core/time.rs
1#![stable(feature = "duration_core", since = "1.25.0")]
2
3//! Temporal quantification.
4//!
5//! # Examples:
6//!
7//! There are multiple ways to create a new [`Duration`]:
8//!
9//! ```
10//! # use std::time::Duration;
11//! let five_seconds = Duration::from_secs(5);
12//! assert_eq!(five_seconds, Duration::from_millis(5_000));
13//! assert_eq!(five_seconds, Duration::from_micros(5_000_000));
14//! assert_eq!(five_seconds, Duration::from_nanos(5_000_000_000));
15//!
16//! let ten_seconds = Duration::from_secs(10);
17//! let seven_nanos = Duration::from_nanos(7);
18//! let total = ten_seconds + seven_nanos;
19//! assert_eq!(total, Duration::new(10, 7));
20//! ```
21
22use crate::fmt;
23use crate::iter::Sum;
24use crate::num::niche_types::Nanoseconds;
25use crate::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
26
27const NANOS_PER_SEC: u32 = 1_000_000_000;
28const NANOS_PER_MILLI: u32 = 1_000_000;
29const NANOS_PER_MICRO: u32 = 1_000;
30const MILLIS_PER_SEC: u64 = 1_000;
31const MICROS_PER_SEC: u64 = 1_000_000;
32#[unstable(feature = "duration_units", issue = "120301")]
33const SECS_PER_MINUTE: u64 = 60;
34#[unstable(feature = "duration_units", issue = "120301")]
35const MINS_PER_HOUR: u64 = 60;
36#[unstable(feature = "duration_units", issue = "120301")]
37const HOURS_PER_DAY: u64 = 24;
38#[unstable(feature = "duration_units", issue = "120301")]
39const DAYS_PER_WEEK: u64 = 7;
40
41/// A `Duration` type to represent a span of time, typically used for system
42/// timeouts.
43///
44/// Each `Duration` is composed of a whole number of seconds and a fractional part
45/// represented in nanoseconds. If the underlying system does not support
46/// nanosecond-level precision, APIs binding a system timeout will typically round up
47/// the number of nanoseconds.
48///
49/// [`Duration`]s implement many common traits, including [`Add`], [`Sub`], and other
50/// [`ops`] traits. It implements [`Default`] by returning a zero-length `Duration`.
51///
52/// [`ops`]: crate::ops
53///
54/// # Examples
55///
56/// ```
57/// use std::time::Duration;
58///
59/// let five_seconds = Duration::new(5, 0);
60/// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5);
61///
62/// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5);
63/// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5);
64///
65/// let ten_millis = Duration::from_millis(10);
66/// ```
67///
68/// # Formatting `Duration` values
69///
70/// `Duration` intentionally does not have a `Display` impl, as there are a
71/// variety of ways to format spans of time for human readability. `Duration`
72/// provides a `Debug` impl that shows the full precision of the value.
73///
74/// The `Debug` output uses the non-ASCII "µs" suffix for microseconds. If your
75/// program output may appear in contexts that cannot rely on full Unicode
76/// compatibility, you may wish to format `Duration` objects yourself or use a
77/// crate to do so.
78#[stable(feature = "duration", since = "1.3.0")]
79#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
80#[rustc_diagnostic_item = "Duration"]
81pub struct Duration {
82 secs: u64,
83 nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC
84}
85
86impl Duration {
87 /// The duration of one second.
88 ///
89 /// # Examples
90 ///
91 /// ```
92 /// #![feature(duration_constants)]
93 /// use std::time::Duration;
94 ///
95 /// assert_eq!(Duration::SECOND, Duration::from_secs(1));
96 /// ```
97 #[unstable(feature = "duration_constants", issue = "57391")]
98 pub const SECOND: Duration = Duration::from_secs(1);
99
100 /// The duration of one millisecond.
101 ///
102 /// # Examples
103 ///
104 /// ```
105 /// #![feature(duration_constants)]
106 /// use std::time::Duration;
107 ///
108 /// assert_eq!(Duration::MILLISECOND, Duration::from_millis(1));
109 /// ```
110 #[unstable(feature = "duration_constants", issue = "57391")]
111 pub const MILLISECOND: Duration = Duration::from_millis(1);
112
113 /// The duration of one microsecond.
114 ///
115 /// # Examples
116 ///
117 /// ```
118 /// #![feature(duration_constants)]
119 /// use std::time::Duration;
120 ///
121 /// assert_eq!(Duration::MICROSECOND, Duration::from_micros(1));
122 /// ```
123 #[unstable(feature = "duration_constants", issue = "57391")]
124 pub const MICROSECOND: Duration = Duration::from_micros(1);
125
126 /// The duration of one nanosecond.
127 ///
128 /// # Examples
129 ///
130 /// ```
131 /// #![feature(duration_constants)]
132 /// use std::time::Duration;
133 ///
134 /// assert_eq!(Duration::NANOSECOND, Duration::from_nanos(1));
135 /// ```
136 #[unstable(feature = "duration_constants", issue = "57391")]
137 pub const NANOSECOND: Duration = Duration::from_nanos(1);
138
139 /// A duration of zero time.
140 ///
141 /// # Examples
142 ///
143 /// ```
144 /// use std::time::Duration;
145 ///
146 /// let duration = Duration::ZERO;
147 /// assert!(duration.is_zero());
148 /// assert_eq!(duration.as_nanos(), 0);
149 /// ```
150 #[stable(feature = "duration_zero", since = "1.53.0")]
151 pub const ZERO: Duration = Duration::from_nanos(0);
152
153 /// The maximum duration.
154 ///
155 /// May vary by platform as necessary. Must be able to contain the difference between
156 /// two instances of [`Instant`] or two instances of [`SystemTime`].
157 /// This constraint gives it a value of about 584,942,417,355 years in practice,
158 /// which is currently used on all platforms.
159 ///
160 /// # Examples
161 ///
162 /// ```
163 /// use std::time::Duration;
164 ///
165 /// assert_eq!(Duration::MAX, Duration::new(u64::MAX, 1_000_000_000 - 1));
166 /// ```
167 /// [`Instant`]: ../../std/time/struct.Instant.html
168 /// [`SystemTime`]: ../../std/time/struct.SystemTime.html
169 #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
170 pub const MAX: Duration = Duration::new(u64::MAX, NANOS_PER_SEC - 1);
171
172 /// Creates a new `Duration` from the specified number of whole seconds and
173 /// additional nanoseconds.
174 ///
175 /// If the number of nanoseconds is greater than 1 billion (the number of
176 /// nanoseconds in a second), then it will carry over into the seconds provided.
177 ///
178 /// # Panics
179 ///
180 /// This constructor will panic if the carry from the nanoseconds overflows
181 /// the seconds counter.
182 ///
183 /// # Examples
184 ///
185 /// ```
186 /// use std::time::Duration;
187 ///
188 /// let five_seconds = Duration::new(5, 0);
189 /// ```
190 #[stable(feature = "duration", since = "1.3.0")]
191 #[inline]
192 #[must_use]
193 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
194 pub const fn new(secs: u64, nanos: u32) -> Duration {
195 if nanos < NANOS_PER_SEC {
196 // SAFETY: nanos < NANOS_PER_SEC, therefore nanos is within the valid range
197 Duration { secs, nanos: unsafe { Nanoseconds::new_unchecked(nanos) } }
198 } else {
199 let secs = secs
200 .checked_add((nanos / NANOS_PER_SEC) as u64)
201 .expect("overflow in Duration::new");
202 let nanos = nanos % NANOS_PER_SEC;
203 // SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
204 Duration { secs, nanos: unsafe { Nanoseconds::new_unchecked(nanos) } }
205 }
206 }
207
208 /// Creates a new `Duration` from the specified number of whole seconds.
209 ///
210 /// # Examples
211 ///
212 /// ```
213 /// use std::time::Duration;
214 ///
215 /// let duration = Duration::from_secs(5);
216 ///
217 /// assert_eq!(5, duration.as_secs());
218 /// assert_eq!(0, duration.subsec_nanos());
219 /// ```
220 #[stable(feature = "duration", since = "1.3.0")]
221 #[must_use]
222 #[inline]
223 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
224 pub const fn from_secs(secs: u64) -> Duration {
225 Duration { secs, nanos: Nanoseconds::ZERO }
226 }
227
228 /// Creates a new `Duration` from the specified number of milliseconds.
