Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

core/
time.rs

1#![stable(feature = "duration_core", since = "1.25.0")]
2
3//! Temporal quantification.
4//!
5//! # Examples:
6//!
7//! There are multiple ways to create a new [`Duration`]:
8//!
9//! ```
10//! # use std::time::Duration;
11//! let five_seconds = Duration::from_secs(5);
12//! assert_eq!(five_seconds, Duration::from_millis(5_000));
13//! assert_eq!(five_seconds, Duration::from_micros(5_000_000));
14//! assert_eq!(five_seconds, Duration::from_nanos(5_000_000_000));
15//!
16//! let ten_seconds = Duration::from_secs(10);
17//! let seven_nanos = Duration::from_nanos(7);
18//! let total = ten_seconds + seven_nanos;
19//! assert_eq!(total, Duration::new(10, 7));
20//! ```
21
22use crate::fmt;
23use crate::iter::Sum;
24use crate::num::niche_types::Nanoseconds;
25use crate::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
26
27const NANOS_PER_SEC: u32 = 1_000_000_000;
28const NANOS_PER_MILLI: u32 = 1_000_000;
29const NANOS_PER_MICRO: u32 = 1_000;
30const MILLIS_PER_SEC: u64 = 1_000;
31const MICROS_PER_SEC: u64 = 1_000_000;
32#[unstable(feature = "duration_units", issue = "120301")]
33const SECS_PER_MINUTE: u64 = 60;
34#[unstable(feature = "duration_units", issue = "120301")]
35const MINS_PER_HOUR: u64 = 60;
36#[unstable(feature = "duration_units", issue = "120301")]
37const HOURS_PER_DAY: u64 = 24;
38#[unstable(feature = "duration_units", issue = "120301")]
39const DAYS_PER_WEEK: u64 = 7;
40
41/// A `Duration` type to represent a span of time, typically used for system
42/// timeouts.
43///
44/// Each `Duration` is composed of a whole number of seconds and a fractional part
45/// represented in nanoseconds. If the underlying system does not support
46/// nanosecond-level precision, APIs binding a system timeout will typically round up
47/// the number of nanoseconds.
48///
49/// [`Duration`]s implement many common traits, including [`Add`], [`Sub`], and other
50/// [`ops`] traits. It implements [`Default`] by returning a zero-length `Duration`.
51///
52/// [`ops`]: crate::ops
53///
54/// # Examples
55///
56/// ```
57/// use std::time::Duration;
58///
59/// let five_seconds = Duration::new(5, 0);
60/// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5);
61///
62/// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5);
63/// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5);
64///
65/// let ten_millis = Duration::from_millis(10);
66/// ```
67///
68/// # Formatting `Duration` values
69///
70/// `Duration` intentionally does not have a `Display` impl, as there are a
71/// variety of ways to format spans of time for human readability. `Duration`
72/// provides a `Debug` impl that shows the full precision of the value.
73///
74/// The `Debug` output uses the non-ASCII "µs" suffix for microseconds. If your
75/// program output may appear in contexts that cannot rely on full Unicode
76/// compatibility, you may wish to format `Duration` objects yourself or use a
77/// crate to do so.
78#[stable(feature = "duration", since = "1.3.0")]
79#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
80#[rustc_diagnostic_item = "Duration"]
81pub struct Duration {
82    secs: u64,
83    nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC
84}
85
86impl Duration {
87    /// The duration of one second.
88    ///
89    /// # Examples
90    ///
91    /// ```
92    /// #![feature(duration_constants)]
93    /// use std::time::Duration;
94    ///
95    /// assert_eq!(Duration::SECOND, Duration::from_secs(1));
96    /// ```
97    #[unstable(feature = "duration_constants", issue = "57391")]
98    pub const SECOND: Duration = Duration::from_secs(1);
99
100    /// The duration of one millisecond.
101    ///
102    /// # Examples
103    ///
104    /// ```
105    /// #![feature(duration_constants)]
106    /// use std::time::Duration;
107    ///
108    /// assert_eq!(Duration::MILLISECOND, Duration::from_millis(1));
109    /// ```
110    #[unstable(feature = "duration_constants", issue = "57391")]
111    pub const MILLISECOND: Duration = Duration::from_millis(1);
112
113    /// The duration of one microsecond.
114    ///
115    /// # Examples
116    ///
117    /// ```
118    /// #![feature(duration_constants)]
119    /// use std::time::Duration;
120    ///
121    /// assert_eq!(Duration::MICROSECOND, Duration::from_micros(1));
122    /// ```
123    #[unstable(feature = "duration_constants", issue = "57391")]
124    pub const MICROSECOND: Duration = Duration::from_micros(1);
125
126    /// The duration of one nanosecond.
127    ///
128    /// # Examples
129    ///
130    /// ```
131    /// #![feature(duration_constants)]
132    /// use std::time::Duration;
133    ///
134    /// assert_eq!(Duration::NANOSECOND, Duration::from_nanos(1));
135    /// ```
136    #[unstable(feature = "duration_constants", issue = "57391")]
137    pub const NANOSECOND: Duration = Duration::from_nanos(1);
138
139    /// A duration of zero time.
140    ///
141    /// # Examples
142    ///
143    /// ```
144    /// use std::time::Duration;
145    ///
146    /// let duration = Duration::ZERO;
147    /// assert!(duration.is_zero());
148    /// assert_eq!(duration.as_nanos(), 0);
149    /// ```
150    #[stable(feature = "duration_zero", since = "1.53.0")]
151    pub const ZERO: Duration = Duration::from_nanos(0);
152
153    /// The maximum duration.
154    ///
155    /// May vary by platform as necessary. Must be able to contain the difference between
156    /// two instances of [`Instant`] or two instances of [`SystemTime`].
157    /// This constraint gives it a value of about 584,942,417,355 years in practice,
158    /// which is currently used on all platforms.
159    ///
160    /// # Examples
161    ///
162    /// ```
163    /// use std::time::Duration;
164    ///
165    /// assert_eq!(Duration::MAX, Duration::new(u64::MAX, 1_000_000_000 - 1));
166    /// ```
167    /// [`Instant`]: ../../std/time/struct.Instant.html
168    /// [`SystemTime`]: ../../std/time/struct.SystemTime.html
169    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
170    pub const MAX: Duration = Duration::new(u64::MAX, NANOS_PER_SEC - 1);
171
172    /// Creates a new `Duration` from the specified number of whole seconds and
173    /// additional nanoseconds.
174    ///
175    /// If the number of nanoseconds is greater than 1 billion (the number of
176    /// nanoseconds in a second), then it will carry over into the seconds provided.
177    ///
178    /// # Panics
179    ///
180    /// This constructor will panic if the carry from the nanoseconds overflows
181    /// the seconds counter.
182    ///
183    /// # Examples
184    ///
185    /// ```
186    /// use std::time::Duration;
187    ///
188    /// let five_seconds = Duration::new(5, 0);
189    /// ```
190    #[stable(feature = "duration", since = "1.3.0")]
191    #[inline]
192    #[must_use]
193    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
194    pub const fn new(secs: u64, nanos: u32) -> Duration {
195        if nanos < NANOS_PER_SEC {
196            // SAFETY: nanos < NANOS_PER_SEC, therefore nanos is within the valid range
197            Duration { secs, nanos: unsafe { Nanoseconds::new_unchecked(nanos) } }
198        } else {
199            let secs = secs
200                .checked_add((nanos / NANOS_PER_SEC) as u64)
201                .expect("overflow in Duration::new");
202            let nanos = nanos % NANOS_PER_SEC;
203            // SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
204            Duration { secs, nanos: unsafe { Nanoseconds::new_unchecked(nanos) } }
205        }
206    }
207
208    /// Creates a new `Duration` from the specified number of whole seconds.
209    ///
210    /// # Examples
211    ///
212    /// ```
213    /// use std::time::Duration;
214    ///
215    /// let duration = Duration::from_secs(5);
216    ///
217    /// assert_eq!(5, duration.as_secs());
218    /// assert_eq!(0, duration.subsec_nanos());
219    /// ```
220    #[stable(feature = "duration", since = "1.3.0")]
221    #[must_use]
222    #[inline]
223    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
224    pub const fn from_secs(secs: u64) -> Duration {
225        Duration { secs, nanos: Nanoseconds::ZERO }
226    }
227
228    /// Creates a new `Duration` from the specified number of milliseconds.
