// * The unsorted subslice before `index`, whose elements all satisfy `x <= self[index]`.
3256    ///
3257    /// * The element at `index`.
3258    ///
3259    /// * The unsorted subslice after `index`, whose elements all satisfy `x >= self[index]`.
3260    ///
3261    /// # Current implementation
3262    ///
3263    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3264    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3265    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3266    /// for all inputs.
3267    ///
3268    /// [`sort_unstable`]: slice::sort_unstable
3269    ///
3270    /// # Panics
3271    ///
3272    /// Panics when `index >= len()`, and so always panics on empty slices.
3273    ///
3274    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order].
3275    ///
3276    /// # Examples
3277    ///
3278    /// ```
3279    /// let mut v = [-5i32, 4, 2, -3, 1];
3280    ///
3281    /// // Find the items `<=` to the median, the median itself, and the items `>=` to it.
3282    /// let (lesser, median, greater) = v.select_nth_unstable(2);
3283    ///
3284    /// assert!(lesser == [-3, -5] || lesser == [-5, -3]);
3285    /// assert_eq!(median, &mut 1);
3286    /// assert!(greater == [4, 2] || greater == [2, 4]);
3287    ///
3288    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3289    /// // about the specified index.
3290    /// assert!(v == [-3, -5, 1, 2, 4] ||
3291    ///         v == [-5, -3, 1, 2, 4] ||
3292    ///         v == [-3, -5, 1, 4, 2] ||
3293    ///         v == [-5, -3, 1, 4, 2]);
3294    /// ```
3295    ///
3296    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3297    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3298    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3299    #[inline]
3300    pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
3301    where
3302        T: Ord,
3303    {
3304        sort::select::partition_at_index(self, index, T::lt)
3305    }
3306
3307    /// Reorders the slice with a comparator function such that the element at `index` is at a
3308    /// sort-order position. All elements before `index` will be `<=` to this value, and all
3309    /// elements after will be `>=` to it, according to the comparator function.
3310    ///
3311    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3312    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3313    /// function is also known as "kth element" in other libraries.
3314    ///
3315    /// Returns a triple partitioning the reordered slice:
3316    ///
3317    /// * The unsorted subslice before `index`, whose elements all satisfy
3318    ///   `compare(x, self[index]).is_le()`.
3319    ///
3320    /// * The element at `index`.
3321    ///
3322    /// * The unsorted subslice after `index`, whose elements all satisfy
3323    ///   `compare(x, self[index]).is_ge()`.
3324    ///
3325    /// # Current implementation
3326    ///
3327    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3328    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3329    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3330    /// for all inputs.
3331    ///
3332    /// [`sort_unstable`]: slice::sort_unstable
3333    ///
3334    /// # Panics
3335    ///
3336    /// Panics when `index >= len()`, and so always panics on empty slices.
3337    ///
3338    /// May panic if `compare` does not implement a [total order].
3339    ///
3340    /// # Examples
3341    ///
3342    /// ```
3343    /// let mut v = [-5i32, 4, 2, -3, 1];
3344    ///
3345    /// // Find the items `>=` to the median, the median itself, and the items `<=` to it, by using
3346    /// // a reversed comparator.
3347    /// let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));
3348    ///
3349    /// assert!(before == [4, 2] || before == [2, 4]);
3350    /// assert_eq!(median, &mut 1);
3351    /// assert!(after == [-3, -5] || after == [-5, -3]);
3352    ///
3353    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3354    /// // about the specified index.
3355    /// assert!(v == [2, 4, 1, -5, -3] ||
3356    ///         v == [2, 4, 1, -3, -5] ||
3357    ///         v == [4, 2, 1, -5, -3] ||
3358    ///         v == [4, 2, 1, -3, -5]);
3359    /// ```
3360    ///
3361    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3362    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3363    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3364    #[inline]
3365    pub fn select_nth_unstable_by<F>(
3366        &mut self,
3367        index: usize,
3368        mut compare: F,
3369    ) -> (&mut [T], &mut T, &mut [T])
3370    where
3371        F: FnMut(&T, &T) -> Ordering,
3372    {
3373        sort::select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3374    }
3375
3376    /// Reorders the slice with a key extraction function such that the element at `index` is at a
3377    /// sort-order position. All elements before `index` will have keys `<=` to the key at `index`,
3378    /// and all elements after will have keys `>=` to it.
3379    ///
3380    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3381    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3382    /// function is also known as "kth element" in other libraries.
3383    ///
3384    /// Returns a triple partitioning the reordered slice:
3385    ///
3386    /// * The unsorted subslice before `index`, whose elements all satisfy `f(x) <= f(self[index])`.
3387    ///
3388    /// * The element at `index`.
3389    ///
3390    /// * The unsorted subslice after `index`, whose elements all satisfy `f(x) >= f(self[index])`.
3391    ///
3392    /// # Current implementation
3393    ///
3394    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3395    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3396    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3397    /// for all inputs.
3398    ///
3399    /// [`sort_unstable`]: slice::sort_unstable
3400    ///
3401    /// # Panics
3402    ///
3403    /// Panics when `index >= len()`, meaning it always panics on empty slices.
3404    ///
3405    /// May panic if `K: Ord` does not implement a total order.
3406    ///
3407    /// # Examples
3408    ///
3409    /// ```
3410    /// let mut v = [-5i32, 4, 1, -3, 2];
3411    ///
3412    /// // Find the items `<=` to the absolute median, the absolute median itself, and the items
3413    /// // `>=` to it.
3414    /// let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());
3415    ///
3416    /// assert!(lesser == [1, 2] || lesser == [2, 1]);
3417    /// assert_eq!(median, &mut -3);
3418    /// assert!(greater == [4, -5] || greater == [-5, 4]);
3419    ///
3420    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3421    /// // about the specified index.
3422    /// assert!(v == [1, 2, -3, 4, -5] ||
3423    ///         v == [1, 2, -3, -5, 4] ||
3424    ///         v == [2, 1, -3, 4, -5] ||
3425    ///         v == [2, 1, -3, -5, 4]);
3426    /// ```
3427    ///
3428    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3429    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3430    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3431    #[inline]
3432    pub fn select_nth_unstable_by_key<K, F>(
3433        &mut self,
3434        index: usize,
3435        mut f: F,
3436    ) -> (&mut [T], &mut T, &mut [T])
3437    where
3438        F: FnMut(&T) -> K,
3439        K: Ord,
3440    {
3441        sort::select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3442    }
3443
3444    /// Moves all consecutive repeated elements to the end of the slice according to the
3445    /// [`PartialEq`] trait implementation.
3446    ///
3447    /// Returns two slices. The first contains no consecutive repeated elements.
3448    /// The second contains all the duplicates in no specified order.
3449    ///
3450    /// If the slice is sorted, the first returned slice contains no duplicates.
3451    ///
3452    /// # Examples
3453    ///
3454    /// ```
3455    /// #![feature(slice_partition_dedup)]
3456    ///
3457    /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
3458    ///
3459    /// let (dedup, duplicates) = slice.partition_dedup();
3460    ///
3461    /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
3462    /// assert_eq!(duplicates, [2, 3, 1]);
3463    /// ```
3464    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3465    #[inline]
3466    pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
3467    where
3468        T: PartialEq,
3469    {
3470        self.partition_dedup_by(|a, b| a == b)
3471    }
3472
3473    /// Moves all but the first of consecutive elements to the end of the slice satisfying
3474    /// a given equality relation.
3475    ///
3476    /// Returns two slices. The first contains no consecutive repeated elements.
3477    /// The second contains all the duplicates in no specified order.
3478    ///
3479    /// The `same_bucket` function is passed references to two elements from the slice and
3480    /// must determine if the elements compare equal. The elements are passed in opposite order
3481    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
3482    /// at the end of the slice.
3483    ///
3484    /// If the slice is sorted, the first returned slice contains no duplicates.
3485    ///
3486    /// # Examples
3487    ///
3488    /// ```
3489    /// #![feature(slice_partition_dedup)]
3490    ///
3491    /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
3492    ///
3493    /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
3494    ///
3495    /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
3496    /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
3497    /// ```
3498    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3499    #[inline]
3500    pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
3501    where
3502        F: FnMut(&mut T, &mut T) -> bool,
3503    {
3504        // Although we have a mutable reference to `self`, we cannot make
3505        // *arbitrary* changes. The `same_bucket` calls could panic, so we
3506        // must ensure that the slice is in a valid state at all times.
3507        //
3508        // The way that we handle this is by using swaps; we iterate
3509        // over all the elements, swapping as we go so that at the end
3510        // the elements we wish to keep are in the front, and those we
3511        // wish to reject are at the back. We can then split the slice.
3512        // This operation is still `O(n)`.
3513        //
3514        // Example: We start in this state, where `r` represents "next
3515        // read" and `w` represents "next_write".
