Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

core/sync/
atomic.rs

1//! Atomic types
2//!
3//! Atomic types provide primitive shared-memory communication between
4//! threads, and are the building blocks of other concurrent
5//! types.
6//!
7//! This module defines atomic versions of a select number of primitive
8//! types, including [`AtomicBool`], [`AtomicIsize`], [`AtomicUsize`],
9//! [`AtomicI8`], [`AtomicU16`], etc.
10//! Atomic types present operations that, when used correctly, synchronize
11//! updates between threads.
12//!
13//! Atomic variables are safe to share between threads (they implement [`Sync`])
14//! but they do not themselves provide the mechanism for sharing and follow the
15//! [threading model](../../../std/thread/index.html#the-threading-model) of Rust.
16//! The most common way to share an atomic variable is to put it into an [`Arc`][arc] (an
17//! atomically-reference-counted shared pointer).
18//!
19//! [arc]: ../../../std/sync/struct.Arc.html
20//!
21//! Atomic types may be stored in static variables, initialized using
22//! the constant initializers like [`AtomicBool::new`]. Atomic statics
23//! are often used for lazy global initialization.
24//!
25//! ## Memory model for atomic accesses
26//!
27//! Rust atomics currently follow the same rules as [C++20 atomics][cpp], specifically the rules
28//! from the [`intro.races`][cpp-intro.races] section, without the "consume" memory ordering. Since
29//! C++ uses an object-based memory model whereas Rust is access-based, a bit of translation work
30//! has to be done to apply the C++ rules to Rust: whenever C++ talks about "the value of an
31//! object", we understand that to mean the resulting bytes obtained when doing a read. When the C++
32//! standard talks about "the value of an atomic object", this refers to the result of doing an
33//! atomic load (via the operations provided in this module). A "modification of an atomic object"
34//! refers to an atomic store.
35//!
36//! The end result is *almost* equivalent to saying that creating a *shared reference* to one of the
37//! Rust atomic types corresponds to creating an `atomic_ref` in C++, with the `atomic_ref` being
38//! destroyed when the lifetime of the shared reference ends. The main difference is that Rust
39//! permits concurrent atomic and non-atomic reads to the same memory as those cause no issue in the
40//! C++ memory model, they are just forbidden in C++ because memory is partitioned into "atomic
41//! objects" and "non-atomic objects" (with `atomic_ref` temporarily converting a non-atomic object
42//! into an atomic object).
43//!
44//! The most important aspect of this model is that *data races* are undefined behavior. A data race
45//! is defined as conflicting non-synchronized accesses where at least one of the accesses is
46//! non-atomic. Here, accesses are *conflicting* if they affect overlapping regions of memory and at
47//! least one of them is a write. (A `compare_exchange` or `compare_exchange_weak` that does not
48//! succeed is not considered a write.) They are *non-synchronized* if neither of them
49//! *happens-before* the other, according to the happens-before order of the memory model.
50//!
51//! The other possible cause of undefined behavior in the memory model are mixed-size accesses: Rust
52//! inherits the C++ limitation that non-synchronized conflicting atomic accesses may not partially
53//! overlap. In other words, every pair of non-synchronized atomic accesses must be either disjoint,
54//! access the exact same memory (including using the same access size), or both be reads.
55//!
56//! Each atomic access takes an [`Ordering`] which defines how the operation interacts with the
57//! happens-before order. These orderings behave the same as the corresponding [C++20 atomic
58//! orderings][cpp_memory_order]. For more information, see the [nomicon].
59//!
60//! [cpp]: https://en.cppreference.com/w/cpp/atomic
61//! [cpp-intro.races]: https://timsong-cpp.github.io/cppwp/n4868/intro.multithread#intro.races
62//! [cpp_memory_order]: https://en.cppreference.com/w/cpp/atomic/memory_order
63//! [nomicon]: ../../../nomicon/atomics.html
64//!
65//! ```rust,no_run undefined_behavior
66//! use std::sync::atomic::{AtomicU16, AtomicU8, Ordering};
67//! use std::mem::transmute;
68//! use std::thread;
69//!
70//! let atomic = AtomicU16::new(0);
71//!
72//! thread::scope(|s| {
73//!     // This is UB: conflicting non-synchronized accesses, at least one of which is non-atomic.
74//!     s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
75//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
76//! });
77//!
78//! thread::scope(|s| {
79//!     // This is fine: the accesses do not conflict (as none of them performs any modification).
80//!     // In C++ this would be disallowed since creating an `atomic_ref` precludes
81//!     // further non-atomic accesses, but Rust does not have that limitation.
82//!     s.spawn(|| atomic.load(Ordering::Relaxed)); // atomic load
83//!     s.spawn(|| unsafe { atomic.as_ptr().read() }); // non-atomic read
84//! });
85//!
86//! thread::scope(|s| {
87//!     // This is fine: `join` synchronizes the code in a way such that the atomic
88//!     // store happens-before the non-atomic write.
89//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
90//!     handle.join().expect("thread won't panic"); // synchronize
91//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
92//! });
93//!
94//! thread::scope(|s| {
95//!     // This is UB: non-synchronized conflicting differently-sized atomic accesses.
96//!     s.spawn(|| atomic.store(1, Ordering::Relaxed));
97//!     s.spawn(|| unsafe {
98//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
99//!         differently_sized.store(2, Ordering::Relaxed);
100//!     });
101//! });
102//!
103//! thread::scope(|s| {
104//!     // This is fine: `join` synchronizes the code in a way such that
105//!     // the 1-byte store happens-before the 2-byte store.
106//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed));
107//!     handle.join().expect("thread won't panic");
108//!     s.spawn(|| unsafe {
109//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
110//!         differently_sized.store(2, Ordering::Relaxed);
111//!     });
112//! });
113//! ```
114//!
115//! # Portability
116//!
117//! All atomic types in this module are guaranteed to be [lock-free] if they're
118//! available. This means they don't internally acquire a global mutex. Atomic
119//! types and operations are not guaranteed to be wait-free. This means that
120//! operations like `fetch_or` may be implemented with a compare-and-swap loop.
121//!
122//! Atomic operations may be implemented at the instruction layer with
123//! larger-size atomics. For example some platforms use 4-byte atomic
124//! instructions to implement `AtomicI8`. Note that this emulation should not
125//! have an impact on correctness of code, it's just something to be aware of.
126//!
127//! The atomic types in this module might not be available on all platforms. The
128//! atomic types here are all widely available, however, and can generally be
129//! relied upon existing. Some notable exceptions are:
130//!
131//! * PowerPC and MIPS platforms with 32-bit pointers do not have `AtomicU64` or
132//!   `AtomicI64` types.
133//! * ARM platforms like `armv5te` that aren't for Linux only provide `load`
134//!   and `store` operations, and do not support Compare and Swap (CAS)
135//!   operations, such as `swap`, `fetch_add`, etc. Additionally on Linux,
136//!   these CAS operations are implemented via [operating system support], which
137//!   may come with a performance penalty.
138//! * ARM targets with `thumbv6m` only provide `load` and `store` operations,
139//!   and do not support Compare and Swap (CAS) operations, such as `swap`,
140//!   `fetch_add`, etc.
141//!
142//! [operating system support]: https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt
143//!
144//! Note that future platforms may be added that also do not have support for
145//! some atomic operations. Maximally portable code will want to be careful
146//! about which atomic types are used. `AtomicUsize` and `AtomicIsize` are
147//! generally the most portable, but even then they're not available everywhere.
148//! For reference, the `std` library requires `AtomicBool`s and pointer-sized atomics, although
149//! `core` does not.
150//!
151//! The `#[cfg(target_has_atomic)]` attribute can be used to conditionally
152//! compile based on the target's supported bit widths. It is a key-value
153//! option set for each supported size, with values "8", "16", "32", "64",
154//! "128", and "ptr" for pointer-sized atomics.
155//!
156//! [lock-free]: https://en.wikipedia.org/wiki/Non-blocking_algorithm
157//!
158//! # Atomic accesses to read-only memory
159//!
160//! In general, *all* atomic accesses on read-only memory are undefined behavior. For instance, attempting
161//! to do a `compare_exchange` that will definitely fail (making it conceptually a read-only
162//! operation) can still cause a segmentation fault if the underlying memory page is mapped read-only. Since
163//! atomic `load`s might be implemented using compare-exchange operations, even a `load` can fault
164//! on read-only memory.
165//!
166//! For the purpose of this section, "read-only memory" is defined as memory that is read-only in
167//! the underlying target, i.e., the pages are mapped with a read-only flag and any attempt to write
168//! will cause a page fault. In particular, an `&u128` reference that points to memory that is
169//! read-write mapped is *not* considered to point to "read-only memory". In Rust, almost all memory
170//! is read-write; the only exceptions are memory created by `const` items or `static` items without
171//! interior mutability, and memory that was specifically marked as read-only by the operating
172//! system via platform-specific APIs.
173//!
174//! As an exception from the general rule stated above, "sufficiently small" atomic loads with
175//! `Ordering::Relaxed` are implemented in a way that works on read-only memory, and are hence not
176//! undefined behavior. The exact size limit for what makes a load "sufficiently small" varies
177//! depending on the target:
178//!
179//! | `target_arch` | Size limit |
180//! |---------------|---------|
181//! | `x86`, `arm`, `loongarch32`, `mips`, `mips32r6`, `powerpc`, `riscv32`, `sparc`, `hexagon` | 4 bytes |
182//! | `x86_64`, `aarch64`, `loongarch64`, `mips64`, `mips64r6`, `powerpc64`, `riscv64`, `sparc64`, `s390x` | 8 bytes |
183//!
184//! Atomics loads that are larger than this limit as well as atomic loads with ordering other
185//! than `Relaxed`, as well as *all* atomic loads on targets not listed in the table, might still be
186//! read-only under certain conditions, but that is not a stable guarantee and should not be relied
187//! upon.
188//!
189//! If you need to do an acquire load on read-only memory, you can do a relaxed load followed by an
190//! acquire fence instead.
191//!
192//! # Examples
193//!
194//! A simple spinlock:
195//!
196//! ```ignore-wasm
197//! use std::sync::Arc;
198//! use std::sync::atomic::{AtomicUsize, Ordering};
199//! use std::{hint, thread};
200//!
201//! fn main() {
202//!     let spinlock = Arc::new(AtomicUsize::new(1));
203//!
204//!     let spinlock_clone = Arc::clone(&spinlock);
205//!
206//!     let thread = thread::spawn(move || {
207//!         spinlock_clone.store(0, Ordering::Release);
208//!     });
209//!
210//!     // Wait for the other thread to release the lock
211//!     while spinlock.load(Ordering::Acquire) != 0 {
212//!         hint::spin_loop();
213//!     }
214//!
215//!     if let Err(panic) = thread.join() {
216//!         println!("Thread had an error: {panic:?}");
217//!     }
218//! }
219//! ```
220//!
221//! Keep a global count of live threads:
222//!
223//! ```
224//! use std::sync::atomic::{AtomicUsize, Ordering};
225//!
226//! static GLOBAL_THREAD_COUNT: AtomicUsize = AtomicUsize::new(0);
227//!
228//! // Note that Relaxed ordering doesn't synchronize anything
229//! // except the global thread counter itself.
230//! let old_thread_count = GLOBAL_THREAD_COUNT.fetch_add(1, Ordering::Relaxed);
231//! // Note that this number may not be true at the moment of printing
232//! // because some other thread may have changed static value already.
233//! println!("live threads: {}", old_thread_count + 1);
234//! ```
235
236#![stable(feature = "rust1", since = "1.0.0")]
237#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
238#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(unused_imports))]
239#![rustc_diagnostic_item = "atomic_mod"]
240// Clippy complains about the pattern of "safe function calling unsafe function taking pointers".
241// This happens with AtomicPtr intrinsics but is fine, as the pointers clippy is concerned about
242// are just normal values that get loaded/stored, but not dereferenced.
243#![allow(clippy::not_unsafe_ptr_arg_deref)]
244
245use self::Ordering::*;
246use crate::cell::UnsafeCell;
247use crate::hint::spin_loop;
248use crate::intrinsics::AtomicOrdering as AO;
249use crate::{fmt, intrinsics};
250
251trait Sealed {}
252
253/// A marker trait for primitive types which can be modified atomically.
254///
255/// This is an implementation detail for <code>[Atomic]\<T></code> which may disappear or be replaced at any time.
256///
257/// # Safety
258///
259/// Types implementing this trait must be primitives that can be modified atomically.
260///
261/// The associated `Self::AtomicInner` type must have the same size and bit validity as `Self`,
262/// but may have a higher alignment requirement, so the following `transmute`s are sound:
263///
264/// - `&mut Self::AtomicInner` as `&mut Self`
265/// - `Self` as `Self::AtomicInner` or the reverse
266#[unstable(
267    feature = "atomic_internals",
268    reason = "implementation detail which may disappear or be replaced at any time",
269    issue = "none"
270)]
271#[expect(private_bounds)]
272pub unsafe trait AtomicPrimitive: Sized + Copy + Sealed {
273    /// Temporary implementation detail.
274    type AtomicInner: Sized;
275}
276
277macro impl_atomic_primitive(
278    $Atom:ident $(<$T:ident>)? ($Primitive:ty),
279    size($size:literal),
280    align($align:literal) $(,)?
281) {
282    impl $(<$T>)? Sealed for $Primitive {}
283
284    #[unstable(
285        feature = "atomic_internals",
286        reason = "implementation detail which may disappear or be replaced at any time",
287        issue = "none"
288    )]
289    #[cfg(target_has_atomic_load_store = $size)]
290    unsafe impl $(<$T>)? AtomicPrimitive for $Primitive {
291        type AtomicInner = $Atom $(<$T>)?;
292    }
293}
294
295impl_atomic_primitive!(AtomicBool(bool), size("8"), align(1));
296impl_atomic_primitive!(AtomicI8(i8), size("8"), align(1));
297impl_atomic_primitive!(AtomicU8(u8), size("8"), align(1));
298impl_atomic_primitive!(AtomicI16(i16), size("16"), align(2));
299impl_atomic_primitive!(AtomicU16(u16), size("16"), align(2));
300impl_atomic_primitive!(AtomicI32(i32), size("32"), align(4));
301impl_atomic_primitive!(AtomicU32(u32), size("32"), align(4));
302impl_atomic_primitive!(AtomicI64(i64), size("64"), align(8));
303impl_atomic_primitive!(AtomicU64(u64), size("64"), align(8));
304impl_atomic_primitive!(AtomicI128(i128), size("128"), align(16));
305impl_atomic_primitive!(AtomicU128(u128), size("128"), align(16));
306
307#[cfg(target_pointer_width = "16")]
308impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(2));
309#[cfg(target_pointer_width = "32")]
310impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(4));
311#[cfg(target_pointer_width = "64")]
312impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(8));
313
314#[cfg(target_pointer_width = "16")]
315impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(2));
316#[cfg(target_pointer_width = "32")]
317impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(4));
318#[cfg(target_pointer_width = "64")]
319impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(8));
320
321#[cfg(target_pointer_width = "16")]
322impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(2));
323#[cfg(target_pointer_width = "32")]
324impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(4));
325#[cfg(target_pointer_width = "64")]
326impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(8));
327
328/// A memory location which can be safely modified from multiple threads.
329///
330/// This has the same size and bit validity as the underlying type `T`. However,
331/// the alignment of this type is always equal to its size, even on targets where
332/// `T` has alignment less than its size.
333///
334/// For more about the differences between atomic types and non-atomic types as
335/// well as information about the portability of this type, please see the
336/// [module-level documentation].
337///
338/// **Note:** This type is only available on platforms that support atomic loads
339/// and stores of `T`.
340///
341/// [module-level documentation]: crate::sync::atomic
342#[unstable(feature = "generic_atomic", issue = "130539")]
343pub type Atomic<T> = <T as AtomicPrimitive>::AtomicInner;
344
345// Some architectures don't have byte-sized atomics, which results in LLVM
346// emulating them using a LL/SC loop. However for AtomicBool we can take
347// advantage of the fact that it only ever contains 0 or 1 and use atomic OR/AND
348// instead, which LLVM can emulate using a larger atomic OR/AND operation.
349//
350// This list should only contain architectures which have word-sized atomic-or/
351// atomic-and instructions but don't natively support byte-sized atomics.
352#[cfg(target_has_atomic = "8")]
353const EMULATE_ATOMIC_BOOL: bool = cfg!(any(
354    target_arch = "riscv32",
355    target_arch = "riscv64",
356    target_arch = "loongarch32",
357    target_arch = "loongarch64"
358));
359
360/// A boolean type which can be safely shared between threads.
361///
362/// This type has the same size, alignment, and bit validity as a [`bool`].
363///
364/// **Note**: This type is only available on platforms that support atomic
365/// loads and stores of `u8`.
366#[cfg(target_has_atomic_load_store = "8")]
367#[stable(feature = "rust1", since = "1.0.0")]
368#[rustc_diagnostic_item = "AtomicBool"]
369#[repr(C, align(1))]
370pub struct AtomicBool {
371    v: UnsafeCell<u8>,
372}
373
374#[cfg(target_has_atomic_load_store = "8")]
375#[stable(feature = "rust1", since = "1.0.0")]
376impl Default for AtomicBool {
377    /// Creates an `AtomicBool` initialized to `false`.
378    #[inline]
379    fn default() -> Self {
380        Self::new(false)
381    }
382}
383
384// Send is implicitly implemented for AtomicBool.
385#[cfg(target_has_atomic_load_store = "8")]
386#[stable(feature = "rust1", since = "1.0.0")]
387unsafe impl Sync for AtomicBool {}
388
389/// A raw pointer type which can be safely shared between threads.
390///
391/// This type has the same size and bit validity as a `*mut T`.
392///
393/// **Note**: This type is only available on platforms that support atomic
394/// loads and stores of pointers. Its size depends on the target pointer's size.
395#[cfg(target_has_atomic_load_store = "ptr")]
396#[stable(feature = "rust1", since = "1.0.0")]
397#[rustc_diagnostic_item = "AtomicPtr"]
398#[cfg_attr(target_pointer_width = "16", repr(C, align(2)))]
399#[cfg_attr(target_pointer_width = "32", repr(C, align(4)))]
400#[cfg_attr(target_pointer_width = "64", repr(C, align(8)))]
401pub struct AtomicPtr<T> {
402    p: UnsafeCell<*mut T>,
403}
404
405#[cfg(target_has_atomic_load_store = "ptr")]
406#[stable(feature = "rust1", since = "1.0.0")]
407impl<T> Default for AtomicPtr<T> {
408    /// Creates a null `AtomicPtr<T>`.
409    fn default() -> AtomicPtr<T> {
410        AtomicPtr::new(crate::ptr::null_mut())
411    }
412}
413
414#[cfg(target_has_atomic_load_store = "ptr")]
415#[stable(feature = "rust1", since = "1.0.0")]
416unsafe impl<T> Send for AtomicPtr<T> {}
417#[cfg(target_has_atomic_load_store = "ptr")]
418#[stable(feature = "rust1", since = "1.0.0")]
419unsafe impl<T> Sync for AtomicPtr<T> {}
420
421/// Atomic memory orderings
422///
423/// Memory orderings specify the way atomic operations synchronize memory.
424/// In its weakest [`Ordering::Relaxed`], only the memory directly touched by the
425/// operation is synchronized. On the other hand, a store-load pair of [`Ordering::SeqCst`]
426/// operations synchronize other memory while additionally preserving a total order of such
427/// operations across all threads.
428///
429/// Rust's memory orderings are [the same as those of
430/// C++20](https://en.cppreference.com/w/cpp/atomic/memory_order).
431///
432/// For more information see the [nomicon].
433///
434/// [nomicon]: ../../../nomicon/atomics.html
435#[stable(feature = "rust1", since = "1.0.0")]
436#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
437#[non_exhaustive]
438#[rustc_diagnostic_item = "Ordering"]
439pub enum Ordering {
440    /// No ordering constraints, only atomic operations.
441    ///
442    /// Corresponds to [`memory_order_relaxed`] in C++20.
443    ///
444    /// [`memory_order_relaxed`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
445    #[stable(feature = "rust1", since = "1.0.0")]
446    Relaxed,
447    /// When coupled with a store, all previous operations become ordered
448    /// before any load of this value with [`Acquire`] (or stronger) ordering.