229    ///
230    /// # Examples
231    ///
232    /// ```
233    /// use std::time::Duration;
234    ///
235    /// let duration = Duration::from_millis(2_569);
236    ///
237    /// assert_eq!(2, duration.as_secs());
238    /// assert_eq!(569_000_000, duration.subsec_nanos());
239    /// ```
240    #[stable(feature = "duration", since = "1.3.0")]
241    #[must_use]
242    #[inline]
243    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
244    pub const fn from_millis(millis: u64) -> Duration {
245        let secs = millis / MILLIS_PER_SEC;
246        let subsec_millis = (millis % MILLIS_PER_SEC) as u32;
247        // SAFETY: (x % 1_000) * 1_000_000 < 1_000_000_000
248        //         => x % 1_000 < 1_000
249        let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_millis * NANOS_PER_MILLI) };
250
251        Duration { secs, nanos: subsec_nanos }
252    }
253
254    /// Creates a new `Duration` from the specified number of microseconds.
255    ///
256    /// # Examples
257    ///
258    /// ```
259    /// use std::time::Duration;
260    ///
261    /// let duration = Duration::from_micros(1_000_002);
262    ///
263    /// assert_eq!(1, duration.as_secs());
264    /// assert_eq!(2_000, duration.subsec_nanos());
265    /// ```
266    #[stable(feature = "duration_from_micros", since = "1.27.0")]
267    #[must_use]
268    #[inline]
269    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
270    pub const fn from_micros(micros: u64) -> Duration {
271        let secs = micros / MICROS_PER_SEC;
272        let subsec_micros = (micros % MICROS_PER_SEC) as u32;
273        // SAFETY: (x % 1_000_000) * 1_000 < 1_000_000_000
274        //         => x % 1_000_000 < 1_000_000
275        let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_micros * NANOS_PER_MICRO) };
276
277        Duration { secs, nanos: subsec_nanos }
278    }
279
280    /// Creates a new `Duration` from the specified number of nanoseconds.
281    ///
282    /// Note: Using this on the return value of `as_nanos()` might cause unexpected behavior:
283    /// `as_nanos()` returns a u128, and can return values that do not fit in u64, e.g. 585 years.
284    /// Instead, consider using the pattern `Duration::new(d.as_secs(), d.subsec_nanos())`
285    /// if you cannot copy/clone the Duration directly.
286    ///
287    /// # Examples
288    ///
289    /// ```
290    /// use std::time::Duration;
291    ///
292    /// let duration = Duration::from_nanos(1_000_000_123);
293    ///
294    /// assert_eq!(1, duration.as_secs());
295    /// assert_eq!(123, duration.subsec_nanos());
296    /// ```
297    #[stable(feature = "duration_extras", since = "1.27.0")]
298    #[must_use]
299    #[inline]
300    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
301    pub const fn from_nanos(nanos: u64) -> Duration {
302        const NANOS_PER_SEC: u64 = self::NANOS_PER_SEC as u64;
303        let secs = nanos / NANOS_PER_SEC;
304        let subsec_nanos = (nanos % NANOS_PER_SEC) as u32;
305        // SAFETY: x % 1_000_000_000 < 1_000_000_000
306        let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_nanos) };
307
308        Duration { secs, nanos: subsec_nanos }
309    }
310
311    /// Creates a new `Duration` from the specified number of nanoseconds.
312    ///
313    /// # Panics
314    ///
315    /// Panics if the given number of nanoseconds is greater than [`Duration::MAX`].
316    ///
317    /// # Examples
318    ///
319    /// ```
320    /// use std::time::Duration;
321    ///
322    /// let nanos = 10_u128.pow(24) + 321;
323    /// let duration = Duration::from_nanos_u128(nanos);
324    ///
325    /// assert_eq!(10_u64.pow(15), duration.as_secs());
326    /// assert_eq!(321, duration.subsec_nanos());
327    /// ```
328    #[stable(feature = "duration_from_nanos_u128", since = "CURRENT_RUSTC_VERSION")]
329    #[rustc_const_stable(feature = "duration_from_nanos_u128", since = "CURRENT_RUSTC_VERSION")]
330    #[must_use]
331    #[inline]
332    #[track_caller]
333    #[rustc_allow_const_fn_unstable(const_trait_impl, const_convert)] // for `u64::try_from`
334    pub const fn from_nanos_u128(nanos: u128) -> Duration {
335        const NANOS_PER_SEC: u128 = self::NANOS_PER_SEC as u128;
336        let Ok(secs) = u64::try_from(nanos / NANOS_PER_SEC) else {
337            panic!("overflow in `Duration::from_nanos_u128`");
338        };
339        let subsec_nanos = (nanos % NANOS_PER_SEC) as u32;
340        // SAFETY: x % 1_000_000_000 < 1_000_000_000 also, subsec_nanos >= 0 since u128 >=0 and u32 >=0
341        let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_nanos) };
342
343        Duration { secs: secs as u64, nanos: subsec_nanos }
344    }
345
346    /// Creates a new `Duration` from the specified number of weeks.
347    ///
348    /// # Panics
349    ///
350    /// Panics if the given number of weeks overflows the `Duration` size.
351    ///
352    /// # Examples
353    ///
354    /// ```
355    /// #![feature(duration_constructors)]
356    /// use std::time::Duration;
357    ///
358    /// let duration = Duration::from_weeks(4);
359    ///
360    /// assert_eq!(4 * 7 * 24 * 60 * 60, duration.as_secs());
361    /// assert_eq!(0, duration.subsec_nanos());
362    /// ```
363    #[unstable(feature = "duration_constructors", issue = "120301")]
364    #[must_use]
365    #[inline]
366    pub const fn from_weeks(weeks: u64) -> Duration {
367        if weeks > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY * DAYS_PER_WEEK) {
368            panic!("overflow in Duration::from_weeks");
369        }
370
371        Duration::from_secs(weeks * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY * DAYS_PER_WEEK)
372    }
373
374    /// Creates a new `Duration` from the specified number of days.
375    ///
376    /// # Panics
377    ///
378    /// Panics if the given number of days overflows the `Duration` size.
379    ///
380    /// # Examples
381    ///
382    /// ```
383    /// #![feature(duration_constructors)]
384    /// use std::time::Duration;
385    ///
386    /// let duration = Duration::from_days(7);
387    ///
388    /// assert_eq!(7 * 24 * 60 * 60, duration.as_secs());
389    /// assert_eq!(0, duration.subsec_nanos());
390    /// ```
391    #[unstable(feature = "duration_constructors", issue = "120301")]
392    #[must_use]
393    #[inline]
394    pub const fn from_days(days: u64) -> Duration {
395        if days > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY) {
396            panic!("overflow in Duration::from_days");
397        }
398
399        Duration::from_secs(days * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY)
400    }
401
402    /// Creates a new `Duration` from the specified number of hours.
403    ///
404    /// # Panics
405    ///
406    /// Panics if the given number of hours overflows the `Duration` size.
407    ///
408    /// # Examples
409    ///
410    /// ```
411    /// use std::time::Duration;
412    ///
413    /// let duration = Duration::from_hours(6);
414    ///
415    /// assert_eq!(6 * 60 * 60, duration.as_secs());
416    /// assert_eq!(0, duration.subsec_nanos());
417    /// ```
418    #[stable(feature = "duration_constructors_lite", since = "1.91.0")]
419    #[rustc_const_stable(feature = "duration_constructors_lite", since = "1.91.0")]
420    #[must_use]
421    #[inline]
422    pub const fn from_hours(hours: u64) -> Duration {
423        if hours > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR) {
424            panic!("overflow in Duration::from_hours");
425        }
426
427        Duration::from_secs(hours * MINS_PER_HOUR * SECS_PER_MINUTE)
428    }
429
430    /// Creates a new `Duration` from the specified number of minutes.
431    ///
432    /// # Panics
433    ///
434    /// Panics if the given number of minutes overflows the `Duration` size.
435    ///
436    /// # Examples
437    ///
438    /// ```
439    /// use std::time::Duration;
440    ///
441    /// let duration = Duration::from_mins(10);
442    ///
443    /// assert_eq!(10 * 60, duration.as_secs());
444    /// assert_eq!(0, duration.subsec_nanos());
445    /// ```
446    #[stable(feature = "duration_constructors_lite", since = "1.91.0")]
447    #[rustc_const_stable(feature = "duration_constructors_lite", since = "1.91.0")]
448    #[must_use]
449    #[inline]
450    pub const fn from_mins(mins: u64) -> Duration {
451        if mins > u64::MAX / SECS_PER_MINUTE {
452            panic!("overflow in Duration::from_mins");
453        }
454
455        Duration::from_secs(mins * SECS_PER_MINUTE)
456    }
457
458    /// Returns true if this `Duration` spans no time.