229 ///
230 /// # Examples
231 ///
232 /// ```
233 /// use std::time::Duration;
234 ///
235 /// let duration = Duration::from_millis(2_569);
236 ///
237 /// assert_eq!(2, duration.as_secs());
238 /// assert_eq!(569_000_000, duration.subsec_nanos());
239 /// ```
240 #[stable(feature = "duration", since = "1.3.0")]
241 #[must_use]
242 #[inline]
243 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
244 pub const fn from_millis(millis: u64) -> Duration {
245 let secs = millis / MILLIS_PER_SEC;
246 let subsec_millis = (millis % MILLIS_PER_SEC) as u32;
247 // SAFETY: (x % 1_000) * 1_000_000 < 1_000_000_000
248 // => x % 1_000 < 1_000
249 let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_millis * NANOS_PER_MILLI) };
250
251 Duration { secs, nanos: subsec_nanos }
252 }
253
254 /// Creates a new `Duration` from the specified number of microseconds.
255 ///
256 /// # Examples
257 ///
258 /// ```
259 /// use std::time::Duration;
260 ///
261 /// let duration = Duration::from_micros(1_000_002);
262 ///
263 /// assert_eq!(1, duration.as_secs());
264 /// assert_eq!(2_000, duration.subsec_nanos());
265 /// ```
266 #[stable(feature = "duration_from_micros", since = "1.27.0")]
267 #[must_use]
268 #[inline]
269 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
270 pub const fn from_micros(micros: u64) -> Duration {
271 let secs = micros / MICROS_PER_SEC;
272 let subsec_micros = (micros % MICROS_PER_SEC) as u32;
273 // SAFETY: (x % 1_000_000) * 1_000 < 1_000_000_000
274 // => x % 1_000_000 < 1_000_000
275 let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_micros * NANOS_PER_MICRO) };
276
277 Duration { secs, nanos: subsec_nanos }
278 }
279
280 /// Creates a new `Duration` from the specified number of nanoseconds.
281 ///
282 /// Note: Using this on the return value of `as_nanos()` might cause unexpected behavior:
283 /// `as_nanos()` returns a u128, and can return values that do not fit in u64, e.g. 585 years.
284 /// Instead, consider using the pattern `Duration::new(d.as_secs(), d.subsec_nanos())`
285 /// if you cannot copy/clone the Duration directly.
286 ///
287 /// # Examples
288 ///
289 /// ```
290 /// use std::time::Duration;
291 ///
292 /// let duration = Duration::from_nanos(1_000_000_123);
293 ///
294 /// assert_eq!(1, duration.as_secs());
295 /// assert_eq!(123, duration.subsec_nanos());
296 /// ```
297 #[stable(feature = "duration_extras", since = "1.27.0")]
298 #[must_use]
299 #[inline]
300 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
301 pub const fn from_nanos(nanos: u64) -> Duration {
302 const NANOS_PER_SEC: u64 = self::NANOS_PER_SEC as u64;
303 let secs = nanos / NANOS_PER_SEC;
304 let subsec_nanos = (nanos % NANOS_PER_SEC) as u32;
305 // SAFETY: x % 1_000_000_000 < 1_000_000_000
306 let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_nanos) };
307
308 Duration { secs, nanos: subsec_nanos }
309 }
310
311 /// Creates a new `Duration` from the specified number of nanoseconds.
312 ///
313 /// # Panics
314 ///
315 /// Panics if the given number of nanoseconds is greater than [`Duration::MAX`].
316 ///
317 /// # Examples
318 ///
319 /// ```
320 /// use std::time::Duration;
321 ///
322 /// let nanos = 10_u128.pow(24) + 321;
323 /// let duration = Duration::from_nanos_u128(nanos);
324 ///
325 /// assert_eq!(10_u64.pow(15), duration.as_secs());
326 /// assert_eq!(321, duration.subsec_nanos());
327 /// ```
328 #[stable(feature = "duration_from_nanos_u128", since = "CURRENT_RUSTC_VERSION")]
329 #[rustc_const_stable(feature = "duration_from_nanos_u128", since = "CURRENT_RUSTC_VERSION")]
330 #[must_use]
331 #[inline]
332 #[track_caller]
333 #[rustc_allow_const_fn_unstable(const_trait_impl, const_convert)] // for `u64::try_from`
334 pub const fn from_nanos_u128(nanos: u128) -> Duration {
335 const NANOS_PER_SEC: u128 = self::NANOS_PER_SEC as u128;
336 let Ok(secs) = u64::try_from(nanos / NANOS_PER_SEC) else {
337 panic!("overflow in `Duration::from_nanos_u128`");
338 };
339 let subsec_nanos = (nanos % NANOS_PER_SEC) as u32;
340 // SAFETY: x % 1_000_000_000 < 1_000_000_000 also, subsec_nanos >= 0 since u128 >=0 and u32 >=0
341 let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_nanos) };
342
343 Duration { secs: secs as u64, nanos: subsec_nanos }
344 }
345
346 /// Creates a new `Duration` from the specified number of weeks.
347 ///
348 /// # Panics
349 ///
350 /// Panics if the given number of weeks overflows the `Duration` size.
351 ///
352 /// # Examples
353 ///
354 /// ```
355 /// #![feature(duration_constructors)]
356 /// use std::time::Duration;
357 ///
358 /// let duration = Duration::from_weeks(4);
359 ///
360 /// assert_eq!(4 * 7 * 24 * 60 * 60, duration.as_secs());
361 /// assert_eq!(0, duration.subsec_nanos());
362 /// ```
363 #[unstable(feature = "duration_constructors", issue = "120301")]
364 #[must_use]
365 #[inline]
366 pub const fn from_weeks(weeks: u64) -> Duration {
367 if weeks > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY * DAYS_PER_WEEK) {
368 panic!("overflow in Duration::from_weeks");
369 }
370
371 Duration::from_secs(weeks * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY * DAYS_PER_WEEK)
372 }
373
374 /// Creates a new `Duration` from the specified number of days.
375 ///
376 /// # Panics
377 ///
378 /// Panics if the given number of days overflows the `Duration` size.
379 ///
380 /// # Examples
381 ///
382 /// ```
383 /// #![feature(duration_constructors)]
384 /// use std::time::Duration;
385 ///
386 /// let duration = Duration::from_days(7);
387 ///
388 /// assert_eq!(7 * 24 * 60 * 60, duration.as_secs());
389 /// assert_eq!(0, duration.subsec_nanos());
390 /// ```
391 #[unstable(feature = "duration_constructors", issue = "120301")]
392 #[must_use]
393 #[inline]
394 pub const fn from_days(days: u64) -> Duration {
395 if days > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY) {
396 panic!("overflow in Duration::from_days");
397 }
398
399 Duration::from_secs(days * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY)
400 }
401
402 /// Creates a new `Duration` from the specified number of hours.
403 ///
404 /// # Panics
405 ///
406 /// Panics if the given number of hours overflows the `Duration` size.
407 ///
408 /// # Examples
409 ///
410 /// ```
411 /// use std::time::Duration;
412 ///
413 /// let duration = Duration::from_hours(6);
414 ///
415 /// assert_eq!(6 * 60 * 60, duration.as_secs());
416 /// assert_eq!(0, duration.subsec_nanos());
417 /// ```
418 #[stable(feature = "duration_constructors_lite", since = "1.91.0")]
419 #[rustc_const_stable(feature = "duration_constructors_lite", since = "1.91.0")]
420 #[must_use]
421 #[inline]
422 pub const fn from_hours(hours: u64) -> Duration {
423 if hours > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR) {
424 panic!("overflow in Duration::from_hours");
425 }
426
427 Duration::from_secs(hours * MINS_PER_HOUR * SECS_PER_MINUTE)
428 }
429
430 /// Creates a new `Duration` from the specified number of minutes.
431 ///
432 /// # Panics
433 ///
434 /// Panics if the given number of minutes overflows the `Duration` size.
435 ///
436 /// # Examples
437 ///
438 /// ```
439 /// use std::time::Duration;
440 ///
441 /// let duration = Duration::from_mins(10);
442 ///
443 /// assert_eq!(10 * 60, duration.as_secs());
444 /// assert_eq!(0, duration.subsec_nanos());
445 /// ```
446 #[stable(feature = "duration_constructors_lite", since = "1.91.0")]
447 #[rustc_const_stable(feature = "duration_constructors_lite", since = "1.91.0")]
448 #[must_use]
449 #[inline]
450 pub const fn from_mins(mins: u64) -> Duration {
451 if mins > u64::MAX / SECS_PER_MINUTE {
452 panic!("overflow in Duration::from_mins");
453 }
454
455 Duration::from_secs(mins * SECS_PER_MINUTE)
456 }
457
458 /// Returns true if this `Duration` spans no time.
