std/io/mod.rs
1//! Traits, helpers, and type definitions for core I/O functionality.
2//!
3//! The `std::io` module contains a number of common things you'll need
4//! when doing input and output. The most core part of this module is
5//! the [`Read`] and [`Write`] traits, which provide the
6//! most general interface for reading and writing input and output.
7//!
8//! ## Read and Write
9//!
10//! Because they are traits, [`Read`] and [`Write`] are implemented by a number
11//! of other types, and you can implement them for your types too. As such,
12//! you'll see a few different types of I/O throughout the documentation in
13//! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
14//! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
15//! [`File`]s:
16//!
17//! ```no_run
18//! use std::io;
19//! use std::io::prelude::*;
20//! use std::fs::File;
21//!
22//! fn main() -> io::Result<()> {
23//! let mut f = File::open("foo.txt")?;
24//! let mut buffer = [0; 10];
25//!
26//! // read up to 10 bytes
27//! let n = f.read(&mut buffer)?;
28//!
29//! println!("The bytes: {:?}", &buffer[..n]);
30//! Ok(())
31//! }
32//! ```
33//!
34//! [`Read`] and [`Write`] are so important, implementors of the two traits have a
35//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
36//! of 'a type that implements the [`Read`] trait'. Much easier!
37//!
38//! ## Seek and BufRead
39//!
40//! Beyond that, there are two important traits that are provided: [`Seek`]
41//! and [`BufRead`]. Both of these build on top of a reader to control
42//! how the reading happens. [`Seek`] lets you control where the next byte is
43//! coming from:
44//!
45//! ```no_run
46//! use std::io;
47//! use std::io::prelude::*;
48//! use std::io::SeekFrom;
49//! use std::fs::File;
50//!
51//! fn main() -> io::Result<()> {
52//! let mut f = File::open("foo.txt")?;
53//! let mut buffer = [0; 10];
54//!
55//! // skip to the last 10 bytes of the file
56//! f.seek(SeekFrom::End(-10))?;
57//!
58//! // read up to 10 bytes
59//! let n = f.read(&mut buffer)?;
60//!
61//! println!("The bytes: {:?}", &buffer[..n]);
62//! Ok(())
63//! }
64//! ```
65//!
66//! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
67//! to show it off, we'll need to talk about buffers in general. Keep reading!
68//!
69//! ## BufReader and BufWriter
70//!
71//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
72//! making near-constant calls to the operating system. To help with this,
73//! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
74//! readers and writers. The wrapper uses a buffer, reducing the number of
75//! calls and providing nicer methods for accessing exactly what you want.
76//!
77//! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
78//! methods to any reader:
79//!
80//! ```no_run
81//! use std::io;
82//! use std::io::prelude::*;
83//! use std::io::BufReader;
84//! use std::fs::File;
85//!
86//! fn main() -> io::Result<()> {
87//! let f = File::open("foo.txt")?;
88//! let mut reader = BufReader::new(f);
89//! let mut buffer = String::new();
90//!
91//! // read a line into buffer
92//! reader.read_line(&mut buffer)?;
93//!
94//! println!("{buffer}");
95//! Ok(())
96//! }
97//! ```
98//!
99//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
100//! to [`write`][`Write::write`]:
101//!
102//! ```no_run
103//! use std::io;
104//! use std::io::prelude::*;
105//! use std::io::BufWriter;
106//! use std::fs::File;
107//!
108//! fn main() -> io::Result<()> {
109//! let f = File::create("foo.txt")?;
110//! {
111//! let mut writer = BufWriter::new(f);
112//!
113//! // write a byte to the buffer
114//! writer.write(&[42])?;
115//!
116//! } // the buffer is flushed once writer goes out of scope
117//!
118//! Ok(())
119//! }
120//! ```
121//!
122//! ## Standard input and output
123//!
124//! A very common source of input is standard input:
125//!
126//! ```no_run
127//! use std::io;
128//!
129//! fn main() -> io::Result<()> {
130//! let mut input = String::new();
131//!
132//! io::stdin().read_line(&mut input)?;
133//!
134//! println!("You typed: {}", input.trim());
135//! Ok(())
136//! }
137//! ```
138//!
139//! Note that you cannot use the [`?` operator] in functions that do not return
140//! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
141//! or `match` on the return value to catch any possible errors:
142//!
143//! ```no_run
144//! use std::io;
145//!
146//! let mut input = String::new();
147//!
148//! io::stdin().read_line(&mut input).unwrap();
149//! ```
150//!
151//! And a very common source of output is standard output:
152//!
153//! ```no_run
154//! use std::io;
155//! use std::io::prelude::*;
156//!
157//! fn main() -> io::Result<()> {
158//! io::stdout().write(&[42])?;
159//! Ok(())
160//! }
161//! ```
162//!
163//! Of course, using [`io::stdout`] directly is less common than something like
164//! [`println!`].
165//!
166//! ## Iterator types
167//!
168//! A large number of the structures provided by `std::io` are for various
169//! ways of iterating over I/O. For example, [`Lines`] is used to split over
170//! lines:
171//!
172//! ```no_run
173//! use std::io;
174//! use std::io::prelude::*;
175//! use std::io::BufReader;
176//! use std::fs::File;
177//!
178//! fn main() -> io::Result<()> {
179//! let f = File::open("foo.txt")?;
180//! let reader = BufReader::new(f);
181//!
182//! for line in reader.lines() {
183//! println!("{}", line?);
184//! }
185//! Ok(())
186//! }
187//! ```
188//!
189//! ## Functions
190//!
191//! There are a number of [functions][functions-list] that offer access to various
192//! features. For example, we can use three of these functions to copy everything
193//! from standard input to standard output:
194//!
195//! ```no_run
196//! use std::io;
197//!
198//! fn main() -> io::Result<()> {
199//! io::copy(&mut io::stdin(), &mut io::stdout())?;
200//! Ok(())
201//! }
202//! ```
203//!
204//! [functions-list]: #functions-1
205//!
206//! ## io::Result
207//!
208//! Last, but certainly not least, is [`io::Result`]. This type is used
209//! as the return type of many `std::io` functions that can cause an error, and
210//! can be returned from your own functions as well. Many of the examples in this
211//! module use the [`?` operator]:
212//!
213//! ```
214//! use std::io;
215//!
216//! fn read_input() -> io::Result<()> {
217//! let mut input = String::new();
218//!
219//! io::stdin().read_line(&mut input)?;
220//!
221//! println!("You typed: {}", input.trim());
222//!
223//! Ok(())
224//! }
225//! ```
226//!
227//! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
228//! common type for functions which don't have a 'real' return value, but do want to
229//! return errors if they happen. In this case, the only purpose of this function is
230//! to read the line and print it, so we use `()`.
231//!
232//! ## Platform-specific behavior
233//!
234//! Many I/O functions throughout the standard library are documented to indicate
235//! what various library or syscalls they are delegated to. This is done to help
236//! applications both understand what's happening under the hood as well as investigate
237//! any possibly unclear semantics. Note, however, that this is informative, not a binding
238//! contract. The implementation of many of these functions are subject to change over
239//! time and may call fewer or more syscalls/library functions.
240//!
241//! ## I/O Safety
242//!
243//! Rust follows an I/O safety discipline that is comparable to its memory safety discipline. This
244//! means that file descriptors can be *exclusively owned*. (Here, "file descriptor" is meant to
245//! subsume similar concepts that exist across a wide range of operating systems even if they might
246//! use a different name, such as "handle".) An exclusively owned file descriptor is one that no
247//! other code is allowed to access in any way, but the owner is allowed to access and even close
248//! it any time. A type that owns its file descriptor should usually close it in its `drop`
249//! function. Types like [`File`] own their file descriptor. Similarly, file descriptors
250//! can be *borrowed*, granting the temporary right to perform operations on this file descriptor.
251//! This indicates that the file descriptor will not be closed for the lifetime of the borrow, but
252//! it does *not* imply any right to close this file descriptor, since it will likely be owned by
253//! someone else.
254//!
255//! The platform-specific parts of the Rust standard library expose types that reflect these
256//! concepts, see [`os::unix`] and [`os::windows`].
257//!
258//! To uphold I/O safety, it is crucial that no code acts on file descriptors it does not own or
259//! borrow, and no code closes file descriptors it does not own. In other words, a safe function
260//! that takes a regular integer, treats it as a file descriptor, and acts on it, is *unsound*.
261//!
262//! Not upholding I/O safety and acting on a file descriptor without proof of ownership can lead to
263//! misbehavior and even Undefined Behavior in code that relies on ownership of its file
264//! descriptors: a closed file descriptor could be re-allocated, so the original owner of that file
265//! descriptor is now working on the wrong file. Some code might even rely on fully encapsulating
266//! its file descriptors with no operations being performed by any other part of the program.
267//!
268//! Note that exclusive ownership of a file descriptor does *not* imply exclusive ownership of the
269//! underlying kernel object that the file descriptor references (also called "open file description" on
270//! some operating systems). File descriptors basically work like [`Arc`]: when you receive an owned
271//! file descriptor, you cannot know whether there are any other file descriptors that reference the
272//! same kernel object. However, when you create a new kernel object, you know that you are holding
273//! the only reference to it. Just be careful not to lend it to anyone, since they can obtain a
274//! clone and then you can no longer know what the reference count is! In that sense, [`OwnedFd`] is
275//! like `Arc` and [`BorrowedFd<'a>`] is like `&'a Arc` (and similar for the Windows types). In
276//! particular, given a `BorrowedFd<'a>`, you are not allowed to close the file descriptor -- just
277//! like how, given a `&'a Arc`, you are not allowed to decrement the reference count and
278//! potentially free the underlying object. There is no equivalent to `Box` for file descriptors in
279//! the standard library (that would be a type that guarantees that the reference count is `1`),
280//! however, it would be possible for a crate to define a type with those semantics.
281//!
282//! [`File`]: crate::fs::File
283//! [`TcpStream`]: crate::net::TcpStream
284//! [`io::stdout`]: stdout
285//! [`io::Result`]: self::Result
286//! [`?` operator]: ../../book/appendix-02-operators.html
287//! [`Result`]: crate::result::Result
288//! [`.unwrap()`]: crate::result::Result::unwrap
289//! [`os::unix`]: ../os/unix/io/index.html
290//! [`os::windows`]: ../os/windows/io/index.html
291//! [`OwnedFd`]: ../os/fd/struct.OwnedFd.html
292//! [`BorrowedFd<'a>`]: ../os/fd/struct.BorrowedFd.html
293//! [`Arc`]: crate::sync::Arc
294
295#![stable(feature = "rust1", since = "1.0.0")]
296
297#[cfg(test)]
298mod tests;
299
300#[unstable(feature = "read_buf", issue = "78485")]
301pub use core::io::{BorrowedBuf, BorrowedCursor};
302use core::slice::memchr;
303
304#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
305pub use self::buffered::WriterPanicked;
306#[unstable(feature = "raw_os_error_ty", issue = "107792")]
307pub use self::error::RawOsError;
308#[doc(hidden)]
309#[unstable(feature = "io_const_error_internals", issue = "none")]
310pub use self::error::SimpleMessage;
311#[unstable(feature = "io_const_error", issue = "133448")]
312pub use self::error::const_error;
313#[stable(feature = "anonymous_pipe", since = "1.87.0")]
314pub use self::pipe::{PipeReader, PipeWriter, pipe};
315#[stable(feature = "is_terminal", since = "1.70.0")]
316pub use self::stdio::IsTerminal;
317pub(crate) use self::stdio::attempt_print_to_stderr;
318#[unstable(feature = "print_internals", issue = "none")]
319#[doc(hidden)]
320pub use self::stdio::{_eprint, _print};
321#[unstable(feature = "internal_output_capture", issue = "none")]
322#[doc(no_inline, hidden)]
323pub use self::stdio::{set_output_capture, try_set_output_capture};
324#[stable(feature = "rust1", since = "1.0.0")]
325pub use self::{
326 buffered::{BufReader, BufWriter, IntoInnerError, LineWriter},
327 copy::copy,
328 cursor::Cursor,
329 error::{Error, ErrorKind, Result},
330 stdio::{Stderr, StderrLock, Stdin, StdinLock, Stdout, StdoutLock, stderr, stdin, stdout},
331 util::{Empty, Repeat, Sink, empty, repeat, sink},
332};
333use crate::mem::{MaybeUninit, take};
334use crate::ops::{Deref, DerefMut};
335use crate::{cmp, fmt, slice, str, sys};
336
337mod buffered;
338pub(crate) mod copy;
339mod cursor;
340mod error;
341mod impls;
342mod pipe;
343pub mod prelude;
344mod stdio;
345mod util;
346
347const DEFAULT_BUF_SIZE: usize = crate::sys::io::DEFAULT_BUF_SIZE;
348
349pub(crate) use stdio::cleanup;
350
351struct Guard<'a> {
352 buf: &'a mut Vec<u8>,
353 len: usize,
354}
355
356impl Drop for Guard<'_> {
357 fn drop(&mut self) {
358 unsafe {
359 self.buf.set_len(self.len);
360 }
361 }
362}
363
364// Several `read_to_string` and `read_line` methods in the standard library will
365// append data into a `String` buffer, but we need to be pretty careful when
366// doing this. The implementation will just call `.as_mut_vec()` and then
367// delegate to a byte-oriented reading method, but we must ensure that when
368// returning we never leave `buf` in a state such that it contains invalid UTF-8
369// in its bounds.
370//
371// To this end, we use an RAII guard (to protect against panics) which updates
372// the length of the string when it is dropped. This guard initially truncates
373// the string to the prior length and only after we've validated that the
374// new contents are valid UTF-8 do we allow it to set a longer length.
375//
376// The unsafety in this function is twofold:
377//
378// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
379// checks.
380// 2. We're passing a raw buffer to the function `f`, and it is expected that
381// the function only *appends* bytes to the buffer. We'll get undefined
382// behavior if existing bytes are overwritten to have non-UTF-8 data.
383pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
384where
385 F: FnOnce(&mut Vec<u8>) -> Result<usize>,
386{
387 let mut g = Guard { len: buf.len(), buf: unsafe { buf.as_mut_vec() } };
388 let ret = f(g.buf);
389
390 // SAFETY: the caller promises to only append data to `buf`
391 let appended = unsafe { g.buf.get_unchecked(g.len..) };
392 if str::from_utf8(appended).is_err() {
393 ret.and_then(|_| Err(Error::INVALID_UTF8))
394 } else {
395 g.len = g.buf.len();
396 ret
397 }
398}
399
400// Here we must serve many masters with conflicting goals:
401//
402// - avoid allocating unless necessary
403// - avoid overallocating if we know the exact size (#89165)
404// - avoid passing large buffers to readers that always initialize the free capacity if they perform short reads (#23815, #23820)
405// - pass large buffers to readers that do not initialize the spare capacity. this can amortize per-call overheads
406// - and finally pass not-too-small and not-too-large buffers to Windows read APIs because they manage to suffer from both problems
407// at the same time, i.e. small reads suffer from syscall overhead, all reads incur costs proportional to buffer size (#110650)
408//
409pub(crate) fn default_read_to_end<R: Read + ?Sized>(
410 r: &mut R,
411 buf: &mut Vec<u8>,
412 size_hint: Option<usize>,
413) -> Result<usize> {
414 let start_len = buf.len();
415 let start_cap = buf.capacity();
416 // Optionally limit the maximum bytes read on each iteration.