3516        //
3517        //           r
3518        //     +---+---+---+---+---+---+
3519        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3520        //     +---+---+---+---+---+---+
3521        //           w
3522        //
3523        // Comparing self[r] against self[w-1], this is not a duplicate, so
3524        // we swap self[r] and self[w] (no effect as r==w) and then increment both
3525        // r and w, leaving us with:
3526        //
3527        //               r
3528        //     +---+---+---+---+---+---+
3529        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3530        //     +---+---+---+---+---+---+
3531        //               w
3532        //
3533        // Comparing self[r] against self[w-1], this value is a duplicate,
3534        // so we increment `r` but leave everything else unchanged:
3535        //
3536        //                   r
3537        //     +---+---+---+---+---+---+
3538        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3539        //     +---+---+---+---+---+---+
3540        //               w
3541        //
3542        // Comparing self[r] against self[w-1], this is not a duplicate,
3543        // so swap self[r] and self[w] and advance r and w:
3544        //
3545        //                       r
3546        //     +---+---+---+---+---+---+
3547        //     | 0 | 1 | 2 | 1 | 3 | 3 |
3548        //     +---+---+---+---+---+---+
3549        //                   w
3550        //
3551        // Not a duplicate, repeat:
3552        //
3553        //                           r
3554        //     +---+---+---+---+---+---+
3555        //     | 0 | 1 | 2 | 3 | 1 | 3 |
3556        //     +---+---+---+---+---+---+
3557        //                       w
3558        //
3559        // Duplicate, advance r. End of slice. Split at w.
3560
3561        let len = self.len();
3562        if len <= 1 {
3563            return (self, &mut []);
3564        }
3565
3566        let ptr = self.as_mut_ptr();
3567        let mut next_read: usize = 1;
3568        let mut next_write: usize = 1;
3569
3570        // SAFETY: the `while` condition guarantees `next_read` and `next_write`
3571        // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
3572        // one element before `ptr_write`, but `next_write` starts at 1, so
3573        // `prev_ptr_write` is never less than 0 and is inside the slice.
3574        // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
3575        // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
3576        // and `prev_ptr_write.offset(1)`.
3577        //
3578        // `next_write` is also incremented at most once per loop at most meaning
3579        // no element is skipped when it may need to be swapped.
3580        //
3581        // `ptr_read` and `prev_ptr_write` never point to the same element. This
3582        // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
3583        // The explanation is simply that `next_read >= next_write` is always true,
3584        // thus `next_read > next_write - 1` is too.
3585        unsafe {
3586            // Avoid bounds checks by using raw pointers.
3587            while next_read < len {
3588                let ptr_read = ptr.add(next_read);
3589                let prev_ptr_write = ptr.add(next_write - 1);
3590                if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
3591                    if next_read != next_write {
3592                        let ptr_write = prev_ptr_write.add(1);
3593                        mem::swap(&mut *ptr_read, &mut *ptr_write);
3594                    }
3595                    next_write += 1;
3596                }
3597                next_read += 1;
3598            }
3599        }
3600
3601        self.split_at_mut(next_write)
3602    }
3603
3604    /// Moves all but the first of consecutive elements to the end of the slice that resolve
3605    /// to the same key.
3606    ///
3607    /// Returns two slices. The first contains no consecutive repeated elements.
3608    /// The second contains all the duplicates in no specified order.
3609    ///
3610    /// If the slice is sorted, the first returned slice contains no duplicates.
3611    ///
3612    /// # Examples
3613    ///
3614    /// ```
3615    /// #![feature(slice_partition_dedup)]
3616    ///
3617    /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
3618    ///
3619    /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
3620    ///
3621    /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
3622    /// assert_eq!(duplicates, [21, 30, 13]);
3623    /// ```
3624    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3625    #[inline]
3626    pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
3627    where
3628        F: FnMut(&mut T) -> K,
3629        K: PartialEq,
3630    {
3631        self.partition_dedup_by(|a, b| key(a) == key(b))
3632    }
3633
3634    /// Rotates the slice in-place such that the first `mid` elements of the
3635    /// slice move to the end while the last `self.len() - mid` elements move to
3636    /// the front.
3637    ///
3638    /// After calling `rotate_left`, the element previously at index `mid` will
3639    /// become the first element in the slice.
3640    ///
3641    /// # Panics
3642    ///
3643    /// This function will panic if `mid` is greater than the length of the
3644    /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
3645    /// rotation.
3646    ///
3647    /// # Complexity
3648    ///
3649    /// Takes linear (in `self.len()`) time.
3650    ///
3651    /// # Examples
3652    ///
3653    /// ```
3654    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3655    /// a.rotate_left(2);
3656    /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
3657    /// ```
3658    ///
3659    /// Rotating a subslice:
3660    ///
3661    /// ```
3662    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3663    /// a[1..5].rotate_left(1);
3664    /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
3665    /// ```
3666    #[stable(feature = "slice_rotate", since = "1.26.0")]
3667    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3668    pub const fn rotate_left(&mut self, mid: usize) {
3669        assert!(mid <= self.len());
3670        let k = self.len() - mid;
3671        let p = self.as_mut_ptr();
3672
3673        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3674        // valid for reading and writing, as required by `ptr_rotate`.
3675        unsafe {
3676            rotate::ptr_rotate(mid, p.add(mid), k);
3677        }
3678    }
3679
3680    /// Rotates the slice in-place such that the first `self.len() - k`
3681    /// elements of the slice move to the end while the last `k` elements move
3682    /// to the front.
3683    ///
3684    /// After calling `rotate_right`, the element previously at index
3685    /// `self.len() - k` will become the first element in the slice.
3686    ///
3687    /// # Panics
3688    ///
3689    /// This function will panic if `k` is greater than the length of the
3690    /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
3691    /// rotation.
3692    ///
3693    /// # Complexity
3694    ///
3695    /// Takes linear (in `self.len()`) time.
3696    ///
3697    /// # Examples
3698    ///
3699    /// ```
3700    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3701    /// a.rotate_right(2);
3702    /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
3703    /// ```
3704    ///
3705    /// Rotating a subslice:
3706    ///
3707    /// ```
3708    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3709    /// a[1..5].rotate_right(1);
3710    /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
3711    /// ```
3712    #[stable(feature = "slice_rotate", since = "1.26.0")]
3713    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3714    pub const fn rotate_right(&mut self, k: usize) {
3715        assert!(k <= self.len());
3716        let mid = self.len() - k;
3717        let p = self.as_mut_ptr();
3718
3719        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3720        // valid for reading and writing, as required by `ptr_rotate`.
3721        unsafe {
3722            rotate::ptr_rotate(mid, p.add(mid), k);
3723        }
3724    }
3725
3726    /// Fills `self` with elements by cloning `value`.
3727    ///
3728    /// # Examples
3729    ///
3730    /// ```
3731    /// let mut buf = vec![0; 10];
3732    /// buf.fill(1);
3733    /// assert_eq!(buf, vec![1; 10]);
3734    /// ```
3735    #[doc(alias = "memset")]
3736    #[stable(feature = "slice_fill", since = "1.50.0")]
3737    pub fn fill(&mut self, value: T)
3738    where
3739        T: Clone,
3740    {
3741        specialize::SpecFill::spec_fill(self, value);
3742    }
3743
3744    /// Fills `self` with elements returned by calling a closure repeatedly.
3745    ///
3746    /// This method uses a closure to create new values. If you'd rather
3747    /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
3748    /// trait to generate values, you can pass [`Default::default`] as the
3749    /// argument.
3750    ///
3751    /// [`fill`]: slice::fill
3752    ///
3753    /// # Examples
3754    ///
3755    /// ```
3756    /// let mut buf = vec![1; 10];
3757    /// buf.fill_with(Default::default);
3758    /// assert_eq!(buf, vec![0; 10]);
3759    /// ```
3760    #[stable(feature = "slice_fill_with", since = "1.51.0")]
3761    pub fn fill_with<F>(&mut self, mut f: F)
3762    where
3763        F: FnMut() -> T,
3764    {
3765        for el in self {
3766            *el = f();
3767        }
3768    }
3769
3770    /// Copies the elements from `src` into `self`.
3771    ///
3772    /// The length of `src` must be the same as `self`.
3773    ///
3774    /// # Panics
3775    ///
3776    /// This function will panic if the two slices have different lengths.
3777    ///
3778    /// # Examples
3779    ///
3780    /// Cloning two elements from a slice into another:
3781    ///
3782    /// ```
3783    /// let src = [1, 2, 3, 4];
3784    /// let mut dst = [0, 0];
3785    ///
3786    /// // Because the slices have to be the same length,
3787    /// // we slice the source slice from four elements
3788    /// // to two. It will panic if we don't do this.
3789    /// dst.clone_from_slice(&src[2..]);
3790    ///
3791    /// assert_eq!(src, [1, 2, 3, 4]);
3792    /// assert_eq!(dst, [3, 4]);
3793    /// ```
3794    ///
3795    /// Rust enforces that there can only be one mutable reference with no
3796    /// immutable references to a particular piece of data in a particular
3797    /// scope. Because of this, attempting to use `clone_from_slice` on a
3798    /// single slice will result in a compile failure:
3799    ///
3800    /// ```compile_fail
3801    /// let mut slice = [1, 2, 3, 4, 5];
3802    ///
3803    /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
3804    /// ```
3805    ///
3806    /// To work around this, we can use [`split_at_mut`] to create two distinct
3807    /// sub-slices from a slice:
3808    ///
3809    /// ```
3810    /// let mut slice = [1, 2, 3, 4, 5];
3811    ///
3812    /// {
3813    ///     let (left, right) = slice.split_at_mut(2);
3814    ///     left.clone_from_slice(&right[1..]);
3815    /// }
3816    ///
3817    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3818    /// ```
3819    ///
3820    /// [`copy_from_slice`]: slice::copy_from_slice
3821    /// [`split_at_mut`]: slice::split_at_mut
3822    #[stable(feature = "clone_from_slice", since = "1.7.0")]
3823    #[track_caller]
3824    pub fn clone_from_slice(&mut self, src: &[T])
3825    where
3826        T: Clone,
3827    {
3828        self.spec_clone_from(src);
3829    }
3830
3831    /// Copies all elements from `src` into `self`, using a memcpy.