459 ///
460 /// # Examples
461 ///
462 /// ```
463 /// use std::time::Duration;
464 ///
465 /// assert!(Duration::ZERO.is_zero());
466 /// assert!(Duration::new(0, 0).is_zero());
467 /// assert!(Duration::from_nanos(0).is_zero());
468 /// assert!(Duration::from_secs(0).is_zero());
469 ///
470 /// assert!(!Duration::new(1, 1).is_zero());
471 /// assert!(!Duration::from_nanos(1).is_zero());
472 /// assert!(!Duration::from_secs(1).is_zero());
473 /// ```
474 #[must_use]
475 #[stable(feature = "duration_zero", since = "1.53.0")]
476 #[rustc_const_stable(feature = "duration_zero", since = "1.53.0")]
477 #[inline]
478 pub const fn is_zero(&self) -> bool {
479 self.secs == 0 && self.nanos.as_inner() == 0
480 }
481
482 /// Returns the number of _whole_ seconds contained by this `Duration`.
483 ///
484 /// The returned value does not include the fractional (nanosecond) part of the
485 /// duration, which can be obtained using [`subsec_nanos`].
486 ///
487 /// # Examples
488 ///
489 /// ```
490 /// use std::time::Duration;
491 ///
492 /// let duration = Duration::new(5, 730_023_852);
493 /// assert_eq!(duration.as_secs(), 5);
494 /// ```
495 ///
496 /// To determine the total number of seconds represented by the `Duration`
497 /// including the fractional part, use [`as_secs_f64`] or [`as_secs_f32`]
498 ///
499 /// [`as_secs_f64`]: Duration::as_secs_f64
500 /// [`as_secs_f32`]: Duration::as_secs_f32
501 /// [`subsec_nanos`]: Duration::subsec_nanos
502 #[stable(feature = "duration", since = "1.3.0")]
503 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
504 #[must_use]
505 #[inline]
506 pub const fn as_secs(&self) -> u64 {
507 self.secs
508 }
509
510 /// Returns the fractional part of this `Duration`, in whole milliseconds.
511 ///
512 /// This method does **not** return the length of the duration when
513 /// represented by milliseconds. The returned number always represents a
514 /// fractional portion of a second (i.e., it is less than one thousand).
515 ///
516 /// # Examples
517 ///
518 /// ```
519 /// use std::time::Duration;
520 ///
521 /// let duration = Duration::from_millis(5_432);
522 /// assert_eq!(duration.as_secs(), 5);
523 /// assert_eq!(duration.subsec_millis(), 432);
524 /// ```
525 #[stable(feature = "duration_extras", since = "1.27.0")]
526 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
527 #[must_use]
528 #[inline]
529 pub const fn subsec_millis(&self) -> u32 {
530 self.nanos.as_inner() / NANOS_PER_MILLI
531 }
532
533 /// Returns the fractional part of this `Duration`, in whole microseconds.
534 ///
535 /// This method does **not** return the length of the duration when
536 /// represented by microseconds. The returned number always represents a
537 /// fractional portion of a second (i.e., it is less than one million).
538 ///
539 /// # Examples
540 ///
541 /// ```
542 /// use std::time::Duration;
543 ///
544 /// let duration = Duration::from_micros(1_234_567);
545 /// assert_eq!(duration.as_secs(), 1);
546 /// assert_eq!(duration.subsec_micros(), 234_567);
547 /// ```
548 #[stable(feature = "duration_extras", since = "1.27.0")]
549 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
550 #[must_use]
551 #[inline]
552 pub const fn subsec_micros(&self) -> u32 {
553 self.nanos.as_inner() / NANOS_PER_MICRO
554 }
555
556 /// Returns the fractional part of this `Duration`, in nanoseconds.
557 ///
558 /// This method does **not** return the length of the duration when
559 /// represented by nanoseconds. The returned number always represents a
560 /// fractional portion of a second (i.e., it is less than one billion).
561 ///
562 /// # Examples
563 ///
564 /// ```
565 /// use std::time::Duration;
566 ///
567 /// let duration = Duration::from_millis(5_010);
568 /// assert_eq!(duration.as_secs(), 5);
569 /// assert_eq!(duration.subsec_nanos(), 10_000_000);
570 /// ```
571 #[stable(feature = "duration", since = "1.3.0")]
572 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
573 #[must_use]
574 #[inline]
575 pub const fn subsec_nanos(&self) -> u32 {
576 self.nanos.as_inner()
577 }
578
579 /// Returns the total number of whole milliseconds contained by this `Duration`.
580 ///
581 /// # Examples
582 ///
583 /// ```
584 /// use std::time::Duration;
585 ///
586 /// let duration = Duration::new(5, 730_023_852);
587 /// assert_eq!(duration.as_millis(), 5_730);
588 /// ```
589 #[stable(feature = "duration_as_u128", since = "1.33.0")]
590 #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
591 #[must_use]
592 #[inline]
593 pub const fn as_millis(&self) -> u128 {
594 self.secs as u128 * MILLIS_PER_SEC as u128
595 + (self.nanos.as_inner() / NANOS_PER_MILLI) as u128
596 }
597
598 /// Returns the total number of whole microseconds contained by this `Duration`.
599 ///
600 /// # Examples
601 ///
602 /// ```
603 /// use std::time::Duration;
604 ///
605 /// let duration = Duration::new(5, 730_023_852);
606 /// assert_eq!(duration.as_micros(), 5_730_023);
607 /// ```
608 #[stable(feature = "duration_as_u128", since = "1.33.0")]
609 #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
610 #[must_use]
611 #[inline]
612 pub const fn as_micros(&self) -> u128 {
613 self.secs as u128 * MICROS_PER_SEC as u128
614 + (self.nanos.as_inner() / NANOS_PER_MICRO) as u128
615 }
616
617 /// Returns the total number of nanoseconds contained by this `Duration`.
618 ///
619 /// # Examples
620 ///
621 /// ```
622 /// use std::time::Duration;
623 ///
624 /// let duration = Duration::new(5, 730_023_852);
625 /// assert_eq!(duration.as_nanos(), 5_730_023_852);
626 /// ```
627 #[stable(feature = "duration_as_u128", since = "1.33.0")]
628 #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
629 #[must_use]
630 #[inline]
631 pub const fn as_nanos(&self) -> u128 {
632 self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos.as_inner() as u128
633 }
634
635 /// Computes the absolute difference between `self` and `other`.
636 ///
637 /// # Examples
638 ///
639 /// ```
640 /// use std::time::Duration;
641 ///
642 /// assert_eq!(Duration::new(100, 0).abs_diff(Duration::new(80, 0)), Duration::new(20, 0));
643 /// assert_eq!(Duration::new(100, 400_000_000).abs_diff(Duration::new(110, 0)), Duration::new(9, 600_000_000));
644 /// ```
645 #[stable(feature = "duration_abs_diff", since = "1.81.0")]
646 #[rustc_const_stable(feature = "duration_abs_diff", since = "1.81.0")]
647 #[must_use = "this returns the result of the operation, \
648 without modifying the original"]
649 #[inline]
650 pub const fn abs_diff(self, other: Duration) -> Duration {
651 if let Some(res) = self.checked_sub(other) { res } else { other.checked_sub(self).unwrap() }
652 }
653
654 /// Checked `Duration` addition. Computes `self + other`, returning [`None`]
655 /// if overflow occurred.
656 ///
657 /// # Examples
658 ///
659 /// ```
660 /// use std::time::Duration;
661 ///
662 /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1)));
663 /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(u64::MAX, 0)), None);
664 /// ```
665 #[stable(feature = "duration_checked_ops", since = "1.16.0")]
666 #[must_use = "this returns the result of the operation, \
667 without modifying the original"]
668 #[inline]
669 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
670 pub const fn checked_add(self, rhs: Duration) -> Option<Duration> {
671 if let Some(mut secs) = self.secs.checked_add(rhs.secs) {
672 let mut nanos = self.nanos.as_inner() + rhs.nanos.as_inner();
673 if nanos >= NANOS_PER_SEC {
674 nanos -= NANOS_PER_SEC;
675 if let Some(new_secs) = secs.checked_add(1) {
676 secs = new_secs;
677 } else {
678 return None;
679 }
680 }
681 debug_assert!(nanos < NANOS_PER_SEC);
682 Some(Duration::new(secs, nanos))
683 } else {
684 None
685 }
686 }
687
688 /// Saturating `Duration` addition. Computes `self + other`, returning [`Duration::MAX`]
689 /// if overflow occurred.