459    ///
460    /// # Examples
461    ///
462    /// ```
463    /// use std::time::Duration;
464    ///
465    /// assert!(Duration::ZERO.is_zero());
466    /// assert!(Duration::new(0, 0).is_zero());
467    /// assert!(Duration::from_nanos(0).is_zero());
468    /// assert!(Duration::from_secs(0).is_zero());
469    ///
470    /// assert!(!Duration::new(1, 1).is_zero());
471    /// assert!(!Duration::from_nanos(1).is_zero());
472    /// assert!(!Duration::from_secs(1).is_zero());
473    /// ```
474    #[must_use]
475    #[stable(feature = "duration_zero", since = "1.53.0")]
476    #[rustc_const_stable(feature = "duration_zero", since = "1.53.0")]
477    #[inline]
478    pub const fn is_zero(&self) -> bool {
479        self.secs == 0 && self.nanos.as_inner() == 0
480    }
481
482    /// Returns the number of _whole_ seconds contained by this `Duration`.
483    ///
484    /// The returned value does not include the fractional (nanosecond) part of the
485    /// duration, which can be obtained using [`subsec_nanos`].
486    ///
487    /// # Examples
488    ///
489    /// ```
490    /// use std::time::Duration;
491    ///
492    /// let duration = Duration::new(5, 730_023_852);
493    /// assert_eq!(duration.as_secs(), 5);
494    /// ```
495    ///
496    /// To determine the total number of seconds represented by the `Duration`
497    /// including the fractional part, use [`as_secs_f64`] or [`as_secs_f32`]
498    ///
499    /// [`as_secs_f64`]: Duration::as_secs_f64
500    /// [`as_secs_f32`]: Duration::as_secs_f32
501    /// [`subsec_nanos`]: Duration::subsec_nanos
502    #[stable(feature = "duration", since = "1.3.0")]
503    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
504    #[must_use]
505    #[inline]
506    pub const fn as_secs(&self) -> u64 {
507        self.secs
508    }
509
510    /// Returns the fractional part of this `Duration`, in whole milliseconds.
511    ///
512    /// This method does **not** return the length of the duration when
513    /// represented by milliseconds. The returned number always represents a
514    /// fractional portion of a second (i.e., it is less than one thousand).
515    ///
516    /// # Examples
517    ///
518    /// ```
519    /// use std::time::Duration;
520    ///
521    /// let duration = Duration::from_millis(5_432);
522    /// assert_eq!(duration.as_secs(), 5);
523    /// assert_eq!(duration.subsec_millis(), 432);
524    /// ```
525    #[stable(feature = "duration_extras", since = "1.27.0")]
526    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
527    #[must_use]
528    #[inline]
529    pub const fn subsec_millis(&self) -> u32 {
530        self.nanos.as_inner() / NANOS_PER_MILLI
531    }
532
533    /// Returns the fractional part of this `Duration`, in whole microseconds.
534    ///
535    /// This method does **not** return the length of the duration when
536    /// represented by microseconds. The returned number always represents a
537    /// fractional portion of a second (i.e., it is less than one million).
538    ///
539    /// # Examples
540    ///
541    /// ```
542    /// use std::time::Duration;
543    ///
544    /// let duration = Duration::from_micros(1_234_567);
545    /// assert_eq!(duration.as_secs(), 1);
546    /// assert_eq!(duration.subsec_micros(), 234_567);
547    /// ```
548    #[stable(feature = "duration_extras", since = "1.27.0")]
549    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
550    #[must_use]
551    #[inline]
552    pub const fn subsec_micros(&self) -> u32 {
553        self.nanos.as_inner() / NANOS_PER_MICRO
554    }
555
556    /// Returns the fractional part of this `Duration`, in nanoseconds.
557    ///
558    /// This method does **not** return the length of the duration when
559    /// represented by nanoseconds. The returned number always represents a
560    /// fractional portion of a second (i.e., it is less than one billion).
561    ///
562    /// # Examples
563    ///
564    /// ```
565    /// use std::time::Duration;
566    ///
567    /// let duration = Duration::from_millis(5_010);
568    /// assert_eq!(duration.as_secs(), 5);
569    /// assert_eq!(duration.subsec_nanos(), 10_000_000);
570    /// ```
571    #[stable(feature = "duration", since = "1.3.0")]
572    #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
573    #[must_use]
574    #[inline]
575    pub const fn subsec_nanos(&self) -> u32 {
576        self.nanos.as_inner()
577    }
578
579    /// Returns the total number of whole milliseconds contained by this `Duration`.
580    ///
581    /// # Examples
582    ///
583    /// ```
584    /// use std::time::Duration;
585    ///
586    /// let duration = Duration::new(5, 730_023_852);
587    /// assert_eq!(duration.as_millis(), 5_730);
588    /// ```
589    #[stable(feature = "duration_as_u128", since = "1.33.0")]
590    #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
591    #[must_use]
592    #[inline]
593    pub const fn as_millis(&self) -> u128 {
594        self.secs as u128 * MILLIS_PER_SEC as u128
595            + (self.nanos.as_inner() / NANOS_PER_MILLI) as u128
596    }
597
598    /// Returns the total number of whole microseconds contained by this `Duration`.
599    ///
600    /// # Examples
601    ///
602    /// ```
603    /// use std::time::Duration;
604    ///
605    /// let duration = Duration::new(5, 730_023_852);
606    /// assert_eq!(duration.as_micros(), 5_730_023);
607    /// ```
608    #[stable(feature = "duration_as_u128", since = "1.33.0")]
609    #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
610    #[must_use]
611    #[inline]
612    pub const fn as_micros(&self) -> u128 {
613        self.secs as u128 * MICROS_PER_SEC as u128
614            + (self.nanos.as_inner() / NANOS_PER_MICRO) as u128
615    }
616
617    /// Returns the total number of nanoseconds contained by this `Duration`.
618    ///
619    /// # Examples
620    ///
621    /// ```
622    /// use std::time::Duration;
623    ///
624    /// let duration = Duration::new(5, 730_023_852);
625    /// assert_eq!(duration.as_nanos(), 5_730_023_852);
626    /// ```
627    #[stable(feature = "duration_as_u128", since = "1.33.0")]
628    #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
629    #[must_use]
630    #[inline]
631    pub const fn as_nanos(&self) -> u128 {
632        self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos.as_inner() as u128
633    }
634
635    /// Computes the absolute difference between `self` and `other`.
636    ///
637    /// # Examples
638    ///
639    /// ```
640    /// use std::time::Duration;
641    ///
642    /// assert_eq!(Duration::new(100, 0).abs_diff(Duration::new(80, 0)), Duration::new(20, 0));
643    /// assert_eq!(Duration::new(100, 400_000_000).abs_diff(Duration::new(110, 0)), Duration::new(9, 600_000_000));
644    /// ```
645    #[stable(feature = "duration_abs_diff", since = "1.81.0")]
646    #[rustc_const_stable(feature = "duration_abs_diff", since = "1.81.0")]
647    #[must_use = "this returns the result of the operation, \
648                  without modifying the original"]
649    #[inline]
650    pub const fn abs_diff(self, other: Duration) -> Duration {
651        if let Some(res) = self.checked_sub(other) { res } else { other.checked_sub(self).unwrap() }
652    }
653
654    /// Checked `Duration` addition. Computes `self + other`, returning [`None`]
655    /// if overflow occurred.
656    ///
657    /// # Examples
658    ///
659    /// ```
660    /// use std::time::Duration;
661    ///
662    /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1)));
663    /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(u64::MAX, 0)), None);
664    /// ```
665    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
666    #[must_use = "this returns the result of the operation, \
667                  without modifying the original"]
668    #[inline]
669    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
670    pub const fn checked_add(self, rhs: Duration) -> Option<Duration> {
671        if let Some(mut secs) = self.secs.checked_add(rhs.secs) {
672            let mut nanos = self.nanos.as_inner() + rhs.nanos.as_inner();
673            if nanos >= NANOS_PER_SEC {
674                nanos -= NANOS_PER_SEC;
675                if let Some(new_secs) = secs.checked_add(1) {
676                    secs = new_secs;
677                } else {
678                    return None;
679                }
680            }
681            debug_assert!(nanos < NANOS_PER_SEC);
682            Some(Duration::new(secs, nanos))
683        } else {
684            None
685        }
686    }
687
688    /// Saturating `Duration` addition. Computes `self + other`, returning [`Duration::MAX`]
689    /// if overflow occurred.
