Thanks to visit codestin.com
Credit goes to doc.rust-lang.org

core/
result.rs

1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//!    Ok(T),
12//!    Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//!     match header.get(0) {
29//!         None => Err("invalid header length"),
30//!         Some(&1) => Ok(Version::Version1),
31//!         Some(&2) => Ok(Version::Version2),
32//!         Some(_) => Err("invalid version"),
33//!     }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//!     Ok(v) => println!("working with version: {v:?}"),
39//!     Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//!     let mut file = File::create("valuable_data.txt")?;
145//!     file.write_all(b"important message")?;
146//!     Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//!     name: String,
167//!     age: i32,
168//!     rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//!     // Early return on error
173//!     let mut file = match File::create("my_best_friends.txt") {
174//!            Err(e) => return Err(e),
175//!            Ok(f) => f,
176//!     };
177//!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//!         return Err(e)
179//!     }
180//!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//!         return Err(e)
182//!     }
183//!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//!         return Err(e)
185//!     }
186//!     Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//!     name: String,
200//!     age: i32,
201//!     rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//!     let mut file = File::create("my_best_friends.txt")?;
206//!     // Early return on error
207//!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//!     Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] will gain the same size, alignment, and ABI
234//! guarantees as [`Option<U>`] has. One of either the `T` or `E` type must be a
235//! type that qualifies for the `Option` [representation guarantees][opt-rep],
236//! and the *other* type must meet all of the following conditions:
237//! * Is a zero-sized type with alignment 1 (a "1-ZST").
238//! * Has no fields.
239//! * Does not have the `#[non_exhaustive]` attribute.
240//!
241//! For example, `NonZeroI32` qualifies for the `Option` representation
242//! guarantees, and `()` is a zero-sized type with alignment 1, no fields, and
243//! it isn't `non_exhaustive`. This means that both `Result<NonZeroI32, ()>` and
244//! `Result<(), NonZeroI32>` have the same size, alignment, and ABI guarantees
245//! as `Option<NonZeroI32>`. The only difference is the implied semantics:
246//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
247//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
248//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
249//!
250//! [opt-rep]: ../option/index.html#representation "Option Representation"
251//!
252//! # Method overview
253//!
254//! In addition to working with pattern matching, [`Result`] provides a
255//! wide variety of different methods.
256//!
257//! ## Querying the variant
258//!
259//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
260//! is [`Ok`] or [`Err`], respectively.
261//!
262//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
263//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
264//! then [`false`] is returned instead without executing the function.
265//!
266//! [`is_err`]: Result::is_err
267//! [`is_ok`]: Result::is_ok
268//! [`is_ok_and`]: Result::is_ok_and
269//! [`is_err_and`]: Result::is_err_and
270//!
271//! ## Adapters for working with references
272//!
273//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
274//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
275//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
276//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
277//!   `Result<&mut T::Target, &mut E>`
278//!
279//! [`as_deref`]: Result::as_deref
280//! [`as_deref_mut`]: Result::as_deref_mut
281//! [`as_mut`]: Result::as_mut
282//! [`as_ref`]: Result::as_ref
283//!
284//! ## Extracting contained values
285//!
286//! These methods extract the contained value in a [`Result<T, E>`] when it
287//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
288//!
289//! * [`expect`] panics with a provided custom message
290//! * [`unwrap`] panics with a generic message
291//! * [`unwrap_or`] returns the provided default value
292//! * [`unwrap_or_default`] returns the default value of the type `T`
293//!   (which must implement the [`Default`] trait)
294//! * [`unwrap_or_else`] returns the result of evaluating the provided
295//!   function
296//! * [`unwrap_unchecked`] produces *[undefined behavior]*
297//!
298//! The panicking methods [`expect`] and [`unwrap`] require `E` to
299//! implement the [`Debug`] trait.
300//!
301//! [`Debug`]: crate::fmt::Debug
302//! [`expect`]: Result::expect
303//! [`unwrap`]: Result::unwrap
304//! [`unwrap_or`]: Result::unwrap_or
305//! [`unwrap_or_default`]: Result::unwrap_or_default
306//! [`unwrap_or_else`]: Result::unwrap_or_else
307//! [`unwrap_unchecked`]: Result::unwrap_unchecked
308//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
309//!
310//! These methods extract the contained value in a [`Result<T, E>`] when it
311//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
312//! trait. If the [`Result`] is [`Ok`]:
313//!
314//! * [`expect_err`] panics with a provided custom message
315//! * [`unwrap_err`] panics with a generic message
316//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
317//!
318//! [`Debug`]: crate::fmt::Debug
319//! [`expect_err`]: Result::expect_err
320//! [`unwrap_err`]: Result::unwrap_err
321//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
322//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
323//!
324//! ## Transforming contained values
325//!
326//! These methods transform [`Result`] to [`Option`]:
327//!
328//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
329//!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
330//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
331//!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
332//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
333//!   [`Option`] of a [`Result`]
334//!
335// Do NOT add link reference definitions for `err` or `ok`, because they
336// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
337// to case folding.
338//!
339//! [`Err(e)`]: Err
340//! [`Ok(v)`]: Ok
341//! [`Some(e)`]: Option::Some
342//! [`Some(v)`]: Option::Some
343//! [`transpose`]: Result::transpose
344//!
345//! These methods transform the contained value of the [`Ok`] variant:
346//!
347//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
348//!   the provided function to the contained value of [`Ok`] and leaving
349//!   [`Err`] values unchanged
350//! * [`inspect`] takes ownership of the [`Result`], applies the
351//!   provided function to the contained value by reference,
352//!   and then returns the [`Result`]
353//!
354//! [`map`]: Result::map
355//! [`inspect`]: Result::inspect
356//!
357//! These methods transform the contained value of the [`Err`] variant:
358//!
359//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
360//!   applying the provided function to the contained value of [`Err`] and
361//!   leaving [`Ok`] values unchanged
362//! * [`inspect_err`] takes ownership of the [`Result`], applies the
363//!   provided function to the contained value of [`Err`] by reference,
364//!   and then returns the [`Result`]
365//!
366//! [`map_err`]: Result::map_err
367//! [`inspect_err`]: Result::inspect_err
368//!
369//! These methods transform a [`Result<T, E>`] into a value of a possibly
370//! different type `U`:
371//!
372//! * [`map_or`] applies the provided function to the contained value of
373//!   [`Ok`], or returns the provided default value if the [`Result`] is
374//!   [`Err`]
375//! * [`map_or_else`] applies the provided function to the contained value
376//!   of [`Ok`], or applies the provided default fallback function to the
377//!   contained value of [`Err`]
378//!
379//! [`map_or`]: Result::map_or
380//! [`map_or_else`]: Result::map_or_else
381//!
382//! ## Boolean operators
383//!
384//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
385//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
386//! categories of these methods: ones that take a [`Result`] as input, and
387//! ones that take a function as input (to be lazily evaluated).
388//!
389//! The [`and`] and [`or`] methods take another [`Result`] as input, and
390//! produce a [`Result`] as output. The [`and`] method can produce a
391//! [`Result<U, E>`] value having a different inner type `U` than
392//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
393//! value having a different error type `F` than [`Result<T, E>`].
394//!
395//! | method  | self     | input     | output   |
396//! |---------|----------|-----------|----------|
397//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
398//! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
399//! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
400//! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
401//! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
402//! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
403//!
404//! [`and`]: Result::and
405//! [`or`]: Result::or
406//!
407//! The [`and_then`] and [`or_else`] methods take a function as input, and
408//! only evaluate the function when they need to produce a new value. The
409//! [`and_then`] method can produce a [`Result<U, E>`] value having a
410//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
411//! can produce a [`Result<T, F>`] value having a different error type `F`
412//! than [`Result<T, E>`].