690 ///
691 /// # Examples
692 ///
693 /// ```
694 /// #![feature(duration_constants)]
695 /// use std::time::Duration;
696 ///
697 /// assert_eq!(Duration::new(0, 0).saturating_add(Duration::new(0, 1)), Duration::new(0, 1));
698 /// assert_eq!(Duration::new(1, 0).saturating_add(Duration::new(u64::MAX, 0)), Duration::MAX);
699 /// ```
700 #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
701 #[must_use = "this returns the result of the operation, \
702 without modifying the original"]
703 #[inline]
704 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
705 pub const fn saturating_add(self, rhs: Duration) -> Duration {
706 match self.checked_add(rhs) {
707 Some(res) => res,
708 None => Duration::MAX,
709 }
710 }
711
712 /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`]
713 /// if the result would be negative or if overflow occurred.
714 ///
715 /// # Examples
716 ///
717 /// ```
718 /// use std::time::Duration;
719 ///
720 /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1)));
721 /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None);
722 /// ```
723 #[stable(feature = "duration_checked_ops", since = "1.16.0")]
724 #[must_use = "this returns the result of the operation, \
725 without modifying the original"]
726 #[inline]
727 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
728 pub const fn checked_sub(self, rhs: Duration) -> Option<Duration> {
729 if let Some(mut secs) = self.secs.checked_sub(rhs.secs) {
730 let nanos = if self.nanos.as_inner() >= rhs.nanos.as_inner() {
731 self.nanos.as_inner() - rhs.nanos.as_inner()
732 } else if let Some(sub_secs) = secs.checked_sub(1) {
733 secs = sub_secs;
734 self.nanos.as_inner() + NANOS_PER_SEC - rhs.nanos.as_inner()
735 } else {
736 return None;
737 };
738 debug_assert!(nanos < NANOS_PER_SEC);
739 Some(Duration::new(secs, nanos))
740 } else {
741 None
742 }
743 }
744
745 /// Saturating `Duration` subtraction. Computes `self - other`, returning [`Duration::ZERO`]
746 /// if the result would be negative or if overflow occurred.
747 ///
748 /// # Examples
749 ///
750 /// ```
751 /// use std::time::Duration;
752 ///
753 /// assert_eq!(Duration::new(0, 1).saturating_sub(Duration::new(0, 0)), Duration::new(0, 1));
754 /// assert_eq!(Duration::new(0, 0).saturating_sub(Duration::new(0, 1)), Duration::ZERO);
755 /// ```
756 #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
757 #[must_use = "this returns the result of the operation, \
758 without modifying the original"]
759 #[inline]
760 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
761 pub const fn saturating_sub(self, rhs: Duration) -> Duration {
762 match self.checked_sub(rhs) {
763 Some(res) => res,
764 None => Duration::ZERO,
765 }
766 }
767
768 /// Checked `Duration` multiplication. Computes `self * other`, returning
769 /// [`None`] if overflow occurred.
770 ///
771 /// # Examples
772 ///
773 /// ```
774 /// use std::time::Duration;
775 ///
776 /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2)));
777 /// assert_eq!(Duration::new(u64::MAX - 1, 0).checked_mul(2), None);
778 /// ```
779 #[stable(feature = "duration_checked_ops", since = "1.16.0")]
780 #[must_use = "this returns the result of the operation, \
781 without modifying the original"]
782 #[inline]
783 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
784 pub const fn checked_mul(self, rhs: u32) -> Option<Duration> {
785 // Multiply nanoseconds as u64, because it cannot overflow that way.
786 let total_nanos = self.nanos.as_inner() as u64 * rhs as u64;
787 let extra_secs = total_nanos / (NANOS_PER_SEC as u64);
788 let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32;
789 // FIXME(const-hack): use `and_then` once that is possible.
790 if let Some(s) = self.secs.checked_mul(rhs as u64) {
791 if let Some(secs) = s.checked_add(extra_secs) {
792 debug_assert!(nanos < NANOS_PER_SEC);
793 return Some(Duration::new(secs, nanos));
794 }
795 }
796 None
797 }
798
799 /// Saturating `Duration` multiplication. Computes `self * other`, returning
800 /// [`Duration::MAX`] if overflow occurred.
801 ///
802 /// # Examples
803 ///
804 /// ```
805 /// #![feature(duration_constants)]
806 /// use std::time::Duration;
807 ///
808 /// assert_eq!(Duration::new(0, 500_000_001).saturating_mul(2), Duration::new(1, 2));
809 /// assert_eq!(Duration::new(u64::MAX - 1, 0).saturating_mul(2), Duration::MAX);
810 /// ```
811 #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
812 #[must_use = "this returns the result of the operation, \
813 without modifying the original"]
814 #[inline]
815 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
816 pub const fn saturating_mul(self, rhs: u32) -> Duration {
817 match self.checked_mul(rhs) {
818 Some(res) => res,
819 None => Duration::MAX,
820 }
821 }
822
823 /// Checked `Duration` division. Computes `self / other`, returning [`None`]
824 /// if `other == 0`.
825 ///
826 /// # Examples
827 ///
828 /// ```
829 /// use std::time::Duration;
830 ///
831 /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0)));
832 /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000)));
833 /// assert_eq!(Duration::new(2, 0).checked_div(0), None);
834 /// ```
835 #[stable(feature = "duration_checked_ops", since = "1.16.0")]
836 #[must_use = "this returns the result of the operation, \
837 without modifying the original"]
838 #[inline]
839 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
840 pub const fn checked_div(self, rhs: u32) -> Option<Duration> {
841 if rhs != 0 {
842 let (secs, extra_secs) = (self.secs / (rhs as u64), self.secs % (rhs as u64));
843 let (mut nanos, extra_nanos) =
844 (self.nanos.as_inner() / rhs, self.nanos.as_inner() % rhs);
845 nanos +=
846 ((extra_secs * (NANOS_PER_SEC as u64) + extra_nanos as u64) / (rhs as u64)) as u32;
847 debug_assert!(nanos < NANOS_PER_SEC);
848 Some(Duration::new(secs, nanos))
849 } else {
850 None
851 }
852 }
853
854 /// Returns the number of seconds contained by this `Duration` as `f64`.
855 ///
856 /// The returned value includes the fractional (nanosecond) part of the duration.
857 ///
858 /// # Examples
859 /// ```
860 /// use std::time::Duration;
861 ///
862 /// let dur = Duration::new(2, 700_000_000);
863 /// assert_eq!(dur.as_secs_f64(), 2.7);
864 /// ```
865 #[stable(feature = "duration_float", since = "1.38.0")]
866 #[must_use]
867 #[inline]
868 #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
869 pub const fn as_secs_f64(&self) -> f64 {
870 (self.secs as f64) + (self.nanos.as_inner() as f64) / (NANOS_PER_SEC as f64)
871 }
872
873 /// Returns the number of seconds contained by this `Duration` as `f32`.
874 ///
875 /// The returned value includes the fractional (nanosecond) part of the duration.
876 ///
877 /// # Examples
878 /// ```
879 /// use std::time::Duration;
880 ///
881 /// let dur = Duration::new(2, 700_000_000);
882 /// assert_eq!(dur.as_secs_f32(), 2.7);
883 /// ```
884 #[stable(feature = "duration_float", since = "1.38.0")]
885 #[must_use]
886 #[inline]
887 #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
888 pub const fn as_secs_f32(&self) -> f32 {
889 (self.secs as f32) + (self.nanos.as_inner() as f32) / (NANOS_PER_SEC as f32)
890 }
891
892 /// Returns the number of milliseconds contained by this `Duration` as `f64`.
893 ///
894 /// The returned value includes the fractional (nanosecond) part of the duration.
895 ///
896 /// # Examples
897 /// ```
898 /// #![feature(duration_millis_float)]
899 /// use std::time::Duration;
900 ///
901 /// let dur = Duration::new(2, 345_678_000);
902 /// assert_eq!(dur.as_millis_f64(), 2_345.678);
903 /// ```
904 #[unstable(feature = "duration_millis_float", issue = "122451")]
905 #[must_use]
906 #[inline]
907 pub const fn as_millis_f64(&self) -> f64 {
908 (self.secs as f64) * (MILLIS_PER_SEC as f64)
909 + (self.nanos.as_inner() as f64) / (NANOS_PER_MILLI as f64)
910 }
911
912 /// Returns the number of milliseconds contained by this `Duration` as `f32`.