3832    ///
3833    /// The length of `src` must be the same as `self`.
3834    ///
3835    /// If `T` does not implement `Copy`, use [`clone_from_slice`].
3836    ///
3837    /// # Panics
3838    ///
3839    /// This function will panic if the two slices have different lengths.
3840    ///
3841    /// # Examples
3842    ///
3843    /// Copying two elements from a slice into another:
3844    ///
3845    /// ```
3846    /// let src = [1, 2, 3, 4];
3847    /// let mut dst = [0, 0];
3848    ///
3849    /// // Because the slices have to be the same length,
3850    /// // we slice the source slice from four elements
3851    /// // to two. It will panic if we don't do this.
3852    /// dst.copy_from_slice(&src[2..]);
3853    ///
3854    /// assert_eq!(src, [1, 2, 3, 4]);
3855    /// assert_eq!(dst, [3, 4]);
3856    /// ```
3857    ///
3858    /// Rust enforces that there can only be one mutable reference with no
3859    /// immutable references to a particular piece of data in a particular
3860    /// scope. Because of this, attempting to use `copy_from_slice` on a
3861    /// single slice will result in a compile failure:
3862    ///
3863    /// ```compile_fail
3864    /// let mut slice = [1, 2, 3, 4, 5];
3865    ///
3866    /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
3867    /// ```
3868    ///
3869    /// To work around this, we can use [`split_at_mut`] to create two distinct
3870    /// sub-slices from a slice:
3871    ///
3872    /// ```
3873    /// let mut slice = [1, 2, 3, 4, 5];
3874    ///
3875    /// {
3876    ///     let (left, right) = slice.split_at_mut(2);
3877    ///     left.copy_from_slice(&right[1..]);
3878    /// }
3879    ///
3880    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3881    /// ```
3882    ///
3883    /// [`clone_from_slice`]: slice::clone_from_slice
3884    /// [`split_at_mut`]: slice::split_at_mut
3885    #[doc(alias = "memcpy")]
3886    #[inline]
3887    #[stable(feature = "copy_from_slice", since = "1.9.0")]
3888    #[rustc_const_stable(feature = "const_copy_from_slice", since = "1.87.0")]
3889    #[track_caller]
3890    pub const fn copy_from_slice(&mut self, src: &[T])
3891    where
3892        T: Copy,
3893    {
3894        // SAFETY: `T` implements `Copy`.
3895        unsafe { copy_from_slice_impl(self, src) }
3896    }
3897
3898    /// Copies elements from one part of the slice to another part of itself,
3899    /// using a memmove.
3900    ///
3901    /// `src` is the range within `self` to copy from. `dest` is the starting
3902    /// index of the range within `self` to copy to, which will have the same
3903    /// length as `src`. The two ranges may overlap. The ends of the two ranges
3904    /// must be less than or equal to `self.len()`.
3905    ///
3906    /// # Panics
3907    ///
3908    /// This function will panic if either range exceeds the end of the slice,
3909    /// or if the end of `src` is before the start.
3910    ///
3911    /// # Examples
3912    ///
3913    /// Copying four bytes within a slice:
3914    ///
3915    /// ```
3916    /// let mut bytes = *b"Hello, World!";
3917    ///
3918    /// bytes.copy_within(1..5, 8);
3919    ///
3920    /// assert_eq!(&bytes, b"Hello, Wello!");
3921    /// ```
3922    #[stable(feature = "copy_within", since = "1.37.0")]
3923    #[track_caller]
3924    pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
3925    where
3926        T: Copy,
3927    {
3928        let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
3929        let count = src_end - src_start;
3930        assert!(dest <= self.len() - count, "dest is out of bounds");
3931        // SAFETY: the conditions for `ptr::copy` have all been checked above,
3932        // as have those for `ptr::add`.
3933        unsafe {
3934            // Derive both `src_ptr` and `dest_ptr` from the same loan
3935            let ptr = self.as_mut_ptr();
3936            let src_ptr = ptr.add(src_start);
3937            let dest_ptr = ptr.add(dest);
3938            ptr::copy(src_ptr, dest_ptr, count);
3939        }
3940    }
3941
3942    /// Swaps all elements in `self` with those in `other`.
3943    ///
3944    /// The length of `other` must be the same as `self`.
3945    ///
3946    /// # Panics
3947    ///
3948    /// This function will panic if the two slices have different lengths.
3949    ///
3950    /// # Example
3951    ///
3952    /// Swapping two elements across slices:
3953    ///
3954    /// ```
3955    /// let mut slice1 = [0, 0];
3956    /// let mut slice2 = [1, 2, 3, 4];
3957    ///
3958    /// slice1.swap_with_slice(&mut slice2[2..]);
3959    ///
3960    /// assert_eq!(slice1, [3, 4]);
3961    /// assert_eq!(slice2, [1, 2, 0, 0]);
3962    /// ```
3963    ///
3964    /// Rust enforces that there can only be one mutable reference to a
3965    /// particular piece of data in a particular scope. Because of this,
3966    /// attempting to use `swap_with_slice` on a single slice will result in
3967    /// a compile failure:
3968    ///
3969    /// ```compile_fail
3970    /// let mut slice = [1, 2, 3, 4, 5];
3971    /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
3972    /// ```
3973    ///
3974    /// To work around this, we can use [`split_at_mut`] to create two distinct
3975    /// mutable sub-slices from a slice:
3976    ///
3977    /// ```
3978    /// let mut slice = [1, 2, 3, 4, 5];
3979    ///
3980    /// {
3981    ///     let (left, right) = slice.split_at_mut(2);
3982    ///     left.swap_with_slice(&mut right[1..]);
3983    /// }
3984    ///
3985    /// assert_eq!(slice, [4, 5, 3, 1, 2]);
3986    /// ```
3987    ///
3988    /// [`split_at_mut`]: slice::split_at_mut
3989    #[stable(feature = "swap_with_slice", since = "1.27.0")]
3990    #[rustc_const_unstable(feature = "const_swap_with_slice", issue = "142204")]
3991    #[track_caller]
3992    pub const fn swap_with_slice(&mut self, other: &mut [T]) {
3993        assert!(self.len() == other.len(), "destination and source slices have different lengths");
3994        // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
3995        // checked to have the same length. The slices cannot overlap because
3996        // mutable references are exclusive.
3997        unsafe {
3998            ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
3999        }
4000    }
4001
4002    /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
4003    fn align_to_offsets<U>(&self) -> (usize, usize) {
4004        // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
4005        // lowest number of `T`s. And how many `T`s we need for each such "multiple".
4006        //
4007        // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
4008        // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
4009        // place of every 3 Ts in the `rest` slice. A bit more complicated.
4010        //
4011        // Formula to calculate this is:
4012        //
4013        // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
4014        // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
4015        //
4016        // Expanded and simplified:
4017        //
4018        // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
4019        // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
4020        //
4021        // Luckily since all this is constant-evaluated... performance here matters not!
4022        const fn gcd(a: usize, b: usize) -> usize {
4023            if b == 0 { a } else { gcd(b, a % b) }
4024        }
4025
4026        // Explicitly wrap the function call in a const block so it gets
4027        // constant-evaluated even in debug mode.
4028        let gcd: usize = const { gcd(size_of::<T>(), size_of::<U>()) };
4029        let ts: usize = size_of::<U>() / gcd;
4030        let us: usize = size_of::<T>() / gcd;
4031
4032        // Armed with this knowledge, we can find how many `U`s we can fit!
4033        let us_len = self.len() / ts * us;
4034        // And how many `T`s will be in the trailing slice!
4035        let ts_len = self.len() % ts;
4036        (us_len, ts_len)
4037    }
4038
4039    /// Transmutes the slice to a slice of another type, ensuring alignment of the types is
4040    /// maintained.
4041    ///
4042    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4043    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4044    /// the given alignment constraint and element size.
4045    ///
4046    /// This method has no purpose when either input element `T` or output element `U` are
4047    /// zero-sized and will return the original slice without splitting anything.
4048    ///
4049    /// # Safety
4050    ///
4051    /// This method is essentially a `transmute` with respect to the elements in the returned
4052    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4053    ///
4054    /// # Examples
4055    ///
4056    /// Basic usage:
4057    ///
4058    /// ```
4059    /// unsafe {
4060    ///     let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4061    ///     let (prefix, shorts, suffix) = bytes.align_to::<u16>();
4062    ///     // less_efficient_algorithm_for_bytes(prefix);
4063    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4064    ///     // less_efficient_algorithm_for_bytes(suffix);
4065    /// }
4066    /// ```
4067    #[stable(feature = "slice_align_to", since = "1.30.0")]
4068    #[must_use]
4069    pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
4070        // Note that most of this function will be constant-evaluated,
4071        if U::IS_ZST || T::IS_ZST {
4072            // handle ZSTs specially, which is – don't handle them at all.
4073            return (self, &[], &[]);
4074        }
4075
4076        // First, find at what point do we split between the first and 2nd slice. Easy with
4077        // ptr.align_offset.