417 // This adds an arbitrary fiddle factor to allow for more data than we expect.
418 let mut max_read_size = size_hint
419 .and_then(|s| s.checked_add(1024)?.checked_next_multiple_of(DEFAULT_BUF_SIZE))
420 .unwrap_or(DEFAULT_BUF_SIZE);
421
422 let mut initialized = 0; // Extra initialized bytes from previous loop iteration
423
424 const PROBE_SIZE: usize = 32;
425
426 fn small_probe_read<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
427 let mut probe = [0u8; PROBE_SIZE];
428
429 loop {
430 match r.read(&mut probe) {
431 Ok(n) => {
432 // there is no way to recover from allocation failure here
433 // because the data has already been read.
434 buf.extend_from_slice(&probe[..n]);
435 return Ok(n);
436 }
437 Err(ref e) if e.is_interrupted() => continue,
438 Err(e) => return Err(e),
439 }
440 }
441 }
442
443 // avoid inflating empty/small vecs before we have determined that there's anything to read
444 if (size_hint.is_none() || size_hint == Some(0)) && buf.capacity() - buf.len() < PROBE_SIZE {
445 let read = small_probe_read(r, buf)?;
446
447 if read == 0 {
448 return Ok(0);
449 }
450 }
451
452 let mut consecutive_short_reads = 0;
453
454 loop {
455 if buf.len() == buf.capacity() && buf.capacity() == start_cap {
456 // The buffer might be an exact fit. Let's read into a probe buffer
457 // and see if it returns `Ok(0)`. If so, we've avoided an
458 // unnecessary doubling of the capacity. But if not, append the
459 // probe buffer to the primary buffer and let its capacity grow.
460 let read = small_probe_read(r, buf)?;
461
462 if read == 0 {
463 return Ok(buf.len() - start_len);
464 }
465 }
466
467 if buf.len() == buf.capacity() {
468 // buf is full, need more space
469 buf.try_reserve(PROBE_SIZE)?;
470 }
471
472 let mut spare = buf.spare_capacity_mut();
473 let buf_len = cmp::min(spare.len(), max_read_size);
474 spare = &mut spare[..buf_len];
475 let mut read_buf: BorrowedBuf<'_> = spare.into();
476
477 // SAFETY: These bytes were initialized but not filled in the previous loop
478 unsafe {
479 read_buf.set_init(initialized);
480 }
481
482 let mut cursor = read_buf.unfilled();
483 let result = loop {
484 match r.read_buf(cursor.reborrow()) {
485 Err(e) if e.is_interrupted() => continue,
486 // Do not stop now in case of error: we might have received both data
487 // and an error
488 res => break res,
489 }
490 };
491
492 let unfilled_but_initialized = cursor.init_mut().len();
493 let bytes_read = cursor.written();
494 let was_fully_initialized = read_buf.init_len() == buf_len;
495
496 // SAFETY: BorrowedBuf's invariants mean this much memory is initialized.
497 unsafe {
498 let new_len = bytes_read + buf.len();
499 buf.set_len(new_len);
500 }
501
502 // Now that all data is pushed to the vector, we can fail without data loss
503 result?;
504
505 if bytes_read == 0 {
506 return Ok(buf.len() - start_len);
507 }
508
509 if bytes_read < buf_len {
510 consecutive_short_reads += 1;
511 } else {
512 consecutive_short_reads = 0;
513 }
514
515 // store how much was initialized but not filled
516 initialized = unfilled_but_initialized;
517
518 // Use heuristics to determine the max read size if no initial size hint was provided
519 if size_hint.is_none() {
520 // The reader is returning short reads but it doesn't call ensure_init().
521 // In that case we no longer need to restrict read sizes to avoid
522 // initialization costs.
523 // When reading from disk we usually don't get any short reads except at EOF.
524 // So we wait for at least 2 short reads before uncapping the read buffer;
525 // this helps with the Windows issue.
526 if !was_fully_initialized && consecutive_short_reads > 1 {
527 max_read_size = usize::MAX;
528 }
529
530 // we have passed a larger buffer than previously and the
531 // reader still hasn't returned a short read
532 if buf_len >= max_read_size && bytes_read == buf_len {
533 max_read_size = max_read_size.saturating_mul(2);
534 }
535 }
536 }
537}
538
539pub(crate) fn default_read_to_string<R: Read + ?Sized>(
540 r: &mut R,
541 buf: &mut String,
542 size_hint: Option<usize>,
543) -> Result<usize> {
544 // Note that we do *not* call `r.read_to_end()` here. We are passing
545 // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
546 // method to fill it up. An arbitrary implementation could overwrite the
547 // entire contents of the vector, not just append to it (which is what
548 // we are expecting).
549 //
550 // To prevent extraneously checking the UTF-8-ness of the entire buffer
551 // we pass it to our hardcoded `default_read_to_end` implementation which
552 // we know is guaranteed to only read data into the end of the buffer.
553 unsafe { append_to_string(buf, |b| default_read_to_end(r, b, size_hint)) }
554}
555
556pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
557where
558 F: FnOnce(&mut [u8]) -> Result<usize>,
559{
560 let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
561 read(buf)
562}
563
564pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
565where
566 F: FnOnce(&[u8]) -> Result<usize>,
567{
568 let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
569 write(buf)
570}
571
572pub(crate) fn default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
573 while !buf.is_empty() {
574 match this.read(buf) {
575 Ok(0) => break,
576 Ok(n) => {
577 buf = &mut buf[n..];
578 }
579 Err(ref e) if e.is_interrupted() => {}
580 Err(e) => return Err(e),
581 }
582 }
583 if !buf.is_empty() { Err(Error::READ_EXACT_EOF) } else { Ok(()) }
584}
585
586pub(crate) fn default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()>
587where
588 F: FnOnce(&mut [u8]) -> Result<usize>,
589{
590 let n = read(cursor.ensure_init().init_mut())?;
591 cursor.advance(n);
592 Ok(())
593}
594
595pub(crate) fn default_read_buf_exact<R: Read + ?Sized>(
596 this: &mut R,
597 mut cursor: BorrowedCursor<'_>,
598) -> Result<()> {
599 while cursor.capacity() > 0 {
600 let prev_written = cursor.written();
601 match this.read_buf(cursor.reborrow()) {
602 Ok(()) => {}
603 Err(e) if e.is_interrupted() => continue,
604 Err(e) => return Err(e),
605 }
606
607 if cursor.written() == prev_written {
608 return Err(Error::READ_EXACT_EOF);
609 }
610 }
611
612 Ok(())
613}
614
615pub(crate) fn default_write_fmt<W: Write + ?Sized>(
616 this: &mut W,
617 args: fmt::Arguments<'_>,
618) -> Result<()> {
619 // Create a shim which translates a `Write` to a `fmt::Write` and saves off
620 // I/O errors, instead of discarding them.
621 struct Adapter<'a, T: ?Sized + 'a> {
622 inner: &'a mut T,
623 error: Result<()>,
624 }
625
626 impl<T: Write + ?Sized> fmt::Write for Adapter<'_, T> {
627 fn write_str(&mut self, s: &str) -> fmt::Result {
628 match self.inner.write_all(s.as_bytes()) {
629 Ok(()) => Ok(()),
630 Err(e) => {
631 self.error = Err(e);
632 Err(fmt::Error)
633 }
634 }
635 }
636 }
637
638 let mut output = Adapter { inner: this, error: Ok(()) };
639 match fmt::write(&mut output, args) {
640 Ok(()) => Ok(()),
641 Err(..) => {
642 // Check whether the error came from the underlying `Write`.
643 if output.error.is_err() {
644 output.error
645 } else {
646 // This shouldn't happen: the underlying stream did not error,
647 // but somehow the formatter still errored?
648 panic!(
649 "a formatting trait implementation returned an error when the underlying stream did not"
650 );
651 }
652 }
653 }
654}
655
656/// The `Read` trait allows for reading bytes from a source.
657///
658/// Implementors of the `Read` trait are called 'readers'.
659///
660/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
661/// will attempt to pull bytes from this source into a provided buffer. A
662/// number of other methods are implemented in terms of [`read()`], giving
663/// implementors a number of ways to read bytes while only needing to implement
664/// a single method.
665///
666/// Readers are intended to be composable with one another. Many implementors
667/// throughout [`std::io`] take and provide types which implement the `Read`
668/// trait.
669///
670/// Please note that each call to [`read()`] may involve a system call, and
671/// therefore, using something that implements [`BufRead`], such as
672/// [`BufReader`], will be more efficient.
673///
674/// Repeated calls to the reader use the same cursor, so for example
675/// calling `read_to_end` twice on a [`File`] will only return the file's
676/// contents once. It's recommended to first call `rewind()` in that case.
677///
678/// # Examples
679///
680/// [`File`]s implement `Read`:
681///
682/// ```no_run
683/// use std::io;
684/// use std::io::prelude::*;
685/// use std::fs::File;
686///
687/// fn main() -> io::Result<()> {
688/// let mut f = File::open("foo.txt")?;
689/// let mut buffer = [0; 10];
690///
691/// // read up to 10 bytes
692/// f.read(&mut buffer)?;
693///
694/// let mut buffer = Vec::new();
695/// // read the whole file
696/// f.read_to_end(&mut buffer)?;
697///
698/// // read into a String, so that you don't need to do the conversion.
699/// let mut buffer = String::new();
700/// f.read_to_string(&mut buffer)?;
701///
702/// // and more! See the other methods for more details.
703/// Ok(())
704/// }
705/// ```
706///
707/// Read from [`&str`] because [`&[u8]`][prim@slice] implements `Read`:
708///
709/// ```no_run
710/// # use std::io;
711/// use std::io::prelude::*;
712///
713/// fn main() -> io::Result<()> {
714/// let mut b = "This string will be read".as_bytes();
715/// let mut buffer = [0; 10];
716///
717/// // read up to 10 bytes
718/// b.read(&mut buffer)?;
719///
720/// // etc... it works exactly as a File does!
721/// Ok(())
722/// }
723/// ```
724///
725/// [`read()`]: Read::read
726/// [`&str`]: prim@str
727/// [`std::io`]: self
728/// [`File`]: crate::fs::File
729#[stable(feature = "rust1", since = "1.0.0")]
730#[doc(notable_trait)]
731#[cfg_attr(not(test), rustc_diagnostic_item = "IoRead")]
732pub trait Read {
733 /// Pull some bytes from this source into the specified buffer, returning
734 /// how many bytes were read.
735 ///
736 /// This function does not provide any guarantees about whether it blocks
737 /// waiting for data, but if an object needs to block for a read and cannot,
738 /// it will typically signal this via an [`Err`] return value.
739 ///
740 /// If the return value of this method is [`Ok(n)`], then implementations must
741 /// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
742 /// that the buffer `buf` has been filled in with `n` bytes of data from this
743 /// source. If `n` is `0`, then it can indicate one of two scenarios:
744 ///
745 /// 1. This reader has reached its "end of file" and will likely no longer
746 /// be able to produce bytes. Note that this does not mean that the
747 /// reader will *always* no longer be able to produce bytes. As an example,
748 /// on Linux, this method will call the `recv` syscall for a [`TcpStream`],
749 /// where returning zero indicates the connection was shut down correctly. While
750 /// for [`File`], it is possible to reach the end of file and get zero as result,
751 /// but if more data is appended to the file, future calls to `read` will return
752 /// more data.
753 /// 2. The buffer specified was 0 bytes in length.
754 ///
755 /// It is not an error if the returned value `n` is smaller than the buffer size,
756 /// even when the reader is not at the end of the stream yet.
757 /// This may happen for example because fewer bytes are actually available right now
758 /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
759 ///
760 /// As this trait is safe to implement, callers in unsafe code cannot rely on
761 /// `n <= buf.len()` for safety.
762 /// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
763 /// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
764 /// `n > buf.len()`.
765 ///
766 /// *Implementations* of this method can make no assumptions about the contents of `buf` when
767 /// this function is called. It is recommended that implementations only write data to `buf`
768 /// instead of reading its contents.
769 ///
770 /// Correspondingly, however, *callers* of this method in unsafe code must not assume
771 /// any guarantees about how the implementation uses `buf`. The trait is safe to implement,
772 /// so it is possible that the code that's supposed to write to the buffer might also read
773 /// from it. It is your responsibility to make sure that `buf` is initialized
774 /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
775 /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
776 ///
777 /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
778 ///
779 /// # Errors
780 ///
781 /// If this function encounters any form of I/O or other error, an error
782 /// variant will be returned. If an error is returned then it must be
783 /// guaranteed that no bytes were read.
784 ///
785 /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
786 /// operation should be retried if there is nothing else to do.
787 ///
788 /// # Examples
789 ///
790 /// [`File`]s implement `Read`:
791 ///
792 /// [`Ok(n)`]: Ok
793 /// [`File`]: crate::fs::File
794 /// [`TcpStream`]: crate::net::TcpStream
795 ///
796 /// ```no_run
797 /// use std::io;
798 /// use std::io::prelude::*;
799 /// use std::fs::File;
800 ///
801 /// fn main() -> io::Result<()> {
802 /// let mut f = File::open("foo.txt")?;
803 /// let mut buffer = [0; 10];
804 ///
805 /// // read up to 10 bytes
806 /// let n = f.read(&mut buffer[..])?;
807 ///
808 /// println!("The bytes: {:?}", &buffer[..n]);
809 /// Ok(())
810 /// }
811 /// ```
812 #[stable(feature = "rust1", since = "1.0.0")]
813 fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
814
815 /// Like `read`, except that it reads into a slice of buffers.
816 ///
817 /// Data is copied to fill each buffer in order, with the final buffer
818 /// written to possibly being only partially filled. This method must
819 /// behave equivalently to a single call to `read` with concatenated
820 /// buffers.
821 ///
822 /// The default implementation calls `read` with either the first nonempty
823 /// buffer provided, or an empty one if none exists.
824 #[stable(feature = "iovec", since = "1.36.0")]
825 fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
826 default_read_vectored(|b| self.read(b), bufs)
827 }
828
829 /// Determines if this `Read`er has an efficient `read_vectored`
830 /// implementation.
831 ///
832 /// If a `Read`er does not override the default `read_vectored`
833 /// implementation, code using it may want to avoid the method all together
834 /// and coalesce writes into a single buffer for higher performance.
835 ///
836 /// The default implementation returns `false`.
837 #[unstable(feature = "can_vector", issue = "69941")]
838 fn is_read_vectored(&self) -> bool {
839 false
840 }
841
842 /// Reads all bytes until EOF in this source, placing them into `buf`.