690    ///
691    /// # Examples
692    ///
693    /// ```
694    /// #![feature(duration_constants)]
695    /// use std::time::Duration;
696    ///
697    /// assert_eq!(Duration::new(0, 0).saturating_add(Duration::new(0, 1)), Duration::new(0, 1));
698    /// assert_eq!(Duration::new(1, 0).saturating_add(Duration::new(u64::MAX, 0)), Duration::MAX);
699    /// ```
700    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
701    #[must_use = "this returns the result of the operation, \
702                  without modifying the original"]
703    #[inline]
704    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
705    pub const fn saturating_add(self, rhs: Duration) -> Duration {
706        match self.checked_add(rhs) {
707            Some(res) => res,
708            None => Duration::MAX,
709        }
710    }
711
712    /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`]
713    /// if the result would be negative or if overflow occurred.
714    ///
715    /// # Examples
716    ///
717    /// ```
718    /// use std::time::Duration;
719    ///
720    /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1)));
721    /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None);
722    /// ```
723    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
724    #[must_use = "this returns the result of the operation, \
725                  without modifying the original"]
726    #[inline]
727    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
728    pub const fn checked_sub(self, rhs: Duration) -> Option<Duration> {
729        if let Some(mut secs) = self.secs.checked_sub(rhs.secs) {
730            let nanos = if self.nanos.as_inner() >= rhs.nanos.as_inner() {
731                self.nanos.as_inner() - rhs.nanos.as_inner()
732            } else if let Some(sub_secs) = secs.checked_sub(1) {
733                secs = sub_secs;
734                self.nanos.as_inner() + NANOS_PER_SEC - rhs.nanos.as_inner()
735            } else {
736                return None;
737            };
738            debug_assert!(nanos < NANOS_PER_SEC);
739            Some(Duration::new(secs, nanos))
740        } else {
741            None
742        }
743    }
744
745    /// Saturating `Duration` subtraction. Computes `self - other`, returning [`Duration::ZERO`]
746    /// if the result would be negative or if overflow occurred.
747    ///
748    /// # Examples
749    ///
750    /// ```
751    /// use std::time::Duration;
752    ///
753    /// assert_eq!(Duration::new(0, 1).saturating_sub(Duration::new(0, 0)), Duration::new(0, 1));
754    /// assert_eq!(Duration::new(0, 0).saturating_sub(Duration::new(0, 1)), Duration::ZERO);
755    /// ```
756    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
757    #[must_use = "this returns the result of the operation, \
758                  without modifying the original"]
759    #[inline]
760    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
761    pub const fn saturating_sub(self, rhs: Duration) -> Duration {
762        match self.checked_sub(rhs) {
763            Some(res) => res,
764            None => Duration::ZERO,
765        }
766    }
767
768    /// Checked `Duration` multiplication. Computes `self * other`, returning
769    /// [`None`] if overflow occurred.
770    ///
771    /// # Examples
772    ///
773    /// ```
774    /// use std::time::Duration;
775    ///
776    /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2)));
777    /// assert_eq!(Duration::new(u64::MAX - 1, 0).checked_mul(2), None);
778    /// ```
779    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
780    #[must_use = "this returns the result of the operation, \
781                  without modifying the original"]
782    #[inline]
783    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
784    pub const fn checked_mul(self, rhs: u32) -> Option<Duration> {
785        // Multiply nanoseconds as u64, because it cannot overflow that way.
786        let total_nanos = self.nanos.as_inner() as u64 * rhs as u64;
787        let extra_secs = total_nanos / (NANOS_PER_SEC as u64);
788        let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32;
789        // FIXME(const-hack): use `and_then` once that is possible.
790        if let Some(s) = self.secs.checked_mul(rhs as u64) {
791            if let Some(secs) = s.checked_add(extra_secs) {
792                debug_assert!(nanos < NANOS_PER_SEC);
793                return Some(Duration::new(secs, nanos));
794            }
795        }
796        None
797    }
798
799    /// Saturating `Duration` multiplication. Computes `self * other`, returning
800    /// [`Duration::MAX`] if overflow occurred.
801    ///
802    /// # Examples
803    ///
804    /// ```
805    /// #![feature(duration_constants)]
806    /// use std::time::Duration;
807    ///
808    /// assert_eq!(Duration::new(0, 500_000_001).saturating_mul(2), Duration::new(1, 2));
809    /// assert_eq!(Duration::new(u64::MAX - 1, 0).saturating_mul(2), Duration::MAX);
810    /// ```
811    #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
812    #[must_use = "this returns the result of the operation, \
813                  without modifying the original"]
814    #[inline]
815    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
816    pub const fn saturating_mul(self, rhs: u32) -> Duration {
817        match self.checked_mul(rhs) {
818            Some(res) => res,
819            None => Duration::MAX,
820        }
821    }
822
823    /// Checked `Duration` division. Computes `self / other`, returning [`None`]
824    /// if `other == 0`.
825    ///
826    /// # Examples
827    ///
828    /// ```
829    /// use std::time::Duration;
830    ///
831    /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0)));
832    /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000)));
833    /// assert_eq!(Duration::new(2, 0).checked_div(0), None);
834    /// ```
835    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
836    #[must_use = "this returns the result of the operation, \
837                  without modifying the original"]
838    #[inline]
839    #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
840    pub const fn checked_div(self, rhs: u32) -> Option<Duration> {
841        if rhs != 0 {
842            let (secs, extra_secs) = (self.secs / (rhs as u64), self.secs % (rhs as u64));
843            let (mut nanos, extra_nanos) =
844                (self.nanos.as_inner() / rhs, self.nanos.as_inner() % rhs);
845            nanos +=
846                ((extra_secs * (NANOS_PER_SEC as u64) + extra_nanos as u64) / (rhs as u64)) as u32;
847            debug_assert!(nanos < NANOS_PER_SEC);
848            Some(Duration::new(secs, nanos))
849        } else {
850            None
851        }
852    }
853
854    /// Returns the number of seconds contained by this `Duration` as `f64`.
855    ///
856    /// The returned value includes the fractional (nanosecond) part of the duration.
857    ///
858    /// # Examples
859    /// ```
860    /// use std::time::Duration;
861    ///
862    /// let dur = Duration::new(2, 700_000_000);
863    /// assert_eq!(dur.as_secs_f64(), 2.7);
864    /// ```
865    #[stable(feature = "duration_float", since = "1.38.0")]
866    #[must_use]
867    #[inline]
868    #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
869    pub const fn as_secs_f64(&self) -> f64 {
870        (self.secs as f64) + (self.nanos.as_inner() as f64) / (NANOS_PER_SEC as f64)
871    }
872
873    /// Returns the number of seconds contained by this `Duration` as `f32`.
874    ///
875    /// The returned value includes the fractional (nanosecond) part of the duration.
876    ///
877    /// # Examples
878    /// ```
879    /// use std::time::Duration;
880    ///
881    /// let dur = Duration::new(2, 700_000_000);
882    /// assert_eq!(dur.as_secs_f32(), 2.7);
883    /// ```
884    #[stable(feature = "duration_float", since = "1.38.0")]
885    #[must_use]
886    #[inline]
887    #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
888    pub const fn as_secs_f32(&self) -> f32 {
889        (self.secs as f32) + (self.nanos.as_inner() as f32) / (NANOS_PER_SEC as f32)
890    }
891
892    /// Returns the number of milliseconds contained by this `Duration` as `f64`.
893    ///
894    /// The returned value includes the fractional (nanosecond) part of the duration.
895    ///
896    /// # Examples
897    /// ```
898    /// #![feature(duration_millis_float)]
899    /// use std::time::Duration;
900    ///
901    /// let dur = Duration::new(2, 345_678_000);
902    /// assert_eq!(dur.as_millis_f64(), 2_345.678);
903    /// ```
904    #[unstable(feature = "duration_millis_float", issue = "122451")]
905    #[must_use]
906    #[inline]
907    pub const fn as_millis_f64(&self) -> f64 {
908        (self.secs as f64) * (MILLIS_PER_SEC as f64)
909            + (self.nanos.as_inner() as f64) / (NANOS_PER_MILLI as f64)
910    }
911
912    /// Returns the number of milliseconds contained by this `Duration` as `f32`.