4078        let ptr = self.as_ptr();
4079        // SAFETY: See the `align_to_mut` method for the detailed safety comment.
4080        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4081        if offset > self.len() {
4082            (self, &[], &[])
4083        } else {
4084            let (left, rest) = self.split_at(offset);
4085            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4086            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4087            #[cfg(miri)]
4088            crate::intrinsics::miri_promise_symbolic_alignment(
4089                rest.as_ptr().cast(),
4090                align_of::<U>(),
4091            );
4092            // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
4093            // since the caller guarantees that we can transmute `T` to `U` safely.
4094            unsafe {
4095                (
4096                    left,
4097                    from_raw_parts(rest.as_ptr() as *const U, us_len),
4098                    from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
4099                )
4100            }
4101        }
4102    }
4103
4104    /// Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the
4105    /// types is maintained.
4106    ///
4107    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4108    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4109    /// the given alignment constraint and element size.
4110    ///
4111    /// This method has no purpose when either input element `T` or output element `U` are
4112    /// zero-sized and will return the original slice without splitting anything.
4113    ///
4114    /// # Safety
4115    ///
4116    /// This method is essentially a `transmute` with respect to the elements in the returned
4117    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4118    ///
4119    /// # Examples
4120    ///
4121    /// Basic usage:
4122    ///
4123    /// ```
4124    /// unsafe {
4125    ///     let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4126    ///     let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
4127    ///     // less_efficient_algorithm_for_bytes(prefix);
4128    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4129    ///     // less_efficient_algorithm_for_bytes(suffix);
4130    /// }
4131    /// ```
4132    #[stable(feature = "slice_align_to", since = "1.30.0")]
4133    #[must_use]
4134    pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
4135        // Note that most of this function will be constant-evaluated,
4136        if U::IS_ZST || T::IS_ZST {
4137            // handle ZSTs specially, which is – don't handle them at all.
4138            return (self, &mut [], &mut []);
4139        }
4140
4141        // First, find at what point do we split between the first and 2nd slice. Easy with
4142        // ptr.align_offset.
4143        let ptr = self.as_ptr();
4144        // SAFETY: Here we are ensuring we will use aligned pointers for U for the
4145        // rest of the method. This is done by passing a pointer to &[T] with an
4146        // alignment targeted for U.
4147        // `crate::ptr::align_offset` is called with a correctly aligned and
4148        // valid pointer `ptr` (it comes from a reference to `self`) and with
4149        // a size that is a power of two (since it comes from the alignment for U),
4150        // satisfying its safety constraints.
4151        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4152        if offset > self.len() {
4153            (self, &mut [], &mut [])
4154        } else {
4155            let (left, rest) = self.split_at_mut(offset);
4156            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4157            let rest_len = rest.len();
4158            let mut_ptr = rest.as_mut_ptr();
4159            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4160            #[cfg(miri)]
4161            crate::intrinsics::miri_promise_symbolic_alignment(
4162                mut_ptr.cast() as *const (),
4163                align_of::<U>(),
4164            );
4165            // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
4166            // SAFETY: see comments for `align_to`.
4167            unsafe {
4168                (
4169                    left,
4170                    from_raw_parts_mut(mut_ptr as *mut U, us_len),
4171                    from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
4172                )
4173            }
4174        }
4175    }
4176
4177    /// Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
4178    ///
4179    /// This is a safe wrapper around [`slice::align_to`], so inherits the same
4180    /// guarantees as that method.
4181    ///
4182    /// # Panics
4183    ///
4184    /// This will panic if the size of the SIMD type is different from
4185    /// `LANES` times that of the scalar.
4186    ///
4187    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4188    /// that from ever happening, as only power-of-two numbers of lanes are
4189    /// supported.  It's possible that, in the future, those restrictions might
4190    /// be lifted in a way that would make it possible to see panics from this
4191    /// method for something like `LANES == 3`.
4192    ///
4193    /// # Examples
4194    ///
4195    /// ```
4196    /// #![feature(portable_simd)]
4197    /// use core::simd::prelude::*;
4198    ///
4199    /// let short = &[1, 2, 3];
4200    /// let (prefix, middle, suffix) = short.as_simd::<4>();
4201    /// assert_eq!(middle, []); // Not enough elements for anything in the middle
4202    ///
4203    /// // They might be split in any possible way between prefix and suffix
4204    /// let it = prefix.iter().chain(suffix).copied();
4205    /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
4206    ///
4207    /// fn basic_simd_sum(x: &[f32]) -> f32 {
4208    ///     use std::ops::Add;
4209    ///     let (prefix, middle, suffix) = x.as_simd();
4210    ///     let sums = f32x4::from_array([
4211    ///         prefix.iter().copied().sum(),
4212    ///         0.0,
4213    ///         0.0,
4214    ///         suffix.iter().copied().sum(),
4215    ///     ]);
4216    ///     let sums = middle.iter().copied().fold(sums, f32x4::add);
4217    ///     sums.reduce_sum()
4218    /// }
4219    ///
4220    /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
4221    /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
4222    /// ```
4223    #[unstable(feature = "portable_simd", issue = "86656")]
4224    #[must_use]
4225    pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
4226    where
4227        Simd<T, LANES>: AsRef<[T; LANES]>,
4228        T: simd::SimdElement,
4229        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4230    {
4231        // These are expected to always match, as vector types are laid out like
4232        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4233        // might as well double-check since it'll optimize away anyhow.
4234        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4235
4236        // SAFETY: The simd types have the same layout as arrays, just with
4237        // potentially-higher alignment, so the de-facto transmutes are sound.
4238        unsafe { self.align_to() }
4239    }
4240
4241    /// Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types,
4242    /// and a mutable suffix.
4243    ///
4244    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4245    /// guarantees as that method.
4246    ///
4247    /// This is the mutable version of [`slice::as_simd`]; see that for examples.
4248    ///
4249    /// # Panics
4250    ///
4251    /// This will panic if the size of the SIMD type is different from
4252    /// `LANES` times that of the scalar.
4253    ///
4254    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4255    /// that from ever happening, as only power-of-two numbers of lanes are
4256    /// supported.  It's possible that, in the future, those restrictions might
4257    /// be lifted in a way that would make it possible to see panics from this
4258    /// method for something like `LANES == 3`.
4259    #[unstable(feature = "portable_simd", issue = "86656")]
4260    #[must_use]
4261    pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
4262    where
4263        Simd<T, LANES>: AsMut<[T; LANES]>,
4264        T: simd::SimdElement,
4265        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4266    {
4267        // These are expected to always match, as vector types are laid out like
4268        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4269        // might as well double-check since it'll optimize away anyhow.
4270        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4271
4272        // SAFETY: The simd types have the same layout as arrays, just with
4273        // potentially-higher alignment, so the de-facto transmutes are sound.
4274        unsafe { self.align_to_mut() }
4275    }
4276
4277    /// Checks if the elements of this slice are sorted.
4278    ///
4279    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4280    /// slice yields exactly zero or one element, `true` is returned.
4281    ///
4282    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4283    /// implies that this function returns `false` if any two consecutive items are not
4284    /// comparable.
4285    ///
4286    /// # Examples
4287    ///
4288    /// ```
4289    /// let empty: [i32; 0] = [];
4290    ///
4291    /// assert!([1, 2, 2, 9].is_sorted());
4292    /// assert!(![1, 3, 2, 4].is_sorted());
4293    /// assert!([0].is_sorted());
4294    /// assert!(empty.is_sorted());
4295    /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
4296    /// ```
4297    #[inline]
4298    #[stable(feature = "is_sorted", since = "1.82.0")]
4299    #[must_use]
4300    pub fn is_sorted(&self) -> bool
4301    where
4302        T: PartialOrd,
4303    {
4304        // This odd number works the best. 32 + 1 extra due to overlapping chunk boundaries.
4305        const CHUNK_SIZE: usize = 33;
4306        if self.len() < CHUNK_SIZE {
4307            return self.windows(2).all(|w| w[0] <= w[1]);
4308        }
4309        let mut i = 0;
4310        // Check in chunks for autovectorization.
4311        while i < self.len() - CHUNK_SIZE {
4312            let chunk = &self[i..i + CHUNK_SIZE];
4313            if !chunk.windows(2).fold(true, |acc, w| acc & (w[0] <= w[1])) {
4314                return false;
4315            }
4316            // We need to ensure that chunk boundaries are also sorted.
4317            // Overlap the next chunk with the last element of our last chunk.
4318            i += CHUNK_SIZE - 1;
4319        }
4320        self[i..].windows(2).all(|w| w[0] <= w[1])
4321    }
4322
4323    /// Checks if the elements of this slice are sorted using the given comparator function.
4324    ///
4325    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4326    /// function to determine whether two elements are to be considered in sorted order.
4327    ///
4328    /// # Examples
4329    ///
4330    /// ```
4331    /// assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
4332    /// assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
4333    ///
4334    /// assert!([0].is_sorted_by(|a, b| true));
4335    /// assert!([0].is_sorted_by(|a, b| false));
4336    ///
4337    /// let empty: [i32; 0] = [];
4338    /// assert!(empty.is_sorted_by(|a, b| false));
4339    /// assert!(empty.is_sorted_by(|a, b| true));
4340    /// ```
4341    #[stable(feature = "is_sorted", since = "1.82.0")]
4342    #[must_use]
4343    pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool
4344    where
4345        F: FnMut(&'a T, &'a T) -> bool,
4346    {
4347        self.array_windows().all(|[a, b]| compare(a, b))
4348    }
4349
4350    /// Checks if the elements of this slice are sorted using the given key extraction function.