843 ///
844 /// All bytes read from this source will be appended to the specified buffer
845 /// `buf`. This function will continuously call [`read()`] to append more data to
846 /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
847 /// non-[`ErrorKind::Interrupted`] kind.
848 ///
849 /// If successful, this function will return the total number of bytes read.
850 ///
851 /// # Errors
852 ///
853 /// If this function encounters an error of the kind
854 /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
855 /// will continue.
856 ///
857 /// If any other read error is encountered then this function immediately
858 /// returns. Any bytes which have already been read will be appended to
859 /// `buf`.
860 ///
861 /// # Examples
862 ///
863 /// [`File`]s implement `Read`:
864 ///
865 /// [`read()`]: Read::read
866 /// [`Ok(0)`]: Ok
867 /// [`File`]: crate::fs::File
868 ///
869 /// ```no_run
870 /// use std::io;
871 /// use std::io::prelude::*;
872 /// use std::fs::File;
873 ///
874 /// fn main() -> io::Result<()> {
875 /// let mut f = File::open("foo.txt")?;
876 /// let mut buffer = Vec::new();
877 ///
878 /// // read the whole file
879 /// f.read_to_end(&mut buffer)?;
880 /// Ok(())
881 /// }
882 /// ```
883 ///
884 /// (See also the [`std::fs::read`] convenience function for reading from a
885 /// file.)
886 ///
887 /// [`std::fs::read`]: crate::fs::read
888 ///
889 /// ## Implementing `read_to_end`
890 ///
891 /// When implementing the `io::Read` trait, it is recommended to allocate
892 /// memory using [`Vec::try_reserve`]. However, this behavior is not guaranteed
893 /// by all implementations, and `read_to_end` may not handle out-of-memory
894 /// situations gracefully.
895 ///
896 /// ```no_run
897 /// # use std::io::{self, BufRead};
898 /// # struct Example { example_datasource: io::Empty } impl Example {
899 /// # fn get_some_data_for_the_example(&self) -> &'static [u8] { &[] }
900 /// fn read_to_end(&mut self, dest_vec: &mut Vec<u8>) -> io::Result<usize> {
901 /// let initial_vec_len = dest_vec.len();
902 /// loop {
903 /// let src_buf = self.example_datasource.fill_buf()?;
904 /// if src_buf.is_empty() {
905 /// break;
906 /// }
907 /// dest_vec.try_reserve(src_buf.len())?;
908 /// dest_vec.extend_from_slice(src_buf);
909 ///
910 /// // Any irreversible side effects should happen after `try_reserve` succeeds,
911 /// // to avoid losing data on allocation error.
912 /// let read = src_buf.len();
913 /// self.example_datasource.consume(read);
914 /// }
915 /// Ok(dest_vec.len() - initial_vec_len)
916 /// }
917 /// # }
918 /// ```
919 ///
920 /// # Usage Notes
921 ///
922 /// `read_to_end` attempts to read a source until EOF, but many sources are continuous streams
923 /// that do not send EOF. In these cases, `read_to_end` will block indefinitely. Standard input
924 /// is one such stream which may be finite if piped, but is typically continuous. For example,
925 /// `cat file | my-rust-program` will correctly terminate with an `EOF` upon closure of cat.
926 /// Reading user input or running programs that remain open indefinitely will never terminate
927 /// the stream with `EOF` (e.g. `yes | my-rust-program`).
928 ///
929 /// Using `.lines()` with a [`BufReader`] or using [`read`] can provide a better solution
930 ///
931 ///[`read`]: Read::read
932 ///
933 /// [`Vec::try_reserve`]: crate::vec::Vec::try_reserve
934 #[stable(feature = "rust1", since = "1.0.0")]
935 fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
936 default_read_to_end(self, buf, None)
937 }
938
939 /// Reads all bytes until EOF in this source, appending them to `buf`.
940 ///
941 /// If successful, this function returns the number of bytes which were read
942 /// and appended to `buf`.
943 ///
944 /// # Errors
945 ///
946 /// If the data in this stream is *not* valid UTF-8 then an error is
947 /// returned and `buf` is unchanged.
948 ///
949 /// See [`read_to_end`] for other error semantics.
950 ///
951 /// [`read_to_end`]: Read::read_to_end
952 ///
953 /// # Examples
954 ///
955 /// [`File`]s implement `Read`:
956 ///
957 /// [`File`]: crate::fs::File
958 ///
959 /// ```no_run
960 /// use std::io;
961 /// use std::io::prelude::*;
962 /// use std::fs::File;
963 ///
964 /// fn main() -> io::Result<()> {
965 /// let mut f = File::open("foo.txt")?;
966 /// let mut buffer = String::new();
967 ///
968 /// f.read_to_string(&mut buffer)?;
969 /// Ok(())
970 /// }
971 /// ```
972 ///
973 /// (See also the [`std::fs::read_to_string`] convenience function for
974 /// reading from a file.)
975 ///
976 /// # Usage Notes
977 ///
978 /// `read_to_string` attempts to read a source until EOF, but many sources are continuous streams
979 /// that do not send EOF. In these cases, `read_to_string` will block indefinitely. Standard input
980 /// is one such stream which may be finite if piped, but is typically continuous. For example,
981 /// `cat file | my-rust-program` will correctly terminate with an `EOF` upon closure of cat.
982 /// Reading user input or running programs that remain open indefinitely will never terminate
983 /// the stream with `EOF` (e.g. `yes | my-rust-program`).
984 ///
985 /// Using `.lines()` with a [`BufReader`] or using [`read`] can provide a better solution
986 ///
987 ///[`read`]: Read::read
988 ///
989 /// [`std::fs::read_to_string`]: crate::fs::read_to_string
990 #[stable(feature = "rust1", since = "1.0.0")]
991 fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
992 default_read_to_string(self, buf, None)
993 }
994
995 /// Reads the exact number of bytes required to fill `buf`.
996 ///
997 /// This function reads as many bytes as necessary to completely fill the
998 /// specified buffer `buf`.
999 ///
1000 /// *Implementations* of this method can make no assumptions about the contents of `buf` when
1001 /// this function is called. It is recommended that implementations only write data to `buf`
1002 /// instead of reading its contents. The documentation on [`read`] has a more detailed
1003 /// explanation of this subject.
1004 ///
1005 /// # Errors
1006 ///
1007 /// If this function encounters an error of the kind
1008 /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
1009 /// will continue.
1010 ///
1011 /// If this function encounters an "end of file" before completely filling
1012 /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
1013 /// The contents of `buf` are unspecified in this case.
1014 ///
1015 /// If any other read error is encountered then this function immediately
1016 /// returns. The contents of `buf` are unspecified in this case.
1017 ///
1018 /// If this function returns an error, it is unspecified how many bytes it
1019 /// has read, but it will never read more than would be necessary to
1020 /// completely fill the buffer.
1021 ///
1022 /// # Examples
1023 ///
1024 /// [`File`]s implement `Read`:
1025 ///
1026 /// [`read`]: Read::read
1027 /// [`File`]: crate::fs::File
1028 ///
1029 /// ```no_run
1030 /// use std::io;
1031 /// use std::io::prelude::*;
1032 /// use std::fs::File;
1033 ///
1034 /// fn main() -> io::Result<()> {
1035 /// let mut f = File::open("foo.txt")?;
1036 /// let mut buffer = [0; 10];
1037 ///
1038 /// // read exactly 10 bytes
1039 /// f.read_exact(&mut buffer)?;
1040 /// Ok(())
1041 /// }
1042 /// ```
1043 #[stable(feature = "read_exact", since = "1.6.0")]
1044 fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
1045 default_read_exact(self, buf)
1046 }
1047
1048 /// Pull some bytes from this source into the specified buffer.
1049 ///
1050 /// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1051 /// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
1052 ///
1053 /// The default implementation delegates to `read`.
1054 ///
1055 /// This method makes it possible to return both data and an error but it is advised against.
1056 #[unstable(feature = "read_buf", issue = "78485")]
1057 fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()> {
1058 default_read_buf(|b| self.read(b), buf)
1059 }
1060
1061 /// Reads the exact number of bytes required to fill `cursor`.
1062 ///
1063 /// This is similar to the [`read_exact`](Read::read_exact) method, except
1064 /// that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1065 /// with uninitialized buffers.
1066 ///
1067 /// # Errors
1068 ///
1069 /// If this function encounters an error of the kind [`ErrorKind::Interrupted`]
1070 /// then the error is ignored and the operation will continue.
1071 ///
1072 /// If this function encounters an "end of file" before completely filling
1073 /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
1074 ///
1075 /// If any other read error is encountered then this function immediately
1076 /// returns.
1077 ///
1078 /// If this function returns an error, all bytes read will be appended to `cursor`.
1079 #[unstable(feature = "read_buf", issue = "78485")]
1080 fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<()> {
1081 default_read_buf_exact(self, cursor)
1082 }
1083
1084 /// Creates a "by reference" adapter for this instance of `Read`.
1085 ///
1086 /// The returned adapter also implements `Read` and will simply borrow this
1087 /// current reader.
1088 ///
1089 /// # Examples
1090 ///
1091 /// [`File`]s implement `Read`:
1092 ///
1093 /// [`File`]: crate::fs::File
1094 ///
1095 /// ```no_run
1096 /// use std::io;
1097 /// use std::io::Read;
1098 /// use std::fs::File;
1099 ///
1100 /// fn main() -> io::Result<()> {
1101 /// let mut f = File::open("foo.txt")?;
1102 /// let mut buffer = Vec::new();
1103 /// let mut other_buffer = Vec::new();
1104 ///
1105 /// {
1106 /// let reference = f.by_ref();
1107 ///
1108 /// // read at most 5 bytes
1109 /// reference.take(5).read_to_end(&mut buffer)?;
1110 ///
1111 /// } // drop our &mut reference so we can use f again
1112 ///
1113 /// // original file still usable, read the rest
1114 /// f.read_to_end(&mut other_buffer)?;
1115 /// Ok(())
1116 /// }
1117 /// ```
1118 #[stable(feature = "rust1", since = "1.0.0")]
1119 fn by_ref(&mut self) -> &mut Self
1120 where
1121 Self: Sized,
1122 {
1123 self
1124 }
1125
1126 /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
1127 ///
1128 /// The returned type implements [`Iterator`] where the [`Item`] is
1129 /// <code>[Result]<[u8], [io::Error]></code>.
1130 /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
1131 /// otherwise. EOF is mapped to returning [`None`] from this iterator.
1132 ///
1133 /// The default implementation calls `read` for each byte,
1134 /// which can be very inefficient for data that's not in memory,
1135 /// such as [`File`]. Consider using a [`BufReader`] in such cases.
1136 ///
1137 /// # Examples
1138 ///
1139 /// [`File`]s implement `Read`:
1140 ///
1141 /// [`Item`]: Iterator::Item
1142 /// [`File`]: crate::fs::File "fs::File"
1143 /// [Result]: crate::result::Result "Result"
1144 /// [io::Error]: self::Error "io::Error"
1145 ///
1146 /// ```no_run
1147 /// use std::io;
1148 /// use std::io::prelude::*;
1149 /// use std::io::BufReader;
1150 /// use std::fs::File;
1151 ///
1152 /// fn main() -> io::Result<()> {
1153 /// let f = BufReader::new(File::open("foo.txt")?);
1154 ///
1155 /// for byte in f.bytes() {
1156 /// println!("{}", byte?);
1157 /// }
1158 /// Ok(())
1159 /// }
1160 /// ```
1161 #[stable(feature = "rust1", since = "1.0.0")]
1162 fn bytes(self) -> Bytes<Self>
1163 where
1164 Self: Sized,
1165 {
1166 Bytes { inner: self }
1167 }
1168
1169 /// Creates an adapter which will chain this stream with another.
1170 ///
1171 /// The returned `Read` instance will first read all bytes from this object
1172 /// until EOF is encountered. Afterwards the output is equivalent to the
1173 /// output of `next`.
1174 ///
1175 /// # Examples
1176 ///
1177 /// [`File`]s implement `Read`:
1178 ///
1179 /// [`File`]: crate::fs::File
1180 ///
1181 /// ```no_run
1182 /// use std::io;
1183 /// use std::io::prelude::*;
1184 /// use std::fs::File;
1185 ///
1186 /// fn main() -> io::Result<()> {
1187 /// let f1 = File::open("foo.txt")?;
1188 /// let f2 = File::open("bar.txt")?;
1189 ///
1190 /// let mut handle = f1.chain(f2);
1191 /// let mut buffer = String::new();
1192 ///
1193 /// // read the value into a String. We could use any Read method here,
1194 /// // this is just one example.
1195 /// handle.read_to_string(&mut buffer)?;
1196 /// Ok(())
1197 /// }
1198 /// ```
1199 #[stable(feature = "rust1", since = "1.0.0")]
1200 fn chain<R: Read>(self, next: R) -> Chain<Self, R>
1201 where
1202 Self: Sized,
1203 {
1204 Chain { first: self, second: next, done_first: false }
1205 }
1206
1207 /// Creates an adapter which will read at most `limit` bytes from it.
1208 ///
1209 /// This function returns a new instance of `Read` which will read at most
1210 /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
1211 /// read errors will not count towards the number of bytes read and future
1212 /// calls to [`read()`] may succeed.
1213 ///
1214 /// # Examples
1215 ///
1216 /// [`File`]s implement `Read`:
1217 ///
1218 /// [`File`]: crate::fs::File
1219 /// [`Ok(0)`]: Ok
1220 /// [`read()`]: Read::read
1221 ///
1222 /// ```no_run
1223 /// use std::io;
1224 /// use std::io::prelude::*;
1225 /// use std::fs::File;
1226 ///
1227 /// fn main() -> io::Result<()> {
1228 /// let f = File::open("foo.txt")?;
1229 /// let mut buffer = [0; 5];
1230 ///
1231 /// // read at most five bytes
1232 /// let mut handle = f.take(5);
1233 ///
1234 /// handle.read(&mut buffer)?;
1235 /// Ok(())
1236 /// }
1237 /// ```
1238 #[stable(feature = "rust1", since = "1.0.0")]
1239 fn take(self, limit: u64) -> Take<Self>
1240 where
1241 Self: Sized,
1242 {
1243 Take { inner: self, len: limit, limit }
1244 }
1245
1246 /// Read and return a fixed array of bytes from this source.
1247 ///
1248 /// This function uses an array sized based on a const generic size known at compile time. You
1249 /// can specify the size with turbofish (`reader.read_array::<8>()`), or let type inference
1250 /// determine the number of bytes needed based on how the return value gets used. For instance,
1251 /// this function works well with functions like [`u64::from_le_bytes`] to turn an array of
1252 /// bytes into an integer of the same size.