413//!
414//! | method       | self     | function input | function result | output   |
415//! |--------------|----------|----------------|-----------------|----------|
416//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
417//! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
418//! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
419//! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
420//! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
421//! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
422//!
423//! [`and_then`]: Result::and_then
424//! [`or_else`]: Result::or_else
425//!
426//! ## Comparison operators
427//!
428//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
429//! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
430//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
431//! compare as their contained values would in `T` or `E` respectively.  If `T`
432//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
433//!
434//! ```
435//! assert!(Ok(1) < Err(0));
436//! let x: Result<i32, ()> = Ok(0);
437//! let y = Ok(1);
438//! assert!(x < y);
439//! let x: Result<(), i32> = Err(0);
440//! let y = Err(1);
441//! assert!(x < y);
442//! ```
443//!
444//! ## Iterating over `Result`
445//!
446//! A [`Result`] can be iterated over. This can be helpful if you need an
447//! iterator that is conditionally empty. The iterator will either produce
448//! a single value (when the [`Result`] is [`Ok`]), or produce no values
449//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
450//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
451//! [`Result`] is [`Err`].
452//!
453//! [`Ok(v)`]: Ok
454//! [`empty()`]: crate::iter::empty
455//! [`once(v)`]: crate::iter::once
456//!
457//! Iterators over [`Result<T, E>`] come in three types:
458//!
459//! * [`into_iter`] consumes the [`Result`] and produces the contained
460//!   value
461//! * [`iter`] produces an immutable reference of type `&T` to the
462//!   contained value
463//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
464//!   contained value
465//!
466//! See [Iterating over `Option`] for examples of how this can be useful.
467//!
468//! [Iterating over `Option`]: crate::option#iterating-over-option
469//! [`into_iter`]: Result::into_iter
470//! [`iter`]: Result::iter
471//! [`iter_mut`]: Result::iter_mut
472//!
473//! You might want to use an iterator chain to do multiple instances of an
474//! operation that can fail, but would like to ignore failures while
475//! continuing to process the successful results. In this example, we take
476//! advantage of the iterable nature of [`Result`] to select only the
477//! [`Ok`] values using [`flatten`][Iterator::flatten].
478//!
479//! ```
480//! # use std::str::FromStr;
481//! let mut results = vec![];
482//! let mut errs = vec![];
483//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
484//!    .into_iter()
485//!    .map(u8::from_str)
486//!    // Save clones of the raw `Result` values to inspect
487//!    .inspect(|x| results.push(x.clone()))
488//!    // Challenge: explain how this captures only the `Err` values
489//!    .inspect(|x| errs.extend(x.clone().err()))
490//!    .flatten()
491//!    .collect();
492//! assert_eq!(errs.len(), 3);
493//! assert_eq!(nums, [17, 99]);
494//! println!("results {results:?}");
495//! println!("errs {errs:?}");
496//! println!("nums {nums:?}");
497//! ```
498//!
499//! ## Collecting into `Result`
500//!
501//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
502//! which allows an iterator over [`Result`] values to be collected into a
503//! [`Result`] of a collection of each contained value of the original
504//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
505//!
506//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
507//!
508//! ```
509//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
510//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
511//! assert_eq!(res, Err("err!"));
512//! let v = [Ok(2), Ok(4), Ok(8)];
513//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
514//! assert_eq!(res, Ok(vec![2, 4, 8]));
515//! ```
516//!
517//! [`Result`] also implements the [`Product`][impl-Product] and
518//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
519//! to provide the [`product`][Iterator::product] and
520//! [`sum`][Iterator::sum] methods.
521//!
522//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
523//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
524//!
525//! ```
526//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
527//! let res: Result<i32, &str> = v.into_iter().sum();
528//! assert_eq!(res, Err("error!"));
529//! let v = [Ok(1), Ok(2), Ok(21)];
530//! let res: Result<i32, &str> = v.into_iter().product();
531//! assert_eq!(res, Ok(42));
532//! ```
533
534#![stable(feature = "rust1", since = "1.0.0")]
535
536use crate::iter::{self, FusedIterator, TrustedLen};
537use crate::ops::{self, ControlFlow, Deref, DerefMut};
538use crate::{convert, fmt, hint};
539
540/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
541///
542/// See the [module documentation](self) for details.
543#[doc(search_unbox)]
544#[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
545#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
546#[rustc_diagnostic_item = "Result"]
547#[stable(feature = "rust1", since = "1.0.0")]
548pub enum Result<T, E> {
549    /// Contains the success value
550    #[lang = "Ok"]
551    #[stable(feature = "rust1", since = "1.0.0")]
552    Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
553
554    /// Contains the error value
555    #[lang = "Err"]
556    #[stable(feature = "rust1", since = "1.0.0")]
557    Err(#[stable(feature = "rust1", since = "1.0.0")] E),
558}
559
560/////////////////////////////////////////////////////////////////////////////
561// Type implementation
562/////////////////////////////////////////////////////////////////////////////
563
564impl<T, E> Result<T, E> {
565    /////////////////////////////////////////////////////////////////////////
566    // Querying the contained values
567    /////////////////////////////////////////////////////////////////////////
568
569    /// Returns `true` if the result is [`Ok`].
570    ///
571    /// # Examples
572    ///
573    /// ```
574    /// let x: Result<i32, &str> = Ok(-3);
575    /// assert_eq!(x.is_ok(), true);
576    ///
577    /// let x: Result<i32, &str> = Err("Some error message");
578    /// assert_eq!(x.is_ok(), false);
579    /// ```
580    #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
581    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
582    #[inline]
583    #[stable(feature = "rust1", since = "1.0.0")]
584    pub const fn is_ok(&self) -> bool {
585        matches!(*self, Ok(_))
586    }
587
588    /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
589    ///
590    /// # Examples
591    ///
592    /// ```
593    /// let x: Result<u32, &str> = Ok(2);
594    /// assert_eq!(x.is_ok_and(|x| x > 1), true);
595    ///
596    /// let x: Result<u32, &str> = Ok(0);
597    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
598    ///
599    /// let x: Result<u32, &str> = Err("hey");
600    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
601    ///
602    /// let x: Result<String, &str> = Ok("ownership".to_string());
603    /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
604    /// println!("still alive {:?}", x);
605    /// ```
606    #[must_use]
607    #[inline]
608    #[stable(feature = "is_some_and", since = "1.70.0")]
609    pub fn is_ok_and(self, f: impl FnOnce(T) -> bool) -> bool {
610        match self {
611            Err(_) => false,
612            Ok(x) => f(x),
613        }
614    }
615
616    /// Returns `true` if the result is [`Err`].
617    ///
618    /// # Examples
619    ///
620    /// ```
621    /// let x: Result<i32, &str> = Ok(-3);
622    /// assert_eq!(x.is_err(), false);
623    ///
624    /// let x: Result<i32, &str> = Err("Some error message");
625    /// assert_eq!(x.is_err(), true);
626    /// ```
627    #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
628    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
629    #[inline]
630    #[stable(feature = "rust1", since = "1.0.0")]
631    pub const fn is_err(&self) -> bool {
632        !self.is_ok()
633    }
634
635    /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
636    ///
637    /// # Examples
638    ///
639    /// ```
640    /// use std::io::{Error, ErrorKind};
641    ///
642    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
643    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
644    ///
645    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
646    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
647    ///
648    /// let x: Result<u32, Error> = Ok(123);
649    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
650    ///
651    /// let x: Result<u32, String> = Err("ownership".to_string());
652    /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
653    /// println!("still alive {:?}", x);
654    /// ```
655    #[must_use]
656    #[inline]
657    #[stable(feature = "is_some_and", since = "1.70.0")]
658    pub fn is_err_and(self, f: impl FnOnce(E) -> bool) -> bool {
659        match self {
660            Ok(_) => false,
661            Err(e) => f(e),
662        }
663    }
664
665    /////////////////////////////////////////////////////////////////////////
666    // Adapter for each variant
667    /////////////////////////////////////////////////////////////////////////
668
669    /// Converts from `Result<T, E>` to [`Option<T>`].