4351    ///
4352    /// Instead of comparing the slice's elements directly, this function compares the keys of the
4353    /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
4354    /// documentation for more information.
4355    ///
4356    /// [`is_sorted`]: slice::is_sorted
4357    ///
4358    /// # Examples
4359    ///
4360    /// ```
4361    /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
4362    /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
4363    /// ```
4364    #[inline]
4365    #[stable(feature = "is_sorted", since = "1.82.0")]
4366    #[must_use]
4367    pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
4368    where
4369        F: FnMut(&'a T) -> K,
4370        K: PartialOrd,
4371    {
4372        self.iter().is_sorted_by_key(f)
4373    }
4374
4375    /// Returns the index of the partition point according to the given predicate
4376    /// (the index of the first element of the second partition).
4377    ///
4378    /// The slice is assumed to be partitioned according to the given predicate.
4379    /// This means that all elements for which the predicate returns true are at the start of the slice
4380    /// and all elements for which the predicate returns false are at the end.
4381    /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
4382    /// (all odd numbers are at the start, all even at the end).
4383    ///
4384    /// If this slice is not partitioned, the returned result is unspecified and meaningless,
4385    /// as this method performs a kind of binary search.
4386    ///
4387    /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
4388    ///
4389    /// [`binary_search`]: slice::binary_search
4390    /// [`binary_search_by`]: slice::binary_search_by
4391    /// [`binary_search_by_key`]: slice::binary_search_by_key
4392    ///
4393    /// # Examples
4394    ///
4395    /// ```
4396    /// let v = [1, 2, 3, 3, 5, 6, 7];
4397    /// let i = v.partition_point(|&x| x < 5);
4398    ///
4399    /// assert_eq!(i, 4);
4400    /// assert!(v[..i].iter().all(|&x| x < 5));
4401    /// assert!(v[i..].iter().all(|&x| !(x < 5)));
4402    /// ```
4403    ///
4404    /// If all elements of the slice match the predicate, including if the slice
4405    /// is empty, then the length of the slice will be returned:
4406    ///
4407    /// ```
4408    /// let a = [2, 4, 8];
4409    /// assert_eq!(a.partition_point(|x| x < &100), a.len());
4410    /// let a: [i32; 0] = [];
4411    /// assert_eq!(a.partition_point(|x| x < &100), 0);
4412    /// ```
4413    ///
4414    /// If you want to insert an item to a sorted vector, while maintaining
4415    /// sort order:
4416    ///
4417    /// ```
4418    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
4419    /// let num = 42;
4420    /// let idx = s.partition_point(|&x| x <= num);
4421    /// s.insert(idx, num);
4422    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
4423    /// ```
4424    #[stable(feature = "partition_point", since = "1.52.0")]
4425    #[must_use]
4426    pub fn partition_point<P>(&self, mut pred: P) -> usize
4427    where
4428        P: FnMut(&T) -> bool,
4429    {
4430        self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
4431    }
4432
4433    /// Removes the subslice corresponding to the given range
4434    /// and returns a reference to it.
4435    ///
4436    /// Returns `None` and does not modify the slice if the given
4437    /// range is out of bounds.
4438    ///
4439    /// Note that this method only accepts one-sided ranges such as
4440    /// `2..` or `..6`, but not `2..6`.
4441    ///
4442    /// # Examples
4443    ///
4444    /// Splitting off the first three elements of a slice:
4445    ///
4446    /// ```
4447    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4448    /// let mut first_three = slice.split_off(..3).unwrap();
4449    ///
4450    /// assert_eq!(slice, &['d']);
4451    /// assert_eq!(first_three, &['a', 'b', 'c']);
4452    /// ```
4453    ///
4454    /// Splitting off a slice starting with the third element:
4455    ///
4456    /// ```
4457    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4458    /// let mut tail = slice.split_off(2..).unwrap();
4459    ///
4460    /// assert_eq!(slice, &['a', 'b']);
4461    /// assert_eq!(tail, &['c', 'd']);
4462    /// ```
4463    ///
4464    /// Getting `None` when `range` is out of bounds:
4465    ///
4466    /// ```
4467    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4468    ///
4469    /// assert_eq!(None, slice.split_off(5..));
4470    /// assert_eq!(None, slice.split_off(..5));
4471    /// assert_eq!(None, slice.split_off(..=4));
4472    /// let expected: &[char] = &['a', 'b', 'c', 'd'];
4473    /// assert_eq!(Some(expected), slice.split_off(..4));
4474    /// ```
4475    #[inline]
4476    #[must_use = "method does not modify the slice if the range is out of bounds"]
4477    #[stable(feature = "slice_take", since = "1.87.0")]
4478    pub fn split_off<'a, R: OneSidedRange<usize>>(
4479        self: &mut &'a Self,
4480        range: R,
4481    ) -> Option<&'a Self> {
4482        let (direction, split_index) = split_point_of(range)?;
4483        if split_index > self.len() {
4484            return None;
4485        }
4486        let (front, back) = self.split_at(split_index);
4487        match direction {
4488            Direction::Front => {
4489                *self = back;
4490                Some(front)
4491            }
4492            Direction::Back => {
4493                *self = front;
4494                Some(back)
4495            }
4496        }
4497    }
4498
4499    /// Removes the subslice corresponding to the given range
4500    /// and returns a mutable reference to it.
4501    ///
4502    /// Returns `None` and does not modify the slice if the given
4503    /// range is out of bounds.
4504    ///
4505    /// Note that this method only accepts one-sided ranges such as
4506    /// `2..` or `..6`, but not `2..6`.
4507    ///
4508    /// # Examples
4509    ///
4510    /// Splitting off the first three elements of a slice:
4511    ///
4512    /// ```
4513    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4514    /// let mut first_three = slice.split_off_mut(..3).unwrap();
4515    ///
4516    /// assert_eq!(slice, &mut ['d']);
4517    /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
4518    /// ```
4519    ///
4520    /// Splitting off a slice starting with the third element:
4521    ///
4522    /// ```
4523    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4524    /// let mut tail = slice.split_off_mut(2..).unwrap();
4525    ///
4526    /// assert_eq!(slice, &mut ['a', 'b']);
4527    /// assert_eq!(tail, &mut ['c', 'd']);
4528    /// ```
4529    ///
4530    /// Getting `None` when `range` is out of bounds:
4531    ///
4532    /// ```
4533    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4534    ///
4535    /// assert_eq!(None, slice.split_off_mut(5..));
4536    /// assert_eq!(None, slice.split_off_mut(..5));
4537    /// assert_eq!(None, slice.split_off_mut(..=4));
4538    /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4539    /// assert_eq!(Some(expected), slice.split_off_mut(..4));
4540    /// ```
4541    #[inline]
4542    #[must_use = "method does not modify the slice if the range is out of bounds"]
4543    #[stable(feature = "slice_take", since = "1.87.0")]
4544    pub fn split_off_mut<'a, R: OneSidedRange<usize>>(
4545        self: &mut &'a mut Self,
4546        range: R,
4547    ) -> Option<&'a mut Self> {
4548        let (direction, split_index) = split_point_of(range)?;
4549        if split_index > self.len() {
4550            return None;
4551        }
4552        let (front, back) = mem::take(self).split_at_mut(split_index);
4553        match direction {
4554            Direction::Front => {
4555                *self = back;
4556                Some(front)
4557            }
4558            Direction::Back => {
4559                *self = front;
4560                Some(back)
4561            }
4562        }
4563    }
4564
4565    /// Removes the first element of the slice and returns a reference
4566    /// to it.
4567    ///
4568    /// Returns `None` if the slice is empty.
4569    ///
4570    /// # Examples
4571    ///
4572    /// ```
4573    /// let mut slice: &[_] = &['a', 'b', 'c'];
4574    /// let first = slice.split_off_first().unwrap();
4575    ///
4576    /// assert_eq!(slice, &['b', 'c']);
4577    /// assert_eq!(first, &'a');
4578    /// ```
4579    #[inline]
4580    #[stable(feature = "slice_take", since = "1.87.0")]
4581    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4582    pub const fn split_off_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
4583        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4584        let Some((first, rem)) = self.split_first() else { return None };
4585        *self = rem;
4586        Some(first)
4587    }
4588
4589    /// Removes the first element of the slice and returns a mutable
4590    /// reference to it.
4591    ///
4592    /// Returns `None` if the slice is empty.
4593    ///
4594    /// # Examples
4595    ///
4596    /// ```
4597    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4598    /// let first = slice.split_off_first_mut().unwrap();
4599    /// *first = 'd';
4600    ///
4601    /// assert_eq!(slice, &['b', 'c']);
4602    /// assert_eq!(first, &'d');
4603    /// ```
4604    #[inline]
4605    #[stable(feature = "slice_take", since = "1.87.0")]
4606    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4607    pub const fn split_off_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4608        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4609        // Original: `mem::take(self).split_first_mut()?`
4610        let Some((first, rem)) = mem::replace(self, &mut []).split_first_mut() else { return None };
4611        *self = rem;
4612        Some(first)
4613    }
4614
4615    /// Removes the last element of the slice and returns a reference
4616    /// to it.