1253 ///
1254 /// Like `read_exact`, if this function encounters an "end of file" before reading the desired
1255 /// number of bytes, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
1256 ///
1257 /// ```
1258 /// #![feature(read_array)]
1259 /// use std::io::Cursor;
1260 /// use std::io::prelude::*;
1261 ///
1262 /// fn main() -> std::io::Result<()> {
1263 /// let mut buf = Cursor::new([1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2]);
1264 /// let x = u64::from_le_bytes(buf.read_array()?);
1265 /// let y = u32::from_be_bytes(buf.read_array()?);
1266 /// let z = u16::from_be_bytes(buf.read_array()?);
1267 /// assert_eq!(x, 0x807060504030201);
1268 /// assert_eq!(y, 0x9080706);
1269 /// assert_eq!(z, 0x504);
1270 /// Ok(())
1271 /// }
1272 /// ```
1273 #[unstable(feature = "read_array", issue = "148848")]
1274 fn read_array<const N: usize>(&mut self) -> Result<[u8; N]>
1275 where
1276 Self: Sized,
1277 {
1278 let mut buf = [MaybeUninit::uninit(); N];
1279 let mut borrowed_buf = BorrowedBuf::from(buf.as_mut_slice());
1280 self.read_buf_exact(borrowed_buf.unfilled())?;
1281 // Guard against incorrect `read_buf_exact` implementations.
1282 assert_eq!(borrowed_buf.len(), N);
1283 Ok(unsafe { MaybeUninit::array_assume_init(buf) })
1284 }
1285}
1286
1287/// Reads all bytes from a [reader][Read] into a new [`String`].
1288///
1289/// This is a convenience function for [`Read::read_to_string`]. Using this
1290/// function avoids having to create a variable first and provides more type
1291/// safety since you can only get the buffer out if there were no errors. (If you
1292/// use [`Read::read_to_string`] you have to remember to check whether the read
1293/// succeeded because otherwise your buffer will be empty or only partially full.)
1294///
1295/// # Performance
1296///
1297/// The downside of this function's increased ease of use and type safety is
1298/// that it gives you less control over performance. For example, you can't
1299/// pre-allocate memory like you can using [`String::with_capacity`] and
1300/// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
1301/// occurs while reading.
1302///
1303/// In many cases, this function's performance will be adequate and the ease of use
1304/// and type safety tradeoffs will be worth it. However, there are cases where you
1305/// need more control over performance, and in those cases you should definitely use
1306/// [`Read::read_to_string`] directly.
1307///
1308/// Note that in some special cases, such as when reading files, this function will
1309/// pre-allocate memory based on the size of the input it is reading. In those
1310/// cases, the performance should be as good as if you had used
1311/// [`Read::read_to_string`] with a manually pre-allocated buffer.
1312///
1313/// # Errors
1314///
1315/// This function forces you to handle errors because the output (the `String`)
1316/// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
1317/// that can occur. If any error occurs, you will get an [`Err`], so you
1318/// don't have to worry about your buffer being empty or partially full.
1319///
1320/// # Examples
1321///
1322/// ```no_run
1323/// # use std::io;
1324/// fn main() -> io::Result<()> {
1325/// let stdin = io::read_to_string(io::stdin())?;
1326/// println!("Stdin was:");
1327/// println!("{stdin}");
1328/// Ok(())
1329/// }
1330/// ```
1331///
1332/// # Usage Notes
1333///
1334/// `read_to_string` attempts to read a source until EOF, but many sources are continuous streams
1335/// that do not send EOF. In these cases, `read_to_string` will block indefinitely. Standard input
1336/// is one such stream which may be finite if piped, but is typically continuous. For example,
1337/// `cat file | my-rust-program` will correctly terminate with an `EOF` upon closure of cat.
1338/// Reading user input or running programs that remain open indefinitely will never terminate
1339/// the stream with `EOF` (e.g. `yes | my-rust-program`).
1340///
1341/// Using `.lines()` with a [`BufReader`] or using [`read`] can provide a better solution
1342///
1343///[`read`]: Read::read
1344///
1345#[stable(feature = "io_read_to_string", since = "1.65.0")]
1346pub fn read_to_string<R: Read>(mut reader: R) -> Result<String> {
1347 let mut buf = String::new();
1348 reader.read_to_string(&mut buf)?;
1349 Ok(buf)
1350}
1351
1352/// A buffer type used with `Read::read_vectored`.
1353///
1354/// It is semantically a wrapper around a `&mut [u8]`, but is guaranteed to be
1355/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1356/// Windows.
1357#[stable(feature = "iovec", since = "1.36.0")]
1358#[repr(transparent)]
1359pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
1360
1361#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1362unsafe impl<'a> Send for IoSliceMut<'a> {}
1363
1364#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1365unsafe impl<'a> Sync for IoSliceMut<'a> {}
1366
1367#[stable(feature = "iovec", since = "1.36.0")]
1368impl<'a> fmt::Debug for IoSliceMut<'a> {
1369 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1370 fmt::Debug::fmt(self.0.as_slice(), fmt)
1371 }
1372}
1373
1374impl<'a> IoSliceMut<'a> {
1375 /// Creates a new `IoSliceMut` wrapping a byte slice.
1376 ///
1377 /// # Panics
1378 ///
1379 /// Panics on Windows if the slice is larger than 4GB.
1380 #[stable(feature = "iovec", since = "1.36.0")]
1381 #[inline]
1382 pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
1383 IoSliceMut(sys::io::IoSliceMut::new(buf))
1384 }
1385
1386 /// Advance the internal cursor of the slice.
1387 ///
1388 /// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
1389 /// multiple buffers.
1390 ///
1391 /// # Panics
1392 ///
1393 /// Panics when trying to advance beyond the end of the slice.
1394 ///
1395 /// # Examples
1396 ///
1397 /// ```
1398 /// use std::io::IoSliceMut;
1399 /// use std::ops::Deref;
1400 ///
1401 /// let mut data = [1; 8];
1402 /// let mut buf = IoSliceMut::new(&mut data);
1403 ///
1404 /// // Mark 3 bytes as read.
1405 /// buf.advance(3);
1406 /// assert_eq!(buf.deref(), [1; 5].as_ref());
1407 /// ```
1408 #[stable(feature = "io_slice_advance", since = "1.81.0")]
1409 #[inline]
1410 pub fn advance(&mut self, n: usize) {
1411 self.0.advance(n)
1412 }
1413
1414 /// Advance a slice of slices.
1415 ///
1416 /// Shrinks the slice to remove any `IoSliceMut`s that are fully advanced over.
1417 /// If the cursor ends up in the middle of an `IoSliceMut`, it is modified
1418 /// to start at that cursor.
1419 ///
1420 /// For example, if we have a slice of two 8-byte `IoSliceMut`s, and we advance by 10 bytes,
1421 /// the result will only include the second `IoSliceMut`, advanced by 2 bytes.
1422 ///
1423 /// # Panics
1424 ///
1425 /// Panics when trying to advance beyond the end of the slices.
1426 ///
1427 /// # Examples
1428 ///
1429 /// ```
1430 /// use std::io::IoSliceMut;
1431 /// use std::ops::Deref;
1432 ///
1433 /// let mut buf1 = [1; 8];
1434 /// let mut buf2 = [2; 16];
1435 /// let mut buf3 = [3; 8];
1436 /// let mut bufs = &mut [
1437 /// IoSliceMut::new(&mut buf1),
1438 /// IoSliceMut::new(&mut buf2),
1439 /// IoSliceMut::new(&mut buf3),
1440 /// ][..];
1441 ///
1442 /// // Mark 10 bytes as read.
1443 /// IoSliceMut::advance_slices(&mut bufs, 10);
1444 /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1445 /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1446 /// ```
1447 #[stable(feature = "io_slice_advance", since = "1.81.0")]
1448 #[inline]
1449 pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
1450 // Number of buffers to remove.
1451 let mut remove = 0;
1452 // Remaining length before reaching n.
1453 let mut left = n;
1454 for buf in bufs.iter() {
1455 if let Some(remainder) = left.checked_sub(buf.len()) {
1456 left = remainder;
1457 remove += 1;
1458 } else {
1459 break;
1460 }
1461 }
1462
1463 *bufs = &mut take(bufs)[remove..];
1464 if bufs.is_empty() {
1465 assert!(left == 0, "advancing io slices beyond their length");
1466 } else {
1467 bufs[0].advance(left);
1468 }
1469 }
1470
1471 /// Get the underlying bytes as a mutable slice with the original lifetime.
1472 ///
1473 /// # Examples
1474 ///
1475 /// ```
1476 /// #![feature(io_slice_as_bytes)]
1477 /// use std::io::IoSliceMut;
1478 ///
1479 /// let mut data = *b"abcdef";
1480 /// let io_slice = IoSliceMut::new(&mut data);
1481 /// io_slice.into_slice()[0] = b'A';
1482 ///
1483 /// assert_eq!(&data, b"Abcdef");
1484 /// ```
1485 #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1486 pub const fn into_slice(self) -> &'a mut [u8] {
1487 self.0.into_slice()
1488 }
1489}
1490
1491#[stable(feature = "iovec", since = "1.36.0")]
1492impl<'a> Deref for IoSliceMut<'a> {
1493 type Target = [u8];
1494
1495 #[inline]
1496 fn deref(&self) -> &[u8] {
1497 self.0.as_slice()
1498 }
1499}
1500
1501#[stable(feature = "iovec", since = "1.36.0")]
1502impl<'a> DerefMut for IoSliceMut<'a> {
1503 #[inline]
1504 fn deref_mut(&mut self) -> &mut [u8] {
1505 self.0.as_mut_slice()
1506 }
1507}
1508
1509/// A buffer type used with `Write::write_vectored`.
1510///
1511/// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
1512/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1513/// Windows.
1514#[stable(feature = "iovec", since = "1.36.0")]
1515#[derive(Copy, Clone)]
1516#[repr(transparent)]
1517pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
1518
1519#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1520unsafe impl<'a> Send for IoSlice<'a> {}
1521
1522#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1523unsafe impl<'a> Sync for IoSlice<'a> {}
1524
1525#[stable(feature = "iovec", since = "1.36.0")]
1526impl<'a> fmt::Debug for IoSlice<'a> {
1527 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1528 fmt::Debug::fmt(self.0.as_slice(), fmt)
1529 }
1530}
1531
1532impl<'a> IoSlice<'a> {
1533 /// Creates a new `IoSlice` wrapping a byte slice.
1534 ///
1535 /// # Panics
1536 ///
1537 /// Panics on Windows if the slice is larger than 4GB.
1538 #[stable(feature = "iovec", since = "1.36.0")]
1539 #[must_use]
1540 #[inline]
1541 pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
1542 IoSlice(sys::io::IoSlice::new(buf))
1543 }
1544
1545 /// Advance the internal cursor of the slice.
1546 ///
1547 /// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
1548 /// buffers.
1549 ///
1550 /// # Panics
1551 ///
1552 /// Panics when trying to advance beyond the end of the slice.
1553 ///
1554 /// # Examples
1555 ///
1556 /// ```
1557 /// use std::io::IoSlice;
1558 /// use std::ops::Deref;
1559 ///
1560 /// let data = [1; 8];
1561 /// let mut buf = IoSlice::new(&data);
1562 ///
1563 /// // Mark 3 bytes as read.
1564 /// buf.advance(3);
1565 /// assert_eq!(buf.deref(), [1; 5].as_ref());
1566 /// ```
1567 #[stable(feature = "io_slice_advance", since = "1.81.0")]
1568 #[inline]
1569 pub fn advance(&mut self, n: usize) {
1570 self.0.advance(n)
1571 }
1572
1573 /// Advance a slice of slices.
1574 ///
1575 /// Shrinks the slice to remove any `IoSlice`s that are fully advanced over.
1576 /// If the cursor ends up in the middle of an `IoSlice`, it is modified
1577 /// to start at that cursor.
1578 ///
1579 /// For example, if we have a slice of two 8-byte `IoSlice`s, and we advance by 10 bytes,
1580 /// the result will only include the second `IoSlice`, advanced by 2 bytes.
1581 ///
1582 /// # Panics
1583 ///
1584 /// Panics when trying to advance beyond the end of the slices.
1585 ///
1586 /// # Examples
1587 ///
1588 /// ```
1589 /// use std::io::IoSlice;
1590 /// use std::ops::Deref;
1591 ///
1592 /// let buf1 = [1; 8];
1593 /// let buf2 = [2; 16];
1594 /// let buf3 = [3; 8];
1595 /// let mut bufs = &mut [
1596 /// IoSlice::new(&buf1),
1597 /// IoSlice::new(&buf2),
1598 /// IoSlice::new(&buf3),
1599 /// ][..];
1600 ///
1601 /// // Mark 10 bytes as written.
1602 /// IoSlice::advance_slices(&mut bufs, 10);
1603 /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1604 /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1605 #[stable(feature = "io_slice_advance", since = "1.81.0")]
1606 #[inline]
1607 pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
1608 // Number of buffers to remove.
1609 let mut remove = 0;
1610 // Remaining length before reaching n. This prevents overflow
1611 // that could happen if the length of slices in `bufs` were instead
1612 // accumulated. Those slice may be aliased and, if they are large
1613 // enough, their added length may overflow a `usize`.
1614 let mut left = n;
1615 for buf in bufs.iter() {
1616 if let Some(remainder) = left.checked_sub(buf.len()) {
1617 left = remainder;
1618 remove += 1;
1619 } else {
1620 break;
1621 }
1622 }
1623
1624 *bufs = &mut take(bufs)[remove..];
1625 if bufs.is_empty() {
1626 assert!(left == 0, "advancing io slices beyond their length");
1627 } else {
1628 bufs[0].advance(left);
1629 }
1630 }
1631
1632 /// Get the underlying bytes as a slice with the original lifetime.
1633 ///
1634 /// This doesn't borrow from `self`, so is less restrictive than calling
1635 /// `.deref()`, which does.
1636 ///
1637 /// # Examples
1638 ///
1639 /// ```
1640 /// #![feature(io_slice_as_bytes)]
1641 /// use std::io::IoSlice;
1642 ///
1643 /// let data = b"abcdef";
1644 ///
1645 /// let mut io_slice = IoSlice::new(data);
1646 /// let tail = &io_slice.as_slice()[3..];
1647 ///
1648 /// // This works because `tail` doesn't borrow `io_slice`
1649 /// io_slice = IoSlice::new(tail);
1650 ///
1651 /// assert_eq!(io_slice.as_slice(), b"def");
1652 /// ```
1653 #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1654 pub const fn as_slice(self) -> &'a [u8] {
1655 self.0.as_slice()
1656 }
1657}
1658
1659#[stable(feature = "iovec", since = "1.36.0")]
1660impl<'a> Deref for IoSlice<'a> {
1661 type Target = [u8];
1662
1663 #[inline]
1664 fn deref(&self) -> &[u8] {
1665 self.0.as_slice()
1666 }
1667}
1668
1669/// A trait for objects which are byte-oriented sinks.
1670///
1671/// Implementors of the `Write` trait are sometimes called 'writers'.
1672///
1673/// Writers are defined by two required methods, [`write`] and [`flush`]:
1674///
1675/// * The [`write`] method will attempt to write some data into the object,
1676/// returning how many bytes were successfully written.