913    ///
914    /// The returned value includes the fractional (nanosecond) part of the duration.
915    ///
916    /// # Examples
917    /// ```
918    /// #![feature(duration_millis_float)]
919    /// use std::time::Duration;
920    ///
921    /// let dur = Duration::new(2, 345_678_000);
922    /// assert_eq!(dur.as_millis_f32(), 2_345.678);
923    /// ```
924    #[unstable(feature = "duration_millis_float", issue = "122451")]
925    #[must_use]
926    #[inline]
927    pub const fn as_millis_f32(&self) -> f32 {
928        (self.secs as f32) * (MILLIS_PER_SEC as f32)
929            + (self.nanos.as_inner() as f32) / (NANOS_PER_MILLI as f32)
930    }
931
932    /// Creates a new `Duration` from the specified number of seconds represented
933    /// as `f64`.
934    ///
935    /// # Panics
936    /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
937    ///
938    /// # Examples
939    /// ```
940    /// use std::time::Duration;
941    ///
942    /// let res = Duration::from_secs_f64(0.0);
943    /// assert_eq!(res, Duration::new(0, 0));
944    /// let res = Duration::from_secs_f64(1e-20);
945    /// assert_eq!(res, Duration::new(0, 0));
946    /// let res = Duration::from_secs_f64(4.2e-7);
947    /// assert_eq!(res, Duration::new(0, 420));
948    /// let res = Duration::from_secs_f64(2.7);
949    /// assert_eq!(res, Duration::new(2, 700_000_000));
950    /// let res = Duration::from_secs_f64(3e10);
951    /// assert_eq!(res, Duration::new(30_000_000_000, 0));
952    /// // subnormal float
953    /// let res = Duration::from_secs_f64(f64::from_bits(1));
954    /// assert_eq!(res, Duration::new(0, 0));
955    /// // conversion uses rounding
956    /// let res = Duration::from_secs_f64(0.999e-9);
957    /// assert_eq!(res, Duration::new(0, 1));
958    /// ```
959    #[stable(feature = "duration_float", since = "1.38.0")]
960    #[must_use]
961    #[inline]
962    pub fn from_secs_f64(secs: f64) -> Duration {
963        match Duration::try_from_secs_f64(secs) {
964            Ok(v) => v,
965            Err(e) => panic!("{e}"),
966        }
967    }
968
969    /// Creates a new `Duration` from the specified number of seconds represented
970    /// as `f32`.
971    ///
972    /// # Panics
973    /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
974    ///
975    /// # Examples
976    /// ```
977    /// use std::time::Duration;
978    ///
979    /// let res = Duration::from_secs_f32(0.0);
980    /// assert_eq!(res, Duration::new(0, 0));
981    /// let res = Duration::from_secs_f32(1e-20);
982    /// assert_eq!(res, Duration::new(0, 0));
983    /// let res = Duration::from_secs_f32(4.2e-7);
984    /// assert_eq!(res, Duration::new(0, 420));
985    /// let res = Duration::from_secs_f32(2.7);
986    /// assert_eq!(res, Duration::new(2, 700_000_048));
987    /// let res = Duration::from_secs_f32(3e10);
988    /// assert_eq!(res, Duration::new(30_000_001_024, 0));
989    /// // subnormal float
990    /// let res = Duration::from_secs_f32(f32::from_bits(1));
991    /// assert_eq!(res, Duration::new(0, 0));
992    /// // conversion uses rounding
993    /// let res = Duration::from_secs_f32(0.999e-9);
994    /// assert_eq!(res, Duration::new(0, 1));
995    /// ```
996    #[stable(feature = "duration_float", since = "1.38.0")]
997    #[must_use]
998    #[inline]
999    pub fn from_secs_f32(secs: f32) -> Duration {
1000        match Duration::try_from_secs_f32(secs) {
1001            Ok(v) => v,
1002            Err(e) => panic!("{e}"),
1003        }
1004    }
1005
1006    /// Multiplies `Duration` by `f64`.
1007    ///
1008    /// # Panics
1009    /// This method will panic if result is negative, overflows `Duration` or not finite.
1010    ///
1011    /// # Examples
1012    /// ```
1013    /// use std::time::Duration;
1014    ///
1015    /// let dur = Duration::new(2, 700_000_000);
1016    /// assert_eq!(dur.mul_f64(3.14), Duration::new(8, 478_000_000));
1017    /// assert_eq!(dur.mul_f64(3.14e5), Duration::new(847_800, 0));
1018    /// ```
1019    #[stable(feature = "duration_float", since = "1.38.0")]
1020    #[must_use = "this returns the result of the operation, \
1021                  without modifying the original"]
1022    #[inline]
1023    pub fn mul_f64(self, rhs: f64) -> Duration {
1024        Duration::from_secs_f64(rhs * self.as_secs_f64())
1025    }
1026
1027    /// Multiplies `Duration` by `f32`.
1028    ///
1029    /// # Panics
1030    /// This method will panic if result is negative, overflows `Duration` or not finite.
1031    ///
1032    /// # Examples
1033    /// ```
1034    /// use std::time::Duration;
1035    ///
1036    /// let dur = Duration::new(2, 700_000_000);
1037    /// assert_eq!(dur.mul_f32(3.14), Duration::new(8, 478_000_641));
1038    /// assert_eq!(dur.mul_f32(3.14e5), Duration::new(847_800, 0));
1039    /// ```
1040    #[stable(feature = "duration_float", since = "1.38.0")]
1041    #[must_use = "this returns the result of the operation, \
1042                  without modifying the original"]
1043    #[inline]
1044    pub fn mul_f32(self, rhs: f32) -> Duration {
1045        Duration::from_secs_f32(rhs * self.as_secs_f32())
1046    }
1047
1048    /// Divides `Duration` by `f64`.
1049    ///
1050    /// # Panics
1051    /// This method will panic if result is negative, overflows `Duration` or not finite.
1052    ///
1053    /// # Examples
1054    /// ```
1055    /// use std::time::Duration;
1056    ///
1057    /// let dur = Duration::new(2, 700_000_000);
1058    /// assert_eq!(dur.div_f64(3.14), Duration::new(0, 859_872_611));
1059    /// assert_eq!(dur.div_f64(3.14e5), Duration::new(0, 8_599));
1060    /// ```
1061    #[stable(feature = "duration_float", since = "1.38.0")]
1062    #[must_use = "this returns the result of the operation, \
1063                  without modifying the original"]
1064    #[inline]
1065    pub fn div_f64(self, rhs: f64) -> Duration {
1066        Duration::from_secs_f64(self.as_secs_f64() / rhs)
1067    }
1068
1069    /// Divides `Duration` by `f32`.
1070    ///
1071    /// # Panics
1072    /// This method will panic if result is negative, overflows `Duration` or not finite.
1073    ///
1074    /// # Examples
1075    /// ```
1076    /// use std::time::Duration;
1077    ///
1078    /// let dur = Duration::new(2, 700_000_000);
1079    /// // note that due to rounding errors result is slightly
1080    /// // different from 0.859_872_611
1081    /// assert_eq!(dur.div_f32(3.14), Duration::new(0, 859_872_580));
1082    /// assert_eq!(dur.div_f32(3.14e5), Duration::new(0, 8_599));
1083    /// ```
1084    #[stable(feature = "duration_float", since = "1.38.0")]
1085    #[must_use = "this returns the result of the operation, \
1086                  without modifying the original"]
1087    #[inline]
1088    pub fn div_f32(self, rhs: f32) -> Duration {
1089        Duration::from_secs_f32(self.as_secs_f32() / rhs)
1090    }
1091
1092    /// Divides `Duration` by `Duration` and returns `f64`.
1093    ///
1094    /// # Examples
1095    /// ```
1096    /// use std::time::Duration;
1097    ///
1098    /// let dur1 = Duration::new(2, 700_000_000);
1099    /// let dur2 = Duration::new(5, 400_000_000);
1100    /// assert_eq!(dur1.div_duration_f64(dur2), 0.5);
1101    /// ```
1102    #[stable(feature = "div_duration", since = "1.80.0")]
1103    #[must_use = "this returns the result of the operation, \
1104                  without modifying the original"]
1105    #[inline]
1106    #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
1107    pub const fn div_duration_f64(self, rhs: Duration) -> f64 {
1108        let self_nanos =
1109            (self.secs as f64) * (NANOS_PER_SEC as f64) + (self.nanos.as_inner() as f64);
1110        let rhs_nanos = (rhs.secs as f64) * (NANOS_PER_SEC as f64) + (rhs.nanos.as_inner() as f64);
1111        self_nanos / rhs_nanos
1112    }
1113
1114    /// Divides `Duration` by `Duration` and returns `f32`.