913 ///
914 /// The returned value includes the fractional (nanosecond) part of the duration.
915 ///
916 /// # Examples
917 /// ```
918 /// #![feature(duration_millis_float)]
919 /// use std::time::Duration;
920 ///
921 /// let dur = Duration::new(2, 345_678_000);
922 /// assert_eq!(dur.as_millis_f32(), 2_345.678);
923 /// ```
924 #[unstable(feature = "duration_millis_float", issue = "122451")]
925 #[must_use]
926 #[inline]
927 pub const fn as_millis_f32(&self) -> f32 {
928 (self.secs as f32) * (MILLIS_PER_SEC as f32)
929 + (self.nanos.as_inner() as f32) / (NANOS_PER_MILLI as f32)
930 }
931
932 /// Creates a new `Duration` from the specified number of seconds represented
933 /// as `f64`.
934 ///
935 /// # Panics
936 /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
937 ///
938 /// # Examples
939 /// ```
940 /// use std::time::Duration;
941 ///
942 /// let res = Duration::from_secs_f64(0.0);
943 /// assert_eq!(res, Duration::new(0, 0));
944 /// let res = Duration::from_secs_f64(1e-20);
945 /// assert_eq!(res, Duration::new(0, 0));
946 /// let res = Duration::from_secs_f64(4.2e-7);
947 /// assert_eq!(res, Duration::new(0, 420));
948 /// let res = Duration::from_secs_f64(2.7);
949 /// assert_eq!(res, Duration::new(2, 700_000_000));
950 /// let res = Duration::from_secs_f64(3e10);
951 /// assert_eq!(res, Duration::new(30_000_000_000, 0));
952 /// // subnormal float
953 /// let res = Duration::from_secs_f64(f64::from_bits(1));
954 /// assert_eq!(res, Duration::new(0, 0));
955 /// // conversion uses rounding
956 /// let res = Duration::from_secs_f64(0.999e-9);
957 /// assert_eq!(res, Duration::new(0, 1));
958 /// ```
959 #[stable(feature = "duration_float", since = "1.38.0")]
960 #[must_use]
961 #[inline]
962 pub fn from_secs_f64(secs: f64) -> Duration {
963 match Duration::try_from_secs_f64(secs) {
964 Ok(v) => v,
965 Err(e) => panic!("{e}"),
966 }
967 }
968
969 /// Creates a new `Duration` from the specified number of seconds represented
970 /// as `f32`.
971 ///
972 /// # Panics
973 /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
974 ///
975 /// # Examples
976 /// ```
977 /// use std::time::Duration;
978 ///
979 /// let res = Duration::from_secs_f32(0.0);
980 /// assert_eq!(res, Duration::new(0, 0));
981 /// let res = Duration::from_secs_f32(1e-20);
982 /// assert_eq!(res, Duration::new(0, 0));
983 /// let res = Duration::from_secs_f32(4.2e-7);
984 /// assert_eq!(res, Duration::new(0, 420));
985 /// let res = Duration::from_secs_f32(2.7);
986 /// assert_eq!(res, Duration::new(2, 700_000_048));
987 /// let res = Duration::from_secs_f32(3e10);
988 /// assert_eq!(res, Duration::new(30_000_001_024, 0));
989 /// // subnormal float
990 /// let res = Duration::from_secs_f32(f32::from_bits(1));
991 /// assert_eq!(res, Duration::new(0, 0));
992 /// // conversion uses rounding
993 /// let res = Duration::from_secs_f32(0.999e-9);
994 /// assert_eq!(res, Duration::new(0, 1));
995 /// ```
996 #[stable(feature = "duration_float", since = "1.38.0")]
997 #[must_use]
998 #[inline]
999 pub fn from_secs_f32(secs: f32) -> Duration {
1000 match Duration::try_from_secs_f32(secs) {
1001 Ok(v) => v,
1002 Err(e) => panic!("{e}"),
1003 }
1004 }
1005
1006 /// Multiplies `Duration` by `f64`.
1007 ///
1008 /// # Panics
1009 /// This method will panic if result is negative, overflows `Duration` or not finite.
1010 ///
1011 /// # Examples
1012 /// ```
1013 /// use std::time::Duration;
1014 ///
1015 /// let dur = Duration::new(2, 700_000_000);
1016 /// assert_eq!(dur.mul_f64(3.14), Duration::new(8, 478_000_000));
1017 /// assert_eq!(dur.mul_f64(3.14e5), Duration::new(847_800, 0));
1018 /// ```
1019 #[stable(feature = "duration_float", since = "1.38.0")]
1020 #[must_use = "this returns the result of the operation, \
1021 without modifying the original"]
1022 #[inline]
1023 pub fn mul_f64(self, rhs: f64) -> Duration {
1024 Duration::from_secs_f64(rhs * self.as_secs_f64())
1025 }
1026
1027 /// Multiplies `Duration` by `f32`.
1028 ///
1029 /// # Panics
1030 /// This method will panic if result is negative, overflows `Duration` or not finite.
1031 ///
1032 /// # Examples
1033 /// ```
1034 /// use std::time::Duration;
1035 ///
1036 /// let dur = Duration::new(2, 700_000_000);
1037 /// assert_eq!(dur.mul_f32(3.14), Duration::new(8, 478_000_641));
1038 /// assert_eq!(dur.mul_f32(3.14e5), Duration::new(847_800, 0));
1039 /// ```
1040 #[stable(feature = "duration_float", since = "1.38.0")]
1041 #[must_use = "this returns the result of the operation, \
1042 without modifying the original"]
1043 #[inline]
1044 pub fn mul_f32(self, rhs: f32) -> Duration {
1045 Duration::from_secs_f32(rhs * self.as_secs_f32())
1046 }
1047
1048 /// Divides `Duration` by `f64`.
1049 ///
1050 /// # Panics
1051 /// This method will panic if result is negative, overflows `Duration` or not finite.
1052 ///
1053 /// # Examples
1054 /// ```
1055 /// use std::time::Duration;
1056 ///
1057 /// let dur = Duration::new(2, 700_000_000);
1058 /// assert_eq!(dur.div_f64(3.14), Duration::new(0, 859_872_611));
1059 /// assert_eq!(dur.div_f64(3.14e5), Duration::new(0, 8_599));
1060 /// ```
1061 #[stable(feature = "duration_float", since = "1.38.0")]
1062 #[must_use = "this returns the result of the operation, \
1063 without modifying the original"]
1064 #[inline]
1065 pub fn div_f64(self, rhs: f64) -> Duration {
1066 Duration::from_secs_f64(self.as_secs_f64() / rhs)
1067 }
1068
1069 /// Divides `Duration` by `f32`.
1070 ///
1071 /// # Panics
1072 /// This method will panic if result is negative, overflows `Duration` or not finite.
1073 ///
1074 /// # Examples
1075 /// ```
1076 /// use std::time::Duration;
1077 ///
1078 /// let dur = Duration::new(2, 700_000_000);
1079 /// // note that due to rounding errors result is slightly
1080 /// // different from 0.859_872_611
1081 /// assert_eq!(dur.div_f32(3.14), Duration::new(0, 859_872_580));
1082 /// assert_eq!(dur.div_f32(3.14e5), Duration::new(0, 8_599));
1083 /// ```
1084 #[stable(feature = "duration_float", since = "1.38.0")]
1085 #[must_use = "this returns the result of the operation, \
1086 without modifying the original"]
1087 #[inline]
1088 pub fn div_f32(self, rhs: f32) -> Duration {
1089 Duration::from_secs_f32(self.as_secs_f32() / rhs)
1090 }
1091
1092 /// Divides `Duration` by `Duration` and returns `f64`.
1093 ///
1094 /// # Examples
1095 /// ```
1096 /// use std::time::Duration;
1097 ///
1098 /// let dur1 = Duration::new(2, 700_000_000);
1099 /// let dur2 = Duration::new(5, 400_000_000);
1100 /// assert_eq!(dur1.div_duration_f64(dur2), 0.5);
1101 /// ```
1102 #[stable(feature = "div_duration", since = "1.80.0")]
1103 #[must_use = "this returns the result of the operation, \
1104 without modifying the original"]
1105 #[inline]
1106 #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
1107 pub const fn div_duration_f64(self, rhs: Duration) -> f64 {
1108 let self_nanos =
1109 (self.secs as f64) * (NANOS_PER_SEC as f64) + (self.nanos.as_inner() as f64);
1110 let rhs_nanos = (rhs.secs as f64) * (NANOS_PER_SEC as f64) + (rhs.nanos.as_inner() as f64);
1111 self_nanos / rhs_nanos
1112 }
1113
1114 /// Divides `Duration` by `Duration` and returns `f32`.