670    ///
671    /// Converts `self` into an [`Option<T>`], consuming `self`,
672    /// and discarding the error, if any.
673    ///
674    /// # Examples
675    ///
676    /// ```
677    /// let x: Result<u32, &str> = Ok(2);
678    /// assert_eq!(x.ok(), Some(2));
679    ///
680    /// let x: Result<u32, &str> = Err("Nothing here");
681    /// assert_eq!(x.ok(), None);
682    /// ```
683    #[inline]
684    #[stable(feature = "rust1", since = "1.0.0")]
685    #[rustc_diagnostic_item = "result_ok_method"]
686    pub fn ok(self) -> Option<T> {
687        match self {
688            Ok(x) => Some(x),
689            Err(_) => None,
690        }
691    }
692
693    /// Converts from `Result<T, E>` to [`Option<E>`].
694    ///
695    /// Converts `self` into an [`Option<E>`], consuming `self`,
696    /// and discarding the success value, if any.
697    ///
698    /// # Examples
699    ///
700    /// ```
701    /// let x: Result<u32, &str> = Ok(2);
702    /// assert_eq!(x.err(), None);
703    ///
704    /// let x: Result<u32, &str> = Err("Nothing here");
705    /// assert_eq!(x.err(), Some("Nothing here"));
706    /// ```
707    #[inline]
708    #[stable(feature = "rust1", since = "1.0.0")]
709    pub fn err(self) -> Option<E> {
710        match self {
711            Ok(_) => None,
712            Err(x) => Some(x),
713        }
714    }
715
716    /////////////////////////////////////////////////////////////////////////
717    // Adapter for working with references
718    /////////////////////////////////////////////////////////////////////////
719
720    /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
721    ///
722    /// Produces a new `Result`, containing a reference
723    /// into the original, leaving the original in place.
724    ///
725    /// # Examples
726    ///
727    /// ```
728    /// let x: Result<u32, &str> = Ok(2);
729    /// assert_eq!(x.as_ref(), Ok(&2));
730    ///
731    /// let x: Result<u32, &str> = Err("Error");
732    /// assert_eq!(x.as_ref(), Err(&"Error"));
733    /// ```
734    #[inline]
735    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
736    #[stable(feature = "rust1", since = "1.0.0")]
737    pub const fn as_ref(&self) -> Result<&T, &E> {
738        match *self {
739            Ok(ref x) => Ok(x),
740            Err(ref x) => Err(x),
741        }
742    }
743
744    /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
745    ///
746    /// # Examples
747    ///
748    /// ```
749    /// fn mutate(r: &mut Result<i32, i32>) {
750    ///     match r.as_mut() {
751    ///         Ok(v) => *v = 42,
752    ///         Err(e) => *e = 0,
753    ///     }
754    /// }
755    ///
756    /// let mut x: Result<i32, i32> = Ok(2);
757    /// mutate(&mut x);
758    /// assert_eq!(x.unwrap(), 42);
759    ///
760    /// let mut x: Result<i32, i32> = Err(13);
761    /// mutate(&mut x);
762    /// assert_eq!(x.unwrap_err(), 0);
763    /// ```
764    #[inline]
765    #[stable(feature = "rust1", since = "1.0.0")]
766    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
767    pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
768        match *self {
769            Ok(ref mut x) => Ok(x),
770            Err(ref mut x) => Err(x),
771        }
772    }
773
774    /////////////////////////////////////////////////////////////////////////
775    // Transforming contained values
776    /////////////////////////////////////////////////////////////////////////
777
778    /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
779    /// contained [`Ok`] value, leaving an [`Err`] value untouched.
780    ///
781    /// This function can be used to compose the results of two functions.
782    ///
783    /// # Examples
784    ///
785    /// Print the numbers on each line of a string multiplied by two.
786    ///
787    /// ```
788    /// let line = "1\n2\n3\n4\n";
789    ///
790    /// for num in line.lines() {
791    ///     match num.parse::<i32>().map(|i| i * 2) {
792    ///         Ok(n) => println!("{n}"),
793    ///         Err(..) => {}
794    ///     }
795    /// }
796    /// ```
797    #[inline]
798    #[stable(feature = "rust1", since = "1.0.0")]
799    pub fn map<U, F: FnOnce(T) -> U>(self, op: F) -> Result<U, E> {
800        match self {
801            Ok(t) => Ok(op(t)),
802            Err(e) => Err(e),
803        }
804    }
805
806    /// Returns the provided default (if [`Err`]), or
807    /// applies a function to the contained value (if [`Ok`]).
808    ///
809    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
810    /// the result of a function call, it is recommended to use [`map_or_else`],
811    /// which is lazily evaluated.
812    ///
813    /// [`map_or_else`]: Result::map_or_else
814    ///
815    /// # Examples
816    ///
817    /// ```
818    /// let x: Result<_, &str> = Ok("foo");
819    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
820    ///
821    /// let x: Result<&str, _> = Err("bar");
822    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
823    /// ```
824    #[inline]
825    #[stable(feature = "result_map_or", since = "1.41.0")]
826    #[must_use = "if you don't need the returned value, use `if let` instead"]
827    pub fn map_or<U, F: FnOnce(T) -> U>(self, default: U, f: F) -> U {
828        match self {
829            Ok(t) => f(t),
830            Err(_) => default,
831        }
832    }
833
834    /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
835    /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
836    ///
837    /// This function can be used to unpack a successful result
838    /// while handling an error.
839    ///
840    ///
841    /// # Examples
842    ///
843    /// ```
844    /// let k = 21;
845    ///
846    /// let x : Result<_, &str> = Ok("foo");
847    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
848    ///
849    /// let x : Result<&str, _> = Err("bar");
850    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
851    /// ```
852    #[inline]
853    #[stable(feature = "result_map_or_else", since = "1.41.0")]
854    pub fn map_or_else<U, D: FnOnce(E) -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
855        match self {
856            Ok(t) => f(t),
857            Err(e) => default(e),
858        }
859    }
860
861    /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
862    /// value if the result is [`Ok`], otherwise if [`Err`], returns the
863    /// [default value] for the type `U`.
864    ///
865    /// # Examples
866    ///
867    /// ```
868    /// #![feature(result_option_map_or_default)]
869    ///
870    /// let x: Result<_, &str> = Ok("foo");
871    /// let y: Result<&str, _> = Err("bar");
872    ///
873    /// assert_eq!(x.map_or_default(|x| x.len()), 3);
874    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
875    /// ```
876    ///
877    /// [default value]: Default::default
878    #[inline]
879    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
880    pub fn map_or_default<U, F>(self, f: F) -> U
881    where
882        U: Default,
883        F: FnOnce(T) -> U,
884    {
885        match self {
886            Ok(t) => f(t),
887            Err(_) => U::default(),
888        }
889    }
890
891    /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
892    /// contained [`Err`] value, leaving an [`Ok`] value untouched.
893    ///
894    /// This function can be used to pass through a successful result while handling
895    /// an error.