449    /// In particular, all previous writes become visible to all threads
450    /// that perform an [`Acquire`] (or stronger) load of this value.
451    ///
452    /// Notice that using this ordering for an operation that combines loads
453    /// and stores leads to a [`Relaxed`] load operation!
454    ///
455    /// This ordering is only applicable for operations that can perform a store.
456    ///
457    /// Corresponds to [`memory_order_release`] in C++20.
458    ///
459    /// [`memory_order_release`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
460    #[stable(feature = "rust1", since = "1.0.0")]
461    Release,
462    /// When coupled with a load, if the loaded value was written by a store operation with
463    /// [`Release`] (or stronger) ordering, then all subsequent operations
464    /// become ordered after that store. In particular, all subsequent loads will see data
465    /// written before the store.
466    ///
467    /// Notice that using this ordering for an operation that combines loads
468    /// and stores leads to a [`Relaxed`] store operation!
469    ///
470    /// This ordering is only applicable for operations that can perform a load.
471    ///
472    /// Corresponds to [`memory_order_acquire`] in C++20.
473    ///
474    /// [`memory_order_acquire`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
475    #[stable(feature = "rust1", since = "1.0.0")]
476    Acquire,
477    /// Has the effects of both [`Acquire`] and [`Release`] together:
478    /// For loads it uses [`Acquire`] ordering. For stores it uses the [`Release`] ordering.
479    ///
480    /// Notice that in the case of `compare_and_swap`, it is possible that the operation ends up
481    /// not performing any store and hence it has just [`Acquire`] ordering. However,
482    /// `AcqRel` will never perform [`Relaxed`] accesses.
483    ///
484    /// This ordering is only applicable for operations that combine both loads and stores.
485    ///
486    /// Corresponds to [`memory_order_acq_rel`] in C++20.
487    ///
488    /// [`memory_order_acq_rel`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
489    #[stable(feature = "rust1", since = "1.0.0")]
490    AcqRel,
491    /// Like [`Acquire`]/[`Release`]/[`AcqRel`] (for load, store, and load-with-store
492    /// operations, respectively) with the additional guarantee that all threads see all
493    /// sequentially consistent operations in the same order.
494    ///
495    /// Corresponds to [`memory_order_seq_cst`] in C++20.
496    ///
497    /// [`memory_order_seq_cst`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Sequentially-consistent_ordering
498    #[stable(feature = "rust1", since = "1.0.0")]
499    SeqCst,
500}
501
502/// An [`AtomicBool`] initialized to `false`.
503#[cfg(target_has_atomic_load_store = "8")]
504#[stable(feature = "rust1", since = "1.0.0")]
505#[deprecated(
506    since = "1.34.0",
507    note = "the `new` function is now preferred",
508    suggestion = "AtomicBool::new(false)"
509)]
510pub const ATOMIC_BOOL_INIT: AtomicBool = AtomicBool::new(false);
511
512#[cfg(target_has_atomic_load_store = "8")]
513impl AtomicBool {
514    /// Creates a new `AtomicBool`.
515    ///
516    /// # Examples
517    ///
518    /// ```
519    /// use std::sync::atomic::AtomicBool;
520    ///
521    /// let atomic_true = AtomicBool::new(true);
522    /// let atomic_false = AtomicBool::new(false);
523    /// ```
524    #[inline]
525    #[stable(feature = "rust1", since = "1.0.0")]
526    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
527    #[must_use]
528    pub const fn new(v: bool) -> AtomicBool {
529        AtomicBool { v: UnsafeCell::new(v as u8) }
530    }
531
532    /// Creates a new `AtomicBool` from a pointer.
533    ///
534    /// # Examples
535    ///
536    /// ```
537    /// use std::sync::atomic::{self, AtomicBool};
538    ///
539    /// // Get a pointer to an allocated value
540    /// let ptr: *mut bool = Box::into_raw(Box::new(false));
541    ///
542    /// assert!(ptr.cast::<AtomicBool>().is_aligned());
543    ///
544    /// {
545    ///     // Create an atomic view of the allocated value
546    ///     let atomic = unsafe { AtomicBool::from_ptr(ptr) };
547    ///
548    ///     // Use `atomic` for atomic operations, possibly share it with other threads
549    ///     atomic.store(true, atomic::Ordering::Relaxed);
550    /// }
551    ///
552    /// // It's ok to non-atomically access the value behind `ptr`,
553    /// // since the reference to the atomic ended its lifetime in the block above
554    /// assert_eq!(unsafe { *ptr }, true);
555    ///
556    /// // Deallocate the value
557    /// unsafe { drop(Box::from_raw(ptr)) }
558    /// ```
559    ///
560    /// # Safety
561    ///
562    /// * `ptr` must be aligned to `align_of::<AtomicBool>()` (note that this is always true, since
563    ///   `align_of::<AtomicBool>() == 1`).
564    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
565    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
566    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
567    ///   sizes, without synchronization.
568    ///
569    /// [valid]: crate::ptr#safety
570    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
571    #[inline]
572    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
573    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
574    pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool {
575        // SAFETY: guaranteed by the caller
576        unsafe { &*ptr.cast() }
577    }
578
579    /// Returns a mutable reference to the underlying [`bool`].
580    ///
581    /// This is safe because the mutable reference guarantees that no other threads are
582    /// concurrently accessing the atomic data.
583    ///
584    /// # Examples
585    ///
586    /// ```
587    /// use std::sync::atomic::{AtomicBool, Ordering};
588    ///
589    /// let mut some_bool = AtomicBool::new(true);
590    /// assert_eq!(*some_bool.get_mut(), true);
591    /// *some_bool.get_mut() = false;
592    /// assert_eq!(some_bool.load(Ordering::SeqCst), false);
593    /// ```
594    #[inline]
595    #[stable(feature = "atomic_access", since = "1.15.0")]
596    pub fn get_mut(&mut self) -> &mut bool {
597        // SAFETY: the mutable reference guarantees unique ownership.
598        unsafe { &mut *(self.v.get() as *mut bool) }
599    }
600
601    /// Gets atomic access to a `&mut bool`.
602    ///
603    /// # Examples
604    ///
605    /// ```
606    /// #![feature(atomic_from_mut)]
607    /// use std::sync::atomic::{AtomicBool, Ordering};
608    ///
609    /// let mut some_bool = true;
610    /// let a = AtomicBool::from_mut(&mut some_bool);
611    /// a.store(false, Ordering::Relaxed);
612    /// assert_eq!(some_bool, false);
613    /// ```
614    #[inline]
615    #[cfg(target_has_atomic_equal_alignment = "8")]
616    #[unstable(feature = "atomic_from_mut", issue = "76314")]
617    pub fn from_mut(v: &mut bool) -> &mut Self {
618        // SAFETY: the mutable reference guarantees unique ownership, and
619        // alignment of both `bool` and `Self` is 1.
620        unsafe { &mut *(v as *mut bool as *mut Self) }
621    }
622
623    /// Gets non-atomic access to a `&mut [AtomicBool]` slice.
624    ///
625    /// This is safe because the mutable reference guarantees that no other threads are
626    /// concurrently accessing the atomic data.
627    ///
628    /// # Examples
629    ///
630    /// ```ignore-wasm
631    /// #![feature(atomic_from_mut)]
632    /// use std::sync::atomic::{AtomicBool, Ordering};
633    ///
634    /// let mut some_bools = [const { AtomicBool::new(false) }; 10];
635    ///
636    /// let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
637    /// assert_eq!(view, [false; 10]);
638    /// view[..5].copy_from_slice(&[true; 5]);
639    ///
640    /// std::thread::scope(|s| {
641    ///     for t in &some_bools[..5] {
642    ///         s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
643    ///     }
644    ///
645    ///     for f in &some_bools[5..] {
646    ///         s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
647    ///     }
648    /// });
649    /// ```
650    #[inline]
651    #[unstable(feature = "atomic_from_mut", issue = "76314")]
652    pub fn get_mut_slice(this: &mut [Self]) -> &mut [bool] {
653        // SAFETY: the mutable reference guarantees unique ownership.
654        unsafe { &mut *(this as *mut [Self] as *mut [bool]) }
655    }
656
657    /// Gets atomic access to a `&mut [bool]` slice.
658    ///
659    /// # Examples
660    ///
661    /// ```rust,ignore-wasm
662    /// #![feature(atomic_from_mut)]
663    /// use std::sync::atomic::{AtomicBool, Ordering};
664    ///
665    /// let mut some_bools = [false; 10];
666    /// let a = &*AtomicBool::from_mut_slice(&mut some_bools);
667    /// std::thread::scope(|s| {
668    ///     for i in 0..a.len() {
669    ///         s.spawn(move || a[i].store(true, Ordering::Relaxed));
670    ///     }
671    /// });
672    /// assert_eq!(some_bools, [true; 10]);
673    /// ```
674    #[inline]
675    #[cfg(target_has_atomic_equal_alignment = "8")]
676    #[unstable(feature = "atomic_from_mut", issue = "76314")]
677    pub fn from_mut_slice(v: &mut [bool]) -> &mut [Self] {
678        // SAFETY: the mutable reference guarantees unique ownership, and
679        // alignment of both `bool` and `Self` is 1.
680        unsafe { &mut *(v as *mut [bool] as *mut [Self]) }
681    }
682
683    /// Consumes the atomic and returns the contained value.
684    ///
685    /// This is safe because passing `self` by value guarantees that no other threads are
686    /// concurrently accessing the atomic data.
687    ///
688    /// # Examples
689    ///
690    /// ```
691    /// use std::sync::atomic::AtomicBool;
692    ///
693    /// let some_bool = AtomicBool::new(true);
694    /// assert_eq!(some_bool.into_inner(), true);
695    /// ```
696    #[inline]
697    #[stable(feature = "atomic_access", since = "1.15.0")]
698    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
699    pub const fn into_inner(self) -> bool {
700        self.v.into_inner() != 0
701    }
702
703    /// Loads a value from the bool.
704    ///
705    /// `load` takes an [`Ordering`] argument which describes the memory ordering
706    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
707    ///
708    /// # Panics
709    ///
710    /// Panics if `order` is [`Release`] or [`AcqRel`].
711    ///
712    /// # Examples
713    ///
714    /// ```
715    /// use std::sync::atomic::{AtomicBool, Ordering};
716    ///
717    /// let some_bool = AtomicBool::new(true);
718    ///
719    /// assert_eq!(some_bool.load(Ordering::Relaxed), true);
720    /// ```
721    #[inline]
722    #[stable(feature = "rust1", since = "1.0.0")]
723    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
724    pub fn load(&self, order: Ordering) -> bool {
725        // SAFETY: any data races are prevented by atomic intrinsics and the raw
726        // pointer passed in is valid because we got it from a reference.
727        unsafe { atomic_load(self.v.get(), order) != 0 }
728    }
729
730    /// Stores a value into the bool.
731    ///
732    /// `store` takes an [`Ordering`] argument which describes the memory ordering
733    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
734    ///
735    /// # Panics
736    ///
737    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
738    ///
739    /// # Examples
740    ///
741    /// ```
742    /// use std::sync::atomic::{AtomicBool, Ordering};
743    ///
744    /// let some_bool = AtomicBool::new(true);
745    ///
746    /// some_bool.store(false, Ordering::Relaxed);
747    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
748    /// ```
749    #[inline]
750    #[stable(feature = "rust1", since = "1.0.0")]
751    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
752    pub fn store(&self, val: bool, order: Ordering) {
753        // SAFETY: any data races are prevented by atomic intrinsics and the raw
754        // pointer passed in is valid because we got it from a reference.
755        unsafe {
756            atomic_store(self.v.get(), val as u8, order);
757        }
758    }
759
760    /// Stores a value into the bool, returning the previous value.
761    ///
762    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
763    /// of this operation. All ordering modes are possible. Note that using
764    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
765    /// using [`Release`] makes the load part [`Relaxed`].
766    ///
767    /// **Note:** This method is only available on platforms that support atomic
768    /// operations on `u8`.
769    ///
770    /// # Examples
771    ///
772    /// ```
773    /// use std::sync::atomic::{AtomicBool, Ordering};
774    ///
775    /// let some_bool = AtomicBool::new(true);
776    ///
777    /// assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
778    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
779    /// ```
780    #[inline]
781    #[stable(feature = "rust1", since = "1.0.0")]
782    #[cfg(target_has_atomic = "8")]
783    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
784    pub fn swap(&self, val: bool, order: Ordering) -> bool {
785        if EMULATE_ATOMIC_BOOL {
786            if val { self.fetch_or(true, order) } else { self.fetch_and(false, order) }
787        } else {
788            // SAFETY: data races are prevented by atomic intrinsics.
789            unsafe { atomic_swap(self.v.get(), val as u8, order) != 0 }
790        }
791    }
792
793    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
794    ///
795    /// The return value is always the previous value. If it is equal to `current`, then the value
796    /// was updated.
797    ///
798    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
799    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
800    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
801    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
802    /// happens, and using [`Release`] makes the load part [`Relaxed`].
803    ///
804    /// **Note:** This method is only available on platforms that support atomic
805    /// operations on `u8`.
806    ///
807    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
808    ///
809    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
810    /// memory orderings:
811    ///
812    /// Original | Success | Failure
813    /// -------- | ------- | -------
814    /// Relaxed  | Relaxed | Relaxed
815    /// Acquire  | Acquire | Acquire
816    /// Release  | Release | Relaxed
817    /// AcqRel   | AcqRel  | Acquire
818    /// SeqCst   | SeqCst  | SeqCst
819    ///
820    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
821    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
822    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
823    /// rather than to infer success vs failure based on the value that was read.
824    ///
825    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
826    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
827    /// which allows the compiler to generate better assembly code when the compare and swap
828    /// is used in a loop.
829    ///
830    /// # Examples
831    ///
832    /// ```
833    /// use std::sync::atomic::{AtomicBool, Ordering};
834    ///
835    /// let some_bool = AtomicBool::new(true);
836    ///
837    /// assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
838    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
839    ///
840    /// assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
841    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
842    /// ```
843    #[inline]
844    #[stable(feature = "rust1", since = "1.0.0")]
845    #[deprecated(
846        since = "1.50.0",
847        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
848    )]
849    #[cfg(target_has_atomic = "8")]
850    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
851    pub fn compare_and_swap(&self, current: bool, new: bool, order: Ordering) -> bool {
852        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
853            Ok(x) => x,
854            Err(x) => x,
855        }
856    }
857
858    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
859    ///
860    /// The return value is a result indicating whether the new value was written and containing
861    /// the previous value. On success this value is guaranteed to be equal to `current`.
862    ///
863    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
864    /// ordering of this operation. `success` describes the required ordering for the
865    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
866    /// `failure` describes the required ordering for the load operation that takes place when
867    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
868    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
869    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
870    ///
871    /// **Note:** This method is only available on platforms that support atomic
872    /// operations on `u8`.
873    ///
874    /// # Examples
875    ///
876    /// ```
877    /// use std::sync::atomic::{AtomicBool, Ordering};
878    ///
879    /// let some_bool = AtomicBool::new(true);
880    ///
881    /// assert_eq!(some_bool.compare_exchange(true,
882    ///                                       false,
883    ///                                       Ordering::Acquire,
884    ///                                       Ordering::Relaxed),
885    ///            Ok(true));
886    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
887    ///
888    /// assert_eq!(some_bool.compare_exchange(true, true,
889    ///                                       Ordering::SeqCst,
890    ///                                       Ordering::Acquire),
891    ///            Err(false));
892    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
893    /// ```
894    ///
895    /// # Considerations
896    ///
897    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
898    /// of CAS operations. In particular, a load of the value followed by a successful
899    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
900    /// changed the value in the interim. This is usually important when the *equality* check in
901    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
902    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
903    /// [ABA problem].
904    ///
905    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
906    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
907    #[inline]
908    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
909    #[doc(alias = "compare_and_swap")]
910    #[cfg(target_has_atomic = "8")]
911    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
912    pub fn compare_exchange(
913        &self,
914        current: bool,
915        new: bool,
916        success: Ordering,
917        failure: Ordering,
918    ) -> Result<bool, bool> {
919        if EMULATE_ATOMIC_BOOL {
920            // Pick the strongest ordering from success and failure.
921            let order = match (success, failure) {
922                (SeqCst, _) => SeqCst,
923                (_, SeqCst) => SeqCst,
924                (AcqRel, _) => AcqRel,
925                (_, AcqRel) => {
926                    panic!("there is no such thing as an acquire-release failure ordering")
927                }
928                (Release, Acquire) => AcqRel,
929                (Acquire, _) => Acquire,
930                (_, Acquire) => Acquire,
931                (Release, Relaxed) => Release,
932                (_, Release) => panic!("there is no such thing as a release failure ordering"),
933                (Relaxed, Relaxed) => Relaxed,
934            };
935            let old = if current == new {
936                // This is a no-op, but we still need to perform the operation
937                // for memory ordering reasons.
938                self.fetch_or(false, order)
939            } else {
940                // This sets the value to the new one and returns the old one.
941                self.swap(new, order)
942            };
943            if old == current { Ok(old) } else { Err(old) }
944        } else {
945            // SAFETY: data races are prevented by atomic intrinsics.
946            match unsafe {
947                atomic_compare_exchange(self.v.get(), current as u8, new as u8, success, failure)
948            } {
949                Ok(x) => Ok(x != 0),
950                Err(x) => Err(x != 0),
951            }
952        }
953    }
954
955    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
956    ///
957    /// Unlike [`AtomicBool::compare_exchange`], this function is allowed to spuriously fail even when the
958    /// comparison succeeds, which can result in more efficient code on some platforms. The
959    /// return value is a result indicating whether the new value was written and containing the
960    /// previous value.
961    ///
962    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
963    /// ordering of this operation. `success` describes the required ordering for the
964    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
965    /// `failure` describes the required ordering for the load operation that takes place when
966    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
967    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
968    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
969    ///
970    /// **Note:** This method is only available on platforms that support atomic
971    /// operations on `u8`.
972    ///
973    /// # Examples
974    ///
975    /// ```
976    /// use std::sync::atomic::{AtomicBool, Ordering};
977    ///
978    /// let val = AtomicBool::new(false);
979    ///
980    /// let new = true;
981    /// let mut old = val.load(Ordering::Relaxed);
982    /// loop {
983    ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
984    ///         Ok(_) => break,
985    ///         Err(x) => old = x,
986    ///     }
987    /// }
988    /// ```
989    ///
990    /// # Considerations
991    ///
992    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
993    /// of CAS operations. In particular, a load of the value followed by a successful
994    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
995    /// changed the value in the interim. This is usually important when the *equality* check in
996    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
997    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
998    /// [ABA problem].
999    ///
1000    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1001    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1002    #[inline]
1003    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1004    #[doc(alias = "compare_and_swap")]
1005    #[cfg(target_has_atomic = "8")]
1006    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1007    pub fn compare_exchange_weak(
1008        &self,
1009        current: bool,
1010        new: bool,
1011        success: Ordering,
1012        failure: Ordering,
1013    ) -> Result<bool, bool> {
1014        if EMULATE_ATOMIC_BOOL {
1015            return self.compare_exchange(current, new, success, failure);
1016        }
1017
1018        // SAFETY: data races are prevented by atomic intrinsics.
1019        match unsafe {
1020            atomic_compare_exchange_weak(self.v.get(), current as u8, new as u8, success, failure)
1021        } {
1022            Ok(x) => Ok(x != 0),
1023            Err(x) => Err(x != 0),
1024        }
1025    }
1026
1027    /// Logical "and" with a boolean value.
1028    ///
1029    /// Performs a logical "and" operation on the current value and the argument `val`, and sets
1030    /// the new value to the result.
1031    ///
1032    /// Returns the previous value.
1033    ///
1034    /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
1035    /// of this operation. All ordering modes are possible. Note that using
1036    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1037    /// using [`Release`] makes the load part [`Relaxed`].
1038    ///
1039    /// **Note:** This method is only available on platforms that support atomic
1040    /// operations on `u8`.