1115 ///
1116 /// # Examples
1117 /// ```
1118 /// use std::time::Duration;
1119 ///
1120 /// let dur1 = Duration::new(2, 700_000_000);
1121 /// let dur2 = Duration::new(5, 400_000_000);
1122 /// assert_eq!(dur1.div_duration_f32(dur2), 0.5);
1123 /// ```
1124 #[stable(feature = "div_duration", since = "1.80.0")]
1125 #[must_use = "this returns the result of the operation, \
1126 without modifying the original"]
1127 #[inline]
1128 #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
1129 pub const fn div_duration_f32(self, rhs: Duration) -> f32 {
1130 let self_nanos =
1131 (self.secs as f32) * (NANOS_PER_SEC as f32) + (self.nanos.as_inner() as f32);
1132 let rhs_nanos = (rhs.secs as f32) * (NANOS_PER_SEC as f32) + (rhs.nanos.as_inner() as f32);
1133 self_nanos / rhs_nanos
1134 }
1135}
1136
1137#[stable(feature = "duration", since = "1.3.0")]
1138#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1139impl const Add for Duration {
1140 type Output = Duration;
1141
1142 #[inline]
1143 fn add(self, rhs: Duration) -> Duration {
1144 self.checked_add(rhs).expect("overflow when adding durations")
1145 }
1146}
1147
1148#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1149#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1150impl const AddAssign for Duration {
1151 #[inline]
1152 fn add_assign(&mut self, rhs: Duration) {
1153 *self = *self + rhs;
1154 }
1155}
1156
1157#[stable(feature = "duration", since = "1.3.0")]
1158#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1159impl const Sub for Duration {
1160 type Output = Duration;
1161
1162 #[inline]
1163 fn sub(self, rhs: Duration) -> Duration {
1164 self.checked_sub(rhs).expect("overflow when subtracting durations")
1165 }
1166}
1167
1168#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1169#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1170impl const SubAssign for Duration {
1171 #[inline]
1172 fn sub_assign(&mut self, rhs: Duration) {
1173 *self = *self - rhs;
1174 }
1175}
1176
1177#[stable(feature = "duration", since = "1.3.0")]
1178#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1179impl const Mul<u32> for Duration {
1180 type Output = Duration;
1181
1182 #[inline]
1183 fn mul(self, rhs: u32) -> Duration {
1184 self.checked_mul(rhs).expect("overflow when multiplying duration by scalar")
1185 }
1186}
1187
1188#[stable(feature = "symmetric_u32_duration_mul", since = "1.31.0")]
1189#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1190impl const Mul<Duration> for u32 {
1191 type Output = Duration;
1192
1193 #[inline]
1194 fn mul(self, rhs: Duration) -> Duration {
1195 rhs * self
1196 }
1197}
1198
1199#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1200#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1201impl const MulAssign<u32> for Duration {
1202 #[inline]
1203 fn mul_assign(&mut self, rhs: u32) {
1204 *self = *self * rhs;
1205 }
1206}
1207
1208#[stable(feature = "duration", since = "1.3.0")]
1209#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1210impl const Div<u32> for Duration {
1211 type Output = Duration;
1212
1213 #[inline]
1214 #[track_caller]
1215 fn div(self, rhs: u32) -> Duration {
1216 self.checked_div(rhs).expect("divide by zero error when dividing duration by scalar")
1217 }
1218}
1219
1220#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1221#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1222impl const DivAssign<u32> for Duration {
1223 #[inline]
1224 #[track_caller]
1225 fn div_assign(&mut self, rhs: u32) {
1226 *self = *self / rhs;
1227 }
1228}
1229
1230macro_rules! sum_durations {
1231 ($iter:expr) => {{
1232 let mut total_secs: u64 = 0;
1233 let mut total_nanos: u64 = 0;
1234
1235 for entry in $iter {
1236 total_secs =
1237 total_secs.checked_add(entry.secs).expect("overflow in iter::sum over durations");
1238 total_nanos = match total_nanos.checked_add(entry.nanos.as_inner() as u64) {
1239 Some(n) => n,
1240 None => {
1241 total_secs = total_secs
1242 .checked_add(total_nanos / NANOS_PER_SEC as u64)
1243 .expect("overflow in iter::sum over durations");
1244 (total_nanos % NANOS_PER_SEC as u64) + entry.nanos.as_inner() as u64
1245 }
1246 };
1247 }
1248 total_secs = total_secs
1249 .checked_add(total_nanos / NANOS_PER_SEC as u64)
1250 .expect("overflow in iter::sum over durations");
1251 total_nanos = total_nanos % NANOS_PER_SEC as u64;
1252 Duration::new(total_secs, total_nanos as u32)
1253 }};
1254}
1255
1256#[stable(feature = "duration_sum", since = "1.16.0")]
1257impl Sum for Duration {
1258 fn sum<I: Iterator<Item = Duration>>(iter: I) -> Duration {
1259 sum_durations!(iter)
1260 }
1261}
1262
1263#[stable(feature = "duration_sum", since = "1.16.0")]
1264impl<'a> Sum<&'a Duration> for Duration {
1265 fn sum<I: Iterator<Item = &'a Duration>>(iter: I) -> Duration {
1266 sum_durations!(iter)
1267 }
1268}
1269
1270#[stable(feature = "duration_debug_impl", since = "1.27.0")]
1271impl fmt::Debug for Duration {
1272 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1273 /// Formats a floating point number in decimal notation.
1274 ///
1275 /// The number is given as the `integer_part` and a fractional part.
1276 /// The value of the fractional part is `fractional_part / divisor`. So
1277 /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100
1278 /// represents the number `3.012`. Trailing zeros are omitted.
1279 ///
1280 /// `divisor` must not be above 100_000_000. It also should be a power
1281 /// of 10, everything else doesn't make sense. `fractional_part` has
1282 /// to be less than `10 * divisor`!
1283 ///
1284 /// A prefix and postfix may be added. The whole thing is padded
1285 /// to the formatter's `width`, if specified.
1286 fn fmt_decimal(
1287 f: &mut fmt::Formatter<'_>,
1288 integer_part: u64,
1289 mut fractional_part: u32,
1290 mut divisor: u32,
1291 prefix: &str,
1292 postfix: &str,
1293 ) -> fmt::Result {
1294 // Encode the fractional part into a temporary buffer. The buffer
1295 // only need to hold 9 elements, because `fractional_part` has to
1296 // be smaller than 10^9. The buffer is prefilled with '0' digits
1297 // to simplify the code below.
1298 let mut buf = [b'0'; 9];
1299
1300 // The next digit is written at this position
1301 let mut pos = 0;
1302
1303 // We keep writing digits into the buffer while there are non-zero
1304 // digits left and we haven't written enough digits yet.
1305 while fractional_part > 0 && pos < f.precision().unwrap_or(9) {
1306 // Write new digit into the buffer
1307 buf[pos] = b'0' + (fractional_part / divisor) as u8;
1308
1309 fractional_part %= divisor;
1310 divisor /= 10;
1311 pos += 1;
1312 }
1313
1314 // If a precision < 9 was specified, there may be some non-zero
1315 // digits left that weren't written into the buffer. In that case we
1316 // need to perform rounding to match the semantics of printing
1317 // normal floating point numbers. However, we only need to do work
1318 // when rounding up. This happens if the first digit of the
1319 // remaining ones is >= 5.
1320 let integer_part = if fractional_part > 0 && fractional_part >= divisor * 5 {
1321 // Round up the number contained in the buffer. We go through
1322 // the buffer backwards and keep track of the carry.
1323 let mut rev_pos = pos;
1324 let mut carry = true;
1325 while carry && rev_pos > 0 {
1326 rev_pos -= 1;
1327
1328 // If the digit in the buffer is not '9', we just need to
1329 // increment it and can stop then (since we don't have a
1330 // carry anymore). Otherwise, we set it to '0' (overflow)
1331 // and continue.