896    ///
897    ///
898    /// # Examples
899    ///
900    /// ```
901    /// fn stringify(x: u32) -> String { format!("error code: {x}") }
902    ///
903    /// let x: Result<u32, u32> = Ok(2);
904    /// assert_eq!(x.map_err(stringify), Ok(2));
905    ///
906    /// let x: Result<u32, u32> = Err(13);
907    /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
908    /// ```
909    #[inline]
910    #[stable(feature = "rust1", since = "1.0.0")]
911    pub fn map_err<F, O: FnOnce(E) -> F>(self, op: O) -> Result<T, F> {
912        match self {
913            Ok(t) => Ok(t),
914            Err(e) => Err(op(e)),
915        }
916    }
917
918    /// Calls a function with a reference to the contained value if [`Ok`].
919    ///
920    /// Returns the original result.
921    ///
922    /// # Examples
923    ///
924    /// ```
925    /// let x: u8 = "4"
926    ///     .parse::<u8>()
927    ///     .inspect(|x| println!("original: {x}"))
928    ///     .map(|x| x.pow(3))
929    ///     .expect("failed to parse number");
930    /// ```
931    #[inline]
932    #[stable(feature = "result_option_inspect", since = "1.76.0")]
933    pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self {
934        if let Ok(ref t) = self {
935            f(t);
936        }
937
938        self
939    }
940
941    /// Calls a function with a reference to the contained value if [`Err`].
942    ///
943    /// Returns the original result.
944    ///
945    /// # Examples
946    ///
947    /// ```
948    /// use std::{fs, io};
949    ///
950    /// fn read() -> io::Result<String> {
951    ///     fs::read_to_string("address.txt")
952    ///         .inspect_err(|e| eprintln!("failed to read file: {e}"))
953    /// }
954    /// ```
955    #[inline]
956    #[stable(feature = "result_option_inspect", since = "1.76.0")]
957    pub fn inspect_err<F: FnOnce(&E)>(self, f: F) -> Self {
958        if let Err(ref e) = self {
959            f(e);
960        }
961
962        self
963    }
964
965    /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
966    ///
967    /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
968    /// and returns the new [`Result`].
969    ///
970    /// # Examples
971    ///
972    /// ```
973    /// let x: Result<String, u32> = Ok("hello".to_string());
974    /// let y: Result<&str, &u32> = Ok("hello");
975    /// assert_eq!(x.as_deref(), y);
976    ///
977    /// let x: Result<String, u32> = Err(42);
978    /// let y: Result<&str, &u32> = Err(&42);
979    /// assert_eq!(x.as_deref(), y);
980    /// ```
981    #[inline]
982    #[stable(feature = "inner_deref", since = "1.47.0")]
983    pub fn as_deref(&self) -> Result<&T::Target, &E>
984    where
985        T: Deref,
986    {
987        self.as_ref().map(|t| t.deref())
988    }
989
990    /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
991    ///
992    /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
993    /// and returns the new [`Result`].
994    ///
995    /// # Examples
996    ///
997    /// ```
998    /// let mut s = "HELLO".to_string();
999    /// let mut x: Result<String, u32> = Ok("hello".to_string());
1000    /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1001    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1002    ///
1003    /// let mut i = 42;
1004    /// let mut x: Result<String, u32> = Err(42);
1005    /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1006    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1007    /// ```
1008    #[inline]
1009    #[stable(feature = "inner_deref", since = "1.47.0")]
1010    pub fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1011    where
1012        T: DerefMut,
1013    {
1014        self.as_mut().map(|t| t.deref_mut())
1015    }
1016
1017    /////////////////////////////////////////////////////////////////////////
1018    // Iterator constructors
1019    /////////////////////////////////////////////////////////////////////////
1020
1021    /// Returns an iterator over the possibly contained value.
1022    ///
1023    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1024    ///
1025    /// # Examples
1026    ///
1027    /// ```
1028    /// let x: Result<u32, &str> = Ok(7);
1029    /// assert_eq!(x.iter().next(), Some(&7));
1030    ///
1031    /// let x: Result<u32, &str> = Err("nothing!");
1032    /// assert_eq!(x.iter().next(), None);
1033    /// ```
1034    #[inline]
1035    #[stable(feature = "rust1", since = "1.0.0")]
1036    pub fn iter(&self) -> Iter<'_, T> {
1037        Iter { inner: self.as_ref().ok() }
1038    }
1039
1040    /// Returns a mutable iterator over the possibly contained value.
1041    ///
1042    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1043    ///
1044    /// # Examples
1045    ///
1046    /// ```
1047    /// let mut x: Result<u32, &str> = Ok(7);
1048    /// match x.iter_mut().next() {
1049    ///     Some(v) => *v = 40,
1050    ///     None => {},
1051    /// }
1052    /// assert_eq!(x, Ok(40));
1053    ///
1054    /// let mut x: Result<u32, &str> = Err("nothing!");
1055    /// assert_eq!(x.iter_mut().next(), None);
1056    /// ```
1057    #[inline]
1058    #[stable(feature = "rust1", since = "1.0.0")]
1059    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1060        IterMut { inner: self.as_mut().ok() }
1061    }
1062
1063    /////////////////////////////////////////////////////////////////////////
1064    // Extract a value
1065    /////////////////////////////////////////////////////////////////////////
1066
1067    /// Returns the contained [`Ok`] value, consuming the `self` value.
1068    ///
1069    /// Because this function may panic, its use is generally discouraged.
1070    /// Instead, prefer to use pattern matching and handle the [`Err`]
1071    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1072    /// [`unwrap_or_default`].
1073    ///
1074    /// [`unwrap_or`]: Result::unwrap_or
1075    /// [`unwrap_or_else`]: Result::unwrap_or_else
1076    /// [`unwrap_or_default`]: Result::unwrap_or_default
1077    ///
1078    /// # Panics
1079    ///
1080    /// Panics if the value is an [`Err`], with a panic message including the
1081    /// passed message, and the content of the [`Err`].
1082    ///
1083    ///
1084    /// # Examples
1085    ///
1086    /// ```should_panic
1087    /// let x: Result<u32, &str> = Err("emergency failure");
1088    /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1089    /// ```
1090    ///
1091    /// # Recommended Message Style
1092    ///
1093    /// We recommend that `expect` messages are used to describe the reason you
1094    /// _expect_ the `Result` should be `Ok`.
1095    ///
1096    /// ```should_panic
1097    /// let path = std::env::var("IMPORTANT_PATH")
1098    ///     .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1099    /// ```
1100    ///
1101    /// **Hint**: If you're having trouble remembering how to phrase expect
1102    /// error messages remember to focus on the word "should" as in "env
1103    /// variable should be set by blah" or "the given binary should be available
1104    /// and executable by the current user".
1105    ///
1106    /// For more detail on expect message styles and the reasoning behind our recommendation please
1107    /// refer to the section on ["Common Message
1108    /// Styles"](../../std/error/index.html#common-message-styles) in the
1109    /// [`std::error`](../../std/error/index.html) module docs.
1110    #[inline]
1111    #[track_caller]
1112    #[stable(feature = "result_expect", since = "1.4.0")]
1113    pub fn expect(self, msg: &str) -> T
1114    where
1115        E: fmt::Debug,
1116    {
1117        match self {
1118            Ok(t) => t,
1119            Err(e) => unwrap_failed(msg, &e),
1120        }
1121    }
1122
1123    /// Returns the contained [`Ok`] value, consuming the `self` value.
1124    ///
1125    /// Because this function may panic, its use is generally discouraged.
1126    /// Panics are meant for unrecoverable errors, and
1127    /// [may abort the entire program][panic-abort].
1128    ///
1129    /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1130    /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1131    /// [`unwrap_or_else`], or [`unwrap_or_default`].
1132    ///
1133    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1134    /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1135    /// [`unwrap_or`]: Result::unwrap_or
1136    /// [`unwrap_or_else`]: Result::unwrap_or_else
1137    /// [`unwrap_or_default`]: Result::unwrap_or_default
1138    ///
1139    /// # Panics
1140    ///
1141    /// Panics if the value is an [`Err`], with a panic message provided by the
1142    /// [`Err`]'s value.