1677///
1678/// * The [`flush`] method is useful for adapters and explicit buffers
1679/// themselves for ensuring that all buffered data has been pushed out to the
1680/// 'true sink'.
1681///
1682/// Writers are intended to be composable with one another. Many implementors
1683/// throughout [`std::io`] take and provide types which implement the `Write`
1684/// trait.
1685///
1686/// [`write`]: Write::write
1687/// [`flush`]: Write::flush
1688/// [`std::io`]: self
1689///
1690/// # Examples
1691///
1692/// ```no_run
1693/// use std::io::prelude::*;
1694/// use std::fs::File;
1695///
1696/// fn main() -> std::io::Result<()> {
1697/// let data = b"some bytes";
1698///
1699/// let mut pos = 0;
1700/// let mut buffer = File::create("foo.txt")?;
1701///
1702/// while pos < data.len() {
1703/// let bytes_written = buffer.write(&data[pos..])?;
1704/// pos += bytes_written;
1705/// }
1706/// Ok(())
1707/// }
1708/// ```
1709///
1710/// The trait also provides convenience methods like [`write_all`], which calls
1711/// `write` in a loop until its entire input has been written.
1712///
1713/// [`write_all`]: Write::write_all
1714#[stable(feature = "rust1", since = "1.0.0")]
1715#[doc(notable_trait)]
1716#[cfg_attr(not(test), rustc_diagnostic_item = "IoWrite")]
1717pub trait Write {
1718 /// Writes a buffer into this writer, returning how many bytes were written.
1719 ///
1720 /// This function will attempt to write the entire contents of `buf`, but
1721 /// the entire write might not succeed, or the write may also generate an
1722 /// error. Typically, a call to `write` represents one attempt to write to
1723 /// any wrapped object.
1724 ///
1725 /// Calls to `write` are not guaranteed to block waiting for data to be
1726 /// written, and a write which would otherwise block can be indicated through
1727 /// an [`Err`] variant.
1728 ///
1729 /// If this method consumed `n > 0` bytes of `buf` it must return [`Ok(n)`].
1730 /// If the return value is `Ok(n)` then `n` must satisfy `n <= buf.len()`.
1731 /// A return value of `Ok(0)` typically means that the underlying object is
1732 /// no longer able to accept bytes and will likely not be able to in the
1733 /// future as well, or that the buffer provided is empty.
1734 ///
1735 /// # Errors
1736 ///
1737 /// Each call to `write` may generate an I/O error indicating that the
1738 /// operation could not be completed. If an error is returned then no bytes
1739 /// in the buffer were written to this writer.
1740 ///
1741 /// It is **not** considered an error if the entire buffer could not be
1742 /// written to this writer.
1743 ///
1744 /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
1745 /// write operation should be retried if there is nothing else to do.
1746 ///
1747 /// # Examples
1748 ///
1749 /// ```no_run
1750 /// use std::io::prelude::*;
1751 /// use std::fs::File;
1752 ///
1753 /// fn main() -> std::io::Result<()> {
1754 /// let mut buffer = File::create("foo.txt")?;
1755 ///
1756 /// // Writes some prefix of the byte string, not necessarily all of it.
1757 /// buffer.write(b"some bytes")?;
1758 /// Ok(())
1759 /// }
1760 /// ```
1761 ///
1762 /// [`Ok(n)`]: Ok
1763 #[stable(feature = "rust1", since = "1.0.0")]
1764 fn write(&mut self, buf: &[u8]) -> Result<usize>;
1765
1766 /// Like [`write`], except that it writes from a slice of buffers.
1767 ///
1768 /// Data is copied from each buffer in order, with the final buffer
1769 /// read from possibly being only partially consumed. This method must
1770 /// behave as a call to [`write`] with the buffers concatenated would.
1771 ///
1772 /// The default implementation calls [`write`] with either the first nonempty
1773 /// buffer provided, or an empty one if none exists.
1774 ///
1775 /// # Examples
1776 ///
1777 /// ```no_run
1778 /// use std::io::IoSlice;
1779 /// use std::io::prelude::*;
1780 /// use std::fs::File;
1781 ///
1782 /// fn main() -> std::io::Result<()> {
1783 /// let data1 = [1; 8];
1784 /// let data2 = [15; 8];
1785 /// let io_slice1 = IoSlice::new(&data1);
1786 /// let io_slice2 = IoSlice::new(&data2);
1787 ///
1788 /// let mut buffer = File::create("foo.txt")?;
1789 ///
1790 /// // Writes some prefix of the byte string, not necessarily all of it.
1791 /// buffer.write_vectored(&[io_slice1, io_slice2])?;
1792 /// Ok(())
1793 /// }
1794 /// ```
1795 ///
1796 /// [`write`]: Write::write
1797 #[stable(feature = "iovec", since = "1.36.0")]
1798 fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
1799 default_write_vectored(|b| self.write(b), bufs)
1800 }
1801
1802 /// Determines if this `Write`r has an efficient [`write_vectored`]
1803 /// implementation.
1804 ///
1805 /// If a `Write`r does not override the default [`write_vectored`]
1806 /// implementation, code using it may want to avoid the method all together
1807 /// and coalesce writes into a single buffer for higher performance.
1808 ///
1809 /// The default implementation returns `false`.
1810 ///
1811 /// [`write_vectored`]: Write::write_vectored
1812 #[unstable(feature = "can_vector", issue = "69941")]
1813 fn is_write_vectored(&self) -> bool {
1814 false
1815 }
1816
1817 /// Flushes this output stream, ensuring that all intermediately buffered
1818 /// contents reach their destination.
1819 ///
1820 /// # Errors
1821 ///
1822 /// It is considered an error if not all bytes could be written due to
1823 /// I/O errors or EOF being reached.
1824 ///
1825 /// # Examples
1826 ///
1827 /// ```no_run
1828 /// use std::io::prelude::*;
1829 /// use std::io::BufWriter;
1830 /// use std::fs::File;
1831 ///
1832 /// fn main() -> std::io::Result<()> {
1833 /// let mut buffer = BufWriter::new(File::create("foo.txt")?);
1834 ///
1835 /// buffer.write_all(b"some bytes")?;
1836 /// buffer.flush()?;
1837 /// Ok(())
1838 /// }
1839 /// ```
1840 #[stable(feature = "rust1", since = "1.0.0")]
1841 fn flush(&mut self) -> Result<()>;
1842
1843 /// Attempts to write an entire buffer into this writer.
1844 ///
1845 /// This method will continuously call [`write`] until there is no more data
1846 /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
1847 /// returned. This method will not return until the entire buffer has been
1848 /// successfully written or such an error occurs. The first error that is
1849 /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
1850 /// returned.
1851 ///
1852 /// If the buffer contains no data, this will never call [`write`].
1853 ///
1854 /// # Errors
1855 ///
1856 /// This function will return the first error of
1857 /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
1858 ///
1859 /// [`write`]: Write::write
1860 ///
1861 /// # Examples
1862 ///
1863 /// ```no_run
1864 /// use std::io::prelude::*;
1865 /// use std::fs::File;
1866 ///
1867 /// fn main() -> std::io::Result<()> {
1868 /// let mut buffer = File::create("foo.txt")?;
1869 ///
1870 /// buffer.write_all(b"some bytes")?;
1871 /// Ok(())
1872 /// }
1873 /// ```
1874 #[stable(feature = "rust1", since = "1.0.0")]
1875 fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
1876 while !buf.is_empty() {
1877 match self.write(buf) {
1878 Ok(0) => {
1879 return Err(Error::WRITE_ALL_EOF);
1880 }
1881 Ok(n) => buf = &buf[n..],
1882 Err(ref e) if e.is_interrupted() => {}
1883 Err(e) => return Err(e),
1884 }
1885 }
1886 Ok(())
1887 }
1888
1889 /// Attempts to write multiple buffers into this writer.
1890 ///
1891 /// This method will continuously call [`write_vectored`] until there is no
1892 /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
1893 /// kind is returned. This method will not return until all buffers have
1894 /// been successfully written or such an error occurs. The first error that
1895 /// is not of [`ErrorKind::Interrupted`] kind generated from this method
1896 /// will be returned.
1897 ///
1898 /// If the buffer contains no data, this will never call [`write_vectored`].
1899 ///
1900 /// # Notes
1901 ///
1902 /// Unlike [`write_vectored`], this takes a *mutable* reference to
1903 /// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
1904 /// modify the slice to keep track of the bytes already written.
1905 ///
1906 /// Once this function returns, the contents of `bufs` are unspecified, as
1907 /// this depends on how many calls to [`write_vectored`] were necessary. It is
1908 /// best to understand this function as taking ownership of `bufs` and to
1909 /// not use `bufs` afterwards. The underlying buffers, to which the
1910 /// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
1911 /// can be reused.
1912 ///
1913 /// [`write_vectored`]: Write::write_vectored
1914 ///
1915 /// # Examples
1916 ///
1917 /// ```
1918 /// #![feature(write_all_vectored)]
1919 /// # fn main() -> std::io::Result<()> {
1920 ///
1921 /// use std::io::{Write, IoSlice};
1922 ///
1923 /// let mut writer = Vec::new();
1924 /// let bufs = &mut [
1925 /// IoSlice::new(&[1]),
1926 /// IoSlice::new(&[2, 3]),
1927 /// IoSlice::new(&[4, 5, 6]),
1928 /// ];
1929 ///
1930 /// writer.write_all_vectored(bufs)?;
1931 /// // Note: the contents of `bufs` is now undefined, see the Notes section.
1932 ///
1933 /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
1934 /// # Ok(()) }
1935 /// ```
1936 #[unstable(feature = "write_all_vectored", issue = "70436")]
1937 fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
1938 // Guarantee that bufs is empty if it contains no data,
1939 // to avoid calling write_vectored if there is no data to be written.
1940 IoSlice::advance_slices(&mut bufs, 0);
1941 while !bufs.is_empty() {
1942 match self.write_vectored(bufs) {
1943 Ok(0) => {
1944 return Err(Error::WRITE_ALL_EOF);
1945 }
1946 Ok(n) => IoSlice::advance_slices(&mut bufs, n),
1947 Err(ref e) if e.is_interrupted() => {}
1948 Err(e) => return Err(e),
1949 }
1950 }
1951 Ok(())
1952 }
1953
1954 /// Writes a formatted string into this writer, returning any error
1955 /// encountered.
1956 ///
1957 /// This method is primarily used to interface with the
1958 /// [`format_args!()`] macro, and it is rare that this should
1959 /// explicitly be called. The [`write!()`] macro should be favored to
1960 /// invoke this method instead.
1961 ///
1962 /// This function internally uses the [`write_all`] method on
1963 /// this trait and hence will continuously write data so long as no errors
1964 /// are received. This also means that partial writes are not indicated in
1965 /// this signature.
1966 ///
1967 /// [`write_all`]: Write::write_all
1968 ///
1969 /// # Errors
1970 ///
1971 /// This function will return any I/O error reported while formatting.
1972 ///
1973 /// # Examples
1974 ///
1975 /// ```no_run
1976 /// use std::io::prelude::*;
1977 /// use std::fs::File;
1978 ///
1979 /// fn main() -> std::io::Result<()> {
1980 /// let mut buffer = File::create("foo.txt")?;
1981 ///
1982 /// // this call
1983 /// write!(buffer, "{:.*}", 2, 1.234567)?;
1984 /// // turns into this:
1985 /// buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
1986 /// Ok(())
1987 /// }
1988 /// ```
1989 #[stable(feature = "rust1", since = "1.0.0")]
1990 fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> Result<()> {
1991 if let Some(s) = args.as_statically_known_str() {
1992 self.write_all(s.as_bytes())
1993 } else {
1994 default_write_fmt(self, args)
1995 }
1996 }
1997
1998 /// Creates a "by reference" adapter for this instance of `Write`.
1999 ///
2000 /// The returned adapter also implements `Write` and will simply borrow this
2001 /// current writer.
2002 ///
2003 /// # Examples
2004 ///
2005 /// ```no_run
2006 /// use std::io::Write;
2007 /// use std::fs::File;
2008 ///
2009 /// fn main() -> std::io::Result<()> {
2010 /// let mut buffer = File::create("foo.txt")?;
2011 ///
2012 /// let reference = buffer.by_ref();
2013 ///
2014 /// // we can use reference just like our original buffer
2015 /// reference.write_all(b"some bytes")?;
2016 /// Ok(())
2017 /// }
2018 /// ```
2019 #[stable(feature = "rust1", since = "1.0.0")]
2020 fn by_ref(&mut self) -> &mut Self
2021 where
2022 Self: Sized,
2023 {
2024 self
2025 }
2026}
2027
2028/// The `Seek` trait provides a cursor which can be moved within a stream of
2029/// bytes.
2030///
2031/// The stream typically has a fixed size, allowing seeking relative to either
2032/// end or the current offset.
2033///
2034/// # Examples
2035///
2036/// [`File`]s implement `Seek`:
2037///
2038/// [`File`]: crate::fs::File
2039///
2040/// ```no_run
2041/// use std::io;
2042/// use std::io::prelude::*;
2043/// use std::fs::File;
2044/// use std::io::SeekFrom;
2045///
2046/// fn main() -> io::Result<()> {
2047/// let mut f = File::open("foo.txt")?;
2048///
2049/// // move the cursor 42 bytes from the start of the file
2050/// f.seek(SeekFrom::Start(42))?;
2051/// Ok(())
2052/// }
2053/// ```
2054#[stable(feature = "rust1", since = "1.0.0")]
2055#[cfg_attr(not(test), rustc_diagnostic_item = "IoSeek")]
2056pub trait Seek {
2057 /// Seek to an offset, in bytes, in a stream.
2058 ///
2059 /// A seek beyond the end of a stream is allowed, but behavior is defined
2060 /// by the implementation.
2061 ///
2062 /// If the seek operation completed successfully,
2063 /// this method returns the new position from the start of the stream.
2064 /// That position can be used later with [`SeekFrom::Start`].
2065 ///
2066 /// # Errors
2067 ///
2068 /// Seeking can fail, for example because it might involve flushing a buffer.
2069 ///
2070 /// Seeking to a negative offset is considered an error.
2071 #[stable(feature = "rust1", since = "1.0.0")]
2072 fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
2073
2074 /// Rewind to the beginning of a stream.
2075 ///
2076 /// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
2077 ///
2078 /// # Errors
2079 ///
2080 /// Rewinding can fail, for example because it might involve flushing a buffer.
2081 ///
2082 /// # Example
2083 ///
2084 /// ```no_run
2085 /// use std::io::{Read, Seek, Write};
2086 /// use std::fs::OpenOptions;
2087 ///
2088 /// let mut f = OpenOptions::new()
2089 /// .write(true)
2090 /// .read(true)
2091 /// .create(true)
2092 /// .open("foo.txt")?;
2093 ///
2094 /// let hello = "Hello!\n";
2095 /// write!(f, "{hello}")?;
2096 /// f.rewind()?;
2097 ///
2098 /// let mut buf = String::new();
2099 /// f.read_to_string(&mut buf)?;
2100 /// assert_eq!(&buf, hello);
2101 /// # std::io::Result::Ok(())
2102 /// ```
2103 #[stable(feature = "seek_rewind", since = "1.55.0")]
2104 fn rewind(&mut self) -> Result<()> {
2105 self.seek(SeekFrom::Start(0))?;
2106 Ok(())
2107 }
2108
2109 /// Returns the length of this stream (in bytes).