1332 if buf[rev_pos] < b'9' {
1333 buf[rev_pos] += 1;
1334 carry = false;
1335 } else {
1336 buf[rev_pos] = b'0';
1337 }
1338 }
1339
1340 // If we still have the carry bit set, that means that we set
1341 // the whole buffer to '0's and need to increment the integer
1342 // part.
1343 if carry {
1344 // If `integer_part == u64::MAX` and precision < 9, any
1345 // carry of the overflow during rounding of the
1346 // `fractional_part` into the `integer_part` will cause the
1347 // `integer_part` itself to overflow. Avoid this by using an
1348 // `Option<u64>`, with `None` representing `u64::MAX + 1`.
1349 integer_part.checked_add(1)
1350 } else {
1351 Some(integer_part)
1352 }
1353 } else {
1354 Some(integer_part)
1355 };
1356
1357 // Determine the end of the buffer: if precision is set, we just
1358 // use as many digits from the buffer (capped to 9). If it isn't
1359 // set, we only use all digits up to the last non-zero one.
1360 let end = f.precision().map(|p| crate::cmp::min(p, 9)).unwrap_or(pos);
1361
1362 // This closure emits the formatted duration without emitting any
1363 // padding (padding is calculated below).
1364 let emit_without_padding = |f: &mut fmt::Formatter<'_>| {
1365 if let Some(integer_part) = integer_part {
1366 write!(f, "{}{}", prefix, integer_part)?;
1367 } else {
1368 // u64::MAX + 1 == 18446744073709551616
1369 write!(f, "{}18446744073709551616", prefix)?;
1370 }
1371
1372 // Write the decimal point and the fractional part (if any).
1373 if end > 0 {
1374 // SAFETY: We are only writing ASCII digits into the buffer and
1375 // it was initialized with '0's, so it contains valid UTF8.
1376 let s = unsafe { crate::str::from_utf8_unchecked(&buf[..end]) };
1377
1378 // If the user request a precision > 9, we pad '0's at the end.
1379 let w = f.precision().unwrap_or(pos);
1380 write!(f, ".{:0<width$}", s, width = w)?;
1381 }
1382
1383 write!(f, "{}", postfix)
1384 };
1385
1386 match f.width() {
1387 None => {
1388 // No `width` specified. There's no need to calculate the
1389 // length of the output in this case, just emit it.
1390 emit_without_padding(f)
1391 }
1392 Some(requested_w) => {
1393 // A `width` was specified. Calculate the actual width of
1394 // the output in order to calculate the required padding.
1395 // It consists of 4 parts:
1396 // 1. The prefix: is either "+" or "", so we can just use len().
1397 // 2. The postfix: can be "µs" so we have to count UTF8 characters.
1398 let mut actual_w = prefix.len() + postfix.chars().count();
1399 // 3. The integer part:
1400 if let Some(integer_part) = integer_part {
1401 if let Some(log) = integer_part.checked_ilog10() {
1402 // integer_part is > 0, so has length log10(x)+1
1403 actual_w += 1 + log as usize;
1404 } else {
1405 // integer_part is 0, so has length 1.
1406 actual_w += 1;
1407 }
1408 } else {
1409 // integer_part is u64::MAX + 1, so has length 20
1410 actual_w += 20;
1411 }
1412 // 4. The fractional part (if any):
1413 if end > 0 {
1414 let frac_part_w = f.precision().unwrap_or(pos);
1415 actual_w += 1 + frac_part_w;
1416 }
1417
1418 if requested_w <= actual_w {
1419 // Output is already longer than `width`, so don't pad.
1420 emit_without_padding(f)
1421 } else {
1422 // We need to add padding. Use the `Formatter::padding` helper function.
1423 let default_align = fmt::Alignment::Left;
1424 let post_padding =
1425 f.padding((requested_w - actual_w) as u16, default_align)?;
1426 emit_without_padding(f)?;
1427 post_padding.write(f)
1428 }
1429 }
1430 }
1431 }
1432
1433 // Print leading '+' sign if requested
1434 let prefix = if f.sign_plus() { "+" } else { "" };
1435
1436 if self.secs > 0 {
1437 fmt_decimal(f, self.secs, self.nanos.as_inner(), NANOS_PER_SEC / 10, prefix, "s")
1438 } else if self.nanos.as_inner() >= NANOS_PER_MILLI {
1439 fmt_decimal(
1440 f,
1441 (self.nanos.as_inner() / NANOS_PER_MILLI) as u64,
1442 self.nanos.as_inner() % NANOS_PER_MILLI,
1443 NANOS_PER_MILLI / 10,
1444 prefix,
1445 "ms",
1446 )
1447 } else if self.nanos.as_inner() >= NANOS_PER_MICRO {
1448 fmt_decimal(
1449 f,
1450 (self.nanos.as_inner() / NANOS_PER_MICRO) as u64,
1451 self.nanos.as_inner() % NANOS_PER_MICRO,
1452 NANOS_PER_MICRO / 10,
1453 prefix,
1454 "µs",
1455 )
1456 } else {
1457 fmt_decimal(f, self.nanos.as_inner() as u64, 0, 1, prefix, "ns")
1458 }
1459 }
1460}
1461
1462/// An error which can be returned when converting a floating-point value of seconds
1463/// into a [`Duration`].
1464///
1465/// This error is used as the error type for [`Duration::try_from_secs_f32`] and
1466/// [`Duration::try_from_secs_f64`].
1467///
1468/// # Example
1469///
1470/// ```
1471/// use std::time::Duration;
1472///
1473/// if let Err(e) = Duration::try_from_secs_f32(-1.0) {
1474/// println!("Failed conversion to Duration: {e}");
1475/// }
1476/// ```
1477#[derive(Debug, Clone, PartialEq, Eq)]
1478#[stable(feature = "duration_checked_float", since = "1.66.0")]
1479pub struct TryFromFloatSecsError {
1480 kind: TryFromFloatSecsErrorKind,
1481}
1482
1483#[stable(feature = "duration_checked_float", since = "1.66.0")]
1484impl fmt::Display for TryFromFloatSecsError {
1485 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1486 match self.kind {
1487 TryFromFloatSecsErrorKind::Negative => {
1488 "cannot convert float seconds to Duration: value is negative"
1489 }
1490 TryFromFloatSecsErrorKind::OverflowOrNan => {
1491 "cannot convert float seconds to Duration: value is either too big or NaN"
1492 }
1493 }
1494 .fmt(f)
1495 }
1496}
1497
1498#[derive(Debug, Clone, PartialEq, Eq)]
1499enum TryFromFloatSecsErrorKind {
1500 // Value is negative.
1501 Negative,
1502 // Value is either too big to be represented as `Duration` or `NaN`.
1503 OverflowOrNan,
1504}
1505
1506macro_rules! try_from_secs {
1507 (
1508 secs = $secs: expr,
1509 mantissa_bits = $mant_bits: literal,
1510 exponent_bits = $exp_bits: literal,
1511 offset = $offset: literal,
1512 bits_ty = $bits_ty:ty,
1513 double_ty = $double_ty:ty,
1514 ) => {{
1515 const MIN_EXP: i16 = 1 - (1i16 << $exp_bits) / 2;
1516 const MANT_MASK: $bits_ty = (1 << $mant_bits) - 1;
1517 const EXP_MASK: $bits_ty = (1 << $exp_bits) - 1;
1518
1519 if $secs < 0.0 {
1520 return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::Negative });
1521 }
1522
1523 let bits = $secs.to_bits();
1524 let mant = (bits & MANT_MASK) | (MANT_MASK + 1);
1525 let exp = ((bits >> $mant_bits) & EXP_MASK) as i16 + MIN_EXP;
1526
1527 let (secs, nanos) = if exp < -31 {
1528 // the input represents less than 1ns and can not be rounded to it
1529 (0u64, 0u32)
1530 } else if exp < 0 {
1531 // the input is less than 1 second
1532 let t = <$double_ty>::from(mant) << ($offset + exp);
1533 let nanos_offset = $mant_bits + $offset;
1534 let nanos_tmp = u128::from(NANOS_PER_SEC) * u128::from(t);
1535 let nanos = (nanos_tmp >> nanos_offset) as u32;
1536
1537 let rem_mask = (1 << nanos_offset) - 1;
1538 let rem_msb_mask = 1 << (nanos_offset - 1);
1539 let rem = nanos_tmp & rem_mask;
1540 let is_tie = rem == rem_msb_mask;
1541 let is_even = (nanos & 1) == 0;
1542 let rem_msb = nanos_tmp & rem_msb_mask == 0;
1543 let add_ns = !(rem_msb || (is_even && is_tie));
1544
1545 // f32 does not have enough precision to trigger the second branch
1546 // since it can not represent numbers between 0.999_999_940_395 and 1.0.