1143    ///
1144    ///
1145    /// # Examples
1146    ///
1147    /// Basic usage:
1148    ///
1149    /// ```
1150    /// let x: Result<u32, &str> = Ok(2);
1151    /// assert_eq!(x.unwrap(), 2);
1152    /// ```
1153    ///
1154    /// ```should_panic
1155    /// let x: Result<u32, &str> = Err("emergency failure");
1156    /// x.unwrap(); // panics with `emergency failure`
1157    /// ```
1158    #[inline(always)]
1159    #[track_caller]
1160    #[stable(feature = "rust1", since = "1.0.0")]
1161    pub fn unwrap(self) -> T
1162    where
1163        E: fmt::Debug,
1164    {
1165        match self {
1166            Ok(t) => t,
1167            Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1168        }
1169    }
1170
1171    /// Returns the contained [`Ok`] value or a default
1172    ///
1173    /// Consumes the `self` argument then, if [`Ok`], returns the contained
1174    /// value, otherwise if [`Err`], returns the default value for that
1175    /// type.
1176    ///
1177    /// # Examples
1178    ///
1179    /// Converts a string to an integer, turning poorly-formed strings
1180    /// into 0 (the default value for integers). [`parse`] converts
1181    /// a string to any other type that implements [`FromStr`], returning an
1182    /// [`Err`] on error.
1183    ///
1184    /// ```
1185    /// let good_year_from_input = "1909";
1186    /// let bad_year_from_input = "190blarg";
1187    /// let good_year = good_year_from_input.parse().unwrap_or_default();
1188    /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1189    ///
1190    /// assert_eq!(1909, good_year);
1191    /// assert_eq!(0, bad_year);
1192    /// ```
1193    ///
1194    /// [`parse`]: str::parse
1195    /// [`FromStr`]: crate::str::FromStr
1196    #[inline]
1197    #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1198    pub fn unwrap_or_default(self) -> T
1199    where
1200        T: Default,
1201    {
1202        match self {
1203            Ok(x) => x,
1204            Err(_) => Default::default(),
1205        }
1206    }
1207
1208    /// Returns the contained [`Err`] value, consuming the `self` value.
1209    ///
1210    /// # Panics
1211    ///
1212    /// Panics if the value is an [`Ok`], with a panic message including the
1213    /// passed message, and the content of the [`Ok`].
1214    ///
1215    ///
1216    /// # Examples
1217    ///
1218    /// ```should_panic
1219    /// let x: Result<u32, &str> = Ok(10);
1220    /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1221    /// ```
1222    #[inline]
1223    #[track_caller]
1224    #[stable(feature = "result_expect_err", since = "1.17.0")]
1225    pub fn expect_err(self, msg: &str) -> E
1226    where
1227        T: fmt::Debug,
1228    {
1229        match self {
1230            Ok(t) => unwrap_failed(msg, &t),
1231            Err(e) => e,
1232        }
1233    }
1234
1235    /// Returns the contained [`Err`] value, consuming the `self` value.
1236    ///
1237    /// # Panics
1238    ///
1239    /// Panics if the value is an [`Ok`], with a custom panic message provided
1240    /// by the [`Ok`]'s value.
1241    ///
1242    /// # Examples
1243    ///
1244    /// ```should_panic
1245    /// let x: Result<u32, &str> = Ok(2);
1246    /// x.unwrap_err(); // panics with `2`
1247    /// ```
1248    ///
1249    /// ```
1250    /// let x: Result<u32, &str> = Err("emergency failure");
1251    /// assert_eq!(x.unwrap_err(), "emergency failure");
1252    /// ```
1253    #[inline]
1254    #[track_caller]
1255    #[stable(feature = "rust1", since = "1.0.0")]
1256    pub fn unwrap_err(self) -> E
1257    where
1258        T: fmt::Debug,
1259    {
1260        match self {
1261            Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1262            Err(e) => e,
1263        }
1264    }
1265
1266    /// Returns the contained [`Ok`] value, but never panics.
1267    ///
1268    /// Unlike [`unwrap`], this method is known to never panic on the
1269    /// result types it is implemented for. Therefore, it can be used
1270    /// instead of `unwrap` as a maintainability safeguard that will fail
1271    /// to compile if the error type of the `Result` is later changed
1272    /// to an error that can actually occur.
1273    ///
1274    /// [`unwrap`]: Result::unwrap
1275    ///
1276    /// # Examples
1277    ///
1278    /// ```
1279    /// # #![feature(never_type)]
1280    /// # #![feature(unwrap_infallible)]
1281    ///
1282    /// fn only_good_news() -> Result<String, !> {
1283    ///     Ok("this is fine".into())
1284    /// }
1285    ///
1286    /// let s: String = only_good_news().into_ok();
1287    /// println!("{s}");
1288    /// ```
1289    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1290    #[inline]
1291    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1292    #[rustc_const_unstable(feature = "const_try", issue = "74935")]
1293    pub const fn into_ok(self) -> T
1294    where
1295        E: ~const Into<!>,
1296    {
1297        match self {
1298            Ok(x) => x,
1299            Err(e) => e.into(),
1300        }
1301    }
1302
1303    /// Returns the contained [`Err`] value, but never panics.
1304    ///
1305    /// Unlike [`unwrap_err`], this method is known to never panic on the
1306    /// result types it is implemented for. Therefore, it can be used
1307    /// instead of `unwrap_err` as a maintainability safeguard that will fail
1308    /// to compile if the ok type of the `Result` is later changed
1309    /// to a type that can actually occur.
1310    ///
1311    /// [`unwrap_err`]: Result::unwrap_err
1312    ///
1313    /// # Examples
1314    ///
1315    /// ```
1316    /// # #![feature(never_type)]
1317    /// # #![feature(unwrap_infallible)]
1318    ///
1319    /// fn only_bad_news() -> Result<!, String> {
1320    ///     Err("Oops, it failed".into())
1321    /// }
1322    ///
1323    /// let error: String = only_bad_news().into_err();
1324    /// println!("{error}");
1325    /// ```
1326    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1327    #[inline]
1328    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1329    #[rustc_const_unstable(feature = "const_try", issue = "74935")]
1330    pub const fn into_err(self) -> E
1331    where
1332        T: ~const Into<!>,
1333    {
1334        match self {
1335            Ok(x) => x.into(),
1336            Err(e) => e,
1337        }
1338    }
1339
1340    ////////////////////////////////////////////////////////////////////////
1341    // Boolean operations on the values, eager and lazy
1342    /////////////////////////////////////////////////////////////////////////
1343
1344    /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1345    ///
1346    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1347    /// result of a function call, it is recommended to use [`and_then`], which is
1348    /// lazily evaluated.
1349    ///
1350    /// [`and_then`]: Result::and_then
1351    ///
1352    /// # Examples
1353    ///
1354    /// ```
1355    /// let x: Result<u32, &str> = Ok(2);
1356    /// let y: Result<&str, &str> = Err("late error");
1357    /// assert_eq!(x.and(y), Err("late error"));
1358    ///
1359    /// let x: Result<u32, &str> = Err("early error");
1360    /// let y: Result<&str, &str> = Ok("foo");
1361    /// assert_eq!(x.and(y), Err("early error"));
1362    ///
1363    /// let x: Result<u32, &str> = Err("not a 2");
1364    /// let y: Result<&str, &str> = Err("late error");
1365    /// assert_eq!(x.and(y), Err("not a 2"));
1366    ///
1367    /// let x: Result<u32, &str> = Ok(2);
1368    /// let y: Result<&str, &str> = Ok("different result type");
1369    /// assert_eq!(x.and(y), Ok("different result type"));
1370    /// ```
1371    #[inline]
1372    #[stable(feature = "rust1", since = "1.0.0")]
1373    pub fn and<U>(self, res: Result<U, E>) -> Result<U, E> {
1374        match self {
1375            Ok(_) => res,
1376            Err(e) => Err(e),
1377        }
1378    }
1379
1380    /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1381    ///
1382    ///
1383    /// This function can be used for control flow based on `Result` values.