1041    ///
1042    /// # Examples
1043    ///
1044    /// ```
1045    /// use std::sync::atomic::{AtomicBool, Ordering};
1046    ///
1047    /// let foo = AtomicBool::new(true);
1048    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
1049    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1050    ///
1051    /// let foo = AtomicBool::new(true);
1052    /// assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
1053    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1054    ///
1055    /// let foo = AtomicBool::new(false);
1056    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
1057    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1058    /// ```
1059    #[inline]
1060    #[stable(feature = "rust1", since = "1.0.0")]
1061    #[cfg(target_has_atomic = "8")]
1062    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1063    pub fn fetch_and(&self, val: bool, order: Ordering) -> bool {
1064        // SAFETY: data races are prevented by atomic intrinsics.
1065        unsafe { atomic_and(self.v.get(), val as u8, order) != 0 }
1066    }
1067
1068    /// Logical "nand" with a boolean value.
1069    ///
1070    /// Performs a logical "nand" operation on the current value and the argument `val`, and sets
1071    /// the new value to the result.
1072    ///
1073    /// Returns the previous value.
1074    ///
1075    /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
1076    /// of this operation. All ordering modes are possible. Note that using
1077    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1078    /// using [`Release`] makes the load part [`Relaxed`].
1079    ///
1080    /// **Note:** This method is only available on platforms that support atomic
1081    /// operations on `u8`.
1082    ///
1083    /// # Examples
1084    ///
1085    /// ```
1086    /// use std::sync::atomic::{AtomicBool, Ordering};
1087    ///
1088    /// let foo = AtomicBool::new(true);
1089    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
1090    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1091    ///
1092    /// let foo = AtomicBool::new(true);
1093    /// assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
1094    /// assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
1095    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1096    ///
1097    /// let foo = AtomicBool::new(false);
1098    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
1099    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1100    /// ```
1101    #[inline]
1102    #[stable(feature = "rust1", since = "1.0.0")]
1103    #[cfg(target_has_atomic = "8")]
1104    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1105    pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool {
1106        // We can't use atomic_nand here because it can result in a bool with
1107        // an invalid value. This happens because the atomic operation is done
1108        // with an 8-bit integer internally, which would set the upper 7 bits.
1109        // So we just use fetch_xor or swap instead.
1110        if val {
1111            // !(x & true) == !x
1112            // We must invert the bool.
1113            self.fetch_xor(true, order)
1114        } else {
1115            // !(x & false) == true
1116            // We must set the bool to true.
1117            self.swap(true, order)
1118        }
1119    }
1120
1121    /// Logical "or" with a boolean value.
1122    ///
1123    /// Performs a logical "or" operation on the current value and the argument `val`, and sets the
1124    /// new value to the result.
1125    ///
1126    /// Returns the previous value.
1127    ///
1128    /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
1129    /// of this operation. All ordering modes are possible. Note that using
1130    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1131    /// using [`Release`] makes the load part [`Relaxed`].
1132    ///
1133    /// **Note:** This method is only available on platforms that support atomic
1134    /// operations on `u8`.
1135    ///
1136    /// # Examples
1137    ///
1138    /// ```
1139    /// use std::sync::atomic::{AtomicBool, Ordering};
1140    ///
1141    /// let foo = AtomicBool::new(true);
1142    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
1143    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1144    ///
1145    /// let foo = AtomicBool::new(true);
1146    /// assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
1147    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1148    ///
1149    /// let foo = AtomicBool::new(false);
1150    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
1151    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1152    /// ```
1153    #[inline]
1154    #[stable(feature = "rust1", since = "1.0.0")]
1155    #[cfg(target_has_atomic = "8")]
1156    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1157    pub fn fetch_or(&self, val: bool, order: Ordering) -> bool {
1158        // SAFETY: data races are prevented by atomic intrinsics.
1159        unsafe { atomic_or(self.v.get(), val as u8, order) != 0 }
1160    }
1161
1162    /// Logical "xor" with a boolean value.
1163    ///
1164    /// Performs a logical "xor" operation on the current value and the argument `val`, and sets
1165    /// the new value to the result.
1166    ///
1167    /// Returns the previous value.
1168    ///
1169    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
1170    /// of this operation. All ordering modes are possible. Note that using
1171    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1172    /// using [`Release`] makes the load part [`Relaxed`].
1173    ///
1174    /// **Note:** This method is only available on platforms that support atomic
1175    /// operations on `u8`.
1176    ///
1177    /// # Examples
1178    ///
1179    /// ```
1180    /// use std::sync::atomic::{AtomicBool, Ordering};
1181    ///
1182    /// let foo = AtomicBool::new(true);
1183    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
1184    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1185    ///
1186    /// let foo = AtomicBool::new(true);
1187    /// assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
1188    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1189    ///
1190    /// let foo = AtomicBool::new(false);
1191    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
1192    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1193    /// ```
1194    #[inline]
1195    #[stable(feature = "rust1", since = "1.0.0")]
1196    #[cfg(target_has_atomic = "8")]
1197    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1198    pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool {
1199        // SAFETY: data races are prevented by atomic intrinsics.
1200        unsafe { atomic_xor(self.v.get(), val as u8, order) != 0 }
1201    }
1202
1203    /// Logical "not" with a boolean value.
1204    ///
1205    /// Performs a logical "not" operation on the current value, and sets
1206    /// the new value to the result.
1207    ///
1208    /// Returns the previous value.
1209    ///
1210    /// `fetch_not` takes an [`Ordering`] argument which describes the memory ordering
1211    /// of this operation. All ordering modes are possible. Note that using
1212    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1213    /// using [`Release`] makes the load part [`Relaxed`].
1214    ///
1215    /// **Note:** This method is only available on platforms that support atomic
1216    /// operations on `u8`.
1217    ///
1218    /// # Examples
1219    ///
1220    /// ```
1221    /// use std::sync::atomic::{AtomicBool, Ordering};
1222    ///
1223    /// let foo = AtomicBool::new(true);
1224    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
1225    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1226    ///
1227    /// let foo = AtomicBool::new(false);
1228    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
1229    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1230    /// ```
1231    #[inline]
1232    #[stable(feature = "atomic_bool_fetch_not", since = "1.81.0")]
1233    #[cfg(target_has_atomic = "8")]
1234    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1235    pub fn fetch_not(&self, order: Ordering) -> bool {
1236        self.fetch_xor(true, order)
1237    }
1238
1239    /// Returns a mutable pointer to the underlying [`bool`].
1240    ///
1241    /// Doing non-atomic reads and writes on the resulting boolean can be a data race.
1242    /// This method is mostly useful for FFI, where the function signature may use
1243    /// `*mut bool` instead of `&AtomicBool`.
1244    ///
1245    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
1246    /// atomic types work with interior mutability. All modifications of an atomic change the value
1247    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
1248    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
1249    /// requirements of the [memory model].
1250    ///
1251    /// # Examples
1252    ///
1253    /// ```ignore (extern-declaration)
1254    /// # fn main() {
1255    /// use std::sync::atomic::AtomicBool;
1256    ///
1257    /// extern "C" {
1258    ///     fn my_atomic_op(arg: *mut bool);
1259    /// }
1260    ///
1261    /// let mut atomic = AtomicBool::new(true);
1262    /// unsafe {
1263    ///     my_atomic_op(atomic.as_ptr());
1264    /// }
1265    /// # }
1266    /// ```
1267    ///
1268    /// [memory model]: self#memory-model-for-atomic-accesses
1269    #[inline]
1270    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
1271    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
1272    #[rustc_never_returns_null_ptr]
1273    pub const fn as_ptr(&self) -> *mut bool {
1274        self.v.get().cast()
1275    }
1276
1277    /// Fetches the value, and applies a function to it that returns an optional
1278    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1279    /// returned `Some(_)`, else `Err(previous_value)`.
1280    ///
1281    /// Note: This may call the function multiple times if the value has been
1282    /// changed from other threads in the meantime, as long as the function
1283    /// returns `Some(_)`, but the function will have been applied only once to
1284    /// the stored value.
1285    ///
1286    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1287    /// ordering of this operation. The first describes the required ordering for
1288    /// when the operation finally succeeds while the second describes the
1289    /// required ordering for loads. These correspond to the success and failure
1290    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1291    ///
1292    /// Using [`Acquire`] as success ordering makes the store part of this
1293    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1294    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1295    /// [`Acquire`] or [`Relaxed`].
1296    ///
1297    /// **Note:** This method is only available on platforms that support atomic
1298    /// operations on `u8`.
1299    ///
1300    /// # Considerations
1301    ///
1302    /// This method is not magic; it is not provided by the hardware, and does not act like a
1303    /// critical section or mutex.
1304    ///
1305    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1306    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1307    ///
1308    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1309    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1310    ///
1311    /// # Examples
1312    ///
1313    /// ```rust
1314    /// use std::sync::atomic::{AtomicBool, Ordering};
1315    ///
1316    /// let x = AtomicBool::new(false);
1317    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1318    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1319    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1320    /// assert_eq!(x.load(Ordering::SeqCst), false);
1321    /// ```
1322    #[inline]
1323    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1324    #[cfg(target_has_atomic = "8")]
1325    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1326    pub fn fetch_update<F>(
1327        &self,
1328        set_order: Ordering,
1329        fetch_order: Ordering,
1330        mut f: F,
1331    ) -> Result<bool, bool>
1332    where
1333        F: FnMut(bool) -> Option<bool>,
1334    {
1335        let mut prev = self.load(fetch_order);
1336        while let Some(next) = f(prev) {
1337            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1338                x @ Ok(_) => return x,
1339                Err(next_prev) => prev = next_prev,
1340            }
1341        }
1342        Err(prev)
1343    }
1344
1345    /// Fetches the value, and applies a function to it that returns an optional
1346    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1347    /// returned `Some(_)`, else `Err(previous_value)`.
1348    ///
1349    /// See also: [`update`](`AtomicBool::update`).
1350    ///
1351    /// Note: This may call the function multiple times if the value has been
1352    /// changed from other threads in the meantime, as long as the function
1353    /// returns `Some(_)`, but the function will have been applied only once to
1354    /// the stored value.
1355    ///
1356    /// `try_update` takes two [`Ordering`] arguments to describe the memory
1357    /// ordering of this operation. The first describes the required ordering for
1358    /// when the operation finally succeeds while the second describes the
1359    /// required ordering for loads. These correspond to the success and failure
1360    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1361    ///
1362    /// Using [`Acquire`] as success ordering makes the store part of this
1363    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1364    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1365    /// [`Acquire`] or [`Relaxed`].
1366    ///
1367    /// **Note:** This method is only available on platforms that support atomic
1368    /// operations on `u8`.
1369    ///
1370    /// # Considerations
1371    ///
1372    /// This method is not magic; it is not provided by the hardware, and does not act like a
1373    /// critical section or mutex.
1374    ///
1375    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1376    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1377    ///
1378    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1379    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1380    ///
1381    /// # Examples
1382    ///
1383    /// ```rust
1384    /// #![feature(atomic_try_update)]
1385    /// use std::sync::atomic::{AtomicBool, Ordering};
1386    ///
1387    /// let x = AtomicBool::new(false);
1388    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1389    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1390    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1391    /// assert_eq!(x.load(Ordering::SeqCst), false);
1392    /// ```
1393    #[inline]
1394    #[unstable(feature = "atomic_try_update", issue = "135894")]
1395    #[cfg(target_has_atomic = "8")]
1396    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1397    pub fn try_update(
1398        &self,
1399        set_order: Ordering,
1400        fetch_order: Ordering,
1401        f: impl FnMut(bool) -> Option<bool>,
1402    ) -> Result<bool, bool> {
1403        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1404        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1405        self.fetch_update(set_order, fetch_order, f)
1406    }
1407
1408    /// Fetches the value, applies a function to it that it return a new value.
1409    /// The new value is stored and the old value is returned.
1410    ///
1411    /// See also: [`try_update`](`AtomicBool::try_update`).
1412    ///
1413    /// Note: This may call the function multiple times if the value has been changed from other threads in
1414    /// the meantime, but the function will have been applied only once to the stored value.
1415    ///
1416    /// `update` takes two [`Ordering`] arguments to describe the memory
1417    /// ordering of this operation. The first describes the required ordering for
1418    /// when the operation finally succeeds while the second describes the
1419    /// required ordering for loads. These correspond to the success and failure
1420    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1421    ///
1422    /// Using [`Acquire`] as success ordering makes the store part
1423    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1424    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1425    ///
1426    /// **Note:** This method is only available on platforms that support atomic operations on `u8`.
1427    ///
1428    /// # Considerations
1429    ///
1430    /// This method is not magic; it is not provided by the hardware, and does not act like a
1431    /// critical section or mutex.
1432    ///
1433    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1434    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1435    ///
1436    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1437    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1438    ///
1439    /// # Examples
1440    ///
1441    /// ```rust
1442    /// #![feature(atomic_try_update)]
1443    ///
1444    /// use std::sync::atomic::{AtomicBool, Ordering};
1445    ///
1446    /// let x = AtomicBool::new(false);
1447    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
1448    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
1449    /// assert_eq!(x.load(Ordering::SeqCst), false);
1450    /// ```
1451    #[inline]
1452    #[unstable(feature = "atomic_try_update", issue = "135894")]
1453    #[cfg(target_has_atomic = "8")]
1454    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1455    pub fn update(
1456        &self,
1457        set_order: Ordering,
1458        fetch_order: Ordering,
1459        mut f: impl FnMut(bool) -> bool,
1460    ) -> bool {
1461        let mut prev = self.load(fetch_order);
1462        loop {
1463            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1464                Ok(x) => break x,
1465                Err(next_prev) => prev = next_prev,
1466            }
1467        }
1468    }
1469}
1470
1471#[cfg(target_has_atomic_load_store = "ptr")]
1472impl<T> AtomicPtr<T> {
1473    /// Creates a new `AtomicPtr`.
1474    ///
1475    /// # Examples
1476    ///
1477    /// ```
1478    /// use std::sync::atomic::AtomicPtr;
1479    ///
1480    /// let ptr = &mut 5;
1481    /// let atomic_ptr = AtomicPtr::new(ptr);
1482    /// ```
1483    #[inline]
1484    #[stable(feature = "rust1", since = "1.0.0")]
1485    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
1486    pub const fn new(p: *mut T) -> AtomicPtr<T> {
1487        AtomicPtr { p: UnsafeCell::new(p) }
1488    }
1489
1490    /// Creates a new `AtomicPtr` from a pointer.
1491    ///
1492    /// # Examples
1493    ///
1494    /// ```
1495    /// use std::sync::atomic::{self, AtomicPtr};
1496    ///
1497    /// // Get a pointer to an allocated value
1498    /// let ptr: *mut *mut u8 = Box::into_raw(Box::new(std::ptr::null_mut()));
1499    ///
1500    /// assert!(ptr.cast::<AtomicPtr<u8>>().is_aligned());
1501    ///
1502    /// {
1503    ///     // Create an atomic view of the allocated value
1504    ///     let atomic = unsafe { AtomicPtr::from_ptr(ptr) };
1505    ///
1506    ///     // Use `atomic` for atomic operations, possibly share it with other threads
1507    ///     atomic.store(std::ptr::NonNull::dangling().as_ptr(), atomic::Ordering::Relaxed);
1508    /// }
1509    ///
1510    /// // It's ok to non-atomically access the value behind `ptr`,
1511    /// // since the reference to the atomic ended its lifetime in the block above
1512    /// assert!(!unsafe { *ptr }.is_null());
1513    ///
1514    /// // Deallocate the value
1515    /// unsafe { drop(Box::from_raw(ptr)) }
1516    /// ```
1517    ///
1518    /// # Safety
1519    ///
1520    /// * `ptr` must be aligned to `align_of::<AtomicPtr<T>>()` (note that on some platforms this
1521    ///   can be bigger than `align_of::<*mut T>()`).
1522    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
1523    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
1524    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
1525    ///   sizes, without synchronization.
1526    ///
1527    /// [valid]: crate::ptr#safety
1528    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
1529    #[inline]
1530    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
1531    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
1532    pub const unsafe fn from_ptr<'a>(ptr: *mut *mut T) -> &'a AtomicPtr<T> {
1533        // SAFETY: guaranteed by the caller
1534        unsafe { &*ptr.cast() }
1535    }
1536
1537    /// Returns a mutable reference to the underlying pointer.
1538    ///
1539    /// This is safe because the mutable reference guarantees that no other threads are
1540    /// concurrently accessing the atomic data.
1541    ///
1542    /// # Examples
1543    ///
1544    /// ```
1545    /// use std::sync::atomic::{AtomicPtr, Ordering};
1546    ///
1547    /// let mut data = 10;
1548    /// let mut atomic_ptr = AtomicPtr::new(&mut data);
1549    /// let mut other_data = 5;
1550    /// *atomic_ptr.get_mut() = &mut other_data;
1551    /// assert_eq!(unsafe { *atomic_ptr.load(Ordering::SeqCst) }, 5);
1552    /// ```
1553    #[inline]
1554    #[stable(feature = "atomic_access", since = "1.15.0")]
1555    pub fn get_mut(&mut self) -> &mut *mut T {
1556        self.p.get_mut()
1557    }
1558
1559    /// Gets atomic access to a pointer.
1560    ///
1561    /// **Note:** This function is only available on targets where `AtomicPtr<T>` has the same alignment as `*const T`
1562    ///
1563    /// # Examples
1564    ///
1565    /// ```
1566    /// #![feature(atomic_from_mut)]
1567    /// use std::sync::atomic::{AtomicPtr, Ordering};
1568    ///
1569    /// let mut data = 123;
1570    /// let mut some_ptr = &mut data as *mut i32;
1571    /// let a = AtomicPtr::from_mut(&mut some_ptr);
1572    /// let mut other_data = 456;
1573    /// a.store(&mut other_data, Ordering::Relaxed);
1574    /// assert_eq!(unsafe { *some_ptr }, 456);
1575    /// ```
1576    #[inline]
1577    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1578    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1579    pub fn from_mut(v: &mut *mut T) -> &mut Self {
1580        let [] = [(); align_of::<AtomicPtr<()>>() - align_of::<*mut ()>()];
1581        // SAFETY:
1582        //  - the mutable reference guarantees unique ownership.
1583        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1584        //    supported by rust, as verified above.
1585        unsafe { &mut *(v as *mut *mut T as *mut Self) }
1586    }
1587
1588    /// Gets non-atomic access to a `&mut [AtomicPtr]` slice.
1589    ///
1590    /// This is safe because the mutable reference guarantees that no other threads are
1591    /// concurrently accessing the atomic data.
1592    ///
1593    /// # Examples
1594    ///
1595    /// ```ignore-wasm
1596    /// #![feature(atomic_from_mut)]
1597    /// use std::ptr::null_mut;
1598    /// use std::sync::atomic::{AtomicPtr, Ordering};
1599    ///
1600    /// let mut some_ptrs = [const { AtomicPtr::new(null_mut::<String>()) }; 10];
1601    ///
1602    /// let view: &mut [*mut String] = AtomicPtr::get_mut_slice(&mut some_ptrs);
1603    /// assert_eq!(view, [null_mut::<String>(); 10]);
1604    /// view
1605    ///     .iter_mut()
1606    ///     .enumerate()
1607    ///     .for_each(|(i, ptr)| *ptr = Box::into_raw(Box::new(format!("iteration#{i}"))));
1608    ///
1609    /// std::thread::scope(|s| {
1610    ///     for ptr in &some_ptrs {
1611    ///         s.spawn(move || {
1612    ///             let ptr = ptr.load(Ordering::Relaxed);
1613    ///             assert!(!ptr.is_null());
1614    ///
1615    ///             let name = unsafe { Box::from_raw(ptr) };
1616    ///             println!("Hello, {name}!");
1617    ///         });
1618    ///     }
1619    /// });
1620    /// ```
1621    #[inline]
1622    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1623    pub fn get_mut_slice(this: &mut [Self]) -> &mut [*mut T] {
1624        // SAFETY: the mutable reference guarantees unique ownership.
1625        unsafe { &mut *(this as *mut [Self] as *mut [*mut T]) }
1626    }
1627
1628    /// Gets atomic access to a slice of pointers.