1547 let nanos = nanos + add_ns as u32;
1548 if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { (0, nanos) } else { (1, 0) }
1549 } else if exp < $mant_bits {
1550 let secs = u64::from(mant >> ($mant_bits - exp));
1551 let t = <$double_ty>::from((mant << exp) & MANT_MASK);
1552 let nanos_offset = $mant_bits;
1553 let nanos_tmp = <$double_ty>::from(NANOS_PER_SEC) * t;
1554 let nanos = (nanos_tmp >> nanos_offset) as u32;
1555
1556 let rem_mask = (1 << nanos_offset) - 1;
1557 let rem_msb_mask = 1 << (nanos_offset - 1);
1558 let rem = nanos_tmp & rem_mask;
1559 let is_tie = rem == rem_msb_mask;
1560 let is_even = (nanos & 1) == 0;
1561 let rem_msb = nanos_tmp & rem_msb_mask == 0;
1562 let add_ns = !(rem_msb || (is_even && is_tie));
1563
1564 // f32 does not have enough precision to trigger the second branch.
1565 // For example, it can not represent numbers between 1.999_999_880...
1566 // and 2.0. Bigger values result in even smaller precision of the
1567 // fractional part.
1568 let nanos = nanos + add_ns as u32;
1569 if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) {
1570 (secs, nanos)
1571 } else {
1572 (secs + 1, 0)
1573 }
1574 } else if exp < 64 {
1575 // the input has no fractional part
1576 let secs = u64::from(mant) << (exp - $mant_bits);
1577 (secs, 0)
1578 } else {
1579 return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::OverflowOrNan });
1580 };
1581
1582 Ok(Duration::new(secs, nanos))
1583 }};
1584}
1585
1586impl Duration {
1587 /// The checked version of [`from_secs_f32`].
1588 ///
1589 /// [`from_secs_f32`]: Duration::from_secs_f32
1590 ///
1591 /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
1592 ///
1593 /// # Examples
1594 /// ```
1595 /// use std::time::Duration;
1596 ///
1597 /// let res = Duration::try_from_secs_f32(0.0);
1598 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1599 /// let res = Duration::try_from_secs_f32(1e-20);
1600 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1601 /// let res = Duration::try_from_secs_f32(4.2e-7);
1602 /// assert_eq!(res, Ok(Duration::new(0, 420)));
1603 /// let res = Duration::try_from_secs_f32(2.7);
1604 /// assert_eq!(res, Ok(Duration::new(2, 700_000_048)));
1605 /// let res = Duration::try_from_secs_f32(3e10);
1606 /// assert_eq!(res, Ok(Duration::new(30_000_001_024, 0)));
1607 /// // subnormal float:
1608 /// let res = Duration::try_from_secs_f32(f32::from_bits(1));
1609 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1610 ///
1611 /// let res = Duration::try_from_secs_f32(-5.0);
1612 /// assert!(res.is_err());
1613 /// let res = Duration::try_from_secs_f32(f32::NAN);
1614 /// assert!(res.is_err());
1615 /// let res = Duration::try_from_secs_f32(2e19);
1616 /// assert!(res.is_err());
1617 ///
1618 /// // the conversion uses rounding with tie resolution to even
1619 /// let res = Duration::try_from_secs_f32(0.999e-9);
1620 /// assert_eq!(res, Ok(Duration::new(0, 1)));
1621 ///
1622 /// // this float represents exactly 976562.5e-9
1623 /// let val = f32::from_bits(0x3A80_0000);
1624 /// let res = Duration::try_from_secs_f32(val);
1625 /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
1626 ///
1627 /// // this float represents exactly 2929687.5e-9
1628 /// let val = f32::from_bits(0x3B40_0000);
1629 /// let res = Duration::try_from_secs_f32(val);
1630 /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
1631 ///
1632 /// // this float represents exactly 1.000_976_562_5
1633 /// let val = f32::from_bits(0x3F802000);
1634 /// let res = Duration::try_from_secs_f32(val);
1635 /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
1636 ///
1637 /// // this float represents exactly 1.002_929_687_5
1638 /// let val = f32::from_bits(0x3F806000);
1639 /// let res = Duration::try_from_secs_f32(val);
1640 /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
1641 /// ```
1642 #[stable(feature = "duration_checked_float", since = "1.66.0")]
1643 #[inline]
1644 pub fn try_from_secs_f32(secs: f32) -> Result<Duration, TryFromFloatSecsError> {
1645 try_from_secs!(
1646 secs = secs,
1647 mantissa_bits = 23,
1648 exponent_bits = 8,
1649 offset = 41,
1650 bits_ty = u32,
1651 double_ty = u64,
1652 )
1653 }
1654
1655 /// The checked version of [`from_secs_f64`].
1656 ///
1657 /// [`from_secs_f64`]: Duration::from_secs_f64
1658 ///
1659 /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
1660 ///
1661 /// # Examples
1662 /// ```
1663 /// use std::time::Duration;
1664 ///
1665 /// let res = Duration::try_from_secs_f64(0.0);
1666 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1667 /// let res = Duration::try_from_secs_f64(1e-20);
1668 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1669 /// let res = Duration::try_from_secs_f64(4.2e-7);
1670 /// assert_eq!(res, Ok(Duration::new(0, 420)));
1671 /// let res = Duration::try_from_secs_f64(2.7);
1672 /// assert_eq!(res, Ok(Duration::new(2, 700_000_000)));
1673 /// let res = Duration::try_from_secs_f64(3e10);
1674 /// assert_eq!(res, Ok(Duration::new(30_000_000_000, 0)));
1675 /// // subnormal float
1676 /// let res = Duration::try_from_secs_f64(f64::from_bits(1));
1677 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1678 ///
1679 /// let res = Duration::try_from_secs_f64(-5.0);
1680 /// assert!(res.is_err());
1681 /// let res = Duration::try_from_secs_f64(f64::NAN);
1682 /// assert!(res.is_err());
1683 /// let res = Duration::try_from_secs_f64(2e19);
1684 /// assert!(res.is_err());
1685 ///
1686 /// // the conversion uses rounding with tie resolution to even
1687 /// let res = Duration::try_from_secs_f64(0.999e-9);
1688 /// assert_eq!(res, Ok(Duration::new(0, 1)));
1689 /// let res = Duration::try_from_secs_f64(0.999_999_999_499);
1690 /// assert_eq!(res, Ok(Duration::new(0, 999_999_999)));
1691 /// let res = Duration::try_from_secs_f64(0.999_999_999_501);
1692 /// assert_eq!(res, Ok(Duration::new(1, 0)));
1693 /// let res = Duration::try_from_secs_f64(42.999_999_999_499);
1694 /// assert_eq!(res, Ok(Duration::new(42, 999_999_999)));
1695 /// let res = Duration::try_from_secs_f64(42.999_999_999_501);
1696 /// assert_eq!(res, Ok(Duration::new(43, 0)));
1697 ///
1698 /// // this float represents exactly 976562.5e-9
1699 /// let val = f64::from_bits(0x3F50_0000_0000_0000);
1700 /// let res = Duration::try_from_secs_f64(val);
1701 /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
1702 ///
1703 /// // this float represents exactly 2929687.5e-9
1704 /// let val = f64::from_bits(0x3F68_0000_0000_0000);
1705 /// let res = Duration::try_from_secs_f64(val);
1706 /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
1707 ///
1708 /// // this float represents exactly 1.000_976_562_5
1709 /// let val = f64::from_bits(0x3FF0_0400_0000_0000);
1710 /// let res = Duration::try_from_secs_f64(val);
1711 /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
1712 ///
1713 /// // this float represents exactly 1.002_929_687_5
1714 /// let val = f64::from_bits(0x3_FF00_C000_0000_000);
1715 /// let res = Duration::try_from_secs_f64(val);
1716 /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
1717 /// ```
1718 #[stable(feature = "duration_checked_float", since = "1.66.0")]
1719 #[inline]
1720 pub fn try_from_secs_f64(secs: f64) -> Result<Duration, TryFromFloatSecsError> {
1721 try_from_secs!(
1722 secs = secs,
1723 mantissa_bits = 52,
1724 exponent_bits = 11,
1725 offset = 44,
1726 bits_ty = u64,
1727 double_ty = u128,
1728 )
1729 }
1730}