1384    ///
1385    /// # Examples
1386    ///
1387    /// ```
1388    /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1389    ///     x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1390    /// }
1391    ///
1392    /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1393    /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1394    /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1395    /// ```
1396    ///
1397    /// Often used to chain fallible operations that may return [`Err`].
1398    ///
1399    /// ```
1400    /// use std::{io::ErrorKind, path::Path};
1401    ///
1402    /// // Note: on Windows "/" maps to "C:\"
1403    /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1404    /// assert!(root_modified_time.is_ok());
1405    ///
1406    /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1407    /// assert!(should_fail.is_err());
1408    /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1409    /// ```
1410    #[inline]
1411    #[stable(feature = "rust1", since = "1.0.0")]
1412    #[rustc_confusables("flat_map", "flatmap")]
1413    pub fn and_then<U, F: FnOnce(T) -> Result<U, E>>(self, op: F) -> Result<U, E> {
1414        match self {
1415            Ok(t) => op(t),
1416            Err(e) => Err(e),
1417        }
1418    }
1419
1420    /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1421    ///
1422    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1423    /// result of a function call, it is recommended to use [`or_else`], which is
1424    /// lazily evaluated.
1425    ///
1426    /// [`or_else`]: Result::or_else
1427    ///
1428    /// # Examples
1429    ///
1430    /// ```
1431    /// let x: Result<u32, &str> = Ok(2);
1432    /// let y: Result<u32, &str> = Err("late error");
1433    /// assert_eq!(x.or(y), Ok(2));
1434    ///
1435    /// let x: Result<u32, &str> = Err("early error");
1436    /// let y: Result<u32, &str> = Ok(2);
1437    /// assert_eq!(x.or(y), Ok(2));
1438    ///
1439    /// let x: Result<u32, &str> = Err("not a 2");
1440    /// let y: Result<u32, &str> = Err("late error");
1441    /// assert_eq!(x.or(y), Err("late error"));
1442    ///
1443    /// let x: Result<u32, &str> = Ok(2);
1444    /// let y: Result<u32, &str> = Ok(100);
1445    /// assert_eq!(x.or(y), Ok(2));
1446    /// ```
1447    #[inline]
1448    #[stable(feature = "rust1", since = "1.0.0")]
1449    pub fn or<F>(self, res: Result<T, F>) -> Result<T, F> {
1450        match self {
1451            Ok(v) => Ok(v),
1452            Err(_) => res,
1453        }
1454    }
1455
1456    /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1457    ///
1458    /// This function can be used for control flow based on result values.
1459    ///
1460    ///
1461    /// # Examples
1462    ///
1463    /// ```
1464    /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1465    /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1466    ///
1467    /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1468    /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1469    /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1470    /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1471    /// ```
1472    #[inline]
1473    #[stable(feature = "rust1", since = "1.0.0")]
1474    pub fn or_else<F, O: FnOnce(E) -> Result<T, F>>(self, op: O) -> Result<T, F> {
1475        match self {
1476            Ok(t) => Ok(t),
1477            Err(e) => op(e),
1478        }
1479    }
1480
1481    /// Returns the contained [`Ok`] value or a provided default.
1482    ///
1483    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1484    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1485    /// which is lazily evaluated.
1486    ///
1487    /// [`unwrap_or_else`]: Result::unwrap_or_else
1488    ///
1489    /// # Examples
1490    ///
1491    /// ```
1492    /// let default = 2;
1493    /// let x: Result<u32, &str> = Ok(9);
1494    /// assert_eq!(x.unwrap_or(default), 9);
1495    ///
1496    /// let x: Result<u32, &str> = Err("error");
1497    /// assert_eq!(x.unwrap_or(default), default);
1498    /// ```
1499    #[inline]
1500    #[stable(feature = "rust1", since = "1.0.0")]
1501    pub fn unwrap_or(self, default: T) -> T {
1502        match self {
1503            Ok(t) => t,
1504            Err(_) => default,
1505        }
1506    }
1507
1508    /// Returns the contained [`Ok`] value or computes it from a closure.
1509    ///
1510    ///
1511    /// # Examples
1512    ///
1513    /// ```
1514    /// fn count(x: &str) -> usize { x.len() }
1515    ///
1516    /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1517    /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1518    /// ```
1519    #[inline]
1520    #[track_caller]
1521    #[stable(feature = "rust1", since = "1.0.0")]
1522    pub fn unwrap_or_else<F: FnOnce(E) -> T>(self, op: F) -> T {
1523        match self {
1524            Ok(t) => t,
1525            Err(e) => op(e),
1526        }
1527    }
1528
1529    /// Returns the contained [`Ok`] value, consuming the `self` value,
1530    /// without checking that the value is not an [`Err`].
1531    ///
1532    /// # Safety
1533    ///
1534    /// Calling this method on an [`Err`] is *[undefined behavior]*.
1535    ///
1536    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1537    ///
1538    /// # Examples
1539    ///
1540    /// ```
1541    /// let x: Result<u32, &str> = Ok(2);
1542    /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1543    /// ```
1544    ///
1545    /// ```no_run
1546    /// let x: Result<u32, &str> = Err("emergency failure");
1547    /// unsafe { x.unwrap_unchecked(); } // Undefined behavior!
1548    /// ```
1549    #[inline]
1550    #[track_caller]
1551    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1552    pub unsafe fn unwrap_unchecked(self) -> T {
1553        match self {
1554            Ok(t) => t,
1555            // SAFETY: the safety contract must be upheld by the caller.
1556            Err(_) => unsafe { hint::unreachable_unchecked() },
1557        }
1558    }
1559
1560    /// Returns the contained [`Err`] value, consuming the `self` value,
1561    /// without checking that the value is not an [`Ok`].
1562    ///
1563    /// # Safety
1564    ///
1565    /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1566    ///
1567    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1568    ///
1569    /// # Examples
1570    ///
1571    /// ```no_run
1572    /// let x: Result<u32, &str> = Ok(2);
1573    /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1574    /// ```
1575    ///
1576    /// ```
1577    /// let x: Result<u32, &str> = Err("emergency failure");
1578    /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1579    /// ```
1580    #[inline]
1581    #[track_caller]
1582    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1583    pub unsafe fn unwrap_err_unchecked(self) -> E {
1584        match self {
1585            // SAFETY: the safety contract must be upheld by the caller.
1586            Ok(_) => unsafe { hint::unreachable_unchecked() },
1587            Err(e) => e,
1588        }
1589    }
1590}
1591
1592impl<T, E> Result<&T, E> {
1593    /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1594    /// `Ok` part.
1595    ///
1596    /// # Examples
1597    ///
1598    /// ```
1599    /// let val = 12;
1600    /// let x: Result<&i32, i32> = Ok(&val);
1601    /// assert_eq!(x, Ok(&12));
1602    /// let copied = x.copied();
1603    /// assert_eq!(copied, Ok(12));
1604    /// ```
1605    #[inline]
1606    #[stable(feature = "result_copied", since = "1.59.0")]
1607    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1608    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1609    pub const fn copied(self) -> Result<T, E>
1610    where
1611        T: Copy,
1612    {
1613        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1614        // ready yet, should be reverted when possible to avoid code repetition
1615        match self {
1616            Ok(&v) => Ok(v),
1617            Err(e) => Err(e),
1618        }
1619    }
1620
1621    /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1622    /// `Ok` part.