1115    ///
1116    /// # Examples
1117    /// ```
1118    /// use std::time::Duration;
1119    ///
1120    /// let dur1 = Duration::new(2, 700_000_000);
1121    /// let dur2 = Duration::new(5, 400_000_000);
1122    /// assert_eq!(dur1.div_duration_f32(dur2), 0.5);
1123    /// ```
1124    #[stable(feature = "div_duration", since = "1.80.0")]
1125    #[must_use = "this returns the result of the operation, \
1126                  without modifying the original"]
1127    #[inline]
1128    #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
1129    pub const fn div_duration_f32(self, rhs: Duration) -> f32 {
1130        let self_nanos =
1131            (self.secs as f32) * (NANOS_PER_SEC as f32) + (self.nanos.as_inner() as f32);
1132        let rhs_nanos = (rhs.secs as f32) * (NANOS_PER_SEC as f32) + (rhs.nanos.as_inner() as f32);
1133        self_nanos / rhs_nanos
1134    }
1135}
1136
1137#[stable(feature = "duration", since = "1.3.0")]
1138#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1139impl const Add for Duration {
1140    type Output = Duration;
1141
1142    #[inline]
1143    fn add(self, rhs: Duration) -> Duration {
1144        self.checked_add(rhs).expect("overflow when adding durations")
1145    }
1146}
1147
1148#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1149#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1150impl const AddAssign for Duration {
1151    #[inline]
1152    fn add_assign(&mut self, rhs: Duration) {
1153        *self = *self + rhs;
1154    }
1155}
1156
1157#[stable(feature = "duration", since = "1.3.0")]
1158#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1159impl const Sub for Duration {
1160    type Output = Duration;
1161
1162    #[inline]
1163    fn sub(self, rhs: Duration) -> Duration {
1164        self.checked_sub(rhs).expect("overflow when subtracting durations")
1165    }
1166}
1167
1168#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1169#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1170impl const SubAssign for Duration {
1171    #[inline]
1172    fn sub_assign(&mut self, rhs: Duration) {
1173        *self = *self - rhs;
1174    }
1175}
1176
1177#[stable(feature = "duration", since = "1.3.0")]
1178#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1179impl const Mul<u32> for Duration {
1180    type Output = Duration;
1181
1182    #[inline]
1183    fn mul(self, rhs: u32) -> Duration {
1184        self.checked_mul(rhs).expect("overflow when multiplying duration by scalar")
1185    }
1186}
1187
1188#[stable(feature = "symmetric_u32_duration_mul", since = "1.31.0")]
1189#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1190impl const Mul<Duration> for u32 {
1191    type Output = Duration;
1192
1193    #[inline]
1194    fn mul(self, rhs: Duration) -> Duration {
1195        rhs * self
1196    }
1197}
1198
1199#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1200#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1201impl const MulAssign<u32> for Duration {
1202    #[inline]
1203    fn mul_assign(&mut self, rhs: u32) {
1204        *self = *self * rhs;
1205    }
1206}
1207
1208#[stable(feature = "duration", since = "1.3.0")]
1209#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1210impl const Div<u32> for Duration {
1211    type Output = Duration;
1212
1213    #[inline]
1214    #[track_caller]
1215    fn div(self, rhs: u32) -> Duration {
1216        self.checked_div(rhs).expect("divide by zero error when dividing duration by scalar")
1217    }
1218}
1219
1220#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1221#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1222impl const DivAssign<u32> for Duration {
1223    #[inline]
1224    #[track_caller]
1225    fn div_assign(&mut self, rhs: u32) {
1226        *self = *self / rhs;
1227    }
1228}
1229
1230macro_rules! sum_durations {
1231    ($iter:expr) => {{
1232        let mut total_secs: u64 = 0;
1233        let mut total_nanos: u64 = 0;
1234
1235        for entry in $iter {
1236            total_secs =
1237                total_secs.checked_add(entry.secs).expect("overflow in iter::sum over durations");
1238            total_nanos = match total_nanos.checked_add(entry.nanos.as_inner() as u64) {
1239                Some(n) => n,
1240                None => {
1241                    total_secs = total_secs
1242                        .checked_add(total_nanos / NANOS_PER_SEC as u64)
1243                        .expect("overflow in iter::sum over durations");
1244                    (total_nanos % NANOS_PER_SEC as u64) + entry.nanos.as_inner() as u64
1245                }
1246            };
1247        }
1248        total_secs = total_secs
1249            .checked_add(total_nanos / NANOS_PER_SEC as u64)
1250            .expect("overflow in iter::sum over durations");
1251        total_nanos = total_nanos % NANOS_PER_SEC as u64;
1252        Duration::new(total_secs, total_nanos as u32)
1253    }};
1254}
1255
1256#[stable(feature = "duration_sum", since = "1.16.0")]
1257impl Sum for Duration {
1258    fn sum<I: Iterator<Item = Duration>>(iter: I) -> Duration {
1259        sum_durations!(iter)
1260    }
1261}
1262
1263#[stable(feature = "duration_sum", since = "1.16.0")]
1264impl<'a> Sum<&'a Duration> for Duration {
1265    fn sum<I: Iterator<Item = &'a Duration>>(iter: I) -> Duration {
1266        sum_durations!(iter)
1267    }
1268}
1269
1270#[stable(feature = "duration_debug_impl", since = "1.27.0")]
1271impl fmt::Debug for Duration {
1272    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1273        /// Formats a floating point number in decimal notation.
1274        ///
1275        /// The number is given as the `integer_part` and a fractional part.
1276        /// The value of the fractional part is `fractional_part / divisor`. So
1277        /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100
1278        /// represents the number `3.012`. Trailing zeros are omitted.
1279        ///
1280        /// `divisor` must not be above 100_000_000. It also should be a power
1281        /// of 10, everything else doesn't make sense. `fractional_part` has
1282        /// to be less than `10 * divisor`!
1283        ///
1284        /// A prefix and postfix may be added. The whole thing is padded
1285        /// to the formatter's `width`, if specified.
1286        fn fmt_decimal(
1287            f: &mut fmt::Formatter<'_>,
1288            integer_part: u64,
1289            mut fractional_part: u32,
1290            mut divisor: u32,
1291            prefix: &str,
1292            postfix: &str,
1293        ) -> fmt::Result {
1294            // Encode the fractional part into a temporary buffer. The buffer
1295            // only need to hold 9 elements, because `fractional_part` has to
1296            // be smaller than 10^9. The buffer is prefilled with '0' digits
1297            // to simplify the code below.
1298            let mut buf = [b'0'; 9];
1299
1300            // The next digit is written at this position
1301            let mut pos = 0;
1302
1303            // We keep writing digits into the buffer while there are non-zero
1304            // digits left and we haven't written enough digits yet.
1305            while fractional_part > 0 && pos < f.precision().unwrap_or(9) {
1306                // Write new digit into the buffer
1307                buf[pos] = b'0' + (fractional_part / divisor) as u8;
1308
1309                fractional_part %= divisor;
1310                divisor /= 10;
1311                pos += 1;
1312            }
1313
1314            // If a precision < 9 was specified, there may be some non-zero
1315            // digits left that weren't written into the buffer. In that case we
1316            // need to perform rounding to match the semantics of printing
1317            // normal floating point numbers. However, we only need to do work
1318            // when rounding up. This happens if the first digit of the
1319            // remaining ones is >= 5.
1320            let integer_part = if fractional_part > 0 && fractional_part >= divisor * 5 {
1321                // Round up the number contained in the buffer. We go through
1322                // the buffer backwards and keep track of the carry.
1323                let mut rev_pos = pos;
1324                let mut carry = true;
1325                while carry && rev_pos > 0 {
1326                    rev_pos -= 1;
1327
1328                    // If the digit in the buffer is not '9', we just need to
1329                    // increment it and can stop then (since we don't have a
1330                    // carry anymore). Otherwise, we set it to '0' (overflow)
1331                    // and continue.
1332                    if buf[rev_pos] < b'9' {
1333                        buf[rev_pos] += 1;
1334                        carry = false;
1335                    } else {
1336                        buf[rev_pos] = b'0';
1337                    }
1338                }
1339
1340                // If we still have the carry bit set, that means that we set
1341                // the whole buffer to '0's and need to increment the integer
1342                // part.