1629    ///
1630    /// **Note:** This function is only available on targets where `AtomicPtr<T>` has the same alignment as `*const T`
1631    ///
1632    /// # Examples
1633    ///
1634    /// ```ignore-wasm
1635    /// #![feature(atomic_from_mut)]
1636    /// use std::ptr::null_mut;
1637    /// use std::sync::atomic::{AtomicPtr, Ordering};
1638    ///
1639    /// let mut some_ptrs = [null_mut::<String>(); 10];
1640    /// let a = &*AtomicPtr::from_mut_slice(&mut some_ptrs);
1641    /// std::thread::scope(|s| {
1642    ///     for i in 0..a.len() {
1643    ///         s.spawn(move || {
1644    ///             let name = Box::new(format!("thread{i}"));
1645    ///             a[i].store(Box::into_raw(name), Ordering::Relaxed);
1646    ///         });
1647    ///     }
1648    /// });
1649    /// for p in some_ptrs {
1650    ///     assert!(!p.is_null());
1651    ///     let name = unsafe { Box::from_raw(p) };
1652    ///     println!("Hello, {name}!");
1653    /// }
1654    /// ```
1655    #[inline]
1656    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1657    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1658    pub fn from_mut_slice(v: &mut [*mut T]) -> &mut [Self] {
1659        // SAFETY:
1660        //  - the mutable reference guarantees unique ownership.
1661        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1662        //    supported by rust, as verified above.
1663        unsafe { &mut *(v as *mut [*mut T] as *mut [Self]) }
1664    }
1665
1666    /// Consumes the atomic and returns the contained value.
1667    ///
1668    /// This is safe because passing `self` by value guarantees that no other threads are
1669    /// concurrently accessing the atomic data.
1670    ///
1671    /// # Examples
1672    ///
1673    /// ```
1674    /// use std::sync::atomic::AtomicPtr;
1675    ///
1676    /// let mut data = 5;
1677    /// let atomic_ptr = AtomicPtr::new(&mut data);
1678    /// assert_eq!(unsafe { *atomic_ptr.into_inner() }, 5);
1679    /// ```
1680    #[inline]
1681    #[stable(feature = "atomic_access", since = "1.15.0")]
1682    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
1683    pub const fn into_inner(self) -> *mut T {
1684        self.p.into_inner()
1685    }
1686
1687    /// Loads a value from the pointer.
1688    ///
1689    /// `load` takes an [`Ordering`] argument which describes the memory ordering
1690    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
1691    ///
1692    /// # Panics
1693    ///
1694    /// Panics if `order` is [`Release`] or [`AcqRel`].
1695    ///
1696    /// # Examples
1697    ///
1698    /// ```
1699    /// use std::sync::atomic::{AtomicPtr, Ordering};
1700    ///
1701    /// let ptr = &mut 5;
1702    /// let some_ptr = AtomicPtr::new(ptr);
1703    ///
1704    /// let value = some_ptr.load(Ordering::Relaxed);
1705    /// ```
1706    #[inline]
1707    #[stable(feature = "rust1", since = "1.0.0")]
1708    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1709    pub fn load(&self, order: Ordering) -> *mut T {
1710        // SAFETY: data races are prevented by atomic intrinsics.
1711        unsafe { atomic_load(self.p.get(), order) }
1712    }
1713
1714    /// Stores a value into the pointer.
1715    ///
1716    /// `store` takes an [`Ordering`] argument which describes the memory ordering
1717    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
1718    ///
1719    /// # Panics
1720    ///
1721    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
1722    ///
1723    /// # Examples
1724    ///
1725    /// ```
1726    /// use std::sync::atomic::{AtomicPtr, Ordering};
1727    ///
1728    /// let ptr = &mut 5;
1729    /// let some_ptr = AtomicPtr::new(ptr);
1730    ///
1731    /// let other_ptr = &mut 10;
1732    ///
1733    /// some_ptr.store(other_ptr, Ordering::Relaxed);
1734    /// ```
1735    #[inline]
1736    #[stable(feature = "rust1", since = "1.0.0")]
1737    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1738    pub fn store(&self, ptr: *mut T, order: Ordering) {
1739        // SAFETY: data races are prevented by atomic intrinsics.
1740        unsafe {
1741            atomic_store(self.p.get(), ptr, order);
1742        }
1743    }
1744
1745    /// Stores a value into the pointer, returning the previous value.
1746    ///
1747    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
1748    /// of this operation. All ordering modes are possible. Note that using
1749    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1750    /// using [`Release`] makes the load part [`Relaxed`].
1751    ///
1752    /// **Note:** This method is only available on platforms that support atomic
1753    /// operations on pointers.
1754    ///
1755    /// # Examples
1756    ///
1757    /// ```
1758    /// use std::sync::atomic::{AtomicPtr, Ordering};
1759    ///
1760    /// let ptr = &mut 5;
1761    /// let some_ptr = AtomicPtr::new(ptr);
1762    ///
1763    /// let other_ptr = &mut 10;
1764    ///
1765    /// let value = some_ptr.swap(other_ptr, Ordering::Relaxed);
1766    /// ```
1767    #[inline]
1768    #[stable(feature = "rust1", since = "1.0.0")]
1769    #[cfg(target_has_atomic = "ptr")]
1770    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1771    pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T {
1772        // SAFETY: data races are prevented by atomic intrinsics.
1773        unsafe { atomic_swap(self.p.get(), ptr, order) }
1774    }
1775
1776    /// Stores a value into the pointer if the current value is the same as the `current` value.
1777    ///
1778    /// The return value is always the previous value. If it is equal to `current`, then the value
1779    /// was updated.
1780    ///
1781    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
1782    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
1783    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
1784    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
1785    /// happens, and using [`Release`] makes the load part [`Relaxed`].
1786    ///
1787    /// **Note:** This method is only available on platforms that support atomic
1788    /// operations on pointers.
1789    ///
1790    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
1791    ///
1792    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
1793    /// memory orderings:
1794    ///
1795    /// Original | Success | Failure
1796    /// -------- | ------- | -------
1797    /// Relaxed  | Relaxed | Relaxed
1798    /// Acquire  | Acquire | Acquire
1799    /// Release  | Release | Relaxed
1800    /// AcqRel   | AcqRel  | Acquire
1801    /// SeqCst   | SeqCst  | SeqCst
1802    ///
1803    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
1804    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
1805    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
1806    /// rather than to infer success vs failure based on the value that was read.
1807    ///
1808    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
1809    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
1810    /// which allows the compiler to generate better assembly code when the compare and swap
1811    /// is used in a loop.
1812    ///
1813    /// # Examples
1814    ///
1815    /// ```
1816    /// use std::sync::atomic::{AtomicPtr, Ordering};
1817    ///
1818    /// let ptr = &mut 5;
1819    /// let some_ptr = AtomicPtr::new(ptr);
1820    ///
1821    /// let other_ptr = &mut 10;
1822    ///
1823    /// let value = some_ptr.compare_and_swap(ptr, other_ptr, Ordering::Relaxed);
1824    /// ```
1825    #[inline]
1826    #[stable(feature = "rust1", since = "1.0.0")]
1827    #[deprecated(
1828        since = "1.50.0",
1829        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
1830    )]
1831    #[cfg(target_has_atomic = "ptr")]
1832    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1833    pub fn compare_and_swap(&self, current: *mut T, new: *mut T, order: Ordering) -> *mut T {
1834        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
1835            Ok(x) => x,
1836            Err(x) => x,
1837        }
1838    }
1839
1840    /// Stores a value into the pointer if the current value is the same as the `current` value.
1841    ///
1842    /// The return value is a result indicating whether the new value was written and containing
1843    /// the previous value. On success this value is guaranteed to be equal to `current`.
1844    ///
1845    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
1846    /// ordering of this operation. `success` describes the required ordering for the
1847    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1848    /// `failure` describes the required ordering for the load operation that takes place when
1849    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1850    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1851    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1852    ///
1853    /// **Note:** This method is only available on platforms that support atomic
1854    /// operations on pointers.
1855    ///
1856    /// # Examples
1857    ///
1858    /// ```
1859    /// use std::sync::atomic::{AtomicPtr, Ordering};
1860    ///
1861    /// let ptr = &mut 5;
1862    /// let some_ptr = AtomicPtr::new(ptr);
1863    ///
1864    /// let other_ptr = &mut 10;
1865    ///
1866    /// let value = some_ptr.compare_exchange(ptr, other_ptr,
1867    ///                                       Ordering::SeqCst, Ordering::Relaxed);
1868    /// ```
1869    ///
1870    /// # Considerations
1871    ///
1872    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1873    /// of CAS operations. In particular, a load of the value followed by a successful
1874    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1875    /// changed the value in the interim. This is usually important when the *equality* check in
1876    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1877    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1878    /// a pointer holding the same address does not imply that the same object exists at that
1879    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1880    ///
1881    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1882    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1883    #[inline]
1884    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1885    #[cfg(target_has_atomic = "ptr")]
1886    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1887    pub fn compare_exchange(
1888        &self,
1889        current: *mut T,
1890        new: *mut T,
1891        success: Ordering,
1892        failure: Ordering,
1893    ) -> Result<*mut T, *mut T> {
1894        // SAFETY: data races are prevented by atomic intrinsics.
1895        unsafe { atomic_compare_exchange(self.p.get(), current, new, success, failure) }
1896    }
1897
1898    /// Stores a value into the pointer if the current value is the same as the `current` value.
1899    ///
1900    /// Unlike [`AtomicPtr::compare_exchange`], this function is allowed to spuriously fail even when the
1901    /// comparison succeeds, which can result in more efficient code on some platforms. The
1902    /// return value is a result indicating whether the new value was written and containing the
1903    /// previous value.
1904    ///
1905    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
1906    /// ordering of this operation. `success` describes the required ordering for the
1907    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1908    /// `failure` describes the required ordering for the load operation that takes place when
1909    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1910    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1911    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1912    ///
1913    /// **Note:** This method is only available on platforms that support atomic
1914    /// operations on pointers.
1915    ///
1916    /// # Examples
1917    ///
1918    /// ```
1919    /// use std::sync::atomic::{AtomicPtr, Ordering};
1920    ///
1921    /// let some_ptr = AtomicPtr::new(&mut 5);
1922    ///
1923    /// let new = &mut 10;
1924    /// let mut old = some_ptr.load(Ordering::Relaxed);
1925    /// loop {
1926    ///     match some_ptr.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1927    ///         Ok(_) => break,
1928    ///         Err(x) => old = x,
1929    ///     }
1930    /// }
1931    /// ```
1932    ///
1933    /// # Considerations
1934    ///
1935    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1936    /// of CAS operations. In particular, a load of the value followed by a successful
1937    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1938    /// changed the value in the interim. This is usually important when the *equality* check in
1939    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1940    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1941    /// a pointer holding the same address does not imply that the same object exists at that
1942    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1943    ///
1944    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1945    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1946    #[inline]
1947    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1948    #[cfg(target_has_atomic = "ptr")]
1949    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1950    pub fn compare_exchange_weak(
1951        &self,
1952        current: *mut T,
1953        new: *mut T,
1954        success: Ordering,
1955        failure: Ordering,
1956    ) -> Result<*mut T, *mut T> {
1957        // SAFETY: This intrinsic is unsafe because it operates on a raw pointer
1958        // but we know for sure that the pointer is valid (we just got it from
1959        // an `UnsafeCell` that we have by reference) and the atomic operation
1960        // itself allows us to safely mutate the `UnsafeCell` contents.
1961        unsafe { atomic_compare_exchange_weak(self.p.get(), current, new, success, failure) }
1962    }
1963
1964    /// Fetches the value, and applies a function to it that returns an optional
1965    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1966    /// returned `Some(_)`, else `Err(previous_value)`.
1967    ///
1968    /// Note: This may call the function multiple times if the value has been
1969    /// changed from other threads in the meantime, as long as the function
1970    /// returns `Some(_)`, but the function will have been applied only once to
1971    /// the stored value.
1972    ///
1973    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1974    /// ordering of this operation. The first describes the required ordering for
1975    /// when the operation finally succeeds while the second describes the
1976    /// required ordering for loads. These correspond to the success and failure
1977    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
1978    ///
1979    /// Using [`Acquire`] as success ordering makes the store part of this
1980    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1981    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1982    /// [`Acquire`] or [`Relaxed`].
1983    ///
1984    /// **Note:** This method is only available on platforms that support atomic
1985    /// operations on pointers.
1986    ///
1987    /// # Considerations
1988    ///
1989    /// This method is not magic; it is not provided by the hardware, and does not act like a
1990    /// critical section or mutex.
1991    ///
1992    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1993    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
1994    /// which is a particularly common pitfall for pointers!
1995    ///
1996    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1997    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1998    ///
1999    /// # Examples
2000    ///
2001    /// ```rust
2002    /// use std::sync::atomic::{AtomicPtr, Ordering};
2003    ///
2004    /// let ptr: *mut _ = &mut 5;
2005    /// let some_ptr = AtomicPtr::new(ptr);
2006    ///
2007    /// let new: *mut _ = &mut 10;
2008    /// assert_eq!(some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2009    /// let result = some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2010    ///     if x == ptr {
2011    ///         Some(new)
2012    ///     } else {
2013    ///         None
2014    ///     }
2015    /// });
2016    /// assert_eq!(result, Ok(ptr));
2017    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2018    /// ```
2019    #[inline]
2020    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
2021    #[cfg(target_has_atomic = "ptr")]
2022    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2023    pub fn fetch_update<F>(
2024        &self,
2025        set_order: Ordering,
2026        fetch_order: Ordering,
2027        mut f: F,
2028    ) -> Result<*mut T, *mut T>
2029    where
2030        F: FnMut(*mut T) -> Option<*mut T>,
2031    {
2032        let mut prev = self.load(fetch_order);
2033        while let Some(next) = f(prev) {
2034            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
2035                x @ Ok(_) => return x,
2036                Err(next_prev) => prev = next_prev,
2037            }
2038        }
2039        Err(prev)
2040    }
2041    /// Fetches the value, and applies a function to it that returns an optional
2042    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
2043    /// returned `Some(_)`, else `Err(previous_value)`.
2044    ///
2045    /// See also: [`update`](`AtomicPtr::update`).
2046    ///
2047    /// Note: This may call the function multiple times if the value has been
2048    /// changed from other threads in the meantime, as long as the function
2049    /// returns `Some(_)`, but the function will have been applied only once to
2050    /// the stored value.
2051    ///
2052    /// `try_update` takes two [`Ordering`] arguments to describe the memory
2053    /// ordering of this operation. The first describes the required ordering for
2054    /// when the operation finally succeeds while the second describes the
2055    /// required ordering for loads. These correspond to the success and failure
2056    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2057    ///
2058    /// Using [`Acquire`] as success ordering makes the store part of this
2059    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2060    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2061    /// [`Acquire`] or [`Relaxed`].
2062    ///
2063    /// **Note:** This method is only available on platforms that support atomic
2064    /// operations on pointers.
2065    ///
2066    /// # Considerations
2067    ///
2068    /// This method is not magic; it is not provided by the hardware, and does not act like a
2069    /// critical section or mutex.
2070    ///
2071    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2072    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2073    /// which is a particularly common pitfall for pointers!
2074    ///
2075    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2076    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2077    ///
2078    /// # Examples
2079    ///
2080    /// ```rust
2081    /// #![feature(atomic_try_update)]
2082    /// use std::sync::atomic::{AtomicPtr, Ordering};
2083    ///
2084    /// let ptr: *mut _ = &mut 5;
2085    /// let some_ptr = AtomicPtr::new(ptr);
2086    ///
2087    /// let new: *mut _ = &mut 10;
2088    /// assert_eq!(some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2089    /// let result = some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2090    ///     if x == ptr {
2091    ///         Some(new)
2092    ///     } else {
2093    ///         None
2094    ///     }
2095    /// });
2096    /// assert_eq!(result, Ok(ptr));
2097    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2098    /// ```
2099    #[inline]
2100    #[unstable(feature = "atomic_try_update", issue = "135894")]
2101    #[cfg(target_has_atomic = "ptr")]
2102    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2103    pub fn try_update(
2104        &self,
2105        set_order: Ordering,
2106        fetch_order: Ordering,
2107        f: impl FnMut(*mut T) -> Option<*mut T>,
2108    ) -> Result<*mut T, *mut T> {
2109        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
2110        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
2111        self.fetch_update(set_order, fetch_order, f)
2112    }
2113
2114    /// Fetches the value, applies a function to it that it return a new value.
2115    /// The new value is stored and the old value is returned.
2116    ///
2117    /// See also: [`try_update`](`AtomicPtr::try_update`).
2118    ///
2119    /// Note: This may call the function multiple times if the value has been changed from other threads in
2120    /// the meantime, but the function will have been applied only once to the stored value.
2121    ///
2122    /// `update` takes two [`Ordering`] arguments to describe the memory
2123    /// ordering of this operation. The first describes the required ordering for
2124    /// when the operation finally succeeds while the second describes the
2125    /// required ordering for loads. These correspond to the success and failure
2126    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2127    ///
2128    /// Using [`Acquire`] as success ordering makes the store part
2129    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
2130    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2131    ///
2132    /// **Note:** This method is only available on platforms that support atomic
2133    /// operations on pointers.
2134    ///
2135    /// # Considerations
2136    ///
2137    /// This method is not magic; it is not provided by the hardware, and does not act like a
2138    /// critical section or mutex.
2139    ///
2140    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2141    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2142    /// which is a particularly common pitfall for pointers!
2143    ///
2144    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2145    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2146    ///
2147    /// # Examples
2148    ///
2149    /// ```rust
2150    /// #![feature(atomic_try_update)]
2151    ///
2152    /// use std::sync::atomic::{AtomicPtr, Ordering};
2153    ///
2154    /// let ptr: *mut _ = &mut 5;
2155    /// let some_ptr = AtomicPtr::new(ptr);
2156    ///
2157    /// let new: *mut _ = &mut 10;
2158    /// let result = some_ptr.update(Ordering::SeqCst, Ordering::SeqCst, |_| new);
2159    /// assert_eq!(result, ptr);
2160    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2161    /// ```
2162    #[inline]
2163    #[unstable(feature = "atomic_try_update", issue = "135894")]
2164    #[cfg(target_has_atomic = "8")]
2165    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2166    pub fn update(
2167        &self,
2168        set_order: Ordering,
2169        fetch_order: Ordering,
2170        mut f: impl FnMut(*mut T) -> *mut T,
2171    ) -> *mut T {
2172        let mut prev = self.load(fetch_order);
2173        loop {
2174            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
2175                Ok(x) => break x,
2176                Err(next_prev) => prev = next_prev,
2177            }
2178        }
2179    }
2180
2181    /// Offsets the pointer's address by adding `val` (in units of `T`),
2182    /// returning the previous pointer.
2183    ///
2184    /// This is equivalent to using [`wrapping_add`] to atomically perform the
2185    /// equivalent of `ptr = ptr.wrapping_add(val);`.
2186    ///
2187    /// This method operates in units of `T`, which means that it cannot be used
2188    /// to offset the pointer by an amount which is not a multiple of
2189    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2190    /// work with a deliberately misaligned pointer. In such cases, you may use
2191    /// the [`fetch_byte_add`](Self::fetch_byte_add) method instead.
2192    ///
2193    /// `fetch_ptr_add` takes an [`Ordering`] argument which describes the
2194    /// memory ordering of this operation. All ordering modes are possible. Note
2195    /// that using [`Acquire`] makes the store part of this operation
2196    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2197    ///
2198    /// **Note**: This method is only available on platforms that support atomic
2199    /// operations on [`AtomicPtr`].
2200    ///
2201    /// [`wrapping_add`]: pointer::wrapping_add
2202    ///
2203    /// # Examples
2204    ///
2205    /// ```
2206    /// use core::sync::atomic::{AtomicPtr, Ordering};
2207    ///
2208    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2209    /// assert_eq!(atom.fetch_ptr_add(1, Ordering::Relaxed).addr(), 0);
2210    /// // Note: units of `size_of::<i64>()`.
2211    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 8);
2212    /// ```
2213    #[inline]
2214    #[cfg(target_has_atomic = "ptr")]
2215    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2216    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2217    pub fn fetch_ptr_add(&self, val: usize, order: Ordering) -> *mut T {
2218        self.fetch_byte_add(val.wrapping_mul(size_of::<T>()), order)
2219    }
2220
2221    /// Offsets the pointer's address by subtracting `val` (in units of `T`),
2222    /// returning the previous pointer.