4617    ///
4618    /// Returns `None` if the slice is empty.
4619    ///
4620    /// # Examples
4621    ///
4622    /// ```
4623    /// let mut slice: &[_] = &['a', 'b', 'c'];
4624    /// let last = slice.split_off_last().unwrap();
4625    ///
4626    /// assert_eq!(slice, &['a', 'b']);
4627    /// assert_eq!(last, &'c');
4628    /// ```
4629    #[inline]
4630    #[stable(feature = "slice_take", since = "1.87.0")]
4631    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4632    pub const fn split_off_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
4633        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4634        let Some((last, rem)) = self.split_last() else { return None };
4635        *self = rem;
4636        Some(last)
4637    }
4638
4639    /// Removes the last element of the slice and returns a mutable
4640    /// reference to it.
4641    ///
4642    /// Returns `None` if the slice is empty.
4643    ///
4644    /// # Examples
4645    ///
4646    /// ```
4647    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4648    /// let last = slice.split_off_last_mut().unwrap();
4649    /// *last = 'd';
4650    ///
4651    /// assert_eq!(slice, &['a', 'b']);
4652    /// assert_eq!(last, &'d');
4653    /// ```
4654    #[inline]
4655    #[stable(feature = "slice_take", since = "1.87.0")]
4656    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4657    pub const fn split_off_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4658        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4659        // Original: `mem::take(self).split_last_mut()?`
4660        let Some((last, rem)) = mem::replace(self, &mut []).split_last_mut() else { return None };
4661        *self = rem;
4662        Some(last)
4663    }
4664
4665    /// Returns mutable references to many indices at once, without doing any checks.
4666    ///
4667    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4668    /// that this method takes an array, so all indices must be of the same type.
4669    /// If passed an array of `usize`s this method gives back an array of mutable references
4670    /// to single elements, while if passed an array of ranges it gives back an array of
4671    /// mutable references to slices.
4672    ///
4673    /// For a safe alternative see [`get_disjoint_mut`].
4674    ///
4675    /// # Safety
4676    ///
4677    /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]*
4678    /// even if the resulting references are not used.
4679    ///
4680    /// # Examples
4681    ///
4682    /// ```
4683    /// let x = &mut [1, 2, 4];
4684    ///
4685    /// unsafe {
4686    ///     let [a, b] = x.get_disjoint_unchecked_mut([0, 2]);
4687    ///     *a *= 10;
4688    ///     *b *= 100;
4689    /// }
4690    /// assert_eq!(x, &[10, 2, 400]);
4691    ///
4692    /// unsafe {
4693    ///     let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]);
4694    ///     a[0] = 8;
4695    ///     b[0] = 88;
4696    ///     b[1] = 888;
4697    /// }
4698    /// assert_eq!(x, &[8, 88, 888]);
4699    ///
4700    /// unsafe {
4701    ///     let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]);
4702    ///     a[0] = 11;
4703    ///     a[1] = 111;
4704    ///     b[0] = 1;
4705    /// }
4706    /// assert_eq!(x, &[1, 11, 111]);
4707    /// ```
4708    ///
4709    /// [`get_disjoint_mut`]: slice::get_disjoint_mut
4710    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
4711    #[stable(feature = "get_many_mut", since = "1.86.0")]
4712    #[inline]
4713    #[track_caller]
4714    pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>(
4715        &mut self,
4716        indices: [I; N],
4717    ) -> [&mut I::Output; N]
4718    where
4719        I: GetDisjointMutIndex + SliceIndex<Self>,
4720    {
4721        // NB: This implementation is written as it is because any variation of
4722        // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy,
4723        // or generate worse code otherwise. This is also why we need to go
4724        // through a raw pointer here.
4725        let slice: *mut [T] = self;
4726        let mut arr: MaybeUninit<[&mut I::Output; N]> = MaybeUninit::uninit();
4727        let arr_ptr = arr.as_mut_ptr();
4728
4729        // SAFETY: We expect `indices` to contain disjunct values that are
4730        // in bounds of `self`.
4731        unsafe {
4732            for i in 0..N {
4733                let idx = indices.get_unchecked(i).clone();
4734                arr_ptr.cast::<&mut I::Output>().add(i).write(&mut *slice.get_unchecked_mut(idx));
4735            }
4736            arr.assume_init()
4737        }
4738    }
4739
4740    /// Returns mutable references to many indices at once.
4741    ///
4742    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4743    /// that this method takes an array, so all indices must be of the same type.
4744    /// If passed an array of `usize`s this method gives back an array of mutable references
4745    /// to single elements, while if passed an array of ranges it gives back an array of
4746    /// mutable references to slices.
4747    ///
4748    /// Returns an error if any index is out-of-bounds, or if there are overlapping indices.
4749    /// An empty range is not considered to overlap if it is located at the beginning or at
4750    /// the end of another range, but is considered to overlap if it is located in the middle.
4751    ///
4752    /// This method does a O(n^2) check to check that there are no overlapping indices, so be careful
4753    /// when passing many indices.
4754    ///
4755    /// # Examples
4756    ///
4757    /// ```
4758    /// let v = &mut [1, 2, 3];
4759    /// if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) {
4760    ///     *a = 413;
4761    ///     *b = 612;
4762    /// }
4763    /// assert_eq!(v, &[413, 2, 612]);
4764    ///
4765    /// if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) {
4766    ///     a[0] = 8;
4767    ///     b[0] = 88;
4768    ///     b[1] = 888;
4769    /// }
4770    /// assert_eq!(v, &[8, 88, 888]);
4771    ///
4772    /// if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) {
4773    ///     a[0] = 11;
4774    ///     a[1] = 111;
4775    ///     b[0] = 1;
4776    /// }
4777    /// assert_eq!(v, &[1, 11, 111]);
4778    /// ```
4779    #[stable(feature = "get_many_mut", since = "1.86.0")]
4780    #[inline]
4781    pub fn get_disjoint_mut<I, const N: usize>(
4782        &mut self,
4783        indices: [I; N],
4784    ) -> Result<[&mut I::Output; N], GetDisjointMutError>
4785    where
4786        I: GetDisjointMutIndex + SliceIndex<Self>,
4787    {
4788        get_disjoint_check_valid(&indices, self.len())?;
4789        // SAFETY: The `get_disjoint_check_valid()` call checked that all indices
4790        // are disjunct and in bounds.
4791        unsafe { Ok(self.get_disjoint_unchecked_mut(indices)) }
4792    }
4793
4794    /// Returns the index that an element reference points to.
4795    ///
4796    /// Returns `None` if `element` does not point to the start of an element within the slice.
4797    ///
4798    /// This method is useful for extending slice iterators like [`slice::split`].
4799    ///
4800    /// Note that this uses pointer arithmetic and **does not compare elements**.
4801    /// To find the index of an element via comparison, use
4802    /// [`.iter().position()`](crate::iter::Iterator::position) instead.
4803    ///
4804    /// # Panics
4805    /// Panics if `T` is zero-sized.
4806    ///
4807    /// # Examples
4808    /// Basic usage:
4809    /// ```
4810    /// #![feature(substr_range)]
4811    ///
4812    /// let nums: &[u32] = &[1, 7, 1, 1];
4813    /// let num = &nums[2];
4814    ///
4815    /// assert_eq!(num, &1);
4816    /// assert_eq!(nums.element_offset(num), Some(2));
4817    /// ```
4818    /// Returning `None` with an unaligned element:
4819    /// ```
4820    /// #![feature(substr_range)]
4821    ///
4822    /// let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
4823    /// let flat_arr: &[u32] = arr.as_flattened();
4824    ///
4825    /// let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
4826    /// let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
4827    ///
4828    /// assert_eq!(ok_elm, &[0, 1]);
4829    /// assert_eq!(weird_elm, &[1, 2]);
4830    ///
4831    /// assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
4832    /// assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
4833    /// ```
4834    #[must_use]
4835    #[unstable(feature = "substr_range", issue = "126769")]
4836    pub fn element_offset(&self, element: &T) -> Option<usize> {
4837        if T::IS_ZST {
4838            panic!("elements are zero-sized");
4839        }
4840
4841        let self_start = self.as_ptr().addr();
4842        let elem_start = ptr::from_ref(element).addr();
4843
4844        let byte_offset = elem_start.wrapping_sub(self_start);
4845
4846        if !byte_offset.is_multiple_of(size_of::<T>()) {
4847            return None;
4848        }
4849
4850        let offset = byte_offset / size_of::<T>();
4851
4852        if offset < self.len() { Some(offset) } else { None }
4853    }
4854
4855    /// Returns the range of indices that a subslice points to.
4856    ///
4857    /// Returns `None` if `subslice` does not point within the slice or if it is not aligned with the
4858    /// elements in the slice.
4859    ///
4860    /// This method **does not compare elements**. Instead, this method finds the location in the slice that
4861    /// `subslice` was obtained from. To find the index of a subslice via comparison, instead use
4862    /// [`.windows()`](slice::windows)[`.position()`](crate::iter::Iterator::position).
4863    ///
4864    /// This method is useful for extending slice iterators like [`slice::split`].
4865    ///
4866    /// Note that this may return a false positive (either `Some(0..0)` or `Some(self.len()..self.len())`)
4867    /// if `subslice` has a length of zero and points to the beginning or end of another, separate, slice.