2110 ///
2111 /// The default implementation uses up to three seek operations. If this
2112 /// method returns successfully, the seek position is unchanged (i.e. the
2113 /// position before calling this method is the same as afterwards).
2114 /// However, if this method returns an error, the seek position is
2115 /// unspecified.
2116 ///
2117 /// If you need to obtain the length of *many* streams and you don't care
2118 /// about the seek position afterwards, you can reduce the number of seek
2119 /// operations by simply calling `seek(SeekFrom::End(0))` and using its
2120 /// return value (it is also the stream length).
2121 ///
2122 /// Note that length of a stream can change over time (for example, when
2123 /// data is appended to a file). So calling this method multiple times does
2124 /// not necessarily return the same length each time.
2125 ///
2126 /// # Example
2127 ///
2128 /// ```no_run
2129 /// #![feature(seek_stream_len)]
2130 /// use std::{
2131 /// io::{self, Seek},
2132 /// fs::File,
2133 /// };
2134 ///
2135 /// fn main() -> io::Result<()> {
2136 /// let mut f = File::open("foo.txt")?;
2137 ///
2138 /// let len = f.stream_len()?;
2139 /// println!("The file is currently {len} bytes long");
2140 /// Ok(())
2141 /// }
2142 /// ```
2143 #[unstable(feature = "seek_stream_len", issue = "59359")]
2144 fn stream_len(&mut self) -> Result<u64> {
2145 stream_len_default(self)
2146 }
2147
2148 /// Returns the current seek position from the start of the stream.
2149 ///
2150 /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
2151 ///
2152 /// # Example
2153 ///
2154 /// ```no_run
2155 /// use std::{
2156 /// io::{self, BufRead, BufReader, Seek},
2157 /// fs::File,
2158 /// };
2159 ///
2160 /// fn main() -> io::Result<()> {
2161 /// let mut f = BufReader::new(File::open("foo.txt")?);
2162 ///
2163 /// let before = f.stream_position()?;
2164 /// f.read_line(&mut String::new())?;
2165 /// let after = f.stream_position()?;
2166 ///
2167 /// println!("The first line was {} bytes long", after - before);
2168 /// Ok(())
2169 /// }
2170 /// ```
2171 #[stable(feature = "seek_convenience", since = "1.51.0")]
2172 fn stream_position(&mut self) -> Result<u64> {
2173 self.seek(SeekFrom::Current(0))
2174 }
2175
2176 /// Seeks relative to the current position.
2177 ///
2178 /// This is equivalent to `self.seek(SeekFrom::Current(offset))` but
2179 /// doesn't return the new position which can allow some implementations
2180 /// such as [`BufReader`] to perform more efficient seeks.
2181 ///
2182 /// # Example
2183 ///
2184 /// ```no_run
2185 /// use std::{
2186 /// io::{self, Seek},
2187 /// fs::File,
2188 /// };
2189 ///
2190 /// fn main() -> io::Result<()> {
2191 /// let mut f = File::open("foo.txt")?;
2192 /// f.seek_relative(10)?;
2193 /// assert_eq!(f.stream_position()?, 10);
2194 /// Ok(())
2195 /// }
2196 /// ```
2197 ///
2198 /// [`BufReader`]: crate::io::BufReader
2199 #[stable(feature = "seek_seek_relative", since = "1.80.0")]
2200 fn seek_relative(&mut self, offset: i64) -> Result<()> {
2201 self.seek(SeekFrom::Current(offset))?;
2202 Ok(())
2203 }
2204}
2205
2206pub(crate) fn stream_len_default<T: Seek + ?Sized>(self_: &mut T) -> Result<u64> {
2207 let old_pos = self_.stream_position()?;
2208 let len = self_.seek(SeekFrom::End(0))?;
2209
2210 // Avoid seeking a third time when we were already at the end of the
2211 // stream. The branch is usually way cheaper than a seek operation.
2212 if old_pos != len {
2213 self_.seek(SeekFrom::Start(old_pos))?;
2214 }
2215
2216 Ok(len)
2217}
2218
2219/// Enumeration of possible methods to seek within an I/O object.
2220///
2221/// It is used by the [`Seek`] trait.
2222#[derive(Copy, PartialEq, Eq, Clone, Debug)]
2223#[stable(feature = "rust1", since = "1.0.0")]
2224#[cfg_attr(not(test), rustc_diagnostic_item = "SeekFrom")]
2225pub enum SeekFrom {
2226 /// Sets the offset to the provided number of bytes.
2227 #[stable(feature = "rust1", since = "1.0.0")]
2228 Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
2229
2230 /// Sets the offset to the size of this object plus the specified number of
2231 /// bytes.
2232 ///
2233 /// It is possible to seek beyond the end of an object, but it's an error to
2234 /// seek before byte 0.
2235 #[stable(feature = "rust1", since = "1.0.0")]
2236 End(#[stable(feature = "rust1", since = "1.0.0")] i64),
2237
2238 /// Sets the offset to the current position plus the specified number of
2239 /// bytes.
2240 ///
2241 /// It is possible to seek beyond the end of an object, but it's an error to
2242 /// seek before byte 0.
2243 #[stable(feature = "rust1", since = "1.0.0")]
2244 Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
2245}
2246
2247fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
2248 let mut read = 0;
2249 loop {
2250 let (done, used) = {
2251 let available = match r.fill_buf() {
2252 Ok(n) => n,
2253 Err(ref e) if e.is_interrupted() => continue,
2254 Err(e) => return Err(e),
2255 };
2256 match memchr::memchr(delim, available) {
2257 Some(i) => {
2258 buf.extend_from_slice(&available[..=i]);
2259 (true, i + 1)
2260 }
2261 None => {
2262 buf.extend_from_slice(available);
2263 (false, available.len())
2264 }
2265 }
2266 };
2267 r.consume(used);
2268 read += used;
2269 if done || used == 0 {
2270 return Ok(read);
2271 }
2272 }
2273}
2274
2275fn skip_until<R: BufRead + ?Sized>(r: &mut R, delim: u8) -> Result<usize> {
2276 let mut read = 0;
2277 loop {
2278 let (done, used) = {
2279 let available = match r.fill_buf() {
2280 Ok(n) => n,
2281 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
2282 Err(e) => return Err(e),
2283 };
2284 match memchr::memchr(delim, available) {
2285 Some(i) => (true, i + 1),
2286 None => (false, available.len()),
2287 }
2288 };
2289 r.consume(used);
2290 read += used;
2291 if done || used == 0 {
2292 return Ok(read);
2293 }
2294 }
2295}
2296
2297/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
2298/// to perform extra ways of reading.
2299///
2300/// For example, reading line-by-line is inefficient without using a buffer, so
2301/// if you want to read by line, you'll need `BufRead`, which includes a
2302/// [`read_line`] method as well as a [`lines`] iterator.
2303///
2304/// # Examples
2305///
2306/// A locked standard input implements `BufRead`:
2307///
2308/// ```no_run
2309/// use std::io;
2310/// use std::io::prelude::*;
2311///
2312/// let stdin = io::stdin();
2313/// for line in stdin.lock().lines() {
2314/// println!("{}", line?);
2315/// }
2316/// # std::io::Result::Ok(())
2317/// ```
2318///
2319/// If you have something that implements [`Read`], you can use the [`BufReader`
2320/// type][`BufReader`] to turn it into a `BufRead`.
2321///
2322/// For example, [`File`] implements [`Read`], but not `BufRead`.
2323/// [`BufReader`] to the rescue!
2324///
2325/// [`File`]: crate::fs::File
2326/// [`read_line`]: BufRead::read_line
2327/// [`lines`]: BufRead::lines
2328///
2329/// ```no_run
2330/// use std::io::{self, BufReader};
2331/// use std::io::prelude::*;
2332/// use std::fs::File;
2333///
2334/// fn main() -> io::Result<()> {
2335/// let f = File::open("foo.txt")?;
2336/// let f = BufReader::new(f);
2337///
2338/// for line in f.lines() {
2339/// let line = line?;
2340/// println!("{line}");
2341/// }
2342///
2343/// Ok(())
2344/// }
2345/// ```
2346#[stable(feature = "rust1", since = "1.0.0")]
2347#[cfg_attr(not(test), rustc_diagnostic_item = "IoBufRead")]
2348pub trait BufRead: Read {
2349 /// Returns the contents of the internal buffer, filling it with more data, via `Read` methods, if empty.
2350 ///
2351 /// This is a lower-level method and is meant to be used together with [`consume`],
2352 /// which can be used to mark bytes that should not be returned by subsequent calls to `read`.
2353 ///
2354 /// [`consume`]: BufRead::consume
2355 ///
2356 /// Returns an empty buffer when the stream has reached EOF.
2357 ///
2358 /// # Errors
2359 ///
2360 /// This function will return an I/O error if a `Read` method was called, but returned an error.
2361 ///
2362 /// # Examples
2363 ///
2364 /// A locked standard input implements `BufRead`:
2365 ///
2366 /// ```no_run
2367 /// use std::io;
2368 /// use std::io::prelude::*;
2369 ///
2370 /// let stdin = io::stdin();
2371 /// let mut stdin = stdin.lock();
2372 ///
2373 /// let buffer = stdin.fill_buf()?;
2374 ///
2375 /// // work with buffer
2376 /// println!("{buffer:?}");
2377 ///
2378 /// // mark the bytes we worked with as read
2379 /// let length = buffer.len();
2380 /// stdin.consume(length);
2381 /// # std::io::Result::Ok(())
2382 /// ```
2383 #[stable(feature = "rust1", since = "1.0.0")]
2384 fn fill_buf(&mut self) -> Result<&[u8]>;
2385
2386 /// Marks the given `amount` of additional bytes from the internal buffer as having been read.
2387 /// Subsequent calls to `read` only return bytes that have not been marked as read.
2388 ///
2389 /// This is a lower-level method and is meant to be used together with [`fill_buf`],
2390 /// which can be used to fill the internal buffer via `Read` methods.
2391 ///
2392 /// It is a logic error if `amount` exceeds the number of unread bytes in the internal buffer, which is returned by [`fill_buf`].
2393 ///
2394 /// # Examples
2395 ///
2396 /// Since `consume()` is meant to be used with [`fill_buf`],
2397 /// that method's example includes an example of `consume()`.
2398 ///
2399 /// [`fill_buf`]: BufRead::fill_buf
2400 #[stable(feature = "rust1", since = "1.0.0")]
2401 fn consume(&mut self, amount: usize);
2402
2403 /// Checks if there is any data left to be `read`.
2404 ///
2405 /// This function may fill the buffer to check for data,
2406 /// so this function returns `Result<bool>`, not `bool`.
2407 ///
2408 /// The default implementation calls `fill_buf` and checks that the
2409 /// returned slice is empty (which means that there is no data left,
2410 /// since EOF is reached).
2411 ///
2412 /// # Errors
2413 ///
2414 /// This function will return an I/O error if a `Read` method was called, but returned an error.
2415 ///
2416 /// Examples
2417 ///
2418 /// ```
2419 /// #![feature(buf_read_has_data_left)]
2420 /// use std::io;
2421 /// use std::io::prelude::*;
2422 ///
2423 /// let stdin = io::stdin();
2424 /// let mut stdin = stdin.lock();
2425 ///
2426 /// while stdin.has_data_left()? {
2427 /// let mut line = String::new();
2428 /// stdin.read_line(&mut line)?;
2429 /// // work with line
2430 /// println!("{line:?}");
2431 /// }
2432 /// # std::io::Result::Ok(())
2433 /// ```
2434 #[unstable(feature = "buf_read_has_data_left", reason = "recently added", issue = "86423")]
2435 fn has_data_left(&mut self) -> Result<bool> {
2436 self.fill_buf().map(|b| !b.is_empty())
2437 }
2438
2439 /// Reads all bytes into `buf` until the delimiter `byte` or EOF is reached.
2440 ///
2441 /// This function will read bytes from the underlying stream until the
2442 /// delimiter or EOF is found. Once found, all bytes up to, and including,
2443 /// the delimiter (if found) will be appended to `buf`.
2444 ///
2445 /// If successful, this function will return the total number of bytes read.
2446 ///
2447 /// This function is blocking and should be used carefully: it is possible for
2448 /// an attacker to continuously send bytes without ever sending the delimiter
2449 /// or EOF.
2450 ///
2451 /// # Errors
2452 ///
2453 /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2454 /// will otherwise return any errors returned by [`fill_buf`].
2455 ///
2456 /// If an I/O error is encountered then all bytes read so far will be
2457 /// present in `buf` and its length will have been adjusted appropriately.
2458 ///
2459 /// [`fill_buf`]: BufRead::fill_buf
2460 ///
2461 /// # Examples
2462 ///
2463 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2464 /// this example, we use [`Cursor`] to read all the bytes in a byte slice
2465 /// in hyphen delimited segments:
2466 ///
2467 /// ```
2468 /// use std::io::{self, BufRead};
2469 ///
2470 /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
2471 /// let mut buf = vec![];
2472 ///
2473 /// // cursor is at 'l'
2474 /// let num_bytes = cursor.read_until(b'-', &mut buf)
2475 /// .expect("reading from cursor won't fail");
2476 /// assert_eq!(num_bytes, 6);
2477 /// assert_eq!(buf, b"lorem-");
2478 /// buf.clear();
2479 ///
2480 /// // cursor is at 'i'
2481 /// let num_bytes = cursor.read_until(b'-', &mut buf)
2482 /// .expect("reading from cursor won't fail");
2483 /// assert_eq!(num_bytes, 5);
2484 /// assert_eq!(buf, b"ipsum");
2485 /// buf.clear();
2486 ///
2487 /// // cursor is at EOF
2488 /// let num_bytes = cursor.read_until(b'-', &mut buf)
2489 /// .expect("reading from cursor won't fail");
2490 /// assert_eq!(num_bytes, 0);
2491 /// assert_eq!(buf, b"");
2492 /// ```
2493 #[stable(feature = "rust1", since = "1.0.0")]
2494 fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2495 read_until(self, byte, buf)
2496 }
2497
2498 /// Skips all bytes until the delimiter `byte` or EOF is reached.
2499 ///
2500 /// This function will read (and discard) bytes from the underlying stream until the
2501 /// delimiter or EOF is found.
2502 ///
2503 /// If successful, this function will return the total number of bytes read,
2504 /// including the delimiter byte if found.
2505 ///
2506 /// This is useful for efficiently skipping data such as NUL-terminated strings
2507 /// in binary file formats without buffering.