2223    ///
2224    /// This is equivalent to using [`wrapping_sub`] to atomically perform the
2225    /// equivalent of `ptr = ptr.wrapping_sub(val);`.
2226    ///
2227    /// This method operates in units of `T`, which means that it cannot be used
2228    /// to offset the pointer by an amount which is not a multiple of
2229    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2230    /// work with a deliberately misaligned pointer. In such cases, you may use
2231    /// the [`fetch_byte_sub`](Self::fetch_byte_sub) method instead.
2232    ///
2233    /// `fetch_ptr_sub` takes an [`Ordering`] argument which describes the memory
2234    /// ordering of this operation. All ordering modes are possible. Note that
2235    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2236    /// and using [`Release`] makes the load part [`Relaxed`].
2237    ///
2238    /// **Note**: This method is only available on platforms that support atomic
2239    /// operations on [`AtomicPtr`].
2240    ///
2241    /// [`wrapping_sub`]: pointer::wrapping_sub
2242    ///
2243    /// # Examples
2244    ///
2245    /// ```
2246    /// use core::sync::atomic::{AtomicPtr, Ordering};
2247    ///
2248    /// let array = [1i32, 2i32];
2249    /// let atom = AtomicPtr::new(array.as_ptr().wrapping_add(1) as *mut _);
2250    ///
2251    /// assert!(core::ptr::eq(
2252    ///     atom.fetch_ptr_sub(1, Ordering::Relaxed),
2253    ///     &array[1],
2254    /// ));
2255    /// assert!(core::ptr::eq(atom.load(Ordering::Relaxed), &array[0]));
2256    /// ```
2257    #[inline]
2258    #[cfg(target_has_atomic = "ptr")]
2259    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2260    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2261    pub fn fetch_ptr_sub(&self, val: usize, order: Ordering) -> *mut T {
2262        self.fetch_byte_sub(val.wrapping_mul(size_of::<T>()), order)
2263    }
2264
2265    /// Offsets the pointer's address by adding `val` *bytes*, returning the
2266    /// previous pointer.
2267    ///
2268    /// This is equivalent to using [`wrapping_byte_add`] to atomically
2269    /// perform `ptr = ptr.wrapping_byte_add(val)`.
2270    ///
2271    /// `fetch_byte_add` takes an [`Ordering`] argument which describes the
2272    /// memory ordering of this operation. All ordering modes are possible. Note
2273    /// that using [`Acquire`] makes the store part of this operation
2274    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2275    ///
2276    /// **Note**: This method is only available on platforms that support atomic
2277    /// operations on [`AtomicPtr`].
2278    ///
2279    /// [`wrapping_byte_add`]: pointer::wrapping_byte_add
2280    ///
2281    /// # Examples
2282    ///
2283    /// ```
2284    /// use core::sync::atomic::{AtomicPtr, Ordering};
2285    ///
2286    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2287    /// assert_eq!(atom.fetch_byte_add(1, Ordering::Relaxed).addr(), 0);
2288    /// // Note: in units of bytes, not `size_of::<i64>()`.
2289    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 1);
2290    /// ```
2291    #[inline]
2292    #[cfg(target_has_atomic = "ptr")]
2293    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2294    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2295    pub fn fetch_byte_add(&self, val: usize, order: Ordering) -> *mut T {
2296        // SAFETY: data races are prevented by atomic intrinsics.
2297        unsafe { atomic_add(self.p.get(), val, order).cast() }
2298    }
2299
2300    /// Offsets the pointer's address by subtracting `val` *bytes*, returning the
2301    /// previous pointer.
2302    ///
2303    /// This is equivalent to using [`wrapping_byte_sub`] to atomically
2304    /// perform `ptr = ptr.wrapping_byte_sub(val)`.
2305    ///
2306    /// `fetch_byte_sub` takes an [`Ordering`] argument which describes the
2307    /// memory ordering of this operation. All ordering modes are possible. Note
2308    /// that using [`Acquire`] makes the store part of this operation
2309    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2310    ///
2311    /// **Note**: This method is only available on platforms that support atomic
2312    /// operations on [`AtomicPtr`].
2313    ///
2314    /// [`wrapping_byte_sub`]: pointer::wrapping_byte_sub
2315    ///
2316    /// # Examples
2317    ///
2318    /// ```
2319    /// use core::sync::atomic::{AtomicPtr, Ordering};
2320    ///
2321    /// let mut arr = [0i64, 1];
2322    /// let atom = AtomicPtr::<i64>::new(&raw mut arr[1]);
2323    /// assert_eq!(atom.fetch_byte_sub(8, Ordering::Relaxed).addr(), (&raw const arr[1]).addr());
2324    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), (&raw const arr[0]).addr());
2325    /// ```
2326    #[inline]
2327    #[cfg(target_has_atomic = "ptr")]
2328    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2329    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2330    pub fn fetch_byte_sub(&self, val: usize, order: Ordering) -> *mut T {
2331        // SAFETY: data races are prevented by atomic intrinsics.
2332        unsafe { atomic_sub(self.p.get(), val, order).cast() }
2333    }
2334
2335    /// Performs a bitwise "or" operation on the address of the current pointer,
2336    /// and the argument `val`, and stores a pointer with provenance of the
2337    /// current pointer and the resulting address.
2338    ///
2339    /// This is equivalent to using [`map_addr`] to atomically perform
2340    /// `ptr = ptr.map_addr(|a| a | val)`. This can be used in tagged
2341    /// pointer schemes to atomically set tag bits.
2342    ///
2343    /// **Caveat**: This operation returns the previous value. To compute the
2344    /// stored value without losing provenance, you may use [`map_addr`]. For
2345    /// example: `a.fetch_or(val).map_addr(|a| a | val)`.
2346    ///
2347    /// `fetch_or` takes an [`Ordering`] argument which describes the memory
2348    /// ordering of this operation. All ordering modes are possible. Note that
2349    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2350    /// and using [`Release`] makes the load part [`Relaxed`].
2351    ///
2352    /// **Note**: This method is only available on platforms that support atomic
2353    /// operations on [`AtomicPtr`].
2354    ///
2355    /// This API and its claimed semantics are part of the Strict Provenance
2356    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2357    /// details.
2358    ///
2359    /// [`map_addr`]: pointer::map_addr
2360    ///
2361    /// # Examples
2362    ///
2363    /// ```
2364    /// use core::sync::atomic::{AtomicPtr, Ordering};
2365    ///
2366    /// let pointer = &mut 3i64 as *mut i64;
2367    ///
2368    /// let atom = AtomicPtr::<i64>::new(pointer);
2369    /// // Tag the bottom bit of the pointer.
2370    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 0);
2371    /// // Extract and untag.
2372    /// let tagged = atom.load(Ordering::Relaxed);
2373    /// assert_eq!(tagged.addr() & 1, 1);
2374    /// assert_eq!(tagged.map_addr(|p| p & !1), pointer);
2375    /// ```
2376    #[inline]
2377    #[cfg(target_has_atomic = "ptr")]
2378    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2379    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2380    pub fn fetch_or(&self, val: usize, order: Ordering) -> *mut T {
2381        // SAFETY: data races are prevented by atomic intrinsics.
2382        unsafe { atomic_or(self.p.get(), val, order).cast() }
2383    }
2384
2385    /// Performs a bitwise "and" operation on the address of the current
2386    /// pointer, and the argument `val`, and stores a pointer with provenance of
2387    /// the current pointer and the resulting address.
2388    ///
2389    /// This is equivalent to using [`map_addr`] to atomically perform
2390    /// `ptr = ptr.map_addr(|a| a & val)`. This can be used in tagged
2391    /// pointer schemes to atomically unset tag bits.
2392    ///
2393    /// **Caveat**: This operation returns the previous value. To compute the
2394    /// stored value without losing provenance, you may use [`map_addr`]. For
2395    /// example: `a.fetch_and(val).map_addr(|a| a & val)`.
2396    ///
2397    /// `fetch_and` takes an [`Ordering`] argument which describes the memory
2398    /// ordering of this operation. All ordering modes are possible. Note that
2399    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2400    /// and using [`Release`] makes the load part [`Relaxed`].
2401    ///
2402    /// **Note**: This method is only available on platforms that support atomic
2403    /// operations on [`AtomicPtr`].
2404    ///
2405    /// This API and its claimed semantics are part of the Strict Provenance
2406    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2407    /// details.
2408    ///
2409    /// [`map_addr`]: pointer::map_addr
2410    ///
2411    /// # Examples
2412    ///
2413    /// ```
2414    /// use core::sync::atomic::{AtomicPtr, Ordering};
2415    ///
2416    /// let pointer = &mut 3i64 as *mut i64;
2417    /// // A tagged pointer
2418    /// let atom = AtomicPtr::<i64>::new(pointer.map_addr(|a| a | 1));
2419    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 1);
2420    /// // Untag, and extract the previously tagged pointer.
2421    /// let untagged = atom.fetch_and(!1, Ordering::Relaxed)
2422    ///     .map_addr(|a| a & !1);
2423    /// assert_eq!(untagged, pointer);
2424    /// ```
2425    #[inline]
2426    #[cfg(target_has_atomic = "ptr")]
2427    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2428    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2429    pub fn fetch_and(&self, val: usize, order: Ordering) -> *mut T {
2430        // SAFETY: data races are prevented by atomic intrinsics.
2431        unsafe { atomic_and(self.p.get(), val, order).cast() }
2432    }
2433
2434    /// Performs a bitwise "xor" operation on the address of the current
2435    /// pointer, and the argument `val`, and stores a pointer with provenance of
2436    /// the current pointer and the resulting address.
2437    ///
2438    /// This is equivalent to using [`map_addr`] to atomically perform
2439    /// `ptr = ptr.map_addr(|a| a ^ val)`. This can be used in tagged
2440    /// pointer schemes to atomically toggle tag bits.
2441    ///
2442    /// **Caveat**: This operation returns the previous value. To compute the
2443    /// stored value without losing provenance, you may use [`map_addr`]. For
2444    /// example: `a.fetch_xor(val).map_addr(|a| a ^ val)`.
2445    ///
2446    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory
2447    /// ordering of this operation. All ordering modes are possible. Note that
2448    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2449    /// and using [`Release`] makes the load part [`Relaxed`].
2450    ///
2451    /// **Note**: This method is only available on platforms that support atomic
2452    /// operations on [`AtomicPtr`].
2453    ///
2454    /// This API and its claimed semantics are part of the Strict Provenance
2455    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2456    /// details.
2457    ///
2458    /// [`map_addr`]: pointer::map_addr
2459    ///
2460    /// # Examples
2461    ///
2462    /// ```
2463    /// use core::sync::atomic::{AtomicPtr, Ordering};
2464    ///
2465    /// let pointer = &mut 3i64 as *mut i64;
2466    /// let atom = AtomicPtr::<i64>::new(pointer);
2467    ///
2468    /// // Toggle a tag bit on the pointer.
2469    /// atom.fetch_xor(1, Ordering::Relaxed);
2470    /// assert_eq!(atom.load(Ordering::Relaxed).addr() & 1, 1);
2471    /// ```
2472    #[inline]
2473    #[cfg(target_has_atomic = "ptr")]
2474    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2475    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2476    pub fn fetch_xor(&self, val: usize, order: Ordering) -> *mut T {
2477        // SAFETY: data races are prevented by atomic intrinsics.
2478        unsafe { atomic_xor(self.p.get(), val, order).cast() }
2479    }
2480
2481    /// Returns a mutable pointer to the underlying pointer.
2482    ///
2483    /// Doing non-atomic reads and writes on the resulting pointer can be a data race.
2484    /// This method is mostly useful for FFI, where the function signature may use
2485    /// `*mut *mut T` instead of `&AtomicPtr<T>`.
2486    ///
2487    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
2488    /// atomic types work with interior mutability. All modifications of an atomic change the value
2489    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
2490    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
2491    /// requirements of the [memory model].
2492    ///
2493    /// # Examples
2494    ///
2495    /// ```ignore (extern-declaration)
2496    /// use std::sync::atomic::AtomicPtr;
2497    ///
2498    /// extern "C" {
2499    ///     fn my_atomic_op(arg: *mut *mut u32);
2500    /// }
2501    ///
2502    /// let mut value = 17;
2503    /// let atomic = AtomicPtr::new(&mut value);
2504    ///
2505    /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
2506    /// unsafe {
2507    ///     my_atomic_op(atomic.as_ptr());
2508    /// }
2509    /// ```
2510    ///
2511    /// [memory model]: self#memory-model-for-atomic-accesses
2512    #[inline]
2513    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
2514    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
2515    #[rustc_never_returns_null_ptr]
2516    pub const fn as_ptr(&self) -> *mut *mut T {
2517        self.p.get()
2518    }
2519}
2520
2521#[cfg(target_has_atomic_load_store = "8")]
2522#[stable(feature = "atomic_bool_from", since = "1.24.0")]
2523#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2524impl const From<bool> for AtomicBool {
2525    /// Converts a `bool` into an `AtomicBool`.
2526    ///
2527    /// # Examples
2528    ///
2529    /// ```
2530    /// use std::sync::atomic::AtomicBool;
2531    /// let atomic_bool = AtomicBool::from(true);
2532    /// assert_eq!(format!("{atomic_bool:?}"), "true")
2533    /// ```
2534    #[inline]
2535    fn from(b: bool) -> Self {
2536        Self::new(b)
2537    }
2538}
2539
2540#[cfg(target_has_atomic_load_store = "ptr")]
2541#[stable(feature = "atomic_from", since = "1.23.0")]
2542#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2543impl<T> const From<*mut T> for AtomicPtr<T> {
2544    /// Converts a `*mut T` into an `AtomicPtr<T>`.
2545    #[inline]
2546    fn from(p: *mut T) -> Self {
2547        Self::new(p)
2548    }
2549}
2550
2551#[allow(unused_macros)] // This macro ends up being unused on some architectures.
2552macro_rules! if_8_bit {
2553    (u8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2554    (i8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2555    ($_:ident, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($no)*)?) };
2556}
2557
2558#[cfg(target_has_atomic_load_store)]
2559macro_rules! atomic_int {
2560    ($cfg_cas:meta,
2561     $cfg_align:meta,
2562     $stable:meta,
2563     $stable_cxchg:meta,
2564     $stable_debug:meta,
2565     $stable_access:meta,
2566     $stable_from:meta,
2567     $stable_nand:meta,
2568     $const_stable_new:meta,
2569     $const_stable_into_inner:meta,
2570     $diagnostic_item:meta,
2571     $s_int_type:literal,
2572     $extra_feature:expr,
2573     $min_fn:ident, $max_fn:ident,
2574     $align:expr,
2575     $int_type:ident $atomic_type:ident) => {
2576        /// An integer type which can be safely shared between threads.
2577        ///
2578        /// This type has the same
2579        #[doc = if_8_bit!(
2580            $int_type,
2581            yes = ["size, alignment, and bit validity"],
2582            no = ["size and bit validity"],
2583        )]
2584        /// as the underlying integer type, [`
2585        #[doc = $s_int_type]
2586        /// `].
2587        #[doc = if_8_bit! {
2588            $int_type,
2589            no = [
2590                "However, the alignment of this type is always equal to its ",
2591                "size, even on targets where [`", $s_int_type, "`] has a ",
2592                "lesser alignment."
2593            ],
2594        }]
2595        ///
2596        /// For more about the differences between atomic types and
2597        /// non-atomic types as well as information about the portability of
2598        /// this type, please see the [module-level documentation].
2599        ///
2600        /// **Note:** This type is only available on platforms that support
2601        /// atomic loads and stores of [`
2602        #[doc = $s_int_type]
2603        /// `].
2604        ///
2605        /// [module-level documentation]: crate::sync::atomic
2606        #[$stable]
2607        #[$diagnostic_item]
2608        #[repr(C, align($align))]
2609        pub struct $atomic_type {
2610            v: UnsafeCell<$int_type>,
2611        }
2612
2613        #[$stable]
2614        impl Default for $atomic_type {
2615            #[inline]
2616            fn default() -> Self {
2617                Self::new(Default::default())
2618            }
2619        }
2620
2621        #[$stable_from]
2622        #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2623        impl const From<$int_type> for $atomic_type {
2624            #[doc = concat!("Converts an `", stringify!($int_type), "` into an `", stringify!($atomic_type), "`.")]
2625            #[inline]
2626            fn from(v: $int_type) -> Self { Self::new(v) }
2627        }
2628
2629        #[$stable_debug]
2630        impl fmt::Debug for $atomic_type {
2631            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2632                fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
2633            }
2634        }
2635
2636        // Send is implicitly implemented.
2637        #[$stable]
2638        unsafe impl Sync for $atomic_type {}
2639
2640        impl $atomic_type {
2641            /// Creates a new atomic integer.
2642            ///
2643            /// # Examples
2644            ///
2645            /// ```
2646            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2647            ///
2648            #[doc = concat!("let atomic_forty_two = ", stringify!($atomic_type), "::new(42);")]
2649            /// ```
2650            #[inline]
2651            #[$stable]
2652            #[$const_stable_new]
2653            #[must_use]
2654            pub const fn new(v: $int_type) -> Self {
2655                Self {v: UnsafeCell::new(v)}
2656            }
2657
2658            /// Creates a new reference to an atomic integer from a pointer.
2659            ///
2660            /// # Examples
2661            ///
2662            /// ```
2663            #[doc = concat!($extra_feature, "use std::sync::atomic::{self, ", stringify!($atomic_type), "};")]
2664            ///
2665            /// // Get a pointer to an allocated value
2666            #[doc = concat!("let ptr: *mut ", stringify!($int_type), " = Box::into_raw(Box::new(0));")]
2667            ///
2668            #[doc = concat!("assert!(ptr.cast::<", stringify!($atomic_type), ">().is_aligned());")]
2669            ///
2670            /// {
2671            ///     // Create an atomic view of the allocated value
2672            // SAFETY: this is a doc comment, tidy, it can't hurt you (also guaranteed by the construction of `ptr` and the assert above)
2673            #[doc = concat!("    let atomic = unsafe {", stringify!($atomic_type), "::from_ptr(ptr) };")]
2674            ///
2675            ///     // Use `atomic` for atomic operations, possibly share it with other threads
2676            ///     atomic.store(1, atomic::Ordering::Relaxed);
2677            /// }
2678            ///
2679            /// // It's ok to non-atomically access the value behind `ptr`,
2680            /// // since the reference to the atomic ended its lifetime in the block above
2681            /// assert_eq!(unsafe { *ptr }, 1);
2682            ///
2683            /// // Deallocate the value
2684            /// unsafe { drop(Box::from_raw(ptr)) }
2685            /// ```
2686            ///
2687            /// # Safety
2688            ///
2689            /// * `ptr` must be aligned to
2690            #[doc = concat!("  `align_of::<", stringify!($atomic_type), ">()`")]
2691            #[doc = if_8_bit!{
2692                $int_type,
2693                yes = [
2694                    "  (note that this is always true, since `align_of::<",
2695                    stringify!($atomic_type), ">() == 1`)."
2696                ],
2697                no = [
2698                    "  (note that on some platforms this can be bigger than `align_of::<",
2699                    stringify!($int_type), ">()`)."
2700                ],
2701            }]
2702            /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
2703            /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
2704            ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
2705            ///   sizes, without synchronization.
2706            ///
2707            /// [valid]: crate::ptr#safety
2708            /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
2709            #[inline]
2710            #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
2711            #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
2712            pub const unsafe fn from_ptr<'a>(ptr: *mut $int_type) -> &'a $atomic_type {
2713                // SAFETY: guaranteed by the caller
2714                unsafe { &*ptr.cast() }
2715            }
2716
2717
2718            /// Returns a mutable reference to the underlying integer.
2719            ///
2720            /// This is safe because the mutable reference guarantees that no other threads are
2721            /// concurrently accessing the atomic data.
2722            ///
2723            /// # Examples
2724            ///
2725            /// ```
2726            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2727            ///
2728            #[doc = concat!("let mut some_var = ", stringify!($atomic_type), "::new(10);")]
2729            /// assert_eq!(*some_var.get_mut(), 10);
2730            /// *some_var.get_mut() = 5;
2731            /// assert_eq!(some_var.load(Ordering::SeqCst), 5);
2732            /// ```
2733            #[inline]
2734            #[$stable_access]
2735            pub fn get_mut(&mut self) -> &mut $int_type {
2736                self.v.get_mut()
2737            }
2738
2739            #[doc = concat!("Get atomic access to a `&mut ", stringify!($int_type), "`.")]