4868    ///
4869    /// # Panics
4870    /// Panics if `T` is zero-sized.
4871    ///
4872    /// # Examples
4873    /// Basic usage:
4874    /// ```
4875    /// #![feature(substr_range)]
4876    ///
4877    /// let nums = &[0, 5, 10, 0, 0, 5];
4878    ///
4879    /// let mut iter = nums
4880    ///     .split(|t| *t == 0)
4881    ///     .map(|n| nums.subslice_range(n).unwrap());
4882    ///
4883    /// assert_eq!(iter.next(), Some(0..0));
4884    /// assert_eq!(iter.next(), Some(1..3));
4885    /// assert_eq!(iter.next(), Some(4..4));
4886    /// assert_eq!(iter.next(), Some(5..6));
4887    /// ```
4888    #[must_use]
4889    #[unstable(feature = "substr_range", issue = "126769")]
4890    pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>> {
4891        if T::IS_ZST {
4892            panic!("elements are zero-sized");
4893        }
4894
4895        let self_start = self.as_ptr().addr();
4896        let subslice_start = subslice.as_ptr().addr();
4897
4898        let byte_start = subslice_start.wrapping_sub(self_start);
4899
4900        if !byte_start.is_multiple_of(size_of::<T>()) {
4901            return None;
4902        }
4903
4904        let start = byte_start / size_of::<T>();
4905        let end = start.wrapping_add(subslice.len());
4906
4907        if start <= self.len() && end <= self.len() { Some(start..end) } else { None }
4908    }
4909}
4910
4911impl<T> [MaybeUninit<T>] {
4912    /// Transmutes the mutable uninitialized slice to a mutable uninitialized slice of
4913    /// another type, ensuring alignment of the types is maintained.
4914    ///
4915    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4916    /// guarantees as that method.
4917    ///
4918    /// # Examples
4919    ///
4920    /// ```
4921    /// #![feature(align_to_uninit_mut)]
4922    /// use std::mem::MaybeUninit;
4923    ///
4924    /// pub struct BumpAllocator<'scope> {
4925    ///     memory: &'scope mut [MaybeUninit<u8>],
4926    /// }
4927    ///
4928    /// impl<'scope> BumpAllocator<'scope> {
4929    ///     pub fn new(memory: &'scope mut [MaybeUninit<u8>]) -> Self {
4930    ///         Self { memory }
4931    ///     }
4932    ///     pub fn try_alloc_uninit<T>(&mut self) -> Option<&'scope mut MaybeUninit<T>> {
4933    ///         let first_end = self.memory.as_ptr().align_offset(align_of::<T>()) + size_of::<T>();
4934    ///         let prefix = self.memory.split_off_mut(..first_end)?;
4935    ///         Some(&mut prefix.align_to_uninit_mut::<T>().1[0])
4936    ///     }
4937    ///     pub fn try_alloc_u32(&mut self, value: u32) -> Option<&'scope mut u32> {
4938    ///         let uninit = self.try_alloc_uninit()?;
4939    ///         Some(uninit.write(value))
4940    ///     }
4941    /// }
4942    ///
4943    /// let mut memory = [MaybeUninit::<u8>::uninit(); 10];
4944    /// let mut allocator = BumpAllocator::new(&mut memory);
4945    /// let v = allocator.try_alloc_u32(42);
4946    /// assert_eq!(v, Some(&mut 42));
4947    /// ```
4948    #[unstable(feature = "align_to_uninit_mut", issue = "139062")]
4949    #[inline]
4950    #[must_use]
4951    pub fn align_to_uninit_mut<U>(&mut self) -> (&mut Self, &mut [MaybeUninit<U>], &mut Self) {
4952        // SAFETY: `MaybeUninit` is transparent. Correct size and alignment are guaranteed by
4953        // `align_to_mut` itself. Therefore the only thing that we have to ensure for a safe
4954        // `transmute` is that the values are valid for the types involved. But for `MaybeUninit`
4955        // any values are valid, so this operation is safe.
4956        unsafe { self.align_to_mut() }
4957    }
4958}
4959
4960impl<T, const N: usize> [[T; N]] {
4961    /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
4962    ///
4963    /// For the opposite operation, see [`as_chunks`] and [`as_rchunks`].
4964    ///
4965    /// [`as_chunks`]: slice::as_chunks
4966    /// [`as_rchunks`]: slice::as_rchunks
4967    ///
4968    /// # Panics
4969    ///
4970    /// This panics if the length of the resulting slice would overflow a `usize`.
4971    ///
4972    /// This is only possible when flattening a slice of arrays of zero-sized
4973    /// types, and thus tends to be irrelevant in practice. If
4974    /// `size_of::<T>() > 0`, this will never panic.
4975    ///
4976    /// # Examples
4977    ///
4978    /// ```
4979    /// assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);
4980    ///
4981    /// assert_eq!(
4982    ///     [[1, 2, 3], [4, 5, 6]].as_flattened(),
4983    ///     [[1, 2], [3, 4], [5, 6]].as_flattened(),
4984    /// );
4985    ///
4986    /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
4987    /// assert!(slice_of_empty_arrays.as_flattened().is_empty());
4988    ///
4989    /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
4990    /// assert!(empty_slice_of_arrays.as_flattened().is_empty());
4991    /// ```
4992    #[stable(feature = "slice_flatten", since = "1.80.0")]
4993    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
4994    pub const fn as_flattened(&self) -> &[T] {
4995        let len = if T::IS_ZST {
4996            self.len().checked_mul(N).expect("slice len overflow")
4997        } else {
4998            // SAFETY: `self.len() * N` cannot overflow because `self` is
4999            // already in the address space.
5000            unsafe { self.len().unchecked_mul(N) }
5001        };
5002        // SAFETY: `[T]` is layout-identical to `[T; N]`
5003        unsafe { from_raw_parts(self.as_ptr().cast(), len) }
5004    }
5005
5006    /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
5007    ///
5008    /// For the opposite operation, see [`as_chunks_mut`] and [`as_rchunks_mut`].
5009    ///
5010    /// [`as_chunks_mut`]: slice::as_chunks_mut
5011    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
5012    ///
5013    /// # Panics
5014    ///
5015    /// This panics if the length of the resulting slice would overflow a `usize`.
5016    ///
5017    /// This is only possible when flattening a slice of arrays of zero-sized
5018    /// types, and thus tends to be irrelevant in practice. If
5019    /// `size_of::<T>() > 0`, this will never panic.
5020    ///
5021    /// # Examples
5022    ///
5023    /// ```
5024    /// fn add_5_to_all(slice: &mut [i32]) {
5025    ///     for i in slice {
5026    ///         *i += 5;
5027    ///     }
5028    /// }
5029    ///
5030    /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
5031    /// add_5_to_all(array.as_flattened_mut());
5032    /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
5033    /// ```
5034    #[stable(feature = "slice_flatten", since = "1.80.0")]
5035    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5036    pub const fn as_flattened_mut(&mut self) -> &mut [T] {
5037        let len = if T::IS_ZST {
5038            self.len().checked_mul(N).expect("slice len overflow")
5039        } else {
5040            // SAFETY: `self.len() * N` cannot overflow because `self` is
5041            // already in the address space.
5042            unsafe { self.len().unchecked_mul(N) }
5043        };
5044        // SAFETY: `[T]` is layout-identical to `[T; N]`
5045        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
5046    }
5047}
5048
5049impl [f32] {
5050    /// Sorts the slice of floats.
5051    ///
5052    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5053    /// the ordering defined by [`f32::total_cmp`].
5054    ///
5055    /// # Current implementation
5056    ///
5057    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5058    ///
5059    /// # Examples
5060    ///
5061    /// ```
5062    /// #![feature(sort_floats)]
5063    /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
5064    ///
5065    /// v.sort_floats();
5066    /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
5067    /// assert_eq!(&v[..8], &sorted[..8]);
5068    /// assert!(v[8].is_nan());
5069    /// ```
5070    #[unstable(feature = "sort_floats", issue = "93396")]
5071    #[inline]
5072    pub fn sort_floats(&mut self) {
5073        self.sort_unstable_by(f32::total_cmp);
5074    }
5075}
5076
5077impl [f64] {
5078    /// Sorts the slice of floats.
5079    ///
5080    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5081    /// the ordering defined by [`f64::total_cmp`].
5082    ///
5083    /// # Current implementation
5084    ///
5085    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5086    ///
5087    /// # Examples
5088    ///
5089    /// ```
5090    /// #![feature(sort_floats)]
5091    /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
5092    ///
5093    /// v.sort_floats();
5094    /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
5095    /// assert_eq!(&v[..8], &sorted[..8]);
5096    /// assert!(v[8].is_nan());
5097    /// ```
5098    #[unstable(feature = "sort_floats", issue = "93396")]
5099    #[inline]
5100    pub fn sort_floats(&mut self) {
5101        self.sort_unstable_by(f64::total_cmp);
5102    }
5103}
5104
5105/// Copies `src` to `dest`.
5106///
5107/// # Safety
5108/// `T` must implement one of `Copy` or `TrivialClone`.
5109#[track_caller]
5110const unsafe fn copy_from_slice_impl<T: Clone>(dest: &mut [T], src: &[T]) {
5111    // The panic code path was put into a cold function to not bloat the
5112    // call site.