2508 ///
2509 /// This function is blocking and should be used carefully: it is possible for
2510 /// an attacker to continuously send bytes without ever sending the delimiter
2511 /// or EOF.
2512 ///
2513 /// # Errors
2514 ///
2515 /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2516 /// will otherwise return any errors returned by [`fill_buf`].
2517 ///
2518 /// If an I/O error is encountered then all bytes read so far will be
2519 /// present in `buf` and its length will have been adjusted appropriately.
2520 ///
2521 /// [`fill_buf`]: BufRead::fill_buf
2522 ///
2523 /// # Examples
2524 ///
2525 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2526 /// this example, we use [`Cursor`] to read some NUL-terminated information
2527 /// about Ferris from a binary string, skipping the fun fact:
2528 ///
2529 /// ```
2530 /// use std::io::{self, BufRead};
2531 ///
2532 /// let mut cursor = io::Cursor::new(b"Ferris\0Likes long walks on the beach\0Crustacean\0!");
2533 ///
2534 /// // read name
2535 /// let mut name = Vec::new();
2536 /// let num_bytes = cursor.read_until(b'\0', &mut name)
2537 /// .expect("reading from cursor won't fail");
2538 /// assert_eq!(num_bytes, 7);
2539 /// assert_eq!(name, b"Ferris\0");
2540 ///
2541 /// // skip fun fact
2542 /// let num_bytes = cursor.skip_until(b'\0')
2543 /// .expect("reading from cursor won't fail");
2544 /// assert_eq!(num_bytes, 30);
2545 ///
2546 /// // read animal type
2547 /// let mut animal = Vec::new();
2548 /// let num_bytes = cursor.read_until(b'\0', &mut animal)
2549 /// .expect("reading from cursor won't fail");
2550 /// assert_eq!(num_bytes, 11);
2551 /// assert_eq!(animal, b"Crustacean\0");
2552 ///
2553 /// // reach EOF
2554 /// let num_bytes = cursor.skip_until(b'\0')
2555 /// .expect("reading from cursor won't fail");
2556 /// assert_eq!(num_bytes, 1);
2557 /// ```
2558 #[stable(feature = "bufread_skip_until", since = "1.83.0")]
2559 fn skip_until(&mut self, byte: u8) -> Result<usize> {
2560 skip_until(self, byte)
2561 }
2562
2563 /// Reads all bytes until a newline (the `0xA` byte) is reached, and append
2564 /// them to the provided `String` buffer.
2565 ///
2566 /// Previous content of the buffer will be preserved. To avoid appending to
2567 /// the buffer, you need to [`clear`] it first.
2568 ///
2569 /// This function will read bytes from the underlying stream until the
2570 /// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
2571 /// up to, and including, the delimiter (if found) will be appended to
2572 /// `buf`.
2573 ///
2574 /// If successful, this function will return the total number of bytes read.
2575 ///
2576 /// If this function returns [`Ok(0)`], the stream has reached EOF.
2577 ///
2578 /// This function is blocking and should be used carefully: it is possible for
2579 /// an attacker to continuously send bytes without ever sending a newline
2580 /// or EOF. You can use [`take`] to limit the maximum number of bytes read.
2581 ///
2582 /// [`Ok(0)`]: Ok
2583 /// [`clear`]: String::clear
2584 /// [`take`]: crate::io::Read::take
2585 ///
2586 /// # Errors
2587 ///
2588 /// This function has the same error semantics as [`read_until`] and will
2589 /// also return an error if the read bytes are not valid UTF-8. If an I/O
2590 /// error is encountered then `buf` may contain some bytes already read in
2591 /// the event that all data read so far was valid UTF-8.
2592 ///
2593 /// [`read_until`]: BufRead::read_until
2594 ///
2595 /// # Examples
2596 ///
2597 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2598 /// this example, we use [`Cursor`] to read all the lines in a byte slice:
2599 ///
2600 /// ```
2601 /// use std::io::{self, BufRead};
2602 ///
2603 /// let mut cursor = io::Cursor::new(b"foo\nbar");
2604 /// let mut buf = String::new();
2605 ///
2606 /// // cursor is at 'f'
2607 /// let num_bytes = cursor.read_line(&mut buf)
2608 /// .expect("reading from cursor won't fail");
2609 /// assert_eq!(num_bytes, 4);
2610 /// assert_eq!(buf, "foo\n");
2611 /// buf.clear();
2612 ///
2613 /// // cursor is at 'b'
2614 /// let num_bytes = cursor.read_line(&mut buf)
2615 /// .expect("reading from cursor won't fail");
2616 /// assert_eq!(num_bytes, 3);
2617 /// assert_eq!(buf, "bar");
2618 /// buf.clear();
2619 ///
2620 /// // cursor is at EOF
2621 /// let num_bytes = cursor.read_line(&mut buf)
2622 /// .expect("reading from cursor won't fail");
2623 /// assert_eq!(num_bytes, 0);
2624 /// assert_eq!(buf, "");
2625 /// ```
2626 #[stable(feature = "rust1", since = "1.0.0")]
2627 fn read_line(&mut self, buf: &mut String) -> Result<usize> {
2628 // Note that we are not calling the `.read_until` method here, but
2629 // rather our hardcoded implementation. For more details as to why, see
2630 // the comments in `default_read_to_string`.
2631 unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
2632 }
2633
2634 /// Returns an iterator over the contents of this reader split on the byte
2635 /// `byte`.
2636 ///
2637 /// The iterator returned from this function will return instances of
2638 /// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
2639 /// the delimiter byte at the end.
2640 ///
2641 /// This function will yield errors whenever [`read_until`] would have
2642 /// also yielded an error.
2643 ///
2644 /// [io::Result]: self::Result "io::Result"
2645 /// [`read_until`]: BufRead::read_until
2646 ///
2647 /// # Examples
2648 ///
2649 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2650 /// this example, we use [`Cursor`] to iterate over all hyphen delimited
2651 /// segments in a byte slice
2652 ///
2653 /// ```
2654 /// use std::io::{self, BufRead};
2655 ///
2656 /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
2657 ///
2658 /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
2659 /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
2660 /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
2661 /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
2662 /// assert_eq!(split_iter.next(), None);
2663 /// ```
2664 #[stable(feature = "rust1", since = "1.0.0")]
2665 fn split(self, byte: u8) -> Split<Self>
2666 where
2667 Self: Sized,
2668 {
2669 Split { buf: self, delim: byte }
2670 }
2671
2672 /// Returns an iterator over the lines of this reader.
2673 ///
2674 /// The iterator returned from this function will yield instances of
2675 /// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
2676 /// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
2677 ///
2678 /// [io::Result]: self::Result "io::Result"
2679 ///
2680 /// # Examples
2681 ///
2682 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2683 /// this example, we use [`Cursor`] to iterate over all the lines in a byte
2684 /// slice.
2685 ///
2686 /// ```
2687 /// use std::io::{self, BufRead};
2688 ///
2689 /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
2690 ///
2691 /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
2692 /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
2693 /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
2694 /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
2695 /// assert_eq!(lines_iter.next(), None);
2696 /// ```
2697 ///
2698 /// # Errors
2699 ///
2700 /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
2701 #[stable(feature = "rust1", since = "1.0.0")]
2702 fn lines(self) -> Lines<Self>
2703 where
2704 Self: Sized,
2705 {
2706 Lines { buf: self }
2707 }
2708}
2709
2710/// Adapter to chain together two readers.
2711///
2712/// This struct is generally created by calling [`chain`] on a reader.
2713/// Please see the documentation of [`chain`] for more details.
2714///
2715/// [`chain`]: Read::chain
2716#[stable(feature = "rust1", since = "1.0.0")]
2717#[derive(Debug)]
2718pub struct Chain<T, U> {
2719 first: T,
2720 second: U,
2721 done_first: bool,
2722}
2723
2724impl<T, U> Chain<T, U> {
2725 /// Consumes the `Chain`, returning the wrapped readers.
2726 ///
2727 /// # Examples
2728 ///
2729 /// ```no_run
2730 /// use std::io;
2731 /// use std::io::prelude::*;
2732 /// use std::fs::File;
2733 ///
2734 /// fn main() -> io::Result<()> {
2735 /// let mut foo_file = File::open("foo.txt")?;
2736 /// let mut bar_file = File::open("bar.txt")?;
2737 ///
2738 /// let chain = foo_file.chain(bar_file);
2739 /// let (foo_file, bar_file) = chain.into_inner();
2740 /// Ok(())
2741 /// }
2742 /// ```
2743 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2744 pub fn into_inner(self) -> (T, U) {
2745 (self.first, self.second)
2746 }
2747
2748 /// Gets references to the underlying readers in this `Chain`.
2749 ///
2750 /// Care should be taken to avoid modifying the internal I/O state of the
2751 /// underlying readers as doing so may corrupt the internal state of this
2752 /// `Chain`.
2753 ///
2754 /// # Examples
2755 ///
2756 /// ```no_run
2757 /// use std::io;
2758 /// use std::io::prelude::*;
2759 /// use std::fs::File;
2760 ///
2761 /// fn main() -> io::Result<()> {
2762 /// let mut foo_file = File::open("foo.txt")?;
2763 /// let mut bar_file = File::open("bar.txt")?;
2764 ///
2765 /// let chain = foo_file.chain(bar_file);
2766 /// let (foo_file, bar_file) = chain.get_ref();
2767 /// Ok(())
2768 /// }
2769 /// ```
2770 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2771 pub fn get_ref(&self) -> (&T, &U) {
2772 (&self.first, &self.second)
2773 }
2774
2775 /// Gets mutable references to the underlying readers in this `Chain`.
2776 ///
2777 /// Care should be taken to avoid modifying the internal I/O state of the
2778 /// underlying readers as doing so may corrupt the internal state of this
2779 /// `Chain`.
2780 ///
2781 /// # Examples
2782 ///
2783 /// ```no_run
2784 /// use std::io;
2785 /// use std::io::prelude::*;
2786 /// use std::fs::File;
2787 ///
2788 /// fn main() -> io::Result<()> {
2789 /// let mut foo_file = File::open("foo.txt")?;
2790 /// let mut bar_file = File::open("bar.txt")?;
2791 ///
2792 /// let mut chain = foo_file.chain(bar_file);
2793 /// let (foo_file, bar_file) = chain.get_mut();
2794 /// Ok(())
2795 /// }
2796 /// ```
2797 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2798 pub fn get_mut(&mut self) -> (&mut T, &mut U) {
2799 (&mut self.first, &mut self.second)
2800 }
2801}
2802
2803#[stable(feature = "rust1", since = "1.0.0")]
2804impl<T: Read, U: Read> Read for Chain<T, U> {
2805 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2806 if !self.done_first {
2807 match self.first.read(buf)? {
2808 0 if !buf.is_empty() => self.done_first = true,
2809 n => return Ok(n),
2810 }
2811 }
2812 self.second.read(buf)
2813 }
2814
2815 fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
2816 if !self.done_first {
2817 match self.first.read_vectored(bufs)? {
2818 0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
2819 n => return Ok(n),
2820 }
2821 }
2822 self.second.read_vectored(bufs)
2823 }
2824
2825 #[inline]
2826 fn is_read_vectored(&self) -> bool {
2827 self.first.is_read_vectored() || self.second.is_read_vectored()
2828 }
2829
2830 fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
2831 let mut read = 0;
2832 if !self.done_first {
2833 read += self.first.read_to_end(buf)?;
2834 self.done_first = true;
2835 }
2836 read += self.second.read_to_end(buf)?;
2837 Ok(read)
2838 }
2839
2840 // We don't override `read_to_string` here because an UTF-8 sequence could
2841 // be split between the two parts of the chain
2842
2843 fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
2844 if buf.capacity() == 0 {
2845 return Ok(());
2846 }
2847
2848 if !self.done_first {
2849 let old_len = buf.written();
2850 self.first.read_buf(buf.reborrow())?;
2851
2852 if buf.written() != old_len {
2853 return Ok(());
2854 } else {
2855 self.done_first = true;
2856 }
2857 }
2858 self.second.read_buf(buf)
2859 }
2860}
2861
2862#[stable(feature = "chain_bufread", since = "1.9.0")]
2863impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
2864 fn fill_buf(&mut self) -> Result<&[u8]> {
2865 if !self.done_first {
2866 match self.first.fill_buf()? {
2867 buf if buf.is_empty() => self.done_first = true,
2868 buf => return Ok(buf),
2869 }
2870 }
2871 self.second.fill_buf()
2872 }
2873
2874 fn consume(&mut self, amt: usize) {
2875 if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
2876 }
2877
2878 fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2879 let mut read = 0;
2880 if !self.done_first {
2881 let n = self.first.read_until(byte, buf)?;
2882 read += n;
2883
2884 match buf.last() {
2885 Some(b) if *b == byte && n != 0 => return Ok(read),
2886 _ => self.done_first = true,
2887 }
2888 }
2889 read += self.second.read_until(byte, buf)?;
2890 Ok(read)
2891 }
2892
2893 // We don't override `read_line` here because an UTF-8 sequence could be
2894 // split between the two parts of the chain
2895}
2896
2897impl<T, U> SizeHint for Chain<T, U> {
2898 #[inline]
2899 fn lower_bound(&self) -> usize {
2900 SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
2901 }
2902
2903 #[inline]
2904 fn upper_bound(&self) -> Option<usize> {
2905 match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
2906 (Some(first), Some(second)) => first.checked_add(second),
2907 _ => None,
2908 }
2909 }
2910}
2911
2912/// Reader adapter which limits the bytes read from an underlying reader.
2913///
2914/// This struct is generally created by calling [`take`] on a reader.
2915/// Please see the documentation of [`take`] for more details.
2916///
2917/// [`take`]: Read::take
2918#[stable(feature = "rust1", since = "1.0.0")]
2919#[derive(Debug)]
2920pub struct Take<T> {
2921 inner: T,
2922 len: u64,
2923 limit: u64,
2924}
2925
2926impl<T> Take<T> {
2927 /// Returns the number of bytes that can be read before this instance will
2928 /// return EOF.
2929 ///
2930 /// # Note
2931 ///
2932 /// This instance may reach `EOF` after reading fewer bytes than indicated by
2933 /// this method if the underlying [`Read`] instance reaches EOF.
2934 ///
2935 /// # Examples
2936 ///
2937 /// ```no_run
2938 /// use std::io;
2939 /// use std::io::prelude::*;
2940 /// use std::fs::File;
2941 ///
2942 /// fn main() -> io::Result<()> {
2943 /// let f = File::open("foo.txt")?;
2944 ///
2945 /// // read at most five bytes
2946 /// let handle = f.take(5);
2947 ///
2948 /// println!("limit: {}", handle.limit());
2949 /// Ok(())
2950 /// }
2951 /// ```
2952 #[stable(feature = "rust1", since = "1.0.0")]
2953 pub fn limit(&self) -> u64 {
2954 self.limit
2955 }
2956
2957 /// Returns the number of bytes read so far.