2740            ///
2741            #[doc = if_8_bit! {
2742                $int_type,
2743                no = [
2744                    "**Note:** This function is only available on targets where `",
2745                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2746                ],
2747            }]
2748            ///
2749            /// # Examples
2750            ///
2751            /// ```
2752            /// #![feature(atomic_from_mut)]
2753            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2754            ///
2755            /// let mut some_int = 123;
2756            #[doc = concat!("let a = ", stringify!($atomic_type), "::from_mut(&mut some_int);")]
2757            /// a.store(100, Ordering::Relaxed);
2758            /// assert_eq!(some_int, 100);
2759            /// ```
2760            ///
2761            #[inline]
2762            #[$cfg_align]
2763            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2764            pub fn from_mut(v: &mut $int_type) -> &mut Self {
2765                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2766                // SAFETY:
2767                //  - the mutable reference guarantees unique ownership.
2768                //  - the alignment of `$int_type` and `Self` is the
2769                //    same, as promised by $cfg_align and verified above.
2770                unsafe { &mut *(v as *mut $int_type as *mut Self) }
2771            }
2772
2773            #[doc = concat!("Get non-atomic access to a `&mut [", stringify!($atomic_type), "]` slice")]
2774            ///
2775            /// This is safe because the mutable reference guarantees that no other threads are
2776            /// concurrently accessing the atomic data.
2777            ///
2778            /// # Examples
2779            ///
2780            /// ```ignore-wasm
2781            /// #![feature(atomic_from_mut)]
2782            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2783            ///
2784            #[doc = concat!("let mut some_ints = [const { ", stringify!($atomic_type), "::new(0) }; 10];")]
2785            ///
2786            #[doc = concat!("let view: &mut [", stringify!($int_type), "] = ", stringify!($atomic_type), "::get_mut_slice(&mut some_ints);")]
2787            /// assert_eq!(view, [0; 10]);
2788            /// view
2789            ///     .iter_mut()
2790            ///     .enumerate()
2791            ///     .for_each(|(idx, int)| *int = idx as _);
2792            ///
2793            /// std::thread::scope(|s| {
2794            ///     some_ints
2795            ///         .iter()
2796            ///         .enumerate()
2797            ///         .for_each(|(idx, int)| {
2798            ///             s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
2799            ///         })
2800            /// });
2801            /// ```
2802            #[inline]
2803            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2804            pub fn get_mut_slice(this: &mut [Self]) -> &mut [$int_type] {
2805                // SAFETY: the mutable reference guarantees unique ownership.
2806                unsafe { &mut *(this as *mut [Self] as *mut [$int_type]) }
2807            }
2808
2809            #[doc = concat!("Get atomic access to a `&mut [", stringify!($int_type), "]` slice.")]
2810            ///
2811            #[doc = if_8_bit! {
2812                $int_type,
2813                no = [
2814                    "**Note:** This function is only available on targets where `",
2815                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2816                ],
2817            }]
2818            ///
2819            /// # Examples
2820            ///
2821            /// ```ignore-wasm
2822            /// #![feature(atomic_from_mut)]
2823            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2824            ///
2825            /// let mut some_ints = [0; 10];
2826            #[doc = concat!("let a = &*", stringify!($atomic_type), "::from_mut_slice(&mut some_ints);")]
2827            /// std::thread::scope(|s| {
2828            ///     for i in 0..a.len() {
2829            ///         s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
2830            ///     }
2831            /// });
2832            /// for (i, n) in some_ints.into_iter().enumerate() {
2833            ///     assert_eq!(i, n as usize);
2834            /// }
2835            /// ```
2836            #[inline]
2837            #[$cfg_align]
2838            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2839            pub fn from_mut_slice(v: &mut [$int_type]) -> &mut [Self] {
2840                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2841                // SAFETY:
2842                //  - the mutable reference guarantees unique ownership.
2843                //  - the alignment of `$int_type` and `Self` is the
2844                //    same, as promised by $cfg_align and verified above.
2845                unsafe { &mut *(v as *mut [$int_type] as *mut [Self]) }
2846            }
2847
2848            /// Consumes the atomic and returns the contained value.
2849            ///
2850            /// This is safe because passing `self` by value guarantees that no other threads are
2851            /// concurrently accessing the atomic data.
2852            ///
2853            /// # Examples
2854            ///
2855            /// ```
2856            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2857            ///
2858            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2859            /// assert_eq!(some_var.into_inner(), 5);
2860            /// ```
2861            #[inline]
2862            #[$stable_access]
2863            #[$const_stable_into_inner]
2864            pub const fn into_inner(self) -> $int_type {
2865                self.v.into_inner()
2866            }
2867
2868            /// Loads a value from the atomic integer.
2869            ///
2870            /// `load` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2871            /// Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
2872            ///
2873            /// # Panics
2874            ///
2875            /// Panics if `order` is [`Release`] or [`AcqRel`].
2876            ///
2877            /// # Examples
2878            ///
2879            /// ```
2880            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2881            ///
2882            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2883            ///
2884            /// assert_eq!(some_var.load(Ordering::Relaxed), 5);
2885            /// ```
2886            #[inline]
2887            #[$stable]
2888            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2889            pub fn load(&self, order: Ordering) -> $int_type {
2890                // SAFETY: data races are prevented by atomic intrinsics.
2891                unsafe { atomic_load(self.v.get(), order) }
2892            }
2893
2894            /// Stores a value into the atomic integer.
2895            ///
2896            /// `store` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2897            ///  Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
2898            ///
2899            /// # Panics
2900            ///
2901            /// Panics if `order` is [`Acquire`] or [`AcqRel`].
2902            ///
2903            /// # Examples
2904            ///
2905            /// ```
2906            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2907            ///
2908            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2909            ///
2910            /// some_var.store(10, Ordering::Relaxed);
2911            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2912            /// ```
2913            #[inline]
2914            #[$stable]
2915            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2916            pub fn store(&self, val: $int_type, order: Ordering) {
2917                // SAFETY: data races are prevented by atomic intrinsics.
2918                unsafe { atomic_store(self.v.get(), val, order); }
2919            }
2920
2921            /// Stores a value into the atomic integer, returning the previous value.
2922            ///
2923            /// `swap` takes an [`Ordering`] argument which describes the memory ordering
2924            /// of this operation. All ordering modes are possible. Note that using
2925            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2926            /// using [`Release`] makes the load part [`Relaxed`].
2927            ///
2928            /// **Note**: This method is only available on platforms that support atomic operations on
2929            #[doc = concat!("[`", $s_int_type, "`].")]
2930            ///
2931            /// # Examples
2932            ///
2933            /// ```
2934            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2935            ///
2936            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2937            ///
2938            /// assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
2939            /// ```
2940            #[inline]
2941            #[$stable]
2942            #[$cfg_cas]
2943            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2944            pub fn swap(&self, val: $int_type, order: Ordering) -> $int_type {
2945                // SAFETY: data races are prevented by atomic intrinsics.
2946                unsafe { atomic_swap(self.v.get(), val, order) }
2947            }
2948
2949            /// Stores a value into the atomic integer if the current value is the same as
2950            /// the `current` value.
2951            ///
2952            /// The return value is always the previous value. If it is equal to `current`, then the
2953            /// value was updated.
2954            ///
2955            /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
2956            /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
2957            /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
2958            /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
2959            /// happens, and using [`Release`] makes the load part [`Relaxed`].
2960            ///
2961            /// **Note**: This method is only available on platforms that support atomic operations on
2962            #[doc = concat!("[`", $s_int_type, "`].")]
2963            ///
2964            /// # Migrating to `compare_exchange` and `compare_exchange_weak`
2965            ///
2966            /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
2967            /// memory orderings:
2968            ///
2969            /// Original | Success | Failure
2970            /// -------- | ------- | -------
2971            /// Relaxed  | Relaxed | Relaxed
2972            /// Acquire  | Acquire | Acquire
2973            /// Release  | Release | Relaxed
2974            /// AcqRel   | AcqRel  | Acquire
2975            /// SeqCst   | SeqCst  | SeqCst
2976            ///
2977            /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
2978            /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
2979            /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
2980            /// rather than to infer success vs failure based on the value that was read.
2981            ///
2982            /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
2983            /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
2984            /// which allows the compiler to generate better assembly code when the compare and swap
2985            /// is used in a loop.
2986            ///
2987            /// # Examples
2988            ///
2989            /// ```
2990            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2991            ///
2992            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2993            ///
2994            /// assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
2995            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2996            ///
2997            /// assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
2998            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2999            /// ```
3000            #[inline]
3001            #[$stable]
3002            #[deprecated(
3003                since = "1.50.0",
3004                note = "Use `compare_exchange` or `compare_exchange_weak` instead")
3005            ]
3006            #[$cfg_cas]
3007            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3008            pub fn compare_and_swap(&self,
3009                                    current: $int_type,
3010                                    new: $int_type,
3011                                    order: Ordering) -> $int_type {
3012                match self.compare_exchange(current,
3013                                            new,
3014                                            order,
3015                                            strongest_failure_ordering(order)) {
3016                    Ok(x) => x,
3017                    Err(x) => x,
3018                }
3019            }
3020
3021            /// Stores a value into the atomic integer if the current value is the same as
3022            /// the `current` value.
3023            ///
3024            /// The return value is a result indicating whether the new value was written and
3025            /// containing the previous value. On success this value is guaranteed to be equal to
3026            /// `current`.
3027            ///
3028            /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
3029            /// ordering of this operation. `success` describes the required ordering for the
3030            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3031            /// `failure` describes the required ordering for the load operation that takes place when
3032            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3033            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3034            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3035            ///
3036            /// **Note**: This method is only available on platforms that support atomic operations on
3037            #[doc = concat!("[`", $s_int_type, "`].")]
3038            ///
3039            /// # Examples
3040            ///
3041            /// ```
3042            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3043            ///
3044            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3045            ///
3046            /// assert_eq!(some_var.compare_exchange(5, 10,
3047            ///                                      Ordering::Acquire,
3048            ///                                      Ordering::Relaxed),
3049            ///            Ok(5));
3050            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3051            ///
3052            /// assert_eq!(some_var.compare_exchange(6, 12,
3053            ///                                      Ordering::SeqCst,
3054            ///                                      Ordering::Acquire),
3055            ///            Err(10));
3056            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3057            /// ```
3058            ///
3059            /// # Considerations
3060            ///
3061            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3062            /// of CAS operations. In particular, a load of the value followed by a successful
3063            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3064            /// changed the value in the interim! This is usually important when the *equality* check in
3065            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3066            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3067            /// a pointer holding the same address does not imply that the same object exists at that
3068            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3069            ///
3070            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3071            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3072            #[inline]
3073            #[$stable_cxchg]
3074            #[$cfg_cas]
3075            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3076            pub fn compare_exchange(&self,
3077                                    current: $int_type,
3078                                    new: $int_type,
3079                                    success: Ordering,
3080                                    failure: Ordering) -> Result<$int_type, $int_type> {
3081                // SAFETY: data races are prevented by atomic intrinsics.
3082                unsafe { atomic_compare_exchange(self.v.get(), current, new, success, failure) }
3083            }
3084
3085            /// Stores a value into the atomic integer if the current value is the same as
3086            /// the `current` value.
3087            ///
3088            #[doc = concat!("Unlike [`", stringify!($atomic_type), "::compare_exchange`],")]
3089            /// this function is allowed to spuriously fail even
3090            /// when the comparison succeeds, which can result in more efficient code on some
3091            /// platforms. The return value is a result indicating whether the new value was
3092            /// written and containing the previous value.
3093            ///
3094            /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
3095            /// ordering of this operation. `success` describes the required ordering for the
3096            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3097            /// `failure` describes the required ordering for the load operation that takes place when
3098            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3099            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3100            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3101            ///
3102            /// **Note**: This method is only available on platforms that support atomic operations on
3103            #[doc = concat!("[`", $s_int_type, "`].")]
3104            ///
3105            /// # Examples
3106            ///
3107            /// ```
3108            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3109            ///
3110            #[doc = concat!("let val = ", stringify!($atomic_type), "::new(4);")]
3111            ///
3112            /// let mut old = val.load(Ordering::Relaxed);
3113            /// loop {
3114            ///     let new = old * 2;
3115            ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
3116            ///         Ok(_) => break,
3117            ///         Err(x) => old = x,
3118            ///     }
3119            /// }
3120            /// ```
3121            ///
3122            /// # Considerations
3123            ///
3124            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3125            /// of CAS operations. In particular, a load of the value followed by a successful
3126            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3127            /// changed the value in the interim. This is usually important when the *equality* check in
3128            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3129            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3130            /// a pointer holding the same address does not imply that the same object exists at that
3131            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3132            ///
3133            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3134            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3135            #[inline]
3136            #[$stable_cxchg]
3137            #[$cfg_cas]
3138            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3139            pub fn compare_exchange_weak(&self,
3140                                         current: $int_type,
3141                                         new: $int_type,
3142                                         success: Ordering,
3143                                         failure: Ordering) -> Result<$int_type, $int_type> {
3144                // SAFETY: data races are prevented by atomic intrinsics.
3145                unsafe {
3146                    atomic_compare_exchange_weak(self.v.get(), current, new, success, failure)
3147                }
3148            }
3149
3150            /// Adds to the current value, returning the previous value.
3151            ///
3152            /// This operation wraps around on overflow.
3153            ///
3154            /// `fetch_add` takes an [`Ordering`] argument which describes the memory ordering
3155            /// of this operation. All ordering modes are possible. Note that using
3156            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3157            /// using [`Release`] makes the load part [`Relaxed`].
3158            ///
3159            /// **Note**: This method is only available on platforms that support atomic operations on
3160            #[doc = concat!("[`", $s_int_type, "`].")]
3161            ///
3162            /// # Examples
3163            ///
3164            /// ```
3165            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3166            ///
3167            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0);")]
3168            /// assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
3169            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3170            /// ```
3171            #[inline]
3172            #[$stable]
3173            #[$cfg_cas]
3174            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3175            pub fn fetch_add(&self, val: $int_type, order: Ordering) -> $int_type {
3176                // SAFETY: data races are prevented by atomic intrinsics.
3177                unsafe { atomic_add(self.v.get(), val, order) }
3178            }
3179
3180            /// Subtracts from the current value, returning the previous value.
3181            ///
3182            /// This operation wraps around on overflow.
3183            ///
3184            /// `fetch_sub` takes an [`Ordering`] argument which describes the memory ordering
3185            /// of this operation. All ordering modes are possible. Note that using
3186            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3187            /// using [`Release`] makes the load part [`Relaxed`].
3188            ///
3189            /// **Note**: This method is only available on platforms that support atomic operations on
3190            #[doc = concat!("[`", $s_int_type, "`].")]
3191            ///
3192            /// # Examples
3193            ///
3194            /// ```
3195            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3196            ///
3197            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(20);")]
3198            /// assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
3199            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3200            /// ```
3201            #[inline]
3202            #[$stable]
3203            #[$cfg_cas]
3204            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3205            pub fn fetch_sub(&self, val: $int_type, order: Ordering) -> $int_type {
3206                // SAFETY: data races are prevented by atomic intrinsics.
3207                unsafe { atomic_sub(self.v.get(), val, order) }
3208            }
3209
3210            /// Bitwise "and" with the current value.
3211            ///
3212            /// Performs a bitwise "and" operation on the current value and the argument `val`, and
3213            /// sets the new value to the result.
3214            ///
3215            /// Returns the previous value.
3216            ///
3217            /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
3218            /// of this operation. All ordering modes are possible. Note that using
3219            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3220            /// using [`Release`] makes the load part [`Relaxed`].
3221            ///
3222            /// **Note**: This method is only available on platforms that support atomic operations on
3223            #[doc = concat!("[`", $s_int_type, "`].")]
3224            ///
3225            /// # Examples
3226            ///
3227            /// ```
3228            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3229            ///
3230            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3231            /// assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
3232            /// assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
3233            /// ```
3234            #[inline]
3235            #[$stable]
3236            #[$cfg_cas]
3237            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3238            pub fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type {
3239                // SAFETY: data races are prevented by atomic intrinsics.
3240                unsafe { atomic_and(self.v.get(), val, order) }
3241            }
3242
3243            /// Bitwise "nand" with the current value.
3244            ///
3245            /// Performs a bitwise "nand" operation on the current value and the argument `val`, and
3246            /// sets the new value to the result.
3247            ///
3248            /// Returns the previous value.
3249            ///
3250            /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
3251            /// of this operation. All ordering modes are possible. Note that using
3252            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3253            /// using [`Release`] makes the load part [`Relaxed`].
3254            ///
3255            /// **Note**: This method is only available on platforms that support atomic operations on
3256            #[doc = concat!("[`", $s_int_type, "`].")]
3257            ///
3258            /// # Examples
3259            ///
3260            /// ```
3261            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3262            ///
3263            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0x13);")]
3264            /// assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
3265            /// assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
3266            /// ```
3267            #[inline]
3268            #[$stable_nand]
3269            #[$cfg_cas]
3270            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3271            pub fn fetch_nand(&self, val: $int_type, order: Ordering) -> $int_type {
3272                // SAFETY: data races are prevented by atomic intrinsics.
3273                unsafe { atomic_nand(self.v.get(), val, order) }
3274            }
3275
3276            /// Bitwise "or" with the current value.
3277            ///
3278            /// Performs a bitwise "or" operation on the current value and the argument `val`, and
3279            /// sets the new value to the result.
3280            ///
3281            /// Returns the previous value.
3282            ///
3283            /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
3284            /// of this operation. All ordering modes are possible. Note that using
3285            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3286            /// using [`Release`] makes the load part [`Relaxed`].
3287            ///
3288            /// **Note**: This method is only available on platforms that support atomic operations on
3289            #[doc = concat!("[`", $s_int_type, "`].")]
3290            ///
3291            /// # Examples
3292            ///
3293            /// ```
3294            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3295            ///
3296            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3297            /// assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
3298            /// assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
3299            /// ```
3300            #[inline]
3301            #[$stable]
3302            #[$cfg_cas]
3303            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3304            pub fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type {
3305                // SAFETY: data races are prevented by atomic intrinsics.
3306                unsafe { atomic_or(self.v.get(), val, order) }
3307            }
3308
3309            /// Bitwise "xor" with the current value.
3310            ///
3311            /// Performs a bitwise "xor" operation on the current value and the argument `val`, and
3312            /// sets the new value to the result.
3313            ///
3314            /// Returns the previous value.
3315            ///
3316            /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
3317            /// of this operation. All ordering modes are possible. Note that using
3318            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3319            /// using [`Release`] makes the load part [`Relaxed`].
3320            ///
3321            /// **Note**: This method is only available on platforms that support atomic operations on
3322            #[doc = concat!("[`", $s_int_type, "`].")]
3323            ///
3324            /// # Examples
3325            ///
3326            /// ```
3327            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3328            ///
3329            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3330            /// assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
3331            /// assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
3332            /// ```
3333            #[inline]
3334            #[$stable]
3335            #[$cfg_cas]
3336            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3337            pub fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type {
3338                // SAFETY: data races are prevented by atomic intrinsics.
3339                unsafe { atomic_xor(self.v.get(), val, order) }
3340            }
3341
3342            /// Fetches the value, and applies a function to it that returns an optional
3343            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3344            /// `Err(previous_value)`.
3345            ///
3346            /// Note: This may call the function multiple times if the value has been changed from other threads in
3347            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3348            /// only once to the stored value.
3349            ///
3350            /// `fetch_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3351            /// The first describes the required ordering for when the operation finally succeeds while the second
3352            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3353            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3354            /// respectively.
3355            ///
3356            /// Using [`Acquire`] as success ordering makes the store part
3357            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3358            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3359            ///
3360            /// **Note**: This method is only available on platforms that support atomic operations on
3361            #[doc = concat!("[`", $s_int_type, "`].")]
3362            ///
3363            /// # Considerations
3364            ///
3365            /// This method is not magic; it is not provided by the hardware, and does not act like a
3366            /// critical section or mutex.