1623    ///
1624    /// # Examples
1625    ///
1626    /// ```
1627    /// let val = 12;
1628    /// let x: Result<&i32, i32> = Ok(&val);
1629    /// assert_eq!(x, Ok(&12));
1630    /// let cloned = x.cloned();
1631    /// assert_eq!(cloned, Ok(12));
1632    /// ```
1633    #[inline]
1634    #[stable(feature = "result_cloned", since = "1.59.0")]
1635    pub fn cloned(self) -> Result<T, E>
1636    where
1637        T: Clone,
1638    {
1639        self.map(|t| t.clone())
1640    }
1641}
1642
1643impl<T, E> Result<&mut T, E> {
1644    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1645    /// `Ok` part.
1646    ///
1647    /// # Examples
1648    ///
1649    /// ```
1650    /// let mut val = 12;
1651    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1652    /// assert_eq!(x, Ok(&mut 12));
1653    /// let copied = x.copied();
1654    /// assert_eq!(copied, Ok(12));
1655    /// ```
1656    #[inline]
1657    #[stable(feature = "result_copied", since = "1.59.0")]
1658    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1659    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1660    pub const fn copied(self) -> Result<T, E>
1661    where
1662        T: Copy,
1663    {
1664        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1665        // ready yet, should be reverted when possible to avoid code repetition
1666        match self {
1667            Ok(&mut v) => Ok(v),
1668            Err(e) => Err(e),
1669        }
1670    }
1671
1672    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1673    /// `Ok` part.
1674    ///
1675    /// # Examples
1676    ///
1677    /// ```
1678    /// let mut val = 12;
1679    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1680    /// assert_eq!(x, Ok(&mut 12));
1681    /// let cloned = x.cloned();
1682    /// assert_eq!(cloned, Ok(12));
1683    /// ```
1684    #[inline]
1685    #[stable(feature = "result_cloned", since = "1.59.0")]
1686    pub fn cloned(self) -> Result<T, E>
1687    where
1688        T: Clone,
1689    {
1690        self.map(|t| t.clone())
1691    }
1692}
1693
1694impl<T, E> Result<Option<T>, E> {
1695    /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1696    ///
1697    /// `Ok(None)` will be mapped to `None`.
1698    /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1699    ///
1700    /// # Examples
1701    ///
1702    /// ```
1703    /// #[derive(Debug, Eq, PartialEq)]
1704    /// struct SomeErr;
1705    ///
1706    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1707    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1708    /// assert_eq!(x.transpose(), y);
1709    /// ```
1710    #[inline]
1711    #[stable(feature = "transpose_result", since = "1.33.0")]
1712    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1713    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1714    pub const fn transpose(self) -> Option<Result<T, E>> {
1715        match self {
1716            Ok(Some(x)) => Some(Ok(x)),
1717            Ok(None) => None,
1718            Err(e) => Some(Err(e)),
1719        }
1720    }
1721}
1722
1723impl<T, E> Result<Result<T, E>, E> {
1724    /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1725    ///
1726    /// # Examples
1727    ///
1728    /// ```
1729    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1730    /// assert_eq!(Ok("hello"), x.flatten());
1731    ///
1732    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1733    /// assert_eq!(Err(6), x.flatten());
1734    ///
1735    /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1736    /// assert_eq!(Err(6), x.flatten());
1737    /// ```
1738    ///
1739    /// Flattening only removes one level of nesting at a time:
1740    ///
1741    /// ```
1742    /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1743    /// assert_eq!(Ok(Ok("hello")), x.flatten());
1744    /// assert_eq!(Ok("hello"), x.flatten().flatten());
1745    /// ```
1746    #[inline]
1747    #[stable(feature = "result_flattening", since = "1.89.0")]
1748    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1749    #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1750    pub const fn flatten(self) -> Result<T, E> {
1751        // FIXME(const-hack): could be written with `and_then`
1752        match self {
1753            Ok(inner) => inner,
1754            Err(e) => Err(e),
1755        }
1756    }
1757}
1758
1759// This is a separate function to reduce the code size of the methods
1760#[cfg(not(feature = "panic_immediate_abort"))]
1761#[inline(never)]
1762#[cold]
1763#[track_caller]
1764fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1765    panic!("{msg}: {error:?}")
1766}
1767
1768// This is a separate function to avoid constructing a `dyn Debug`
1769// that gets immediately thrown away, since vtables don't get cleaned up
1770// by dead code elimination if a trait object is constructed even if it goes
1771// unused
1772#[cfg(feature = "panic_immediate_abort")]
1773#[inline]
1774#[cold]
1775#[track_caller]
1776fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1777    panic!()
1778}
1779
1780/////////////////////////////////////////////////////////////////////////////
1781// Trait implementations
1782/////////////////////////////////////////////////////////////////////////////
1783
1784#[stable(feature = "rust1", since = "1.0.0")]
1785impl<T, E> Clone for Result<T, E>
1786where
1787    T: Clone,
1788    E: Clone,
1789{
1790    #[inline]
1791    fn clone(&self) -> Self {
1792        match self {
1793            Ok(x) => Ok(x.clone()),
1794            Err(x) => Err(x.clone()),
1795        }
1796    }
1797
1798    #[inline]
1799    fn clone_from(&mut self, source: &Self) {
1800        match (self, source) {
1801            (Ok(to), Ok(from)) => to.clone_from(from),
1802            (Err(to), Err(from)) => to.clone_from(from),
1803            (to, from) => *to = from.clone(),
1804        }
1805    }
1806}
1807
1808#[unstable(feature = "ergonomic_clones", issue = "132290")]
1809impl<T, E> crate::clone::UseCloned for Result<T, E>
1810where
1811    T: crate::clone::UseCloned,
1812    E: crate::clone::UseCloned,
1813{
1814}
1815
1816#[stable(feature = "rust1", since = "1.0.0")]
1817impl<T, E> IntoIterator for Result<T, E> {
1818    type Item = T;
1819    type IntoIter = IntoIter<T>;
1820
1821    /// Returns a consuming iterator over the possibly contained value.
1822    ///
1823    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1824    ///
1825    /// # Examples
1826    ///
1827    /// ```
1828    /// let x: Result<u32, &str> = Ok(5);
1829    /// let v: Vec<u32> = x.into_iter().collect();
1830    /// assert_eq!(v, [5]);
1831    ///
1832    /// let x: Result<u32, &str> = Err("nothing!");
1833    /// let v: Vec<u32> = x.into_iter().collect();
1834    /// assert_eq!(v, []);
1835    /// ```
1836    #[inline]
1837    fn into_iter(self) -> IntoIter<T> {
1838        IntoIter { inner: self.ok() }
1839    }
1840}
1841
1842#[stable(since = "1.4.0", feature = "result_iter")]
1843impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1844    type Item = &'a T;
1845    type IntoIter = Iter<'a, T>;
1846
1847    fn into_iter(self) -> Iter<'a, T> {
1848        self.iter()
1849    }
1850}
1851
1852#[stable(since = "1.4.0", feature = "result_iter")]
1853impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1854    type Item = &'a mut T;
1855    type IntoIter = IterMut<'a, T>;
1856
1857    fn into_iter(self) -> IterMut<'a, T> {
1858        self.iter_mut()
1859    }
1860}
1861
1862/////////////////////////////////////////////////////////////////////////////
1863// The Result Iterators
1864/////////////////////////////////////////////////////////////////////////////
1865
1866/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1867///
1868/// The iterator yields one value if the result is [`Ok`], otherwise none.
1869///
1870/// Created by [`Result::iter`].