1343                if carry {
1344                    // If `integer_part == u64::MAX` and precision < 9, any
1345                    // carry of the overflow during rounding of the
1346                    // `fractional_part` into the `integer_part` will cause the
1347                    // `integer_part` itself to overflow. Avoid this by using an
1348                    // `Option<u64>`, with `None` representing `u64::MAX + 1`.
1349                    integer_part.checked_add(1)
1350                } else {
1351                    Some(integer_part)
1352                }
1353            } else {
1354                Some(integer_part)
1355            };
1356
1357            // Determine the end of the buffer: if precision is set, we just
1358            // use as many digits from the buffer (capped to 9). If it isn't
1359            // set, we only use all digits up to the last non-zero one.
1360            let end = f.precision().map(|p| crate::cmp::min(p, 9)).unwrap_or(pos);
1361
1362            // This closure emits the formatted duration without emitting any
1363            // padding (padding is calculated below).
1364            let emit_without_padding = |f: &mut fmt::Formatter<'_>| {
1365                if let Some(integer_part) = integer_part {
1366                    write!(f, "{}{}", prefix, integer_part)?;
1367                } else {
1368                    // u64::MAX + 1 == 18446744073709551616
1369                    write!(f, "{}18446744073709551616", prefix)?;
1370                }
1371
1372                // Write the decimal point and the fractional part (if any).
1373                if end > 0 {
1374                    // SAFETY: We are only writing ASCII digits into the buffer and
1375                    // it was initialized with '0's, so it contains valid UTF8.
1376                    let s = unsafe { crate::str::from_utf8_unchecked(&buf[..end]) };
1377
1378                    // If the user request a precision > 9, we pad '0's at the end.
1379                    let w = f.precision().unwrap_or(pos);
1380                    write!(f, ".{:0<width$}", s, width = w)?;
1381                }
1382
1383                write!(f, "{}", postfix)
1384            };
1385
1386            match f.width() {
1387                None => {
1388                    // No `width` specified. There's no need to calculate the
1389                    // length of the output in this case, just emit it.
1390                    emit_without_padding(f)
1391                }
1392                Some(requested_w) => {
1393                    // A `width` was specified. Calculate the actual width of
1394                    // the output in order to calculate the required padding.
1395                    // It consists of 4 parts:
1396                    // 1. The prefix: is either "+" or "", so we can just use len().
1397                    // 2. The postfix: can be "µs" so we have to count UTF8 characters.
1398                    let mut actual_w = prefix.len() + postfix.chars().count();
1399                    // 3. The integer part:
1400                    if let Some(integer_part) = integer_part {
1401                        if let Some(log) = integer_part.checked_ilog10() {
1402                            // integer_part is > 0, so has length log10(x)+1
1403                            actual_w += 1 + log as usize;
1404                        } else {
1405                            // integer_part is 0, so has length 1.
1406                            actual_w += 1;
1407                        }
1408                    } else {
1409                        // integer_part is u64::MAX + 1, so has length 20
1410                        actual_w += 20;
1411                    }
1412                    // 4. The fractional part (if any):
1413                    if end > 0 {
1414                        let frac_part_w = f.precision().unwrap_or(pos);
1415                        actual_w += 1 + frac_part_w;
1416                    }
1417
1418                    if requested_w <= actual_w {
1419                        // Output is already longer than `width`, so don't pad.
1420                        emit_without_padding(f)
1421                    } else {
1422                        // We need to add padding. Use the `Formatter::padding` helper function.
1423                        let default_align = fmt::Alignment::Left;
1424                        let post_padding =
1425                            f.padding((requested_w - actual_w) as u16, default_align)?;
1426                        emit_without_padding(f)?;
1427                        post_padding.write(f)
1428                    }
1429                }
1430            }
1431        }
1432
1433        // Print leading '+' sign if requested
1434        let prefix = if f.sign_plus() { "+" } else { "" };
1435
1436        if self.secs > 0 {
1437            fmt_decimal(f, self.secs, self.nanos.as_inner(), NANOS_PER_SEC / 10, prefix, "s")
1438        } else if self.nanos.as_inner() >= NANOS_PER_MILLI {
1439            fmt_decimal(
1440                f,
1441                (self.nanos.as_inner() / NANOS_PER_MILLI) as u64,
1442                self.nanos.as_inner() % NANOS_PER_MILLI,
1443                NANOS_PER_MILLI / 10,
1444                prefix,
1445                "ms",
1446            )
1447        } else if self.nanos.as_inner() >= NANOS_PER_MICRO {
1448            fmt_decimal(
1449                f,
1450                (self.nanos.as_inner() / NANOS_PER_MICRO) as u64,
1451                self.nanos.as_inner() % NANOS_PER_MICRO,
1452                NANOS_PER_MICRO / 10,
1453                prefix,
1454                "µs",
1455            )
1456        } else {
1457            fmt_decimal(f, self.nanos.as_inner() as u64, 0, 1, prefix, "ns")
1458        }
1459    }
1460}
1461
1462/// An error which can be returned when converting a floating-point value of seconds
1463/// into a [`Duration`].
1464///
1465/// This error is used as the error type for [`Duration::try_from_secs_f32`] and
1466/// [`Duration::try_from_secs_f64`].
1467///
1468/// # Example
1469///
1470/// ```
1471/// use std::time::Duration;
1472///
1473/// if let Err(e) = Duration::try_from_secs_f32(-1.0) {
1474///     println!("Failed conversion to Duration: {e}");
1475/// }
1476/// ```
1477#[derive(Debug, Clone, PartialEq, Eq)]
1478#[stable(feature = "duration_checked_float", since = "1.66.0")]
1479pub struct TryFromFloatSecsError {
1480    kind: TryFromFloatSecsErrorKind,
1481}
1482
1483#[stable(feature = "duration_checked_float", since = "1.66.0")]
1484impl fmt::Display for TryFromFloatSecsError {
1485    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1486        match self.kind {
1487            TryFromFloatSecsErrorKind::Negative => {
1488                "cannot convert float seconds to Duration: value is negative"
1489            }
1490            TryFromFloatSecsErrorKind::OverflowOrNan => {
1491                "cannot convert float seconds to Duration: value is either too big or NaN"
1492            }
1493        }
1494        .fmt(f)
1495    }
1496}
1497
1498#[derive(Debug, Clone, PartialEq, Eq)]
1499enum TryFromFloatSecsErrorKind {
1500    // Value is negative.
1501    Negative,
1502    // Value is either too big to be represented as `Duration` or `NaN`.
1503    OverflowOrNan,
1504}
1505
1506macro_rules! try_from_secs {
1507    (
1508        secs = $secs: expr,
1509        mantissa_bits = $mant_bits: literal,
1510        exponent_bits = $exp_bits: literal,
1511        offset = $offset: literal,
1512        bits_ty = $bits_ty:ty,
1513        double_ty = $double_ty:ty,
1514    ) => {{
1515        const MIN_EXP: i16 = 1 - (1i16 << $exp_bits) / 2;
1516        const MANT_MASK: $bits_ty = (1 << $mant_bits) - 1;
1517        const EXP_MASK: $bits_ty = (1 << $exp_bits) - 1;
1518
1519        if $secs < 0.0 {
1520            return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::Negative });
1521        }
1522
1523        let bits = $secs.to_bits();
1524        let mant = (bits & MANT_MASK) | (MANT_MASK + 1);
1525        let exp = ((bits >> $mant_bits) & EXP_MASK) as i16 + MIN_EXP;
1526
1527        let (secs, nanos) = if exp < -31 {
1528            // the input represents less than 1ns and can not be rounded to it
1529            (0u64, 0u32)
1530        } else if exp < 0 {
1531            // the input is less than 1 second
1532            let t = <$double_ty>::from(mant) << ($offset + exp);
1533            let nanos_offset = $mant_bits + $offset;
1534            let nanos_tmp = u128::from(NANOS_PER_SEC) * u128::from(t);
1535            let nanos = (nanos_tmp >> nanos_offset) as u32;
1536
1537            let rem_mask = (1 << nanos_offset) - 1;
1538            let rem_msb_mask = 1 << (nanos_offset - 1);
1539            let rem = nanos_tmp & rem_mask;
1540            let is_tie = rem == rem_msb_mask;
1541            let is_even = (nanos & 1) == 0;
1542            let rem_msb = nanos_tmp & rem_msb_mask == 0;
1543            let add_ns = !(rem_msb || (is_even && is_tie));
1544
1545            // f32 does not have enough precision to trigger the second branch
1546            // since it can not represent numbers between 0.999_999_940_395 and 1.0.