5113    #[cfg_attr(not(panic = "immediate-abort"), inline(never), cold)]
5114    #[cfg_attr(panic = "immediate-abort", inline)]
5115    #[track_caller]
5116    const fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
5117        const_panic!(
5118            "copy_from_slice: source slice length does not match destination slice length",
5119            "copy_from_slice: source slice length ({src_len}) does not match destination slice length ({dst_len})",
5120            src_len: usize,
5121            dst_len: usize,
5122        )
5123    }
5124
5125    if dest.len() != src.len() {
5126        len_mismatch_fail(dest.len(), src.len());
5127    }
5128
5129    // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
5130    // checked to have the same length. The slices cannot overlap because
5131    // mutable references are exclusive.
5132    unsafe {
5133        ptr::copy_nonoverlapping(src.as_ptr(), dest.as_mut_ptr(), dest.len());
5134    }
5135}
5136
5137trait CloneFromSpec<T> {
5138    fn spec_clone_from(&mut self, src: &[T]);
5139}
5140
5141impl<T> CloneFromSpec<T> for [T]
5142where
5143    T: Clone,
5144{
5145    #[track_caller]
5146    default fn spec_clone_from(&mut self, src: &[T]) {
5147        assert!(self.len() == src.len(), "destination and source slices have different lengths");
5148        // NOTE: We need to explicitly slice them to the same length
5149        // to make it easier for the optimizer to elide bounds checking.
5150        // But since it can't be relied on we also have an explicit specialization for T: Copy.
5151        let len = self.len();
5152        let src = &src[..len];
5153        for i in 0..len {
5154            self[i].clone_from(&src[i]);
5155        }
5156    }
5157}
5158
5159impl<T> CloneFromSpec<T> for [T]
5160where
5161    T: TrivialClone,
5162{
5163    #[track_caller]
5164    fn spec_clone_from(&mut self, src: &[T]) {
5165        // SAFETY: `T` implements `TrivialClone`.
5166        unsafe {
5167            copy_from_slice_impl(self, src);
5168        }
5169    }
5170}
5171
5172#[stable(feature = "rust1", since = "1.0.0")]
5173#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5174impl<T> const Default for &[T] {
5175    /// Creates an empty slice.
5176    fn default() -> Self {
5177        &[]
5178    }
5179}
5180
5181#[stable(feature = "mut_slice_default", since = "1.5.0")]
5182#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5183impl<T> const Default for &mut [T] {
5184    /// Creates a mutable empty slice.
5185    fn default() -> Self {
5186        &mut []
5187    }
5188}
5189
5190#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
5191/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`.  At a future
5192/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
5193/// `str`) to slices, and then this trait will be replaced or abolished.
5194pub trait SlicePattern {
5195    /// The element type of the slice being matched on.
5196    type Item;
5197
5198    /// Currently, the consumers of `SlicePattern` need a slice.
5199    fn as_slice(&self) -> &[Self::Item];
5200}
5201
5202#[stable(feature = "slice_strip", since = "1.51.0")]
5203impl<T> SlicePattern for [T] {
5204    type Item = T;
5205
5206    #[inline]
5207    fn as_slice(&self) -> &[Self::Item] {
5208        self
5209    }
5210}
5211
5212#[stable(feature = "slice_strip", since = "1.51.0")]
5213impl<T, const N: usize> SlicePattern for [T; N] {
5214    type Item = T;
5215
5216    #[inline]
5217    fn as_slice(&self) -> &[Self::Item] {
5218        self
5219    }
5220}
5221
5222/// This checks every index against each other, and against `len`.
5223///
5224/// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..`
5225/// comparison operations.
5226#[inline]
5227fn get_disjoint_check_valid<I: GetDisjointMutIndex, const N: usize>(
5228    indices: &[I; N],
5229    len: usize,
5230) -> Result<(), GetDisjointMutError> {
5231    // NB: The optimizer should inline the loops into a sequence
5232    // of instructions without additional branching.
5233    for (i, idx) in indices.iter().enumerate() {
5234        if !idx.is_in_bounds(len) {
5235            return Err(GetDisjointMutError::IndexOutOfBounds);
5236        }
5237        for idx2 in &indices[..i] {
5238            if idx.is_overlapping(idx2) {
5239                return Err(GetDisjointMutError::OverlappingIndices);
5240            }
5241        }
5242    }
5243    Ok(())
5244}
5245
5246/// The error type returned by [`get_disjoint_mut`][`slice::get_disjoint_mut`].
5247///
5248/// It indicates one of two possible errors:
5249/// - An index is out-of-bounds.
5250/// - The same index appeared multiple times in the array
5251///   (or different but overlapping indices when ranges are provided).
5252///
5253/// # Examples
5254///
5255/// ```
5256/// use std::slice::GetDisjointMutError;
5257///
5258/// let v = &mut [1, 2, 3];
5259/// assert_eq!(v.get_disjoint_mut([0, 999]), Err(GetDisjointMutError::IndexOutOfBounds));
5260/// assert_eq!(v.get_disjoint_mut([1, 1]), Err(GetDisjointMutError::OverlappingIndices));
5261/// ```
5262#[stable(feature = "get_many_mut", since = "1.86.0")]
5263#[derive(Debug, Clone, PartialEq, Eq)]
5264pub enum GetDisjointMutError {
5265    /// An index provided was out-of-bounds for the slice.
5266    IndexOutOfBounds,
5267    /// Two indices provided were overlapping.
5268    OverlappingIndices,
5269}
5270
5271#[stable(feature = "get_many_mut", since = "1.86.0")]
5272impl fmt::Display for GetDisjointMutError {
5273    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5274        let msg = match self {
5275            GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds",
5276            GetDisjointMutError::OverlappingIndices => "there were overlapping indices",
5277        };
5278        fmt::Display::fmt(msg, f)
5279    }
5280}
5281
5282mod private_get_disjoint_mut_index {
5283    use super::{Range, RangeInclusive, range};
5284
5285    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5286    pub trait Sealed {}
5287
5288    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5289    impl Sealed for usize {}
5290    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5291    impl Sealed for Range<usize> {}
5292    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5293    impl Sealed for RangeInclusive<usize> {}
5294    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5295    impl Sealed for range::Range<usize> {}
5296    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5297    impl Sealed for range::RangeInclusive<usize> {}
5298}
5299
5300/// A helper trait for `<[T]>::get_disjoint_mut()`.
5301///
5302/// # Safety
5303///
5304/// If `is_in_bounds()` returns `true` and `is_overlapping()` returns `false`,
5305/// it must be safe to index the slice with the indices.
5306#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5307pub unsafe trait GetDisjointMutIndex:
5308    Clone + private_get_disjoint_mut_index::Sealed
5309{
5310    /// Returns `true` if `self` is in bounds for `len` slice elements.
5311    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5312    fn is_in_bounds(&self, len: usize) -> bool;
5313
5314    /// Returns `true` if `self` overlaps with `other`.
5315    ///
5316    /// Note that we don't consider zero-length ranges to overlap at the beginning or the end,
5317    /// but do consider them to overlap in the middle.
5318    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5319    fn is_overlapping(&self, other: &Self) -> bool;
5320}
5321
5322#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5323// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5324unsafe impl GetDisjointMutIndex for usize {
5325    #[inline]
5326    fn is_in_bounds(&self, len: usize) -> bool {
5327        *self < len
5328    }
5329
5330    #[inline]
5331    fn is_overlapping(&self, other: &Self) -> bool {
5332        *self == *other
5333    }
5334}
5335
5336#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5337// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5338unsafe impl GetDisjointMutIndex for Range<usize> {
5339    #[inline]
5340    fn is_in_bounds(&self, len: usize) -> bool {
5341        (self.start <= self.end) & (self.end <= len)
5342    }
5343
5344    #[inline]
5345    fn is_overlapping(&self, other: &Self) -> bool {
5346        (self.start < other.end) & (other.start < self.end)
5347    }
5348}
5349
5350#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5351// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5352unsafe impl GetDisjointMutIndex for RangeInclusive<usize> {
5353    #[inline]
5354    fn is_in_bounds(&self, len: usize) -> bool {
5355        (self.start <= self.end) & (self.end < len)
5356    }
5357
5358    #[inline]
5359    fn is_overlapping(&self, other: &Self) -> bool {
5360        (self.start <= other.end) & (other.start <= self.end)
5361    }
5362}
5363
5364#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5365// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5366unsafe impl GetDisjointMutIndex for range::Range<usize> {
5367    #[inline]
5368    fn is_in_bounds(&self, len: usize) -> bool {
5369        Range::from(*self).is_in_bounds(len)
5370    }
5371
5372    #[inline]
5373    fn is_overlapping(&self, other: &Self) -> bool {
5374        Range::from(*self).is_overlapping(&Range::from(*other))
5375    }
5376}
5377
5378#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5379// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5380unsafe impl GetDisjointMutIndex for range::RangeInclusive<usize> {
5381    #[inline]
5382    fn is_in_bounds(&self, len: usize) -> bool {
5383        RangeInclusive::from(*self).is_in_bounds(len)
5384    }
5385
5386    #[inline]
5387    fn is_overlapping(&self, other: &Self) -> bool {
5388        RangeInclusive::from(*self).is_overlapping(&RangeInclusive::from(*other))
5389    }
5390}