1871#[derive(Debug)]
1872#[stable(feature = "rust1", since = "1.0.0")]
1873pub struct Iter<'a, T: 'a> {
1874    inner: Option<&'a T>,
1875}
1876
1877#[stable(feature = "rust1", since = "1.0.0")]
1878impl<'a, T> Iterator for Iter<'a, T> {
1879    type Item = &'a T;
1880
1881    #[inline]
1882    fn next(&mut self) -> Option<&'a T> {
1883        self.inner.take()
1884    }
1885    #[inline]
1886    fn size_hint(&self) -> (usize, Option<usize>) {
1887        let n = if self.inner.is_some() { 1 } else { 0 };
1888        (n, Some(n))
1889    }
1890}
1891
1892#[stable(feature = "rust1", since = "1.0.0")]
1893impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1894    #[inline]
1895    fn next_back(&mut self) -> Option<&'a T> {
1896        self.inner.take()
1897    }
1898}
1899
1900#[stable(feature = "rust1", since = "1.0.0")]
1901impl<T> ExactSizeIterator for Iter<'_, T> {}
1902
1903#[stable(feature = "fused", since = "1.26.0")]
1904impl<T> FusedIterator for Iter<'_, T> {}
1905
1906#[unstable(feature = "trusted_len", issue = "37572")]
1907unsafe impl<A> TrustedLen for Iter<'_, A> {}
1908
1909#[stable(feature = "rust1", since = "1.0.0")]
1910impl<T> Clone for Iter<'_, T> {
1911    #[inline]
1912    fn clone(&self) -> Self {
1913        Iter { inner: self.inner }
1914    }
1915}
1916
1917/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
1918///
1919/// Created by [`Result::iter_mut`].
1920#[derive(Debug)]
1921#[stable(feature = "rust1", since = "1.0.0")]
1922pub struct IterMut<'a, T: 'a> {
1923    inner: Option<&'a mut T>,
1924}
1925
1926#[stable(feature = "rust1", since = "1.0.0")]
1927impl<'a, T> Iterator for IterMut<'a, T> {
1928    type Item = &'a mut T;
1929
1930    #[inline]
1931    fn next(&mut self) -> Option<&'a mut T> {
1932        self.inner.take()
1933    }
1934    #[inline]
1935    fn size_hint(&self) -> (usize, Option<usize>) {
1936        let n = if self.inner.is_some() { 1 } else { 0 };
1937        (n, Some(n))
1938    }
1939}
1940
1941#[stable(feature = "rust1", since = "1.0.0")]
1942impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
1943    #[inline]
1944    fn next_back(&mut self) -> Option<&'a mut T> {
1945        self.inner.take()
1946    }
1947}
1948
1949#[stable(feature = "rust1", since = "1.0.0")]
1950impl<T> ExactSizeIterator for IterMut<'_, T> {}
1951
1952#[stable(feature = "fused", since = "1.26.0")]
1953impl<T> FusedIterator for IterMut<'_, T> {}
1954
1955#[unstable(feature = "trusted_len", issue = "37572")]
1956unsafe impl<A> TrustedLen for IterMut<'_, A> {}
1957
1958/// An iterator over the value in a [`Ok`] variant of a [`Result`].
1959///
1960/// The iterator yields one value if the result is [`Ok`], otherwise none.
1961///
1962/// This struct is created by the [`into_iter`] method on
1963/// [`Result`] (provided by the [`IntoIterator`] trait).
1964///
1965/// [`into_iter`]: IntoIterator::into_iter
1966#[derive(Clone, Debug)]
1967#[stable(feature = "rust1", since = "1.0.0")]
1968pub struct IntoIter<T> {
1969    inner: Option<T>,
1970}
1971
1972#[stable(feature = "rust1", since = "1.0.0")]
1973impl<T> Iterator for IntoIter<T> {
1974    type Item = T;
1975
1976    #[inline]
1977    fn next(&mut self) -> Option<T> {
1978        self.inner.take()
1979    }
1980    #[inline]
1981    fn size_hint(&self) -> (usize, Option<usize>) {
1982        let n = if self.inner.is_some() { 1 } else { 0 };
1983        (n, Some(n))
1984    }
1985}
1986
1987#[stable(feature = "rust1", since = "1.0.0")]
1988impl<T> DoubleEndedIterator for IntoIter<T> {
1989    #[inline]
1990    fn next_back(&mut self) -> Option<T> {
1991        self.inner.take()
1992    }
1993}
1994
1995#[stable(feature = "rust1", since = "1.0.0")]
1996impl<T> ExactSizeIterator for IntoIter<T> {}
1997
1998#[stable(feature = "fused", since = "1.26.0")]
1999impl<T> FusedIterator for IntoIter<T> {}
2000
2001#[unstable(feature = "trusted_len", issue = "37572")]
2002unsafe impl<A> TrustedLen for IntoIter<A> {}
2003
2004/////////////////////////////////////////////////////////////////////////////
2005// FromIterator
2006/////////////////////////////////////////////////////////////////////////////
2007
2008#[stable(feature = "rust1", since = "1.0.0")]
2009impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2010    /// Takes each element in the `Iterator`: if it is an `Err`, no further
2011    /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2012    /// container with the values of each `Result` is returned.
2013    ///
2014    /// Here is an example which increments every integer in a vector,
2015    /// checking for overflow:
2016    ///
2017    /// ```
2018    /// let v = vec![1, 2];
2019    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2020    ///     x.checked_add(1).ok_or("Overflow!")
2021    /// ).collect();
2022    /// assert_eq!(res, Ok(vec![2, 3]));
2023    /// ```
2024    ///
2025    /// Here is another example that tries to subtract one from another list
2026    /// of integers, this time checking for underflow:
2027    ///
2028    /// ```
2029    /// let v = vec![1, 2, 0];
2030    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2031    ///     x.checked_sub(1).ok_or("Underflow!")
2032    /// ).collect();
2033    /// assert_eq!(res, Err("Underflow!"));
2034    /// ```
2035    ///
2036    /// Here is a variation on the previous example, showing that no
2037    /// further elements are taken from `iter` after the first `Err`.
2038    ///
2039    /// ```
2040    /// let v = vec![3, 2, 1, 10];
2041    /// let mut shared = 0;
2042    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2043    ///     shared += x;
2044    ///     x.checked_sub(2).ok_or("Underflow!")
2045    /// }).collect();
2046    /// assert_eq!(res, Err("Underflow!"));
2047    /// assert_eq!(shared, 6);
2048    /// ```
2049    ///
2050    /// Since the third element caused an underflow, no further elements were taken,
2051    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2052    #[inline]
2053    fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2054        iter::try_process(iter.into_iter(), |i| i.collect())
2055    }
2056}
2057
2058#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2059#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2060impl<T, E> const ops::Try for Result<T, E> {
2061    type Output = T;
2062    type Residual = Result<convert::Infallible, E>;
2063
2064    #[inline]
2065    fn from_output(output: Self::Output) -> Self {
2066        Ok(output)
2067    }
2068
2069    #[inline]
2070    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2071        match self {
2072            Ok(v) => ControlFlow::Continue(v),
2073            Err(e) => ControlFlow::Break(Err(e)),
2074        }
2075    }
2076}
2077
2078#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2079#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2080impl<T, E, F: ~const From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2081    for Result<T, F>
2082{
2083    #[inline]
2084    #[track_caller]
2085    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2086        match residual {
2087            Err(e) => Err(From::from(e)),
2088        }
2089    }
2090}
2091#[diagnostic::do_not_recommend]
2092#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2093#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2094impl<T, E, F: ~const From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2095    #[inline]
2096    fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2097        Err(From::from(e))
2098    }
2099}
2100
2101#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2102#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2103impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2104    type TryType = Result<T, E>;
2105}