1547            let nanos = nanos + add_ns as u32;
1548            if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { (0, nanos) } else { (1, 0) }
1549        } else if exp < $mant_bits {
1550            let secs = u64::from(mant >> ($mant_bits - exp));
1551            let t = <$double_ty>::from((mant << exp) & MANT_MASK);
1552            let nanos_offset = $mant_bits;
1553            let nanos_tmp = <$double_ty>::from(NANOS_PER_SEC) * t;
1554            let nanos = (nanos_tmp >> nanos_offset) as u32;
1555
1556            let rem_mask = (1 << nanos_offset) - 1;
1557            let rem_msb_mask = 1 << (nanos_offset - 1);
1558            let rem = nanos_tmp & rem_mask;
1559            let is_tie = rem == rem_msb_mask;
1560            let is_even = (nanos & 1) == 0;
1561            let rem_msb = nanos_tmp & rem_msb_mask == 0;
1562            let add_ns = !(rem_msb || (is_even && is_tie));
1563
1564            // f32 does not have enough precision to trigger the second branch.
1565            // For example, it can not represent numbers between 1.999_999_880...
1566            // and 2.0. Bigger values result in even smaller precision of the
1567            // fractional part.
1568            let nanos = nanos + add_ns as u32;
1569            if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) {
1570                (secs, nanos)
1571            } else {
1572                (secs + 1, 0)
1573            }
1574        } else if exp < 64 {
1575            // the input has no fractional part
1576            let secs = u64::from(mant) << (exp - $mant_bits);
1577            (secs, 0)
1578        } else {
1579            return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::OverflowOrNan });
1580        };
1581
1582        Ok(Duration::new(secs, nanos))
1583    }};
1584}
1585
1586impl Duration {
1587    /// The checked version of [`from_secs_f32`].
1588    ///
1589    /// [`from_secs_f32`]: Duration::from_secs_f32
1590    ///
1591    /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
1592    ///
1593    /// # Examples
1594    /// ```
1595    /// use std::time::Duration;
1596    ///
1597    /// let res = Duration::try_from_secs_f32(0.0);
1598    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1599    /// let res = Duration::try_from_secs_f32(1e-20);
1600    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1601    /// let res = Duration::try_from_secs_f32(4.2e-7);
1602    /// assert_eq!(res, Ok(Duration::new(0, 420)));
1603    /// let res = Duration::try_from_secs_f32(2.7);
1604    /// assert_eq!(res, Ok(Duration::new(2, 700_000_048)));
1605    /// let res = Duration::try_from_secs_f32(3e10);
1606    /// assert_eq!(res, Ok(Duration::new(30_000_001_024, 0)));
1607    /// // subnormal float:
1608    /// let res = Duration::try_from_secs_f32(f32::from_bits(1));
1609    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1610    ///
1611    /// let res = Duration::try_from_secs_f32(-5.0);
1612    /// assert!(res.is_err());
1613    /// let res = Duration::try_from_secs_f32(f32::NAN);
1614    /// assert!(res.is_err());
1615    /// let res = Duration::try_from_secs_f32(2e19);
1616    /// assert!(res.is_err());
1617    ///
1618    /// // the conversion uses rounding with tie resolution to even
1619    /// let res = Duration::try_from_secs_f32(0.999e-9);
1620    /// assert_eq!(res, Ok(Duration::new(0, 1)));
1621    ///
1622    /// // this float represents exactly 976562.5e-9
1623    /// let val = f32::from_bits(0x3A80_0000);
1624    /// let res = Duration::try_from_secs_f32(val);
1625    /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
1626    ///
1627    /// // this float represents exactly 2929687.5e-9
1628    /// let val = f32::from_bits(0x3B40_0000);
1629    /// let res = Duration::try_from_secs_f32(val);
1630    /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
1631    ///
1632    /// // this float represents exactly 1.000_976_562_5
1633    /// let val = f32::from_bits(0x3F802000);
1634    /// let res = Duration::try_from_secs_f32(val);
1635    /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
1636    ///
1637    /// // this float represents exactly 1.002_929_687_5
1638    /// let val = f32::from_bits(0x3F806000);
1639    /// let res = Duration::try_from_secs_f32(val);
1640    /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
1641    /// ```
1642    #[stable(feature = "duration_checked_float", since = "1.66.0")]
1643    #[inline]
1644    pub fn try_from_secs_f32(secs: f32) -> Result<Duration, TryFromFloatSecsError> {
1645        try_from_secs!(
1646            secs = secs,
1647            mantissa_bits = 23,
1648            exponent_bits = 8,
1649            offset = 41,
1650            bits_ty = u32,
1651            double_ty = u64,
1652        )
1653    }
1654
1655    /// The checked version of [`from_secs_f64`].
1656    ///
1657    /// [`from_secs_f64`]: Duration::from_secs_f64
1658    ///
1659    /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
1660    ///
1661    /// # Examples
1662    /// ```
1663    /// use std::time::Duration;
1664    ///
1665    /// let res = Duration::try_from_secs_f64(0.0);
1666    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1667    /// let res = Duration::try_from_secs_f64(1e-20);
1668    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1669    /// let res = Duration::try_from_secs_f64(4.2e-7);
1670    /// assert_eq!(res, Ok(Duration::new(0, 420)));
1671    /// let res = Duration::try_from_secs_f64(2.7);
1672    /// assert_eq!(res, Ok(Duration::new(2, 700_000_000)));
1673    /// let res = Duration::try_from_secs_f64(3e10);
1674    /// assert_eq!(res, Ok(Duration::new(30_000_000_000, 0)));
1675    /// // subnormal float
1676    /// let res = Duration::try_from_secs_f64(f64::from_bits(1));
1677    /// assert_eq!(res, Ok(Duration::new(0, 0)));
1678    ///
1679    /// let res = Duration::try_from_secs_f64(-5.0);
1680    /// assert!(res.is_err());
1681    /// let res = Duration::try_from_secs_f64(f64::NAN);
1682    /// assert!(res.is_err());
1683    /// let res = Duration::try_from_secs_f64(2e19);
1684    /// assert!(res.is_err());
1685    ///
1686    /// // the conversion uses rounding with tie resolution to even
1687    /// let res = Duration::try_from_secs_f64(0.999e-9);
1688    /// assert_eq!(res, Ok(Duration::new(0, 1)));
1689    /// let res = Duration::try_from_secs_f64(0.999_999_999_499);
1690    /// assert_eq!(res, Ok(Duration::new(0, 999_999_999)));
1691    /// let res = Duration::try_from_secs_f64(0.999_999_999_501);
1692    /// assert_eq!(res, Ok(Duration::new(1, 0)));
1693    /// let res = Duration::try_from_secs_f64(42.999_999_999_499);
1694    /// assert_eq!(res, Ok(Duration::new(42, 999_999_999)));
1695    /// let res = Duration::try_from_secs_f64(42.999_999_999_501);
1696    /// assert_eq!(res, Ok(Duration::new(43, 0)));
1697    ///
1698    /// // this float represents exactly 976562.5e-9
1699    /// let val = f64::from_bits(0x3F50_0000_0000_0000);
1700    /// let res = Duration::try_from_secs_f64(val);
1701    /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
1702    ///
1703    /// // this float represents exactly 2929687.5e-9
1704    /// let val = f64::from_bits(0x3F68_0000_0000_0000);
1705    /// let res = Duration::try_from_secs_f64(val);
1706    /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
1707    ///
1708    /// // this float represents exactly 1.000_976_562_5
1709    /// let val = f64::from_bits(0x3FF0_0400_0000_0000);
1710    /// let res = Duration::try_from_secs_f64(val);
1711    /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
1712    ///
1713    /// // this float represents exactly 1.002_929_687_5
1714    /// let val = f64::from_bits(0x3_FF00_C000_0000_000);
1715    /// let res = Duration::try_from_secs_f64(val);
1716    /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
1717    /// ```
1718    #[stable(feature = "duration_checked_float", since = "1.66.0")]
1719    #[inline]
1720    pub fn try_from_secs_f64(secs: f64) -> Result<Duration, TryFromFloatSecsError> {
1721        try_from_secs!(
1722            secs = secs,
1723            mantissa_bits = 52,
1724            exponent_bits = 11,
1725            offset = 44,
1726            bits_ty = u64,
1727            double_ty = u128,
1728        )
1729    }
1730}