2958 #[unstable(feature = "seek_io_take_position", issue = "97227")]
2959 pub fn position(&self) -> u64 {
2960 self.len - self.limit
2961 }
2962
2963 /// Sets the number of bytes that can be read before this instance will
2964 /// return EOF. This is the same as constructing a new `Take` instance, so
2965 /// the amount of bytes read and the previous limit value don't matter when
2966 /// calling this method.
2967 ///
2968 /// # Examples
2969 ///
2970 /// ```no_run
2971 /// use std::io;
2972 /// use std::io::prelude::*;
2973 /// use std::fs::File;
2974 ///
2975 /// fn main() -> io::Result<()> {
2976 /// let f = File::open("foo.txt")?;
2977 ///
2978 /// // read at most five bytes
2979 /// let mut handle = f.take(5);
2980 /// handle.set_limit(10);
2981 ///
2982 /// assert_eq!(handle.limit(), 10);
2983 /// Ok(())
2984 /// }
2985 /// ```
2986 #[stable(feature = "take_set_limit", since = "1.27.0")]
2987 pub fn set_limit(&mut self, limit: u64) {
2988 self.len = limit;
2989 self.limit = limit;
2990 }
2991
2992 /// Consumes the `Take`, returning the wrapped reader.
2993 ///
2994 /// # Examples
2995 ///
2996 /// ```no_run
2997 /// use std::io;
2998 /// use std::io::prelude::*;
2999 /// use std::fs::File;
3000 ///
3001 /// fn main() -> io::Result<()> {
3002 /// let mut file = File::open("foo.txt")?;
3003 ///
3004 /// let mut buffer = [0; 5];
3005 /// let mut handle = file.take(5);
3006 /// handle.read(&mut buffer)?;
3007 ///
3008 /// let file = handle.into_inner();
3009 /// Ok(())
3010 /// }
3011 /// ```
3012 #[stable(feature = "io_take_into_inner", since = "1.15.0")]
3013 pub fn into_inner(self) -> T {
3014 self.inner
3015 }
3016
3017 /// Gets a reference to the underlying reader.
3018 ///
3019 /// Care should be taken to avoid modifying the internal I/O state of the
3020 /// underlying reader as doing so may corrupt the internal limit of this
3021 /// `Take`.
3022 ///
3023 /// # Examples
3024 ///
3025 /// ```no_run
3026 /// use std::io;
3027 /// use std::io::prelude::*;
3028 /// use std::fs::File;
3029 ///
3030 /// fn main() -> io::Result<()> {
3031 /// let mut file = File::open("foo.txt")?;
3032 ///
3033 /// let mut buffer = [0; 5];
3034 /// let mut handle = file.take(5);
3035 /// handle.read(&mut buffer)?;
3036 ///
3037 /// let file = handle.get_ref();
3038 /// Ok(())
3039 /// }
3040 /// ```
3041 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
3042 pub fn get_ref(&self) -> &T {
3043 &self.inner
3044 }
3045
3046 /// Gets a mutable reference to the underlying reader.
3047 ///
3048 /// Care should be taken to avoid modifying the internal I/O state of the
3049 /// underlying reader as doing so may corrupt the internal limit of this
3050 /// `Take`.
3051 ///
3052 /// # Examples
3053 ///
3054 /// ```no_run
3055 /// use std::io;
3056 /// use std::io::prelude::*;
3057 /// use std::fs::File;
3058 ///
3059 /// fn main() -> io::Result<()> {
3060 /// let mut file = File::open("foo.txt")?;
3061 ///
3062 /// let mut buffer = [0; 5];
3063 /// let mut handle = file.take(5);
3064 /// handle.read(&mut buffer)?;
3065 ///
3066 /// let file = handle.get_mut();
3067 /// Ok(())
3068 /// }
3069 /// ```
3070 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
3071 pub fn get_mut(&mut self) -> &mut T {
3072 &mut self.inner
3073 }
3074}
3075
3076#[stable(feature = "rust1", since = "1.0.0")]
3077impl<T: Read> Read for Take<T> {
3078 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
3079 // Don't call into inner reader at all at EOF because it may still block
3080 if self.limit == 0 {
3081 return Ok(0);
3082 }
3083
3084 let max = cmp::min(buf.len() as u64, self.limit) as usize;
3085 let n = self.inner.read(&mut buf[..max])?;
3086 assert!(n as u64 <= self.limit, "number of read bytes exceeds limit");
3087 self.limit -= n as u64;
3088 Ok(n)
3089 }
3090
3091 fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
3092 // Don't call into inner reader at all at EOF because it may still block
3093 if self.limit == 0 {
3094 return Ok(());
3095 }
3096
3097 if self.limit < buf.capacity() as u64 {
3098 // The condition above guarantees that `self.limit` fits in `usize`.
3099 let limit = self.limit as usize;
3100
3101 let extra_init = cmp::min(limit, buf.init_mut().len());
3102
3103 // SAFETY: no uninit data is written to ibuf
3104 let ibuf = unsafe { &mut buf.as_mut()[..limit] };
3105
3106 let mut sliced_buf: BorrowedBuf<'_> = ibuf.into();
3107
3108 // SAFETY: extra_init bytes of ibuf are known to be initialized
3109 unsafe {
3110 sliced_buf.set_init(extra_init);
3111 }
3112
3113 let mut cursor = sliced_buf.unfilled();
3114 let result = self.inner.read_buf(cursor.reborrow());
3115
3116 let new_init = cursor.init_mut().len();
3117 let filled = sliced_buf.len();
3118
3119 // cursor / sliced_buf / ibuf must drop here
3120
3121 unsafe {
3122 // SAFETY: filled bytes have been filled and therefore initialized
3123 buf.advance_unchecked(filled);
3124 // SAFETY: new_init bytes of buf's unfilled buffer have been initialized
3125 buf.set_init(new_init);
3126 }
3127
3128 self.limit -= filled as u64;
3129
3130 result
3131 } else {
3132 let written = buf.written();
3133 let result = self.inner.read_buf(buf.reborrow());
3134 self.limit -= (buf.written() - written) as u64;
3135 result
3136 }
3137 }
3138}
3139
3140#[stable(feature = "rust1", since = "1.0.0")]
3141impl<T: BufRead> BufRead for Take<T> {
3142 fn fill_buf(&mut self) -> Result<&[u8]> {
3143 // Don't call into inner reader at all at EOF because it may still block
3144 if self.limit == 0 {
3145 return Ok(&[]);
3146 }
3147
3148 let buf = self.inner.fill_buf()?;
3149 let cap = cmp::min(buf.len() as u64, self.limit) as usize;
3150 Ok(&buf[..cap])
3151 }
3152
3153 fn consume(&mut self, amt: usize) {
3154 // Don't let callers reset the limit by passing an overlarge value
3155 let amt = cmp::min(amt as u64, self.limit) as usize;
3156 self.limit -= amt as u64;
3157 self.inner.consume(amt);
3158 }
3159}
3160
3161impl<T> SizeHint for Take<T> {
3162 #[inline]
3163 fn lower_bound(&self) -> usize {
3164 cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
3165 }
3166
3167 #[inline]
3168 fn upper_bound(&self) -> Option<usize> {
3169 match SizeHint::upper_bound(&self.inner) {
3170 Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
3171 None => self.limit.try_into().ok(),
3172 }
3173 }
3174}
3175
3176#[stable(feature = "seek_io_take", since = "1.89.0")]
3177impl<T: Seek> Seek for Take<T> {
3178 fn seek(&mut self, pos: SeekFrom) -> Result<u64> {
3179 let new_position = match pos {
3180 SeekFrom::Start(v) => Some(v),
3181 SeekFrom::Current(v) => self.position().checked_add_signed(v),
3182 SeekFrom::End(v) => self.len.checked_add_signed(v),
3183 };
3184 let new_position = match new_position {
3185 Some(v) if v <= self.len => v,
3186 _ => return Err(ErrorKind::InvalidInput.into()),
3187 };
3188 while new_position != self.position() {
3189 if let Some(offset) = new_position.checked_signed_diff(self.position()) {
3190 self.inner.seek_relative(offset)?;
3191 self.limit = self.limit.wrapping_sub(offset as u64);
3192 break;
3193 }
3194 let offset = if new_position > self.position() { i64::MAX } else { i64::MIN };
3195 self.inner.seek_relative(offset)?;
3196 self.limit = self.limit.wrapping_sub(offset as u64);
3197 }
3198 Ok(new_position)
3199 }
3200
3201 fn stream_len(&mut self) -> Result<u64> {
3202 Ok(self.len)
3203 }
3204
3205 fn stream_position(&mut self) -> Result<u64> {
3206 Ok(self.position())
3207 }
3208
3209 fn seek_relative(&mut self, offset: i64) -> Result<()> {
3210 if !self.position().checked_add_signed(offset).is_some_and(|p| p <= self.len) {
3211 return Err(ErrorKind::InvalidInput.into());
3212 }
3213 self.inner.seek_relative(offset)?;
3214 self.limit = self.limit.wrapping_sub(offset as u64);
3215 Ok(())
3216 }
3217}
3218
3219/// An iterator over `u8` values of a reader.
3220///
3221/// This struct is generally created by calling [`bytes`] on a reader.
3222/// Please see the documentation of [`bytes`] for more details.
3223///
3224/// [`bytes`]: Read::bytes
3225#[stable(feature = "rust1", since = "1.0.0")]
3226#[derive(Debug)]
3227pub struct Bytes<R> {
3228 inner: R,
3229}
3230
3231#[stable(feature = "rust1", since = "1.0.0")]
3232impl<R: Read> Iterator for Bytes<R> {
3233 type Item = Result<u8>;
3234
3235 // Not `#[inline]`. This function gets inlined even without it, but having
3236 // the inline annotation can result in worse code generation. See #116785.
3237 fn next(&mut self) -> Option<Result<u8>> {
3238 SpecReadByte::spec_read_byte(&mut self.inner)
3239 }
3240
3241 #[inline]
3242 fn size_hint(&self) -> (usize, Option<usize>) {
3243 SizeHint::size_hint(&self.inner)
3244 }
3245}
3246
3247/// For the specialization of `Bytes::next`.
3248trait SpecReadByte {
3249 fn spec_read_byte(&mut self) -> Option<Result<u8>>;
3250}
3251
3252impl<R> SpecReadByte for R
3253where
3254 Self: Read,
3255{
3256 #[inline]
3257 default fn spec_read_byte(&mut self) -> Option<Result<u8>> {
3258 inlined_slow_read_byte(self)
3259 }
3260}
3261
3262/// Reads a single byte in a slow, generic way. This is used by the default
3263/// `spec_read_byte`.
3264#[inline]
3265fn inlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3266 let mut byte = 0;
3267 loop {
3268 return match reader.read(slice::from_mut(&mut byte)) {
3269 Ok(0) => None,
3270 Ok(..) => Some(Ok(byte)),
3271 Err(ref e) if e.is_interrupted() => continue,
3272 Err(e) => Some(Err(e)),
3273 };
3274 }
3275}
3276
3277// Used by `BufReader::spec_read_byte`, for which the `inline(never)` is
3278// important.
3279#[inline(never)]
3280fn uninlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3281 inlined_slow_read_byte(reader)
3282}
3283
3284trait SizeHint {
3285 fn lower_bound(&self) -> usize;
3286
3287 fn upper_bound(&self) -> Option<usize>;
3288
3289 fn size_hint(&self) -> (usize, Option<usize>) {
3290 (self.lower_bound(), self.upper_bound())
3291 }
3292}
3293
3294impl<T: ?Sized> SizeHint for T {
3295 #[inline]
3296 default fn lower_bound(&self) -> usize {
3297 0
3298 }
3299
3300 #[inline]
3301 default fn upper_bound(&self) -> Option<usize> {
3302 None
3303 }
3304}
3305
3306impl<T> SizeHint for &mut T {
3307 #[inline]
3308 fn lower_bound(&self) -> usize {
3309 SizeHint::lower_bound(*self)
3310 }
3311
3312 #[inline]
3313 fn upper_bound(&self) -> Option<usize> {
3314 SizeHint::upper_bound(*self)
3315 }
3316}
3317
3318impl<T> SizeHint for Box<T> {
3319 #[inline]
3320 fn lower_bound(&self) -> usize {
3321 SizeHint::lower_bound(&**self)
3322 }
3323
3324 #[inline]
3325 fn upper_bound(&self) -> Option<usize> {
3326 SizeHint::upper_bound(&**self)
3327 }
3328}
3329
3330impl SizeHint for &[u8] {
3331 #[inline]
3332 fn lower_bound(&self) -> usize {
3333 self.len()
3334 }
3335
3336 #[inline]
3337 fn upper_bound(&self) -> Option<usize> {
3338 Some(self.len())
3339 }
3340}
3341
3342/// An iterator over the contents of an instance of `BufRead` split on a
3343/// particular byte.
3344///
3345/// This struct is generally created by calling [`split`] on a `BufRead`.
3346/// Please see the documentation of [`split`] for more details.
3347///
3348/// [`split`]: BufRead::split
3349#[stable(feature = "rust1", since = "1.0.0")]
3350#[derive(Debug)]
3351pub struct Split<B> {
3352 buf: B,
3353 delim: u8,
3354}
3355
3356#[stable(feature = "rust1", since = "1.0.0")]
3357impl<B: BufRead> Iterator for Split<B> {
3358 type Item = Result<Vec<u8>>;
3359
3360 fn next(&mut self) -> Option<Result<Vec<u8>>> {
3361 let mut buf = Vec::new();
3362 match self.buf.read_until(self.delim, &mut buf) {
3363 Ok(0) => None,
3364 Ok(_n) => {
3365 if buf[buf.len() - 1] == self.delim {
3366 buf.pop();
3367 }
3368 Some(Ok(buf))
3369 }
3370 Err(e) => Some(Err(e)),
3371 }
3372 }
3373}
3374
3375/// An iterator over the lines of an instance of `BufRead`.
3376///
3377/// This struct is generally created by calling [`lines`] on a `BufRead`.
3378/// Please see the documentation of [`lines`] for more details.
3379///
3380/// [`lines`]: BufRead::lines
3381#[stable(feature = "rust1", since = "1.0.0")]
3382#[derive(Debug)]
3383#[cfg_attr(not(test), rustc_diagnostic_item = "IoLines")]
3384pub struct Lines<B> {
3385 buf: B,
3386}
3387
3388#[stable(feature = "rust1", since = "1.0.0")]
3389impl<B: BufRead> Iterator for Lines<B> {
3390 type Item = Result<String>;
3391
3392 fn next(&mut self) -> Option<Result<String>> {
3393 let mut buf = String::new();
3394 match self.buf.read_line(&mut buf) {
3395 Ok(0) => None,
3396 Ok(_n) => {
3397 if buf.ends_with('\n') {
3398 buf.pop();
3399 if buf.ends_with('\r') {
3400 buf.pop();
3401 }
3402 }
3403 Some(Ok(buf))
3404 }
3405 Err(e) => Some(Err(e)),
3406 }
3407 }
3408}