3367            ///
3368            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3369            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3370            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3371            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3372            ///
3373            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3374            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3375            ///
3376            /// # Examples
3377            ///
3378            /// ```rust
3379            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3380            ///
3381            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3382            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3383            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3384            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3385            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3386            /// ```
3387            #[inline]
3388            #[stable(feature = "no_more_cas", since = "1.45.0")]
3389            #[$cfg_cas]
3390            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3391            pub fn fetch_update<F>(&self,
3392                                   set_order: Ordering,
3393                                   fetch_order: Ordering,
3394                                   mut f: F) -> Result<$int_type, $int_type>
3395            where F: FnMut($int_type) -> Option<$int_type> {
3396                let mut prev = self.load(fetch_order);
3397                while let Some(next) = f(prev) {
3398                    match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
3399                        x @ Ok(_) => return x,
3400                        Err(next_prev) => prev = next_prev
3401                    }
3402                }
3403                Err(prev)
3404            }
3405
3406            /// Fetches the value, and applies a function to it that returns an optional
3407            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3408            /// `Err(previous_value)`.
3409            ///
3410            #[doc = concat!("See also: [`update`](`", stringify!($atomic_type), "::update`).")]
3411            ///
3412            /// Note: This may call the function multiple times if the value has been changed from other threads in
3413            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3414            /// only once to the stored value.
3415            ///
3416            /// `try_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3417            /// The first describes the required ordering for when the operation finally succeeds while the second
3418            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3419            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3420            /// respectively.
3421            ///
3422            /// Using [`Acquire`] as success ordering makes the store part
3423            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3424            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3425            ///
3426            /// **Note**: This method is only available on platforms that support atomic operations on
3427            #[doc = concat!("[`", $s_int_type, "`].")]
3428            ///
3429            /// # Considerations
3430            ///
3431            /// This method is not magic; it is not provided by the hardware, and does not act like a
3432            /// critical section or mutex.
3433            ///
3434            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3435            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3436            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3437            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3438            ///
3439            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3440            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3441            ///
3442            /// # Examples
3443            ///
3444            /// ```rust
3445            /// #![feature(atomic_try_update)]
3446            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3447            ///
3448            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3449            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3450            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3451            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3452            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3453            /// ```
3454            #[inline]
3455            #[unstable(feature = "atomic_try_update", issue = "135894")]
3456            #[$cfg_cas]
3457            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3458            pub fn try_update(
3459                &self,
3460                set_order: Ordering,
3461                fetch_order: Ordering,
3462                f: impl FnMut($int_type) -> Option<$int_type>,
3463            ) -> Result<$int_type, $int_type> {
3464                // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
3465                //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
3466                self.fetch_update(set_order, fetch_order, f)
3467            }
3468
3469            /// Fetches the value, applies a function to it that it return a new value.
3470            /// The new value is stored and the old value is returned.
3471            ///
3472            #[doc = concat!("See also: [`try_update`](`", stringify!($atomic_type), "::try_update`).")]
3473            ///
3474            /// Note: This may call the function multiple times if the value has been changed from other threads in
3475            /// the meantime, but the function will have been applied only once to the stored value.
3476            ///
3477            /// `update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3478            /// The first describes the required ordering for when the operation finally succeeds while the second
3479            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3480            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3481            /// respectively.
3482            ///
3483            /// Using [`Acquire`] as success ordering makes the store part
3484            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3485            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3486            ///
3487            /// **Note**: This method is only available on platforms that support atomic operations on
3488            #[doc = concat!("[`", $s_int_type, "`].")]
3489            ///
3490            /// # Considerations
3491            ///
3492            /// [CAS operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3493            /// This method is not magic; it is not provided by the hardware, and does not act like a
3494            /// critical section or mutex.
3495            ///
3496            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3497            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3498            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3499            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3500            ///
3501            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3502            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3503            ///
3504            /// # Examples
3505            ///
3506            /// ```rust
3507            /// #![feature(atomic_try_update)]
3508            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3509            ///
3510            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3511            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
3512            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
3513            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3514            /// ```
3515            #[inline]
3516            #[unstable(feature = "atomic_try_update", issue = "135894")]
3517            #[$cfg_cas]
3518            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3519            pub fn update(
3520                &self,
3521                set_order: Ordering,
3522                fetch_order: Ordering,
3523                mut f: impl FnMut($int_type) -> $int_type,
3524            ) -> $int_type {
3525                let mut prev = self.load(fetch_order);
3526                loop {
3527                    match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
3528                        Ok(x) => break x,
3529                        Err(next_prev) => prev = next_prev,
3530                    }
3531                }
3532            }
3533
3534            /// Maximum with the current value.
3535            ///
3536            /// Finds the maximum of the current value and the argument `val`, and
3537            /// sets the new value to the result.
3538            ///
3539            /// Returns the previous value.
3540            ///
3541            /// `fetch_max` takes an [`Ordering`] argument which describes the memory ordering
3542            /// of this operation. All ordering modes are possible. Note that using
3543            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3544            /// using [`Release`] makes the load part [`Relaxed`].
3545            ///
3546            /// **Note**: This method is only available on platforms that support atomic operations on
3547            #[doc = concat!("[`", $s_int_type, "`].")]
3548            ///
3549            /// # Examples
3550            ///
3551            /// ```
3552            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3553            ///
3554            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3555            /// assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
3556            /// assert_eq!(foo.load(Ordering::SeqCst), 42);
3557            /// ```
3558            ///
3559            /// If you want to obtain the maximum value in one step, you can use the following:
3560            ///
3561            /// ```
3562            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3563            ///
3564            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3565            /// let bar = 42;
3566            /// let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
3567            /// assert!(max_foo == 42);
3568            /// ```
3569            #[inline]
3570            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3571            #[$cfg_cas]
3572            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3573            pub fn fetch_max(&self, val: $int_type, order: Ordering) -> $int_type {
3574                // SAFETY: data races are prevented by atomic intrinsics.
3575                unsafe { $max_fn(self.v.get(), val, order) }
3576            }
3577
3578            /// Minimum with the current value.
3579            ///
3580            /// Finds the minimum of the current value and the argument `val`, and
3581            /// sets the new value to the result.
3582            ///
3583            /// Returns the previous value.
3584            ///
3585            /// `fetch_min` takes an [`Ordering`] argument which describes the memory ordering
3586            /// of this operation. All ordering modes are possible. Note that using
3587            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3588            /// using [`Release`] makes the load part [`Relaxed`].
3589            ///
3590            /// **Note**: This method is only available on platforms that support atomic operations on
3591            #[doc = concat!("[`", $s_int_type, "`].")]
3592            ///
3593            /// # Examples
3594            ///
3595            /// ```
3596            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3597            ///
3598            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3599            /// assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
3600            /// assert_eq!(foo.load(Ordering::Relaxed), 23);
3601            /// assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
3602            /// assert_eq!(foo.load(Ordering::Relaxed), 22);
3603            /// ```
3604            ///
3605            /// If you want to obtain the minimum value in one step, you can use the following:
3606            ///
3607            /// ```
3608            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3609            ///
3610            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3611            /// let bar = 12;
3612            /// let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
3613            /// assert_eq!(min_foo, 12);
3614            /// ```
3615            #[inline]
3616            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3617            #[$cfg_cas]
3618            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3619            pub fn fetch_min(&self, val: $int_type, order: Ordering) -> $int_type {
3620                // SAFETY: data races are prevented by atomic intrinsics.
3621                unsafe { $min_fn(self.v.get(), val, order) }
3622            }
3623
3624            /// Returns a mutable pointer to the underlying integer.
3625            ///
3626            /// Doing non-atomic reads and writes on the resulting integer can be a data race.
3627            /// This method is mostly useful for FFI, where the function signature may use
3628            #[doc = concat!("`*mut ", stringify!($int_type), "` instead of `&", stringify!($atomic_type), "`.")]
3629            ///
3630            /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
3631            /// atomic types work with interior mutability. All modifications of an atomic change the value
3632            /// through a shared reference, and can do so safely as long as they use atomic operations. Any
3633            /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
3634            /// requirements of the [memory model].
3635            ///
3636            /// # Examples
3637            ///
3638            /// ```ignore (extern-declaration)
3639            /// # fn main() {
3640            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
3641            ///
3642            /// extern "C" {
3643            #[doc = concat!("    fn my_atomic_op(arg: *mut ", stringify!($int_type), ");")]
3644            /// }
3645            ///
3646            #[doc = concat!("let atomic = ", stringify!($atomic_type), "::new(1);")]
3647            ///
3648            /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
3649            /// unsafe {
3650            ///     my_atomic_op(atomic.as_ptr());
3651            /// }
3652            /// # }
3653            /// ```
3654            ///
3655            /// [memory model]: self#memory-model-for-atomic-accesses
3656            #[inline]
3657            #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
3658            #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
3659            #[rustc_never_returns_null_ptr]
3660            pub const fn as_ptr(&self) -> *mut $int_type {
3661                self.v.get()
3662            }
3663        }
3664    }
3665}
3666
3667#[cfg(target_has_atomic_load_store = "8")]
3668atomic_int! {
3669    cfg(target_has_atomic = "8"),
3670    cfg(target_has_atomic_equal_alignment = "8"),
3671    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3672    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3673    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3674    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3675    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3676    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3677    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3678    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3679    rustc_diagnostic_item = "AtomicI8",
3680    "i8",
3681    "",
3682    atomic_min, atomic_max,
3683    1,
3684    i8 AtomicI8
3685}
3686#[cfg(target_has_atomic_load_store = "8")]
3687atomic_int! {
3688    cfg(target_has_atomic = "8"),
3689    cfg(target_has_atomic_equal_alignment = "8"),
3690    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3691    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3692    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3693    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3694    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3695    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3696    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3697    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3698    rustc_diagnostic_item = "AtomicU8",
3699    "u8",
3700    "",
3701    atomic_umin, atomic_umax,
3702    1,
3703    u8 AtomicU8
3704}
3705#[cfg(target_has_atomic_load_store = "16")]
3706atomic_int! {
3707    cfg(target_has_atomic = "16"),
3708    cfg(target_has_atomic_equal_alignment = "16"),
3709    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3710    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3711    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3712    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3713    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3714    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3715    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3716    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3717    rustc_diagnostic_item = "AtomicI16",
3718    "i16",
3719    "",
3720    atomic_min, atomic_max,
3721    2,
3722    i16 AtomicI16
3723}
3724#[cfg(target_has_atomic_load_store = "16")]
3725atomic_int! {
3726    cfg(target_has_atomic = "16"),
3727    cfg(target_has_atomic_equal_alignment = "16"),
3728    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3729    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3730    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3731    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3732    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3733    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3734    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3735    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3736    rustc_diagnostic_item = "AtomicU16",
3737    "u16",
3738    "",
3739    atomic_umin, atomic_umax,
3740    2,
3741    u16 AtomicU16
3742}
3743#[cfg(target_has_atomic_load_store = "32")]
3744atomic_int! {
3745    cfg(target_has_atomic = "32"),
3746    cfg(target_has_atomic_equal_alignment = "32"),
3747    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3748    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3749    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3750    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3751    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3752    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3753    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3754    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3755    rustc_diagnostic_item = "AtomicI32",
3756    "i32",
3757    "",
3758    atomic_min, atomic_max,
3759    4,
3760    i32 AtomicI32
3761}
3762#[cfg(target_has_atomic_load_store = "32")]
3763atomic_int! {
3764    cfg(target_has_atomic = "32"),
3765    cfg(target_has_atomic_equal_alignment = "32"),
3766    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3767    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3768    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3769    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3770    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3771    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3772    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3773    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3774    rustc_diagnostic_item = "AtomicU32",
3775    "u32",
3776    "",
3777    atomic_umin, atomic_umax,
3778    4,
3779    u32 AtomicU32
3780}
3781#[cfg(target_has_atomic_load_store = "64")]
3782atomic_int! {
3783    cfg(target_has_atomic = "64"),
3784    cfg(target_has_atomic_equal_alignment = "64"),
3785    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3786    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3787    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3788    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3789    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3790    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3791    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3792    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3793    rustc_diagnostic_item = "AtomicI64",
3794    "i64",
3795    "",
3796    atomic_min, atomic_max,
3797    8,
3798    i64 AtomicI64
3799}
3800#[cfg(target_has_atomic_load_store = "64")]
3801atomic_int! {
3802    cfg(target_has_atomic = "64"),
3803    cfg(target_has_atomic_equal_alignment = "64"),
3804    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3805    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3806    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3807    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3808    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3809    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3810    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3811    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3812    rustc_diagnostic_item = "AtomicU64",
3813    "u64",
3814    "",
3815    atomic_umin, atomic_umax,
3816    8,
3817    u64 AtomicU64
3818}
3819#[cfg(target_has_atomic_load_store = "128")]
3820atomic_int! {
3821    cfg(target_has_atomic = "128"),
3822    cfg(target_has_atomic_equal_alignment = "128"),
3823    unstable(feature = "integer_atomics", issue = "99069"),
3824    unstable(feature = "integer_atomics", issue = "99069"),
3825    unstable(feature = "integer_atomics", issue = "99069"),
3826    unstable(feature = "integer_atomics", issue = "99069"),
3827    unstable(feature = "integer_atomics", issue = "99069"),
3828    unstable(feature = "integer_atomics", issue = "99069"),
3829    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3830    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3831    rustc_diagnostic_item = "AtomicI128",
3832    "i128",
3833    "#![feature(integer_atomics)]\n\n",
3834    atomic_min, atomic_max,
3835    16,
3836    i128 AtomicI128
3837}
3838#[cfg(target_has_atomic_load_store = "128")]
3839atomic_int! {
3840    cfg(target_has_atomic = "128"),
3841    cfg(target_has_atomic_equal_alignment = "128"),
3842    unstable(feature = "integer_atomics", issue = "99069"),
3843    unstable(feature = "integer_atomics", issue = "99069"),
3844    unstable(feature = "integer_atomics", issue = "99069"),
3845    unstable(feature = "integer_atomics", issue = "99069"),
3846    unstable(feature = "integer_atomics", issue = "99069"),
3847    unstable(feature = "integer_atomics", issue = "99069"),
3848    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3849    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3850    rustc_diagnostic_item = "AtomicU128",
3851    "u128",
3852    "#![feature(integer_atomics)]\n\n",
3853    atomic_umin, atomic_umax,
3854    16,
3855    u128 AtomicU128
3856}
3857
3858#[cfg(target_has_atomic_load_store = "ptr")]
3859macro_rules! atomic_int_ptr_sized {
3860    ( $($target_pointer_width:literal $align:literal)* ) => { $(
3861        #[cfg(target_pointer_width = $target_pointer_width)]
3862        atomic_int! {
3863            cfg(target_has_atomic = "ptr"),
3864            cfg(target_has_atomic_equal_alignment = "ptr"),
3865            stable(feature = "rust1", since = "1.0.0"),
3866            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3867            stable(feature = "atomic_debug", since = "1.3.0"),
3868            stable(feature = "atomic_access", since = "1.15.0"),
3869            stable(feature = "atomic_from", since = "1.23.0"),
3870            stable(feature = "atomic_nand", since = "1.27.0"),
3871            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3872            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3873            rustc_diagnostic_item = "AtomicIsize",
3874            "isize",
3875            "",
3876            atomic_min, atomic_max,
3877            $align,
3878            isize AtomicIsize
3879        }
3880        #[cfg(target_pointer_width = $target_pointer_width)]
3881        atomic_int! {
3882            cfg(target_has_atomic = "ptr"),
3883            cfg(target_has_atomic_equal_alignment = "ptr"),
3884            stable(feature = "rust1", since = "1.0.0"),
3885            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3886            stable(feature = "atomic_debug", since = "1.3.0"),
3887            stable(feature = "atomic_access", since = "1.15.0"),
3888            stable(feature = "atomic_from", since = "1.23.0"),
3889            stable(feature = "atomic_nand", since = "1.27.0"),
3890            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3891            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3892            rustc_diagnostic_item = "AtomicUsize",
3893            "usize",
3894            "",
3895            atomic_umin, atomic_umax,
3896            $align,
3897            usize AtomicUsize
3898        }
3899
3900        /// An [`AtomicIsize`] initialized to `0`.
3901        #[cfg(target_pointer_width = $target_pointer_width)]
3902        #[stable(feature = "rust1", since = "1.0.0")]
3903        #[deprecated(
3904            since = "1.34.0",
3905            note = "the `new` function is now preferred",
3906            suggestion = "AtomicIsize::new(0)",
3907        )]
3908        pub const ATOMIC_ISIZE_INIT: AtomicIsize = AtomicIsize::new(0);
3909
3910        /// An [`AtomicUsize`] initialized to `0`.
3911        #[cfg(target_pointer_width = $target_pointer_width)]
3912        #[stable(feature = "rust1", since = "1.0.0")]
3913        #[deprecated(
3914            since = "1.34.0",
3915            note = "the `new` function is now preferred",
3916            suggestion = "AtomicUsize::new(0)",
3917        )]
3918        pub const ATOMIC_USIZE_INIT: AtomicUsize = AtomicUsize::new(0);
3919    )* };
3920}
3921
3922#[cfg(target_has_atomic_load_store = "ptr")]
3923atomic_int_ptr_sized! {
3924    "16" 2
3925    "32" 4
3926    "64" 8
3927}
3928
3929#[inline]
3930#[cfg(target_has_atomic)]
3931fn strongest_failure_ordering(order: Ordering) -> Ordering {
3932    match order {
3933        Release => Relaxed,
3934        Relaxed => Relaxed,
3935        SeqCst => SeqCst,
3936        Acquire => Acquire,
3937        AcqRel => Acquire,
3938    }
3939}
3940
3941#[inline]
3942#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3943unsafe fn atomic_store<T: Copy>(dst: *mut T, val: T, order: Ordering) {
3944    // SAFETY: the caller must uphold the safety contract for `atomic_store`.
3945    unsafe {
3946        match order {
3947            Relaxed => intrinsics::atomic_store::<T, { AO::Relaxed }>(dst, val),
3948            Release => intrinsics::atomic_store::<T, { AO::Release }>(dst, val),
3949            SeqCst => intrinsics::atomic_store::<T, { AO::SeqCst }>(dst, val),
3950            Acquire => panic!("there is no such thing as an acquire store"),
3951            AcqRel => panic!("there is no such thing as an acquire-release store"),
3952        }
3953    }
3954}
3955
3956#[inline]
3957#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3958unsafe fn atomic_load<T: Copy>(dst: *const T, order: Ordering) -> T {
3959    // SAFETY: the caller must uphold the safety contract for `atomic_load`.
3960    unsafe {
3961        match order {
3962            Relaxed => intrinsics::atomic_load::<T, { AO::Relaxed }>(dst),
3963            Acquire => intrinsics::atomic_load::<T, { AO::Acquire }>(dst),
3964            SeqCst => intrinsics::atomic_load::<T, { AO::SeqCst }>(dst),
3965            Release => panic!("there is no such thing as a release load"),
3966            AcqRel => panic!("there is no such thing as an acquire-release load"),
3967        }
3968    }
3969}
3970
3971#[inline]
3972#[cfg(target_has_atomic)]
3973#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3974unsafe fn atomic_swap<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3975    // SAFETY: the caller must uphold the safety contract for `atomic_swap`.
3976    unsafe {
3977        match order {
3978            Relaxed => intrinsics::atomic_xchg::<T, { AO::Relaxed }>(dst, val),
3979            Acquire => intrinsics::atomic_xchg::<T, { AO::Acquire }>(dst, val),
3980            Release => intrinsics::atomic_xchg::<T, { AO::Release }>(dst, val),
3981            AcqRel => intrinsics::atomic_xchg::<T, { AO::AcqRel }>(dst, val),
3982            SeqCst => intrinsics::atomic_xchg::<T, { AO::SeqCst }>(dst, val),
3983        }
3984    }
3985}
3986
3987/// Returns the previous value (like __sync_fetch_and_add).
3988#[inline]
3989#[cfg(target_has_atomic)]
3990#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3991unsafe fn atomic_add<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
3992    // SAFETY: the caller must uphold the safety contract for `atomic_add`.
3993    unsafe {
3994        match order {
3995            Relaxed => intrinsics::atomic_xadd::<T, U, { AO::Relaxed }>(dst, val),
3996            Acquire => intrinsics::atomic_xadd::<T, U, { AO::Acquire }>(dst, val),
3997            Release => intrinsics::atomic_xadd::<T, U, { AO::Release }>(dst, val),
3998            AcqRel => intrinsics::atomic_xadd::<T, U, { AO::AcqRel }>(dst, val),
3999            SeqCst => intrinsics::atomic_xadd::<T, U, { AO::SeqCst }>(dst, val),
4000        }
4001    }
4002}
4003
4004/// Returns the previous value (like __sync_fetch_and_sub).
4005#[inline]
4006#[cfg(target_has_atomic)]
4007#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4008unsafe fn atomic_sub<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4009    // SAFETY: the caller must uphold the safety contract for `atomic_sub`.
4010    unsafe {
4011        match order {
4012            Relaxed => intrinsics::atomic_xsub::<T, U, { AO::Relaxed }>(dst, val),
4013            Acquire => intrinsics::atomic_xsub::<T, U, { AO::Acquire }>(dst, val),
4014            Release => intrinsics::atomic_xsub::<T, U, { AO::Release }>(dst, val),
4015            AcqRel => intrinsics::atomic_xsub::<T, U, { AO::AcqRel }>(dst, val),
4016            SeqCst => intrinsics::atomic_xsub::<T, U, { AO::SeqCst }>(dst, val),
4017        }
4018    }
4019}
4020
4021/// Publicly exposed for stdarch; nobody else should use this.
4022#[inline]
4023#[cfg(target_has_atomic)]
4024#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4025#[unstable(feature = "core_intrinsics", issue = "none")]
4026#[doc(hidden)]
4027pub unsafe fn atomic_compare_exchange<T: Copy>(
4028    dst: *mut T,
4029    old: T,
4030    new: T,
4031    success: Ordering,
4032    failure: Ordering,
4033) -> Result<T, T> {
4034    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange`.
4035    let (val, ok) = unsafe {
4036        match (success, failure) {
4037            (Relaxed, Relaxed) => {
4038                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4039            }
4040            (Relaxed, Acquire) => {
4041                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4042            }
4043            (Relaxed, SeqCst) => {
4044                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4045            }
4046            (Acquire, Relaxed) => {
4047                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4048            }
4049            (Acquire, Acquire) => {
4050                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4051            }
4052            (Acquire, SeqCst) => {
4053                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4054            }
4055            (Release, Relaxed) => {
4056                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4057            }
4058            (Release, Acquire) => {
4059                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4060            }
4061            (Release, SeqCst) => {
4062                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4063            }
4064            (AcqRel, Relaxed) => {
4065                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4066            }
4067            (AcqRel, Acquire) => {
4068                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4069            }
4070            (AcqRel, SeqCst) => {
4071                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4072            }
4073            (SeqCst, Relaxed) => {
4074                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4075            }
4076            (SeqCst, Acquire) => {
4077                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4078            }
4079            (SeqCst, SeqCst) => {
4080                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4081            }
4082            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4083            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4084        }
4085    };
4086    if ok { Ok(val) } else { Err(val) }
4087}
4088
4089#[inline]
4090#[cfg(target_has_atomic)]
4091#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4092unsafe fn atomic_compare_exchange_weak<T: Copy>(
4093    dst: *mut T,
4094    old: T,
4095    new: T,
4096    success: Ordering,
4097    failure: Ordering,
4098) -> Result<T, T> {
4099    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange_weak`.
4100    let (val, ok) = unsafe {
4101        match (success, failure) {
4102            (Relaxed, Relaxed) => {
4103                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4104            }
4105            (Relaxed, Acquire) => {
4106                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4107            }
4108            (Relaxed, SeqCst) => {
4109                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4110            }
4111            (Acquire, Relaxed) => {
4112                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4113            }
4114            (Acquire, Acquire) => {
4115                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4116            }
4117            (Acquire, SeqCst) => {
4118                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4119            }
4120            (Release, Relaxed) => {
4121                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4122            }
4123            (Release, Acquire) => {
4124                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4125            }
4126            (Release, SeqCst) => {
4127                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4128            }
4129            (AcqRel, Relaxed) => {
4130                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4131            }
4132            (AcqRel, Acquire) => {
4133                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4134            }
4135            (AcqRel, SeqCst) => {
4136                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4137            }
4138            (SeqCst, Relaxed) => {
4139                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4140            }
4141            (SeqCst, Acquire) => {
4142                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4143            }
4144            (SeqCst, SeqCst) => {
4145                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4146            }
4147            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4148            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4149        }
4150    };
4151    if ok { Ok(val) } else { Err(val) }
4152}
4153
4154#[inline]
4155#[cfg(target_has_atomic)]
4156#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4157unsafe fn atomic_and<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4158    // SAFETY: the caller must uphold the safety contract for `atomic_and`
4159    unsafe {
4160        match order {
4161            Relaxed => intrinsics::atomic_and::<T, U, { AO::Relaxed }>(dst, val),
4162            Acquire => intrinsics::atomic_and::<T, U, { AO::Acquire }>(dst, val),
4163            Release => intrinsics::atomic_and::<T, U, { AO::Release }>(dst, val),
4164            AcqRel => intrinsics::atomic_and::<T, U, { AO::AcqRel }>(dst, val),
4165            SeqCst => intrinsics::atomic_and::<T, U, { AO::SeqCst }>(dst, val),
4166        }
4167    }
4168}
4169
4170#[inline]
4171#[cfg(target_has_atomic)]
4172#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4173unsafe fn atomic_nand<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4174    // SAFETY: the caller must uphold the safety contract for `atomic_nand`
4175    unsafe {
4176        match order {
4177            Relaxed => intrinsics::atomic_nand::<T, U, { AO::Relaxed }>(dst, val),
4178            Acquire => intrinsics::atomic_nand::<T, U, { AO::Acquire }>(dst, val),
4179            Release => intrinsics::atomic_nand::<T, U, { AO::Release }>(dst, val),
4180            AcqRel => intrinsics::atomic_nand::<T, U, { AO::AcqRel }>(dst, val),
4181            SeqCst => intrinsics::atomic_nand::<T, U, { AO::SeqCst }>(dst, val),
4182        }
4183    }
4184}
4185
4186#[inline]
4187#[cfg(target_has_atomic)]
4188#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4189unsafe fn atomic_or<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4190    // SAFETY: the caller must uphold the safety contract for `atomic_or`
4191    unsafe {
4192        match order {
4193            SeqCst => intrinsics::atomic_or::<T, U, { AO::SeqCst }>(dst, val),
4194            Acquire => intrinsics::atomic_or::<T, U, { AO::Acquire }>(dst, val),
4195            Release => intrinsics::atomic_or::<T, U, { AO::Release }>(dst, val),
4196            AcqRel => intrinsics::atomic_or::<T, U, { AO::AcqRel }>(dst, val),
4197            Relaxed => intrinsics::atomic_or::<T, U, { AO::Relaxed }>(dst, val),
4198        }
4199    }
4200}
4201
4202#[inline]
4203#[cfg(target_has_atomic)]
4204#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4205unsafe fn atomic_xor<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4206    // SAFETY: the caller must uphold the safety contract for `atomic_xor`
4207    unsafe {
4208        match order {
4209            SeqCst => intrinsics::atomic_xor::<T, U, { AO::SeqCst }>(dst, val),
4210            Acquire => intrinsics::atomic_xor::<T, U, { AO::Acquire }>(dst, val),
4211            Release => intrinsics::atomic_xor::<T, U, { AO::Release }>(dst, val),
4212            AcqRel => intrinsics::atomic_xor::<T, U, { AO::AcqRel }>(dst, val),
4213            Relaxed => intrinsics::atomic_xor::<T, U, { AO::Relaxed }>(dst, val),
4214        }
4215    }
4216}
4217
4218/// Updates `*dst` to the max value of `val` and the old value (signed comparison)
4219#[inline]
4220#[cfg(target_has_atomic)]
4221#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4222unsafe fn atomic_max<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4223    // SAFETY: the caller must uphold the safety contract for `atomic_max`
4224    unsafe {
4225        match order {
4226            Relaxed => intrinsics::atomic_max::<T, { AO::Relaxed }>(dst, val),
4227            Acquire => intrinsics::atomic_max::<T, { AO::Acquire }>(dst, val),
4228            Release => intrinsics::atomic_max::<T, { AO::Release }>(dst, val),
4229            AcqRel => intrinsics::atomic_max::<T, { AO::AcqRel }>(dst, val),
4230            SeqCst => intrinsics::atomic_max::<T, { AO::SeqCst }>(dst, val),
4231        }
4232    }
4233}
4234
4235/// Updates `*dst` to the min value of `val` and the old value (signed comparison)
4236#[inline]
4237#[cfg(target_has_atomic)]
4238#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4239unsafe fn atomic_min<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4240    // SAFETY: the caller must uphold the safety contract for `atomic_min`
4241    unsafe {
4242        match order {
4243            Relaxed => intrinsics::atomic_min::<T, { AO::Relaxed }>(dst, val),
4244            Acquire => intrinsics::atomic_min::<T, { AO::Acquire }>(dst, val),
4245            Release => intrinsics::atomic_min::<T, { AO::Release }>(dst, val),
4246            AcqRel => intrinsics::atomic_min::<T, { AO::AcqRel }>(dst, val),
4247            SeqCst => intrinsics::atomic_min::<T, { AO::SeqCst }>(dst, val),
4248        }
4249    }
4250}
4251
4252/// Updates `*dst` to the max value of `val` and the old value (unsigned comparison)
4253#[inline]
4254#[cfg(target_has_atomic)]
4255#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4256unsafe fn atomic_umax<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4257    // SAFETY: the caller must uphold the safety contract for `atomic_umax`
4258    unsafe {
4259        match order {
4260            Relaxed => intrinsics::atomic_umax::<T, { AO::Relaxed }>(dst, val),
4261            Acquire => intrinsics::atomic_umax::<T, { AO::Acquire }>(dst, val),
4262            Release => intrinsics::atomic_umax::<T, { AO::Release }>(dst, val),
4263            AcqRel => intrinsics::atomic_umax::<T, { AO::AcqRel }>(dst, val),
4264            SeqCst => intrinsics::atomic_umax::<T, { AO::SeqCst }>(dst, val),
4265        }
4266    }
4267}
4268
4269/// Updates `*dst` to the min value of `val` and the old value (unsigned comparison)
4270#[inline]
4271#[cfg(target_has_atomic)]
4272#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4273unsafe fn atomic_umin<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4274    // SAFETY: the caller must uphold the safety contract for `atomic_umin`
4275    unsafe {
4276        match order {
4277            Relaxed => intrinsics::atomic_umin::<T, { AO::Relaxed }>(dst, val),
4278            Acquire => intrinsics::atomic_umin::<T, { AO::Acquire }>(dst, val),
4279            Release => intrinsics::atomic_umin::<T, { AO::Release }>(dst, val),
4280            AcqRel => intrinsics::atomic_umin::<T, { AO::AcqRel }>(dst, val),
4281            SeqCst => intrinsics::atomic_umin::<T, { AO::SeqCst }>(dst, val),
4282        }
4283    }
4284}
4285
4286/// An atomic fence.
4287///
4288/// Fences create synchronization between themselves and atomic operations or fences in other
4289/// threads. To achieve this, a fence prevents the compiler and CPU from reordering certain types of
4290/// memory operations around it.
4291///
4292/// A fence 'A' which has (at least) [`Release`] ordering semantics, synchronizes
4293/// with a fence 'B' with (at least) [`Acquire`] semantics, if and only if there
4294/// exist operations X and Y, both operating on some atomic object 'm' such
4295/// that A is sequenced before X, Y is sequenced before B and Y observes
4296/// the change to m. This provides a happens-before dependence between A and B.
4297///
4298/// ```text
4299///     Thread 1                                          Thread 2
4300///
4301/// fence(Release);      A --------------
4302/// m.store(3, Relaxed); X ---------    |
4303///                                |    |
4304///                                |    |
4305///                                -------------> Y  if m.load(Relaxed) == 3 {
4306///                                     |-------> B      fence(Acquire);
4307///                                                      ...
4308///                                                  }
4309/// ```
4310///
4311/// Note that in the example above, it is crucial that the accesses to `m` are atomic. Fences cannot
4312/// be used to establish synchronization among non-atomic accesses in different threads. However,
4313/// thanks to the happens-before relationship between A and B, any non-atomic accesses that
4314/// happen-before A are now also properly synchronized with any non-atomic accesses that
4315/// happen-after B.
4316///
4317/// Atomic operations with [`Release`] or [`Acquire`] semantics can also synchronize
4318/// with a fence.
4319///
4320/// A fence which has [`SeqCst`] ordering, in addition to having both [`Acquire`]
4321/// and [`Release`] semantics, participates in the global program order of the
4322/// other [`SeqCst`] operations and/or fences.
4323///
4324/// Accepts [`Acquire`], [`Release`], [`AcqRel`] and [`SeqCst`] orderings.
4325///
4326/// # Panics
4327///
4328/// Panics if `order` is [`Relaxed`].
4329///
4330/// # Examples
4331///
4332/// ```
4333/// use std::sync::atomic::AtomicBool;
4334/// use std::sync::atomic::fence;
4335/// use std::sync::atomic::Ordering;
4336///
4337/// // A mutual exclusion primitive based on spinlock.
4338/// pub struct Mutex {
4339///     flag: AtomicBool,
4340/// }
4341///
4342/// impl Mutex {
4343///     pub fn new() -> Mutex {
4344///         Mutex {
4345///             flag: AtomicBool::new(false),
4346///         }
4347///     }
4348///
4349///     pub fn lock(&self) {
4350///         // Wait until the old value is `false`.
4351///         while self
4352///             .flag
4353///             .compare_exchange_weak(false, true, Ordering::Relaxed, Ordering::Relaxed)
4354///             .is_err()
4355///         {}
4356///         // This fence synchronizes-with store in `unlock`.
4357///         fence(Ordering::Acquire);
4358///     }
4359///
4360///     pub fn unlock(&self) {
4361///         self.flag.store(false, Ordering::Release);
4362///     }
4363/// }
4364/// ```
4365#[inline]
4366#[stable(feature = "rust1", since = "1.0.0")]
4367#[rustc_diagnostic_item = "fence"]
4368#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4369pub fn fence(order: Ordering) {
4370    // SAFETY: using an atomic fence is safe.
4371    unsafe {
4372        match order {
4373            Acquire => intrinsics::atomic_fence::<{ AO::Acquire }>(),
4374            Release => intrinsics::atomic_fence::<{ AO::Release }>(),
4375            AcqRel => intrinsics::atomic_fence::<{ AO::AcqRel }>(),
4376            SeqCst => intrinsics::atomic_fence::<{ AO::SeqCst }>(),
4377            Relaxed => panic!("there is no such thing as a relaxed fence"),
4378        }
4379    }
4380}
4381
4382/// A "compiler-only" atomic fence.
4383///
4384/// Like [`fence`], this function establishes synchronization with other atomic operations and
4385/// fences. However, unlike [`fence`], `compiler_fence` only establishes synchronization with
4386/// operations *in the same thread*. This may at first sound rather useless, since code within a
4387/// thread is typically already totally ordered and does not need any further synchronization.
4388/// However, there are cases where code can run on the same thread without being ordered:
4389/// - The most common case is that of a *signal handler*: a signal handler runs in the same thread
4390///   as the code it interrupted, but it is not ordered with respect to that code. `compiler_fence`
4391///   can be used to establish synchronization between a thread and its signal handler, the same way
4392///   that `fence` can be used to establish synchronization across threads.
4393/// - Similar situations can arise in embedded programming with interrupt handlers, or in custom
4394///   implementations of preemptive green threads. In general, `compiler_fence` can establish
4395///   synchronization with code that is guaranteed to run on the same hardware CPU.
4396///
4397/// See [`fence`] for how a fence can be used to achieve synchronization. Note that just like
4398/// [`fence`], synchronization still requires atomic operations to be used in both threads -- it is
4399/// not possible to perform synchronization entirely with fences and non-atomic operations.
4400///
4401/// `compiler_fence` does not emit any machine code, but restricts the kinds of memory re-ordering
4402/// the compiler is allowed to do. `compiler_fence` corresponds to [`atomic_signal_fence`] in C and
4403/// C++.
4404///
4405/// [`atomic_signal_fence`]: https://en.cppreference.com/w/cpp/atomic/atomic_signal_fence
4406///
4407/// # Panics
4408///
4409/// Panics if `order` is [`Relaxed`].
4410///
4411/// # Examples
4412///
4413/// Without the two `compiler_fence` calls, the read of `IMPORTANT_VARIABLE` in `signal_handler`
4414/// is *undefined behavior* due to a data race, despite everything happening in a single thread.
4415/// This is because the signal handler is considered to run concurrently with its associated
4416/// thread, and explicit synchronization is required to pass data between a thread and its
4417/// signal handler. The code below uses two `compiler_fence` calls to establish the usual
4418/// release-acquire synchronization pattern (see [`fence`] for an image).
4419///
4420/// ```
4421/// use std::sync::atomic::AtomicBool;
4422/// use std::sync::atomic::Ordering;
4423/// use std::sync::atomic::compiler_fence;
4424///
4425/// static mut IMPORTANT_VARIABLE: usize = 0;
4426/// static IS_READY: AtomicBool = AtomicBool::new(false);
4427///
4428/// fn main() {
4429///     unsafe { IMPORTANT_VARIABLE = 42 };
4430///     // Marks earlier writes as being released with future relaxed stores.
4431///     compiler_fence(Ordering::Release);
4432///     IS_READY.store(true, Ordering::Relaxed);
4433/// }
4434///
4435/// fn signal_handler() {
4436///     if IS_READY.load(Ordering::Relaxed) {
4437///         // Acquires writes that were released with relaxed stores that we read from.
4438///         compiler_fence(Ordering::Acquire);
4439///         assert_eq!(unsafe { IMPORTANT_VARIABLE }, 42);
4440///     }
4441/// }
4442/// ```
4443#[inline]
4444#[stable(feature = "compiler_fences", since = "1.21.0")]
4445#[rustc_diagnostic_item = "compiler_fence"]
4446#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4447pub fn compiler_fence(order: Ordering) {
4448    // SAFETY: using an atomic fence is safe.
4449    unsafe {
4450        match order {
4451            Acquire => intrinsics::atomic_singlethreadfence::<{ AO::Acquire }>(),
4452            Release => intrinsics::atomic_singlethreadfence::<{ AO::Release }>(),
4453            AcqRel => intrinsics::atomic_singlethreadfence::<{ AO::AcqRel }>(),
4454            SeqCst => intrinsics::atomic_singlethreadfence::<{ AO::SeqCst }>(),
4455            Relaxed => panic!("there is no such thing as a relaxed fence"),
4456        }
4457    }
4458}
4459
4460#[cfg(target_has_atomic_load_store = "8")]
4461#[stable(feature = "atomic_debug", since = "1.3.0")]
4462impl fmt::Debug for AtomicBool {
4463    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4464        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4465    }
4466}
4467
4468#[cfg(target_has_atomic_load_store = "ptr")]
4469#[stable(feature = "atomic_debug", since = "1.3.0")]
4470impl<T> fmt::Debug for AtomicPtr<T> {
4471    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4472        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4473    }
4474}
4475
4476#[cfg(target_has_atomic_load_store = "ptr")]
4477#[stable(feature = "atomic_pointer", since = "1.24.0")]
4478impl<T> fmt::Pointer for AtomicPtr<T> {
4479    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4480        fmt::Pointer::fmt(&self.load(Ordering::Relaxed), f)
4481    }
4482}
4483
4484/// Signals the processor that it is inside a busy-wait spin-loop ("spin lock").
4485///
4486/// This function is deprecated in favor of [`hint::spin_loop`].
4487///
4488/// [`hint::spin_loop`]: crate::hint::spin_loop
4489#[inline]
4490#[stable(feature = "spin_loop_hint", since = "1.24.0")]
4491#[deprecated(since = "1.51.0", note = "use hint::spin_loop instead")]
4492pub fn spin_loop_hint() {
4493    spin_loop()
4494}